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Abstract

Large-scale multi-antenna systems can effectively improve data transmission reliability and through-

put for smart grid. However, the massive number of antennas and radio frequency (RF) chains also

result in high complexity and energy cost. In this paper, we develop a new performance benchmark

named energy economic efficiency for measuring the time-average throughput per energy cost. Then,

we investigate how to maximize long-term energy economic efficiency via the joint optimization of

communication and energy resource allocation. The formulated joint optimization problem is NP-hard

because it not only involves long-term nonlinear optimization objective and constraints, but also involves

both integer and continuous optimization variables. Next, we propose an online joint antenna selection

and power control algorithm by combining nonlinear fractional programming, Lyapunov optimization,

and bisection method. The proposed algorithm can achieve bounded performance deviation from the

optimum performance without requiring the prior knowledge of future channel state information (CSI),

energy arrival, and electricity price. Finally, a comprehensive theoretical analysis is provided, and the

proposed algorithm is verified through simulations under various system configurations.

Index Terms

Large-scale multi-antenna systems, Lyapunov optimization, smart grid, energy economic efficiency,

bisection method, nonlinear fractional programming.

I. INTRODUCTION

Smart grid relies on advanced communication technologies for improving efficiency, reliability,

and economics of traditional power grid. To achieve intelligent management of energy generation,
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transmission, transformation, delivery, and storage, huge volume of data have to be transmitted on

a real-time basis. With the development of 5G cellular technologies, large-scale multi-antenna

systems with hundreds of antennas have appeared as a promising solution. It can effectively

improve data transmission reliability and throughput for smart grid via the exploitation of antenna

gain [1]–[3]. The basic principles of large-scale multi-antenna systems were investigated [4],

and real-world testbeds were developed [5], [6]. Despite its huge benefits, the massive number

of antennas and RF chains also raises new challenges such as high complexity and power

consumption. For each antenna, a separate radio frequency (RF) chain is required for signal

processing, which is generally more expensive and energy consuming than the antenna itself [7],

[8]. The overall energy costs can no longer be neglected as in existing cellular systems.

The costs of energy consumption can be reduced from both the energy and communication

domains [9]. In the energy domain, a possible solution is to exploit external renewable energy

sources such as wind and solar energy. Smart grid enables seamless integration of renewable

energy sources into the demand side, thereby reducing the amount of grid power consumption.

In the communication domain, the active number of antennas and respective RF chains can

also be reduced through antenna selection. Previous experiment results have demonstrated that

the contributions of different antennas are not equal in real-world communication channels [5].

Therefore, instead of using all antennas, it is beneficial to only select those antennas which

contribute the most while turning off the rest.

However, the research on large-scale multi-antenna systems for smart grid is still in its

infancy. There exist several key challenges that remain unsolved. First of all, energy resource

allocation and communication resource allocation are intertwined with each other and should

be jointly optimized. The formulated joint resource allocation problem is NP-hard due to the

coupling between energy and communication domains. Second, renewable energy sources with

intermittent and fluctuating characteristics and capacity-constrained energy storage devices cannot

provide reliable quality of service (QoS) guarantees. A more feasible approach is to utilize both

unreliable renewable energy sources and reliable grid power in a complementary manner [10].

The coexistence of various energy sources further complicates the resource allocation problem.

Last but not least, the long-term system performance depends on the precise knowledge of

future electricity price, energy arrival and channel state information (CSI), which is generally

unavailable. In real-world implementation, even the accurate statistical information is difficult to

be identified.
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To address these challenges, we propose an online joint resource allocation algorithm by

combining nonlinear fractional programming, bisection method, and Lyapunov optimization. Its

main goal is to maximize the long-term energy economic efficiency via the joint optimization

of communication resource allocation, i.e., antenna selection, and energy resource allocation,

i.e., power control. First, we formulate the energy economic efficiency maximization problem

as a joint antenna selection and power control problem over an infinite horizon, which cannot

be solved in polynomial time. Both long-term and short-term constraints are taken into account.

Second, the formulated problem in fractional form is transformed into an equivalent subtractive-

form problem based on nonlinear fractional programming. Then, the long-term stochastic op-

timization problem is further converted to a short-term deterministic optimization problem by

leveraging Lyapunov optimization. Third, by opportunistically minimizing the upper bound of

drift-minus-reward, the antenna selection and power control subproblems are separated and solved

sequentially. The main contributions of this work are summarized as follows:

• Energy economic efficiency maximization: We consider a new performance metric named

energy economic efficiency, which provides a benchmark for measuring the time-average

throughput per unit energy cost. Compared to other metrics such as energy efficiency, it is

more suitable for the smart grid environment with various energy sources and electricity

prices. Particularly, energy efficiency can be abstracted as a special case of this new metric.

• Long-term online optimization with bounded performance deviation: The proposed algo-

rithm is aware of long-term optimization objective and constraints. It can guarantee bounded

deviation from the optimum performance without requiring any prior knowledge of future

CSI, energy arrival, and electricity prices.

• Comprehensive theoretical analysis and performance validation: We provide a compre-

hensive theoretical analysis for the proposed algorithm in terms of reliability, optimality,

and complexity. Intensive simulation results are conducted under different scenarios to

demonstrate its performance gains.

The rest of the paper is outlined as follows. A survey of related works is presented in Section II.

Section III introduces the system model in details. The problem formulation is provided in Section

IV. Section V elaborates the proposed online resource allocation algorithm. A comprehensive

property analysis is provided in Section VI. Numerical results and analysis are introduced in

Section VII. Finally, the conclusion is summarized in Section VIII.
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II. RELATED WORK

When implementing large-scale multi-antenna system for the smart grid, both the communi-

cation resource allocation and energy resource allocation should be jointly optimized according

to dynamic CSI, energy arrival, and electricity prices. The key research challenge is that these

uncertain factors may cause a high level of volatility and increase potential performance distur-

bances.

For the optimization of communication resources, antenna selection techniques for conven-

tional multi-antenna systems are summarized in [7], and were then extended to co-located large-

scale multi-antenna systems [5], [11], [12], as well as distributed antenna systems (DAS) [13],

[14]. In [11], Li et al. proposed a bisection-based antenna selection algorithm to maximize the

energy efficiency for the large-scale multi-antenna systems. In [5], Gao et al. evaluated antenna

selection performance for large-scale multi-antenna systems with 128 elements and proposed

a close-to-optimal antenna selection algorithm based on measurements of the received power.

Amadori et al. developed an antenna selection algorithm to maximize the received power by

identifying antennas with higher constructive interference [12]. Nevertheless, these attempts are

only valid for scenarios with constant energy supply, and have not considered the smart grid

scenarios with dynamic energy arrival and electricity prices.

For the optimization of energy resources, power control in renewable energy based commu-

nication systems was originally developed for nonfading channels [15], and was then extended

to broadcasting channels [16], multiple-hop relay channels [17], [18], fading channels [19], and

multiple input multiple output (MIMO) channels [20]. However, most of these attempts only

target the power control problem in systems with a limited number of antennas. The specific

characteristics of large-scale multi-antenna systems are largely neglected, and antenna selection

is not jointly optimized with power control.

Markov decision process (MDP) provides an effective approach to handle uncertainties, in

which the uncertain parameters are assumed to follow a well-known probability distribution [21]–

[24]. In [21], Stephen et al. modeled the joint optimization problem of pilot allocation and antenna

selection as a partially observed MDP, and developed a joint resource allocation algorithm to

maximize the expected throughput. The drawback is that the performance degrades dramatically

if the practical probability distributions of uncertain factors are different from the presumed

statistical models. In addition, the computation complexity of MDP is enormously high because
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of the well-known “curse of dimensionality” [25]. Although the algorithmic structures of low-

complexity sub-optimal solutions were developed [15]–[17], [20], the knowledge of statistical

information is required as a priori.

An alternative low-complexity sub-optimal solution for addressing long-term stochastic op-

timization problems is Lyapunov optimization [26]. It allows a distribution-free model of un-

certain factors and provides bounded performance guarantees under all possible realizations of

uncertainties. Some researchers have already applied it for resource allocation optimization in

large-scale multi-antenna systems. In [27], Jiang et al. studied the joint user scheduling and

beam selection problem in large-scale multi-antenna systems, and proposed an online sum-rate

maximization algorithm based on Lyapunov optimization. The same authors extended their work

to the scenario where statistical CSI is available [26]. Nevertheless, these works are not suitable

for the smart grid environment with dynamic energy arrival and electricity prices. In [28], Mao

et al. considered the intermittent characteristics of renewable energy sources and proposed a

Lyapunov optimization-based base station (BS) assignment and power control (BAPC) algorithm

to minimize the network service cost. Nevertheless, it is not suitable for large-scale multi-antenna

systems considered in this paper.

Renewable energy sources based large-scale multi-antenna systems have attracted intensive

studies from both academia and industry [29]–[34]. In [29], Demir et al. proposed a joint antenna

and hybrid beamforming algorithm for multi-user relay systems based on simultaneous wireless

information and power transfer (SWIPT). The relationship between SWIPT-based power transfer

and throughput was studied in [30]. In [34], Men et al. proposed a joint relay and antenna

selection algorithm based on the power splitting-based relaying (PSR) protocol to minimize

the system outage probability. However, the SWIPT-based large-scale multi-antenna systems are

quite different from our work since the main focus is on how to effectively transfer energy from

the BS to terminals. In [31], Lei et al. studied the user association and power control problem

in renewable energy-based heterogeneous networks, and proposed a low-complexity precoding

scheme for co-channel interference cancellation. A geometric water-filling resource allocation

algorithm with group upper bounded power constraints and recursion machinery was proposed

to maximize the system throughput in [32]. However, most of these previous works assume that

energy harvesting follows some well-known statistical models, and require the precise statistical

information of energy arrival. In our previous work [33], we proposed an offline joint antenna

selection and power allocation algorithm to maximize the energy efficiency of renewable energy
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Fig. 1. System model

sources based large-scale multi-antenna systems. It requires prefect knowledge of future energy

arrival and CSI, which is infeasible for practical implementation.

Different from above research attempts, we investigate how to jointly optimize antenna se-

lection and power control in large-scale multi-antenna systems according to dynamic energy

arrival, CSI, and electricity prices, which has not been considered before. Compared with [29]–

[34], we consider a more practical scenario where even the statistical knowledge of uncertainties

is unknown. Furthermore, we emphasize on a new performance metric named energy economic

efficiency, which provides an effective benchmark for measuring the time-average throughput per

unit energy cost. This new objective involves long-term optimization of a nonlinear fractional

programming problem with both integer and continuous variables, which is not considered in

[29]–[34].
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III. SYSTEM MODEL

We consider a typical downlink large-scale multi-antenna systems for smart grid, which is

illustrated in Fig. 1. There are one BS and K smart terminals (STs). The BS is powered by

two complementary energy sources including the fluctuating renewable energy sources and the

reliable power grid. The renewable energy harvested from the external environment is stored in a

capacity-constrained battery before usage, while the energy supply variability is compensated by

the grid power. In the following, the models of energy arrival, electricity price, data transmission,

and power consumption are introduced in details.

A. Dynamic Energy Arrival and Electricity Price Models

The dynamic process of renewable energy arrival and real-time electricity price over the

continuous timeline is illustrated in Fig. 1. The time slot model proposed in [35], [36] is adopted.

Specifically, we partition the time dimension into successive identical energy slots with slot

duration T0 seconds, which are indexed by te = 1, 2, · · ·∞. The time-scale difference among

energy arrival, CSI variation, and electricity price variation has also been taken into consideration.

Generally, it is assumed that CSI varies much faster than that of energy arrival, while electricity

price varies much slower than that of energy arrival, i.e., electricity prices can be assumed as a

deterministic value during a large number of energy slots. Therefore, each energy slot consists of

T0/Tc channel slots, where Tc is channel slot duration, and multiple energy slots, e.g., Te slots,

are grouped as a price slot with duration of TeT0 seconds, which is indexed by tw = 1, 2, · · · ,∞.

It is noted that in real-world implementations, T0

Tc
may not be an integer. The proposed algorithm

can still be applicable since antenna selection and power control are jointly optimized at each

energy slot instead of each channel slot.

In the smart grid, both energy arrival and electricity prices are varying temporally and spatially.

Let Ein(te) ∈ [0, Emax] denote the amount of energy arrives to the battery at the te-th slot, which

is i.i.d. over energy slots. Let ωE(tω) ∈ [0, ωE
max] and ωG(tω) ∈ [0, ωG

max] denote the prices of

renewable energy and grid power at the tω-th slot, which are i.i.d. over price slots, respectively.

We can set 0 < ωE < ωG to encourage the consumption of renewable energy.

Let B(te) denote the battery state and let PE
total(te) denote the renewable power consumption

at the te-th slot, respectively. Since the energy consumed at each slot cannot exceed the energy
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stored in the battery, we have the energy causality constraint:

PE
total(te)T0 ≤ B(te). (1)

Then, the battery state can be modeled as a dynamic energy queue, where energy arrival and

energy consumption represent the input and output of the queue, respectively. The energy queue

is updated as

B(te + 1) = min
{

B(te)− PE
total(te)T0 + Ein(te), Bmax

}

, (2)

where Bmax denotes the battery capacity.

Remark 1: Compared with previous works [33], [35], [37], we have not put any restriction

on the statistical distributions of uncertain factors such as energy arrival and electricity price. In

other words, the proposed joint resource allocation algorithm can be applicable even when the

knowledge of statistical distributions is unknown.

B. Data Transmission Model

The BS is assumed to be equipped with a total of N antennas (N >> 1), while each ST is

based on a single antenna due to space and cost limitations. The downlink signal received at the

terminal side is written as

y = H
H
Wx+ n0, (3)

where x is the K × 1 transmission symbol vector, and W is the N × K precoding matrix.

In this paper, we adopt the zero forcing (ZF) precoding scheme, i.e., W = H(HH
H)−1, due

to its superior performance and low complexity when N >> K [38]. H = [h1,h2, ...,hK ] is

the N ×K matrix of channel gain, and each element hk = [hk,1, hk,2, ..., hk,N ]
T denotes the N -

dimensional vector of channel gain between the BS and the k-th ST. n0 is additive white Gaussian

noise (AWGN) which follows a normal distribution N (0, σ2
Ik), where Ik is the N ×K identity

matrix. Following the channel model assumptions used in [11], [39]–[41], we mainly consider

resource allocation optimization based on the small-scale channel fading, and the elements in

H are independent identically distributed (i.i.d.) complex Gaussian random variables with the

mean of zero and the variance of 0.5 per real dimension [11], [39], [40]. The assumption of

small-scale Rayleigh flat fading is justified in [11], [39]–[41], i.e., adequate antenna spacing

ensures channel decorrelation in a rich-scatting nonline-of-sight radio environment.
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At the te-th energy slot, with antenna selection, the BS selects M(te) ∈ {1, 2, · · · , N} antennas

with the largest channel gains, i.e.,
∑K

k=1 |hk,1|
2 >

∑K

k=1 |hk,2|
2 > · · · >

∑K

k=1 |hk,M(te)|
2, from

N antennas for data transmission. The rationale behind is that since the contributions of different

antennas are not equal, the antennas with largest channel gains should be selected in priority.

A similar assumption is also adopted in other previous works [11], [42]. The downlink spectral

efficiency (bits/s/Hz) at the te-th energy slot is calculated as [42]

Isel(te) = K log2



1 +
PTx(te)

K2σ2

M(te)
∑

j=1

K
∑

k=1

|hk,j|
2



 , (4)

where PTx(te) represents the transmission power at the te-th energy slot.

Based on the channel hardening phenomenon [42], we have the following theorem:

Theorem 1. Isel defined in (4) follows a folded normal distribution, which is expressed as

Isel(te) ∼ FN

(

K log2

[

1 +

(

1 + ln
N

M(te)

)

PTx(te)M(te)

Kσ2

]

(log2 ePTx(te))
2 M(te)

(

2− M(te)
N

)

Kσ4
[

1 +
(

1 + ln N
M(te)

)

PTxM(te)
Kσ2

]2






. (5)

Proof: Please see Appendix A.

Remark 2: M(te) represents the number of selected antennas at the te-th energy slot, which

is an integer and is less than or equal to N . The value of M(te) is time-varying and should be

dynamically determined by the proposed algorithm. It is noted that M(te) only indicates that

how many antennas should be selected, while the CSI at each channel slot is used to determine

which specific antennas are selected. We assume that the CSI is available for the BS. How to

perform CSI estimation is out of the scope of this work and will be studied in the future.

C. Power Consumption Model

Let Ptotal(te) denote the total power consumption of the BS at the te-th slot. According to

[43], Ptotal(te) is expressed as

Ptotal(te) = PC(te) + PTx(te) + PRF (te)M(te), (6)

where PC(te), PTx(te), and PRF (te) represent the instantaneous circuit power, transmission

power, and single RF chain circuit power at the te-th slot, respectively. Each part of the power
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consumption comes from both the renewable energy stored in the battery and the power grid.

Thus, PC , PTx and PRF are defined as

PC(te) = PE
C (te) + PG

C (te),

PTx(te) = PE
Tx(te) + PG

Tx(te),

PRF (te) = PE
RF (te) + PG

RF (te), (7)

where PE
C (te), PE

Tx(te), and PE
RF (te) represent the instantaneous circuit power, transmission

power, and single RF chain circuit power supplied by the battery at the te-th slot, respectively.

PG
C (te), P

G
Tx(te), and PG

RF (te) represent the instantaneous circuit power, transmission power, and

single RF circuit chain power supplied by the power grid at the te-th slot, respectively.

The total power consumption of grid power and the total power consumption of renewable

energy at the te-th slot are given by

PG
total(te) = PG

C (te) + PG
Tx(te) + PG

RF (te)M(te), (8)

PE
total(te) = PE

C (te) + PE
Tx(te) + PE

RF (te)M(te). (9)

IV. PROBLEM FORMULATION

In this section, we consider the optimization over Tω price slots, i.e., a total of TeTω energy

slots. We define the antenna selection and power control policies as S = {S1, · · · ,Ste , · · · ,STeTω
}

and P = {P1, · · · ,Pte , · · · ,PTeTω
}, respectively, where Ste = {M(te)} and Pte = {P

E
C (te), P

G
C (te),

PE
Tx(te), P

G
Tx(te), P

E
RF (te), P

G
RF (te)}.

The expected throughput per unit bandwidth (bits/Hz) at the te-th slot is given by

Usel(Ste ,Pte) = E{Isel(te)}T0 = K log2

[

1 +

(

1 + ln
N

M(te)

)

PTx(te)M(te)

Kσ2

]

T0, (10)

where E{·} denotes the expectation operator.

The energy cost (cents) at the te-th slot is given by

Ctotal(Ste ,Pte) = ωE(te)P
E
total(te)T0 + ωG(te)P

G
total(te)T0. (11)

Let Usel(S,P) and Ctotal(S,P) denote the time-average throughput per unit bandwidth and

the time-average energy cost over TeTω slots, respectively, which are given by

Usel(S,P) = lim
Tω→∞

1

TeTω

TeTω
∑

te=1

E{Usel(Ste ,Pte)}, (12)

Ctotal(S,P) = lim
Tω→∞

1

TeTω

TeTω
∑

te=1

E {Ctotal(Ste ,Pte)} . (13)
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Let UE3 denote the energy economic efficiency (bits/Hz/cent) which is defined as the ratio

of the time-average throughput per unit bandwidth to the time-average energy cost. UE3 can be

written as

UE3 =
Usel(S,P)

Ctotal(S,P)
. (14)

The energy-economic-efficient joint antenna selection and power control problem is formulated

as

P1 : max
(S,P)

UE3

s.t. C1 ∼ C9

C1 : P
E
total(te)T0 ≤ B(te), ∀te,

C2 : P
E
C (te) + PG

C (te) = PC(te), ∀te,

C3 : P
E
RF (te) + PG

RF (te) = PRF (te), ∀te.

C4 : PTx(te) ≤ PTx,max, ∀te,

C5 : P
G
total(te) ≤ PG

max, ∀te,

C6 : Usel(Ste ,Pte) ≥ KRmin, ∀te,

C7 : lim
Tω→+∞

1

TeTω

∑TeTω

te=1 E {PTx(te)} ≤ PTx,mean,

C8 : M(te) ∈ [1, ..., N ], ∀te,

C9 : P
E
C (te), P

G
C (te), P

E
Tx(te), P

G
Tx(te), P

E
RF (te), P

G
RF (te) ≥ 0, ∀te, (15)

where C1 is the energy causality constraint. C2 and C3 specify that the power required for

reliable operations of BS and single RF chain should be guaranteed. C4 and C5 are instantaneous

maximum transmission power and grid power constraints. C6 is the QoS requirement. C7 is

the long-term constraint of transmission power. C8 and C9 specify the boundary constraints of

optimization variables.

V. ENERGY-ECONOMIC-EFFICIENT ONLINE JOINT RESOURCE ALLOCATION

In this section, the proposed joint resource allocation algorithm is presented. First, we introduce

how to transform problem P1 into a sequence of parameterized problems in subtractive form.

Then, we introduce the formulation of Lyapunov optimization, in which the long-term stochastic
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optimization problem is converted to a series of short-term deterministic optimization problems.

Next, we propose an iterative online joint optimization algorithm based on bisection method and

Lagrange dual decomposition.

A. Problem Transformation

Denote the optimum objective value of P1 as q∗, which is given by

q∗ = max
(S,P)

UE3 =
Usel(S

∗,P∗)

Ctotal(S∗,P∗)
, (16)

where S∗ and P∗ represent the optimum antenna selection and power control policies, respec-

tively. Based on nonlinear fractional programming [44], we have

Theorem 2. The optimum objective value q∗ is achievable if and only if

max
(S,P)

Usel(S,P)− q∗Ctotal(S,P) = Usel(S
∗,P∗)− q∗Ctotal(S

∗,P∗) = 0. (17)

Proof: The details are omitted here due to space limitation. A similar proof can be found

in [44].

Based on Theorem 2, there exists an alternative subtractive-form problem which is equivalent

to P1. Thus, P1 can be rewritten as

P2 : max
(S,P)

Usel(S,P)− q∗Ctotal(S,P)

s.t. C1 ∼ C9. (18)

However, the specific value of q∗ in P2 is still unknown. Therefore, base on [45], we use an

alternative variable q(te) to replace q∗, which is defined as

q(te) =

∑te
τ=1 E{Usel(Sτ ,Pτ )}

∑te
τ=1 E {Ctotal(Sτ ,Pτ )}

. (19)

Then P2 can be rewritten as

P3 : max
(S,P)

Usel(S,P)− q(te)Ctotal(S,P)

s.t. C1 ∼ C9. (20)
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Remark 3: P3 is a mixed integer nonlinear programming (MINLP) problem, where both integer

and continuous variables have to be jointly optimized. Furthermore, it also involves long-term

optimization objective function and constraints. Therefore, P3 is NP-hard and q(te) cannot be

directly obtained by the conventional Dinkelbach approach [46].

B. The Formulation of Lyapunov Optimization

Based on the concept of virtual queue [44], the long-term time-average constraint C7 of P3

is converted to a queue stability constraint. Specifically, the virtual queue Z(te) associated with

C7 is given by

Z(te + 1) = max[Z(te)− PTx,mean, 0] + PTx(te). (21)

We set the initial queue backlog as Z(1) = 0.

Theorem 3. If Z(te) is mean rate stable, C7 holds automatically.

Proof: The detailed proof is provided in Section VI.

Based on Theorem 3, P3 can be rewritten as

P4 : max
(S,P)

Usel(S,P)− q(te)Ctotal(S,P)

s.t. C1 ∼ C6, C8, C9,

C10 : Queue Z is mean rate stable. (22)

Then, the Lyapunov function L(Z(te)) is given by

L(Z(te)) =
1

2
Z2 (te) . (23)

We introduce a Lyapunov drift to push the Lyapunov function to a lower congestion state and

keep the virtual queue stable. The Lyapunov drift is the expected change in the Lyapunov function

over one slot, given that the current state at the te-th slot is Z(te). Thus, the one-slot conditional

Lyapunov drift is defined as

∆(Z(te))
∆
= E{L(Z(te + 1))− L(Z(te))|Z(te)}. (24)

To maximize Usel(S,P) − q(te)Ctotal(S,P) under the constraint that queue Z is stable, we

define the drift-minus-reward term as

DM(Z(te)) = ∆(Z(te))− V E{Usel(Ste ,Pte)− q(te)Ctotal(Ste ,Pte)|Z(te)}, (25)
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where V is a nonnegative parameter which controls the relative importance of the drift ∆(Z(te))

compared with the reward E{Usel(Ste ,Pte) − q(te)Ctotal(Ste ,Pte)|Z(te)}, i.e., the tradeoff be-

tween “queue stability” and the “reward maximization”.

Theorem 4. The drift-minus-reward term, i.e., ∆(Z(te))−V E{Usel(Ste ,Pte)−q(te)Ctotal(Ste ,Pte)

|Z(te)}, is upper bounded by

∆(Z(te))− V E{Usel(Ste ,Pte)− q(te)Ctotal(Ste ,Pte)|Z(te)}

≤C + E{Z(te)[PTx(te)− PTx,mean]|Z(te)} − V E{Usel(Ste ,Pte)− q(te)Ctotal(Ste ,Pte)|Z(te)},

(26)

where C is a finite positive constant that satisfies

C ≥ E

{

P 2
Tx(te) + P 2

Tx,mean

2

∣

∣

∣

∣

∣

Z(te)

}

. (27)

Proof: The detailed proof is omitted here due to space limitation. A similar proof can be

found in [35].

According to the principle of Lyapunov optimization, the upper bound of the drift-minus-

reward term defined in (26) is minimized at each slot subject to constraints C1 ∼ C6, C8, and

C9. Thus, P4 can be rewritten as

P5 : min
(Ste ,Pte )

Z(te)[PTx(te)− PTx,mean]− V [Usel(Ste ,Pte)− q(te)Ctotal(Ste ,Pte)]

s.t. C1 ∼ C6, C8, C9. (28)

C. Joint Antenna Selection and Power Control

In this subsection, we propose an iterative online algorithm to solve P5, which consists of

the antenna selection algorithm summarized in Algorithm 1, and the power control algorithm

summarized in Algorithm 2.

1) Antenna Selection: Algorithm 1 is based on the bisection method [47], which is an effective

low-complexity searching algorithm with logarithmic complexity. It has been widely employed

in various application scenarios including antenna selection [11] and power allocation [48]. It is

noted that the bisection-based antenna selection algorithm developed in [11] cannot be directly

applied because the coupling between antenna selection and energy domain optimization is

not considered. Let ⌊x⌋ denote the largest integer that is less than or equal to x, and ⌈x⌉
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Algorithm 1 Antenna Selection Algorithm

1: Mlow(te)← 1, Mhigh(te)← N ,

2: while Mhigh(te)−Mlow(te) > 1 do

3: calculate Mmid(te) = ⌊Mhigh(te) +Mlow(te)⌋ /2,

4: given Mmid(te) and Mmid(te)− 1, obtain (P̂
′

te
, q̂

′

(te)), and (P̂
′′

te
, q̂

′′

(te)) by Algorithm 2,

5: if F1(Mmid(te), P̂
′

te
, q̂

′

(te)) ≤ F1(Mmid(te)− 1, P̂
′′

te
, q̂

′′

(te)), then

6: Mlow(te) = Mmid(te);

7: else if F1(Mmid(te), P̂
′

te
, q̂

′

(te)) > F1(Mmid(te)− 1, P̂
′′

te
, q̂

′′

(te)), then

8: Mhigh(te) = Mmid(te);

9: else

10: break;

11: end if

12: end while

13: if Mhigh(te)−Mlow(te) = 1, then

14: M∗(te) = arg max
(Mhigh(te),Mlow(te))

[

F1(Mhigh(te), P̂
′

te
, q̂

′

(te)), F1(Mlow(te), P̂
′′

te
, q̂

′′

(te))
]

;

15: else

16: M∗(te) = Mmid(te);

17: end if

18: Output: M∗(te).

denote the smallest integer that is not less than x. At the te-th slot, we start with an interval
[

Mlow(te),Mhigh(te)
]

, which is known to contain the optimum antenna number M∗(te). In each

iteration, we calculate Mmid(te) and Mmid(te)−1, and obtain the corresponding optimum power

control policy P̂
′

te
and P̂

′′

te
respectively by using Algorithm 2. It is noted that only the last two

terms of P5 involve the variables of antenna selection. Thus, we define F1(M(te),Pte , (te)) as

F1(M(te),Pte , q(te)) = Usel(M(te),Pte)− q(te)Ctotal(M(te),Pte). (29)

Then, we compare F1(Mmid(te), P̂
′

te
, q̂

′

(te)) with F1(Mmid(te) − 1, P̂
′′

te
, q̂

′′

(te)) to determine

whether M∗(te) lies in the interval
[

Mlow(te),Mmid(te)
]

or the interval
[

Mmid(te),Mhigh(te)
]

,
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Algorithm 2 Iterative Power Control Algorithm

1: Input: PC(te), PRF (te), PTx,max, PG
max, Rmin, q(te, 1), Z(te), Lmax, ∆.

2: Obtain M(te) by Algorithm 1.

3: Initialize: n = 1.

4: while n ≤ Lmax do

5: for a given q(te, n) and M(te), solve (33) to obtain P̂te(n),

6: if |Usel(M(te), P̂te(n))− q(te, n)Ctotal(M(te), P̂te(n))| > ∆, then

7: q(te, n+ 1) =

(

te−1
∑

τ=1

E{Usel(Sτ ,Pτ )}+ E{Usel(M(te), P̂te(n))}

)

/

(

∑te−1
τ=1 E {Ctotal(Sτ ,Pτ )}+ E{Ctotal(M(te), P̂te(n))}

)

;

8: else

9: P∗
te
= P̂te(n), and q(te) = q(te, n);

10: break;

11: end if

12: Update: n→ n+ 1.

13: end while

14: Output: q(te), P
∗
te

.

15: Calculate the virtual queue Z(te+1) of next slot based on (21), and update q(te+1, 1) = q(te).

which is given by






Mlow(te) = Mmid(te), if F1(Mmid(te), P̂
′

te
, q̂

′

(te)) ≤ F1(Mmid(te)− 1, P̂
′′

te
, q̂

′′

(te)),

Mhigh(te) = Mmid(te), otherwise.

(30)

If F1(Mmid(te), P̂
′

te
, q̂

′

(te)) ≤ F1(Mmid(te)−1, P̂
′′

te
, q̂

′′

(te)), M
∗(te) lies in the interval

[

Mmid(te),

Mhigh(te)
]

and Mlow(te) = Mmid(te). Otherwise, M∗(te) lies in the interval
[

Mlow(te),Mmid(te)
]

and Mhigh(te) = Mmid(te). The details are provided in line 5 ∼ 11 of Algorithm 1.

2) Power Control: The power control algorithm is provided as Algorithm 2. Lmax denotes

the total iteration number, n denotes the iteration index, and ∆ denotes the tolerance threshold.

We use q(te, n) to represent q(te) obtained from the (n − 1)-th iteration at the te-th slot, the

initial value of which is q(1, 1) = 0. Then, at the n-th iteration, by using q(te, n), we can obtain
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P̂te(n) associated with M(te) by solving the following power control problem.

P6 : min
(Pte )

Z(te)[PTx(te)− PTx,mean]− V [Usel(M(te),Pte(n))− q(te, n)Ctotal(M(te),Pte(n))]

s.t. C1 ∼ C6, C9. (31)

It is noted that (31) is concave with differentiable objective function and constraints. The

corresponding augmented Lagrangian is give by (32).

LE3

M(te)(Pte , αte , βte , γte , δte , ζte , θte) = Z(te)[PTx(te)− PTx,mean]

−V [Usel(M(te),Pte)− q(te, n)Ctotal(M(te),Pte(n))] + αte(n)
[

PE
total(te)T0 − B(te)

]

+βte(n)
[

PE
C (te) + PG

C (te)− PC(te)
]

+ γte(n)
[

PE
RF (te) + PG

RF (te)− PRF (te)
]

+δte(n)
[

PE
Tx(te) + PG

Tx(te)− PTx,mean

]

+ ζte(n)
[

PG
total(te)− PG

max

]

−θte(n) [Usel(M(te),Pte)−KRmin] . (32)

The Lagrange multipliers associated with constraints C1 ∼ C6 are defined as αte , βte , γte , δte , ζte ,

and θte , respectively. The equivalent Lagrange dual problem is given by

max
(αte ,βte ,γte ,δte ,ζte ,θte≥0)

min
(Pte )
LE3

M(te)(Pte , αte , βte , γte , δte , ζte , θte). (33)

Denote the optimal power control policy associated with q(te, n) as P̂te(n) = {P̂
E
C (te, n),

P̂G
C (te, n), P̂

E
Tx(te, n), P̂

G
Tx(te, n), P̂

E
RF (te, n), P̂

G
RF (te, n)}. P̂te(n) can be obtained by using Karush-

Kuhn-Tucker (KKT) conditions. Then, the Lagrange multipliers are updated based on the sub-

gradient method [49], [50]. Next, q(te, n+1) for the next iteration is calculated based on M(te)

and P̂te(n). The details are provided in line 4 ∼ 12 of Algorithm 2.

VI. PERFORMANCE ANALYSIS

In this section, the theoretical properties in terms of queue stability, performance bound, and

complexity are analyzed.

A. Stability of Virtual Queue

If the virtual queue Z(te) is mean rate stable, then the constraint C7 holds automatically. The

proof is provided as follows.

Theorem 5. The virtual queue Z(te) is mean rate stable.
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TABLE I

SIMULATION PARAMETERS.

Parameter Value

Maximum transmission power constraint PTx,max 46 dBm

Average transmission power constraint PTx,mean 45 dBm

Constant operation power PC 160.8 W

RF chain power PRF 0, 160, 450 mW

Antenna number N 100

Maximum grid power PG
max 300 W

QoS Rmin 7 bits/Hz

The number of smart terminals K 4

The variance σ
2

0 1

Proof: We assume that both Usel(Ste ,Pte) and Ctotal(Ste ,Pte) are bounded by

Usel,min ≤ Usel(Ste ,Pte) ≤ Usel,max,

Ctotal,min ≤ Ctotal(Ste ,Pr) ≤ Ctotal,max, (34)

where Usel,min, Usel,max, Ctotal,min, and Ctotal,max are finite positive constants. Based on (26) and

(34), there exists a positive constant C that satisfies

∆(Z(te)) ≤ C. (35)

Then, according to (24), we have

E{L(Z(te + 1))− L(Z(te))|Z(te)} ≤ C. (36)

We can take expectations of both sides of (36) and use the law of iterated expectations to yield

E{L(Z(te + 1))} − E{L(Z(te))} ≤ C. (37)

Summing over te ∈ {1, 2, · · · , TeTω} and using the law of telescoping sums yields

E{L(Z(TeTω))} − E{L(Z(1))} ≤ CTeTω. (38)

Using (23), (38) can be rewritten as

E{Z(TeTω)
2} ≤ 2CTeTω + 2E{L(Z(1))}. (39)
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Since the variance of |Z(TeTω)| is positive, we have E{Z(TeTω)
2} ≥ E{Z(TeTω)}

2. Thus, we

can get

E{Z(TeTω)} ≤
√

2CTeTω + 2E{L(Z(1))}. (40)

Next, dividing (40) by TeTω and taking the limit Tω →∞ proves that

lim
Tω→∞

E{Z(TeTω)}

TeTω

= 0. (41)

Thus, the virtual queue Z(te) is mean rate stable.

We can rewrite (21) as

Z(te + 1)− Z(te) = PTx(te)− P̂ (te), (42)

where P̂ (te) is given by

P̂ (te) = min [Z(te), PTx,mean] . (43)

Summing (42) over te = [1, 2, · · · , TeTω] and using the law of telescoping sums yields:

Z(TeTω)− Z(1) =
TeTω
∑

te=1

PTx(te)−
TeTω
∑

te=1

P̂ (te). (44)

Combining (43) and (44), we have

Z(TeTω)− Z(1) ≥
TeTω
∑

te=1

PTx(te)−
TeTω
∑

te=1

PTx,mean. (45)

Finally, dividing (45) by TeTω and taking the limit Tω →∞, we have

lim
Tω→+∞

1

TeTω

∑TeTω

te=1 E {PTx(te)} ≤ PTx,mean. (46)

This proves that constraint C7 holds.

B. Tradeoff between Queue Stability and Reward Maximization

The energy economic efficiency performance and the average queue backlog performance

obtained by the proposed algorithm is given in Theorem 6.

Theorem 6. The energy economic efficiency UE3 and the average backlog of the virtual queue

Z are bounded by

UE3 ≥ q∗ −
C

V Ctotal,min

, (47)

Z ≤
C + V (Usel,max − q∗Ctotal,min)

ǫ
. (48)
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Proof: Please see Appendix B.

Remark 4: Theorem 6 shows that economic energy efficiency achieved by the algorithm is

bounded as

q∗ −
C

V Ctotal,min

≤ UE3 ≤ q∗. (49)

When V is large enough, the value of C
V Ctotal,min

can be arbitrarily small, so that UE3 can

arbitrarily approach the optimum objective value q∗. As a result, there exists an [O(1/V ), O(V )]

tradeoff between “queue stability” and “reward maximization”.

C. Complexity Analysis

For each slot, Algorithm 1 requires at most ⌈log2[Mhigh(te)−Mlow(te)]⌉+ 1 comparisons to

find the optimum M∗(te). In comparison, the computational complexity of the exhaustive search

method grows exponentially as N increases. For example, with a total of N = 100 antennas,

Algorithm 1 needs approximately 8 comparisons to find the optimal number of selected antennas

while the exhaustive search method requires 99 comparisons, i.e., the computational complexity

is reduced by nearly 98.9%. Hence, Algorithm 1 has a much lower complexity than the exhaustive

method. Algorithm 2 has a complexity O(LLoop
max × Ldual

max), where LLoop
max and Ldual

max are iteration

numbers needed by the nonlinear fractional programming and Lagrange dual decomposition in

each slot, respectively.

VII. SIMULATION RESULTS

In this section, we verify the proposed algorithm through simulations. Simulation parameters

are summarized in Table I [33], [43], [51]. Two heuristic algorithms are used as baselines for

comparison purpose. The baseline 1 algorithm relies on the statistical information of energy

arrival and electricity price for decision making and always uses all the available antennas, i.e.,

antenna selection is not considered. The baseline 2 algorithm is developed based on the snapshot-

based optimal algorithm [52], which maximizes UE3 at each energy slot without considering the

long-term optimization objective and constraints.

Fig. 20 shows the relations between the energy economic efficiency UE3 and the selected

antenna number M in one energy slot. The electricity prices of renewable energy and grid

power are set as ωE =0.3 cents/kWh and ωG =3 cents/kWh, respectively. For the purpose

of illustration, the battery capacity is set as Bmax = 1000 J, and the energy arrival is set as
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Fig. 4. A snapshot of the battery state.

Ein(te) = 700 J. Simulation results demonstrate that UE3 is a monotonically increasing function

of M in the ideal case that the single RF chain is energy free, i.e., PRF = 0 mW. However, in the

nonideal case, i.e., PRF = 160 mW or PRF = 450 mW, UE3 increases first and then decreases

monotonically with M . The optimum antenna numbers for PRF = 160 mW or PRF = 450 mW

are M∗ = 62 and M∗ = 35, respectively. We found that the optimum antenna number decreases

monotonically as PRF increases.

Fig. 12 shows the relations between the energy economic efficiency UE3 and the battery

capacity Bmax. We set Tω = 20 and Te = 5, i.e., a total of 100 energy slots. The energy slot

duration is set as T0 = 3 s [35, 52, 53]. It is noted that the proposed algorithm is also applicable

to other timescales, which provides great scalability and compatibility. The parameter V is set as

10, and Ein(te) follows a uniform distribution within the interval [0, 500] J. The entire region can

be divided into two regimes, i.e., the battery-capacity limited regime (0 J ≤ Bmax ≤ 600 J), and

the renewable-energy limited regime (600 J ≤ Bmax ≤ 1000 J). In the battery-capacity limited

regime, the performance gap between the proposed algorithm and baseline algorithms is small

because the performance is degraded significantly due to the frequent energy overflow caused

by the limited battery capacity. On the other hand, in the renewable-energy limited regime, the

proposed algorithm outperforms the baseline 1 algorithm and baseline 2 algorithm by 73% and

552% (Bmax = 1000 J) , respectively. The reason is further elaborated in Fig. 21 and Fig. 22. The

baseline 2 algorithm without the awareness of long-term optimization objective and constraints

performs the worst among the three.

The snapshots of battery states and energy economic efficiency are shown in Fig. 21 and Fig.

22, respectively. We consider Tω = 2, and Te = 5, i.e., a total of TeTω = 10 energy slots. The
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Fig. 12. Economic energy Efficiency

UE3 versus the battery capacity Bmax.
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Fig. 13. A snapshot of the battery

state.

slot duration is set as T0 = 1 s. The battery capacity is set as Bmax = 700 J, and the initial

battery state is 500 J. The parameter V is set as 10. The energy arrival is set as Ein(te) = 500 J

when te = 4, 8, and Ein(te) = 0 J otherwise. In the baseline 2 algorithm, the renewable energy is
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Fig. 14. A snapshot of the energy

economic efficiency UE3 .
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Fig. 15. Consumption of grid power

versus electricity price.
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control parameter V .
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versus control parameter V .

0 5 10 15 20

The Value of Parameter V

2

2.05

2.1

2.15

2.2

2.25

2.3

E
n
er

g
y
 E

co
n
o
m

ic
 E

ff
ic

ie
n
cy

 (
b
it

s/
H

z/
ce

n
t)

10
6

4

7

10

13

16

19

22

25

28

31

34

B
ac

k
lo

g
 o

f 
V

ir
tu

al
 Q

u
eu

e 
Z

Energy Economic Efficiency

Bcaklog of Virtual Queue Z

Fig. 18. The tradeoff between energy

economic efficiency and virtual queue

backlog.
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Fig. 19. Energy economic efficiency

versus number of iterations n.

used more aggressively than the proposed algorithm because only the performance of the current

slot is optimized. For example, the baseline 2 algorithm uses out all the stored energy at the

6-th slot while the next energy arrival is at the 8-th slot. Then, the expensive grid power has to

be used, which results in severe performance degradation as shown in Fig. 22.

Fig. 23 shows relations between electricity price and energy consumption. We set Tω = 20 and

Te = 5, i.e., a total of TeTω = 100 energy slots. The parameter V is set as 10. Ein(te) follows a

uniform distribution within the interval [0, 700] J when te = [1, 50] slots, and follows a uniform

distribution within the interval [0, 400] J when te = [51, 100] slots. The price of renewable energy

is set as 1 cent/kWh. Simulation results show that the proposed algorithm can dynamically adapt

grid power consumption with time-varying electricity price. It is able to reduce the consumption

amount of the expensive grid power during the peak-price period.

Fig. 24 and Fig. 25 show the impact of control parameter V on queue backlog and energy
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Fig. 21. A snapshot of the battery state.

economic efficiency, respectively. We compare the performances under three scenarios that V =

10, 20, 30. Ein(te) follows a uniform distribution within the interval [0, 700] J. Fig. 24 shows that

the queue backlog is able to converge to a stable state within a short period of time under all the

scenarios. The change of V mainly affects the final stable state rather than the convergence speed.

Fig. 25 shows that the energy economic efficiency of the proposed algorithm is dynamically

optimized in accordance with the energy arrival and electricity prices. The [O(1/V ), O(V )]
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tradeoff between queue backlog and energy economic efficiency is also validated in Fig. 26,

i.e., the energy economic efficiency decreases monotonically with V while the queue backlog

increases monotonically with V .



26

0 20 40 60 80 100

Energy Slot

0

5

10

15

20

25

30

35

B
ac

k
lo

g
 o

f 
V

ir
tu

al
 Q

u
eu

e 
Z

V=10

V=20

V=30

Fig. 24. A snapshot of the backlog of virtual queue Z

0 20 40 60 80 100

Energy Slot

0.5

1

1.5

2

2.5

E
n
er

g
y
 E

co
n
o
m

ic
 E

ff
ic

ie
n
cy

 (
b
it

s/
H

z/
ce

n
t) 10

6

V=10

V=20

V=30
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Fig. 27 shows the convergence performance of Algorithm 2 under different simulation sce-

narios that M = 10, 20, 60, 100. Simulation results demonstrate the proposed algorithm only

requires 3 ∼ 4 iterations for convergence, which is feasible for practical implementation.

VIII. CONCLUSION

In this paper, we studied the implementation of large-scale multi-antenna systems for smart

grid. First, we developed a new performance benchmark named energy economic efficiency

for measuring the time-average throughput per unit energy cost. Then, we developed an online
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joint antenna selection and power control algorithm to maximize the long-term energy economic

efficiency performance by combining nonlinear fractional programming, Lyapunov optimization,

and bisection method. We proved that the proposed algorithm can achieve bounded performance

deviation from the optimum performance without requiring the prior knowledge of future energy

arrival and electricity price. Simulation results show that the proposed algorithm outperforms the

baseline 1 algorithm and baseline 2 algorithm by 73% and 552%, respectively, when the battery
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capacity is sufficient. It is also observed that there exists a [O(1/V ), O(V )] tradeoff between

queue backlog and energy economic efficiency, and the proposed algorithm can dynamically

adapt grid power consumption with time-varying electricity price. In the future work, we plan

to study how to integrate learning capabilities with existing framework to further improve the

performance.

APPENDIX A

PROOF OF THEOREM 1

According to (4), we have
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where | · | denotes the absolute value, and r is given by
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According to [11], we have
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Then, combining (52) with (51), we can obtain
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Given a random variable r with normal distribution, its absolute value |r| follows a folded

normal distribution [11]. Thus, the distribution of Isel is given by

Isel ∼ FN



K log2



1 +



1 + ln
N

M





PTxM

Kσ2



 ,
(log2 ePTx)

2 M
(

2− M
N

)

Kσ4
[

1 +
(

1 + ln N
M

)

PTxM
Kσ2 )

]2



 . (54)



29

APPENDIX B

PROOF OF THE THEOREM 6

Lemma 1. For arbitrary energy arrival rates, there exists a randomized control policy which

achieves the following steady state values

E{PTX(te)} ≤ PTX,mean − ǫ,

E{Ctotal(S
∗
te
,P∗

te
)− Ctotal(Ste ,Pte)} ≤ δ,

E{Usel(Ste ,Pte)} ≥ E{Ctotal(Ste ,Pte)}(q
∗ − δ). (55)

Proof: A similar proof can be found in [45], [53].

Remark 5: It is noted that Lemma 1 still holds as long as the system state can take at most

a finite (but arbitrarily large) number of values. Since the system state in our work depends on

battery state, energy arrival, renewable energy price, and grid power. With discretization and

quantification, we can guarantee that these values as well as the corresponding system state

space are also finite.

Substituting (55) into (24) and taking the limit as δ → 0, we can get

∆(Z(te))− V E{Usel(Ste ,Pte)− q(te)Ctotal(Ste ,Pte)}

≤C − V q∗E{Ctotal(Ste ,Pte)}+ V q(te)E{Ctotal(Ste ,Pte)} − ǫ(Z(te)). (56)

When Z(te) ≥ 0, (56) can be further simplified as

∆(Z(te))− V E{Usel(Ste ,Pte)− q(te)Ctotal(Ste ,Pte)}

≤C − V q∗E{Ctotal(Ste ,Pte)}+ V q(te)E{Ctotal(Ste ,Pte)}. (57)

Applying the law of telescoping sums over te = {1, 2, · · · , TeTω} and the law of iterated

expectations, we have

E{L(Z(TeTω))} − E{L(Z(1))} − V
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∑
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E{Usel(Ste ,Pte)− q(te)Ctotal(Ste ,Pte)}

≤TeTω[C − V q∗E{Ctotal(Ste ,Pte)}] + V E{Ctotal(Ste ,Pte)}
TeTω
∑

te=1

E{q(te)}. (58)
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Dividing both sides of (58) by V TeTω, we can obtain

1
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Taking the limit Tω →∞, we can derive
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Adding (60) into (59), we can obtain

C

V
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Rearranging (61), we have

UE3 ≥ q∗ −
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≥ q∗ −

C
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, (62)

where Ctotal,min is the minimum value of Ctotal(Ste ,Pte) over the entire period.

Similarly, applying the law of iterated expectations and the law of telescoping sums over

te ∈ {1, 2, . . . , TeTω} for (56), we can get
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Dividing the both sides of (63) by ǫTeTω and taking the limit as Tω →∞, we can obtain

Z = lim
Tω→∞

1

TeTω

TeTω
∑

te=1

Z(te)

≤
C − V q∗E{Ctotal(Ste ,Pte)}

ǫ
+

V

ǫ
lim

Tω→∞

1

TeTω

TeTω
∑

te=1

E{q(te)Ctotal(Ste ,Pte)}

≤
C + V (Usel,max − q∗Ctotal,min)

ǫ
. (64)

This completes the proof.
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