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Abstract—We study downlink beamforming in a single-cell
network with a multi-antenna base station serving cache-enabled
users. Assuming a library of files with a common rate, we for-
mulate the minimum transmit power with proactive caching and
coded delivery as a non-convex optimization problem. While this
multiple multicast problem can be efficiently solved by successive
convex approximation (SCA), the complexity of the problem
grows exponentially with the number of subfiles delivered to
each user in each time slot, which itself grows exponentially with
the number of users. We introduce a low-complexity alternative
through time-sharing that limits the number of subfiles received
by a user in each time slot. We then consider the joint design of
beamforming and content delivery with sparsity constraints to
limit the number of subfiles received by a user in each time slot.
Numerical simulations show that the low-complexity scheme has
only a small performance gap to that obtained by solving the joint
problem with sparsity constraints, and outperforms state-of-the-
art results at all signal-to-noise ratio (SNR) and rate values with
a sufficient number of transmit antennas. A lower bound on
the achievable degrees-of-freedom (DoF) of the low-complexity
scheme is derived to characterize its performance in the high
SNR regime.

I. INTRODUCTION

The seminal work of Maddah-Ali and Niesen showed that
by exploiting caches at the users in order to create and exploit
multicasting opportunities we can reduce the delivery time,
or equivalently increase the throughput in wireless networks
[2]. With coded caching, uncoded contents can be proactively
pushed at user devices without knowing users’ demands,
and a server can serve multiple users simultaneously by
broadcasting specially designed coded combinations of the
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remaining parts of all the users’ requests, to guarantee that
all the users can recover their desired contents. This feature is
particularly favorable in wireless medium due to its broadcast
nature. However, [2] ignored the physical characteristics of the
channel, and simply assumed error-free communication, and
focused on minimizing the number of bits delivered error-free
over this multicast channel.

Over the last years many follow-up works have studied
coded delivery over noisy broadcast channels. When users
may have different channel capacities, the user with the worst
channel condition becomes the bottleneck limiting the perfor-
mance of multicasting. The global caching gain promised in
[2] is hence not straightforward in practice. Coded caching
in erasure broadcast channels is studied in [3] and [4] by
allocating cache memories at weak receivers to overcome this
bottleneck. A simple binary Gaussian broadcast channel is
considered in [5], and an interference enhancement scheme
is used to overcome the limitation of weak users. A cache-
aided multicasting strategy over a Gaussian broadcast channel
is presented in [6], with superposition coding and power
allocation. The authors in [7] consider fading channels, and
show that a linear increase in the sum delivery rate with the
number of users can be achieved with user selection.

Another important line of research has focused on evalu-
ating the performance of coded caching and delivery in the
presence of multiple transmit antennas at the server. Multicast
beamforming, where the multiple-antenna base station (BS)
multicasts distinct data streams to multiple user groups, is an
efficient physical layer technique [8]–[10]. In [11], the authors
extend the results in [7] to multi-input single-output (MISO)
fading channels, where the same linear increase in content
delivery rate with respect to (w.r.t.) the number of users is
achieved without channel state information at the transmitter
(CSIT), and an improvement is obtained with spatial multi-
plexing when CSIT is available. In [12], coded delivery is
employed along with zero-forcing to simultaneously exploit
spatial multiplexing and caching gains. With multiple antennas
at the BS, coded messages can be nulled at unintended user
groups, which increases the number of users simultaneously
served as compared to the single antenna setting. Particularly,
this approach was found to achieve the near-optimal degrees-
of-freedom (DoF) in [13]. In addition to the gain in content
delivery rate, employing multiple transmit antennas also allows
reducing the subpacketization level required in coded caching
[14], [15].

By treating the transmission of coded subfiles as a coor-
dinated beamforming problem, improved spectral efficiency
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is achieved in [16] by optimizing the beamforming vectors,
which is also shown to achieve the same DoF as in [12] in
special cases. Memory-sharing is proposed in [17] to apply the
content placement scheme of [2] for a fraction of the library,
which exploits both the spatial multiplexing gain and the
global caching gain by sending a common message together
with user-dependent messages. The impact of imperfect CSIT
on achievable DoF is considered for MISO broadcast channels
in [18]. Similarly to [17], [19] adopts memory-sharing, and
proposes a joint unicast and multicast beamforming approach.

In this paper, motivated by the results in [12] and [16],
we consider a cache-aided MISO broadcast channel. Firstly,
a general framework for cache-aided downlink beamforming
is formulated, focusing on the minimum required transmit
power for delivering the contents at a prescribed common rate.
The resultant nonconvex optimization problem is tackled by
successive convex approximation (SCA), which is guaranteed
to converge to a stationary solution of the original nonconvex
problem. As noted in [16], the beamforming design involves
solving an optimization problem with exponentially increasing
number of constraints with the number of coded messages
each user decodes in each time slot. To limit the complexity,
we propose a novel content delivery scheme, in which the
coded subfiles, each targeted at a different subset of receivers,
are delivered over multiple orthogonal time slots, while the
number of coded messages each user decodes in each time
slot can be flexibly adjusted. Unlike the scheme in [16], the
scheme we propose does not limit the number of users served
in each time slot, but directly limits the number of messages
each user decodes, and hence, the complexity of the decoder.
We propose a greedy algorithm that decides the multicast
messages to be delivered at each time slot, and the number
of time slots. A lower bound on the DoF achieved by the
greedy scheme is also provided. We then consider a more
general design of the beamforming vectors together with the
content delivery scheme with a constraint on the maximum
number of messages each user can decode in any time slot.
We formulate this joint optimization as a power minimization
problem with sparsity constraints, and solve it via SCA to
obtain a stationary solution. Our numerical results show that
the proposed greedy scheme has only a small performance gap
to that of the optimization-based delivery scheme, and provide
significant gains over the one proposed in [16] in terms of
transmit power, particularly in the high rate/high signal-to-
noise ratio (SNR) regime.

The remainder of the paper is organized as follows. Section
II introduces the system model. In Section III, we present an
achievable coded delivery scheme, and formulate the power
minimization problem for a multi-antenna server. We introduce
a low-complexity content delivery scheme in Section IV, and
present its DoF analysis in Section V. In Section VI, we
consider the joint design of beamforming and coded content
delivery. Finally, we compare the proposed schemes with the
state-of-the-art through numerical simulations in Section VII,
and conclude the paper in Section VIII.

nMR bits

nMR bits

nMR bits

𝑤1,2

𝑤1,3
1

2

3

ℎ1

Figure 1: Illustration of a cache-aided MISO channel with
K = 3 users. Multi-antenna BS employs multicast beamform-
ing to deliver the missing parts of users’ requests.

II. SYSTEM MODEL

We consider downlink transmission within a single cell,
where a BS equipped with NT antennas serves K single-
antenna cache-equipped users, as illustrated in Fig. 1. We
consider a library of N files, denoted by V , (V1, · · · , VN ),
each distributed uniformly over the set

[
2nR

]
1, available at

the BS, where R and n represent the rate of each file and the
blocklength, respectively. Each user is equipped with a local
cache that can store up to M files, and the corresponding
caching factor, t, is defined as the ratio of the total cache ca-
pacity across all the receivers to the library size, t ,MK/N .

Contents are placed at users’ caches during off-peak periods
without any prior information on the user requests or the
channel state information (CSI) to be experienced during the
delivery phase. Caching function for user k is denoted by
φ

(n)
k :

[
2nR

]N → [
2nMR

]
, which maps the library to the

cache contents Zk at user k, i.e., Zk = φk(V ), k ∈ [K].
Once the users reveal their demands d , (d1, . . . , dK), where
dk ∈ [N ],∀k ∈ [K], signal X ∈ CNT×n is transmitted, where
X , [x1 · · ·xn], and xi ∈ CNT×1 is the channel input vector
at time i, i = 1, . . . , n. An average power constraint P is
imposed on each channel input X . User k receives

yTk = hHk X + nTk , (1)

where hk ∈ CNT×1 is the channel vector from the BS to
the k-th user, and nk ∈ Cn×1 is the additive white Gaussian
noise at user k with each entry independent and identically
(i.i.d.) distributed according to CN (0, σ2

k), k ∈ [K]. We
assume that the CSI is perfectly known to the BS and the
receivers in the delivery phase. Hence, the encoding function
at the BS, ψ(n) :

[
2nR

]N × [N ]
K × CNT×K → CNT×n,

maps the library, the demand vector, and the CSI to the
channel input vector. We note here that, while the channel
encoding function ψ(n) depends on the demand vector and the
CSI, caching functions φ(n)

k depend only on the library. After
receiving yk, user k reconstructs V̂dk using its local cache

1For any positive real X , we define [X] as the set of positive integers less
than or equal to X.
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content Zk, channel vector hk, and demand vector d through
function µ

(n)
k : Cn ×

[
2nMR

]
× CNT×1 × [N ]

K →
[
2nR

]
,

i.e., V̂k = µ
(n)
k (yk, Zk,hk,d), k ∈ [K]. The probability of

error is defined as Pe , maxd maxk∈[K] Pr{Vdk 6= V̂k}.
An (R,M,P ) tuple is achievable if there exist a sequence
of caching functions φ(n)

1 , . . . , φ
(n)
K , encoding function ψ(n),

and decoding functions µ(n)
1 , . . . , µ

(n)
K , such that Pe → 0 as

n → ∞. For file rate R and cache size M , our goal is to
characterize

P ∗ (R,M)
∆
= inf {P : (R,M,P ) is achievable} , (2)

which characterizes the minimum required transmit power that
guarantees the reliable delivery of any demand vector.

III. AN ACHIEVABLE DELIVERY SCHEME

In this section, we present a multi-antenna transmission
scheme with coded caching, where the cache placement and
coded content generation follows [2], while beamforming is
employed at the BS to multicast coded subfiles to the receivers.

A. Placement and Delivery Schemes

For a caching factor t ∈ {1, . . . ,K − 1}, we represent t-
element subsets of [K] by Gt1, . . . ,Gt(Kt )

. File Vi, i ∈ [N ], is

divided equally into
(
K
t

)
disjoint subfiles Vi,Gt1 , . . . , Vi,Gt(Kt )

,

each consisting of n R

(Kt )
bits. User k, k ∈ [K], caches subfile

Vi,Gtj , if k ∈ Gtj , ∀j ∈ [
(
K
t

)
]. The cache content of user k is

then given by
⋃
i∈[N ]

⋃
j∈[(Kt )]:k∈Gtj

Vi,Gtj .
During the delivery phase, for any demand combination d,

we aim to deliver the coded message

sGt+1
j

∆
=
⊕

k∈Gt+1
j

Vdk,Gt+1
j \{k} (3)

to all the users in set Gt+1
j , for j ∈ [

(
K
t+1

)
]. Observe that,

after receiving sGt+1
j

, each user k ∈ Gt+1
j can recover subfile

Vdk,Gt+1
j \{k} having access to Vdl,Gt+1

j \{l}, ∀l ∈ G
t+1
j \{k}.

We define S , {Gt+1
1 , . . . ,Gt+1

( K
t+1)
} as the set of all the

multicast messages, with each message T ∈ S represented
by the set of users it is targeting, and let Sk ⊂ S denote the
subset of messages targeting user k. We have |S| =

(
K
t+1

)
and

|Sk| =
(
K−1
t

)
.

The following examples will be used to better explain the
proposed scheme:

Example 1: Let N = 5, K = 5, M = 1. We have t =
MK
N = 1. Each file is split into

(
K
t

)
= 5 disjoint subfiles of

the same size, where we represent file i, i ∈ [N ], as

Vi =
{
Vi,{1}, Vi,{2}, Vi,{3}Vi,{4}, Vi,{5}

}
. (4)

The cache content of user k is Zk = ∪i∈[N ]Vi,{k}, k ∈ [K],
which satisfies the cache capacity constraint. All user demands

can be fulfilled by delivering the following
(
K
t+1

)
= 10

subfiles:

s{1,2} = Vd1,{2} ⊕ Vd2,{1}, s{1,3} = Vd1,{3} ⊕ Vd3,{1},
s{1,4} = Vd1,{4} ⊕ Vd4,{1}, s{1,5} = Vd1,{5} ⊕ Vd5,{1},
s{2,3} = Vd2,{3} ⊕ Vd3,{2}, s{2,4} = Vd2,{4} ⊕ Vd4,{2},
s{2,5} = Vd2,{5} ⊕ Vd5,{2}, s{3,4} = Vd3,{4} ⊕ Vd4,{3},
s{3,5} = Vd3,{5} ⊕ Vd5,{3}, s{4,5} = Vd4,{5} ⊕ Vd5,{4}.

Example 2: Let N = 4, K = 4, M = 1. We have t =
MK
N = 1. Each file is split into

(
K
t

)
= 4 disjoint subfiles of

the same size. All user demands can be fulfilled by delivering
the following

(
K
t+1

)
= 6 subfiles:

s{1,2}, s{1,3}, s{1,4}, s{2,3}, s{2,4}, s{3,4}. (5)

Note that the message sT is intended for users in set T , but
interferes with users in set [K]\T . Moreover, for any demand
combination d, all the users are required to decode the same
number of messages, which is

(
K−1
t

)
.

B. Multi-Antenna Transmission Scheme
The delivery of the coded messages in set S to their

respective receivers is a multi-antenna multi-message multicas-
ting problem. Before introducing our low-complexity scheme
in the next section, we present here a general transmis-
sion strategy based on message-splitting and time-division
transmission. The messages in S can be transmitted over B
orthogonal time slots, the i-th of which is of blocklength
ni, i ∈ [B], where

∑B
i=1 ni = n. The transmitted signal

X(i) , [x∑i−1
j=1 nj+1 · · ·x∑i

j=1 nj
] at time slot i ∈ [B] is

given by

X(i) =
∑
T ∈S

wT (i)sTT (i), (6)

where sT (i) ∈ Cni×1 is a unit-power complex Gaussian signal
of blocklength ni, modulated from the corresponding message
sT in (3), intended for the users in set T , transmitted in time
slot i, encoded by the beamforming vector wT (i) ∈ CNT×1.

The received signal at user k in time slot i is

yTk (i) = hHk
∑
T ∈Sk

wT (i)sTT (i)︸ ︷︷ ︸
desired messages

+hHk
∑
I∈SCk

wI(i)sTI (i)

︸ ︷︷ ︸
interference

+nTk (i),

(7)

where SCk is the complement of set Sk in S. Let ΠSk denote
the collection of all non-empty subsets of Sk, with each
element of ΠSk denoted by πjSk , j ∈ [2(K−1

t )−1]. We denote
S(i) ⊂ S as the subset of messages transmitted in time slot i,
i.e., T ∈ S(i) if wT (i) 6= 0.

Note that each user may receive more than one message in
each transmission slot. From the capacity region of the asso-
ciated Gaussian multiple access channel, following conditions
must be satisfied for successful decoding of all the intended
messages at user k, k ∈ [K], at time slot i:∑
T ∈πjSk

RT (i) ≤ ni
n

log2

(
1 +

∑
T ∈πjSk

γTk (i)

)
, ∀πjSk ∈ ΠSk ,

(8)
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where RT (i) is the rate of message sT (i), and γTk (i) is
the received signal-to-interference-plus-noise ratio (SINR) of
message sT (i) at user k at time slot i, given by

γTk (i) ,
|hHk wT (i)|2∑

I∈SCk
|hHk wI(i)|2 + σ2

k

, (9)

for any T 3 k, or equivalently, any T ∈ Sk. The rate of
message T is the sum of the rate of submessages sT (i), and
must satisfy ∑B

i=1
RT (i) ≥ R(

K
t

) , ∀T . (10)

Note that this scheme is quite flexible; each multicast
message can be split into B messages and transmitted over B
time slots. It can be specialized to different content delivery
schemes by specifying the subset of transmitted subfiles in
each time slot and the blocklength of each time slot, i.e.,
{S(i)}Bi=1 and {ni}. Let

vT (i) =

{
1 if T ∈ S(i)

0 if T /∈ S(i)
(11)

be the indicator function specifying whether message T
is transmitted at time slot i or not. Note that ‖vT ‖1 ≥
1 is required to fulfill users’ demands, where vT ,
[vT (1) · · · vT (B)]. It is readily seen that vT (i) can be inferred
by the corresponding beamforming vector wT (i), or equiva-
lently, by the message rate RT (i).

C. Transmit Power Minimization

For any given delivery scheme specified by vT (i) and ni,
∀i ∈ [B],∀T ∈ S , the associated minimum required transmit
power problem is obtained as follows:

P , min
{wT (i)},{RT (i)}

∑
T ∈S

B∑
i=1

ni
n
‖wT (i)‖2 (12a)

s.t.
∑
T ∈πjSk

RT (i) ≤ ni
n

log2

(
1 +

∑
T ∈πjSk

γTk (i)

)
,

∀πjSk ∈ ΠSk , i ∈ [B], ∀k, (12b)∑B

i=1
RT (i) ≥ R(

K
t

) , ∀T , (12c)

RT (i) ≥ 0, ∀i, T , (12d)

RT (i) = 0, if vT (i) = 0, ∀i, (12e)

where γTk (i) is defined in (9). Here, constraints in (12b)
guarantee that the rates of the messages targeting each user
in each time slot are within the capacity region, constraints in
(12c) ensure that sufficient information is delivered for each
coded subfile over B time slots, while (12d)-(12e) represent
the specific content delivery scheme.

Note that the problem in (12) is a generalization of various
well-known NP-hard problems depending on the specific con-
tent delivery scheme. For B = |S| with |S(i)| = 1, ∀i, the
problem boils down to a series of standard multicast beam-
forming problems, where a common message is broadcast
to a different subset of t + 1 users in each time slot [8].

When |S(i)| > 1, T
⋂
T ′ = ∅ if T 6= T ′ ∈ S(i), ∀i, and

S(i)
⋂
S(j) = ∅ if i 6= j, we need to solve the conventional

multigroup multicast beamforming problem at each time slot
[9]. It can be seen from (12) that the content delivery scheme
specified by vT (i) and ni affects the minimum required power.
A straightforward solution (as done in [17], [20]) would
transmit a single coded message in each time slot. However,
this does not exploit the spatial multiplexing gain provided
by multiple antennas, and results in a poor DoF performance
in the high SNR regime. Another approach studied in [21] is
to deliver the coded messages targeting non-overlapping user
groups in parallel. Obviously, the content delivery scheme is
an important factor on the system performance and needs to
be carefully designed.

We remark here that, even when the delivery scheme is
specified, the problem in (12) is computationally intractable
due to the non-convex constraints in (12b). However, we show
in the Appendix that SCA methods [22] can be employed
to obtain a stationary point of the problem, which serves
as an upper bound on the optimal solution. Starting with a
feasible initial point, the SCA algorithm solves a sequence
of subproblems in an iterative manner, where the subproblem
in the ν-th iteration is derived by convexifying the original
problem at the solution point of the (ν − 1)-th subproblem.
More detailed discussions on the SCA algorithm are provided
in the Appendix.

IV. A LOW-COMPLEXITY DESIGN

In this section, we propose a low-complexity content de-
livery scheme with the flexibility to adjust the number of
coded messages intended for each user at each time slot.
Observing that if a set S(i) = {T |vT (i) = 1} of messages are
transmitted in time slot i, ck(i) , |S(i)

⋂
Sk| messages are

transmitted to user k, which results in 2ck(i) − 1 constraints
only for user k in time slot i in problem (12). Computational
complexity of problem (12) increases drastically with the
number of constraints, rendering the numerical optimization
problem practically infeasible. More importantly, a multi-user
detection scheme needs to be employed at the users, whose
complexity also increases with ck(i).

A low complexity scheme is proposed in [16] by lim-
iting the number of users to be served in each time slot,
thereby indirectly reducing the number of coded messages to
be decoded by each user. Specifically, an integer parameter
α ∈ [min{NT ,K − t}] is leveraged in [16] to control the
number of active users in each time slot, which is set to
t+α, and leads to a content delivery scheme with B =

(
K
t+α

)
time slots. In each time slot, a fraction of the desired coded
messages for all the active users are transmitted. In addition
to α, another integer parameter β determines the possible set
partitions of the user subset in each time slot. When t+ α is
divisible by t+β, the user subset can be partitioned into t+α

t+β
non-overlapping subsets, and a fraction of the desired coded
messages for each partition can be transmitted simultaneously.
It is shown in [16] that the system performance can be
improved if multiple groups of messages can be transmitted
in parallel, i.e., t+α

t+β ≥ 2, as compared to the case β = α.
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Moreover, the number of messages for each user to decode in
each time slot is

(
t+β−1

t

)
, which is an exponential function

of β. Therefore, by adjusting the value of β, the number of
coded messages for each user in each time slot is indirectly
adjusted.

Instead of limiting the subsets of users to be served in
each time slot, we propose to directly adjust the number of
coded messages targeted to each user. We will show that this
results in a more efficient delivery scheme than the one in
[16]. In Example 1, if we transmit all the messages in one
time slot, i.e., B = 1, a total of |S| =

(
K
t+1

)
= 10 coded

subfiles are transmitted simultaneously, with each user decod-
ing

(
K−1
t

)
= 4 messages. Accordingly, in the optimization

problem in (12) we will have K×(2|Sk|−1) = 75 constraints.
To alleviate the computational complexity, the low complexity
scheme in [16] splits each subfile into 3 minifiles, and the
coded messages are grouped to serve a subset of t + α = 3
users in each of the B =

(
K
t+α

)
= 10 time slots. Within each

time slot, each user needs to decode 2 messages. Note that the
power minimization problem for each time slot can be solved
independently; therefore, we would need to solve 10 smaller
optimization problems, each with 3× 3 = 9 constraints.

In contrast, we propose to serve as many users as needed at
each time slot while keeping ck(i) under a given threshold s
for each user k. In our Example 1, we can satisfy all the user
requests in only 2 time slots, by setting nonzero rate targets
for the messages in

S(1) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}, and
S(2) = {{1, 3}, {2, 4}, {3, 5}, {1, 4}, {2, 5}}

in time slots 1 and 2, respectively. Note that each user k
decodes only ck(i) = s = 2 messages in each time slot,
the same as the delivery scheme in [16], requiring the same
implementation complexity at each user; however, 5 users
are served in each time slot, which results in a significantly
smaller number of time slots. Thus, we need to solve only
two optimization problems at the BS, each with 5 × 3 = 15
constraints.

In general, the number of constraints in the optimization
problem in (12) increases exponentially with s, which results
in exponentially increasing number of constraints in the prob-
lem in each SCA iteration. Thus the computational complexity
of the delivery scheme can be largely alleviated by choosing
a small s value, which also simplifies the multi-user detection
algorithm.

The key idea of our proposed low-complexity scheme is
to divide set S into disjoint subsets S(1), · · · ,S(B), with
ck(i) ≤ s, ∀k, i, while keeping B as small as possible. Since
the total number of subfiles to transmit is fixed, choosing a
small value of B, i.e., completing the delivery phase within
a small number of time slots, requires multiplexing more
messages in each time slot, without increasing the complexity
of the receivers. To obtain this low-complexity scheme, the

following optimization problem can be formulated:

min
{vT },B

B (13a)

s.t.
∑
T 3k

vT (i) ≤ s,∀i ∈ [B], k ∈ [K], (13b)

B∑
i=1

vT (i) = 1,∀T , (13c)

vT (i) ∈ {0, 1},∀T , i ∈ [B], (13d)

where constraint (13b) imposes that each user decodes no
more than s messages in each time slot, while (13c) requires
that each message will be transmitted in only one time slot.
However, since the problem itself varies with variable B, the
problem is not in a tractable form. By introducing L ≥ B as
a prescribed parameter that determines the dimension of the
problem, and an auxiliary variable q ∈ {0, 1}L, problem (13)
can be equivalently written as

B = min
{vT },q

1Tq (14a)

s.t.
∑
T 3k

vT (i) ≤ s,∀i ∈ [L], k ∈ [K], (14b)

L∑
i=1

vT (i) = 1,∀T , (14c)

∑
T
vT (i) ≤

(
K

t+ 1

)
qi,∀i ∈ [L], (14d)

vT (i) ∈ {0, 1},∀T , i ∈ [L], (14e)

q ∈ {0, 1}L, (14f)

where 1 denotes a column vector of all ones. Since
(
K
t+1

)
is a bound on

∑
T vT (i), the optimal qi is 1 if

∑
T vT (i)

is nonzero, and 0 otherwise, in order to minimize
L∑
i=1

qi

in the objective. Note that problem (14) can be considered
as minimizing the number of time slots employed out of a
maximum L available time slots. We can set L =

(
K
t+1

)
which

guarantees the existence of a solution; however, choosing a
smaller L will reduce the complexity of the problem. The
problem in (14) is a 0−1 integer programming problem, which
is generally NP-hard [23].
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Algorithm 1 Low-complexity greedy delivery scheme

Input: N,K,M, s,R
Output: B,

⋃B
i=1{S(i)},

⋃B
i=1{ni}, ∀T

1: Set t = MK
N , i = 1, and E = S

2: while E 6= ∅ do
3: Set c(i) , [c1(i) · · · cK(i)] = 0, S(i) = ∅, C = E
4: while ck(i) ≤ s,∀k ∈ [K] and C 6= ∅ do
5: K , {k | arg min

k
c(i)}

6: Find T̂ = arg max
T ∈C

|K
⋂
T |

7: C = C\{T̂ }
8: if ck(i) + 1 ≤ s,∀k ∈ T̂ then
9: ck(i) = ck(i) + 1,∀k ∈ T̂

10: S(i) = S(i)
⋃
T̂ , E = E\{T̂ }

11: else
12: break
13: end if
14: end while
15: i← i+ 1
16: end while
17: Set B = i− 1
18: for i = 1 : B do
19: ni = |S(i)|

(K+1
t )

n

20: RT(i) =

{
R

(Kt )
, ∀ T ∈ S(i)

0, otherwise
21: end for

In Algorithm 1, we propose a greedy solution that constructs
disjoint S(i) sets for any s value. Specifically, S(i)’s are
generated in a sequential manner: to construct S(i), we
initialize c(i) , [c1(i) · · · cK(i)] = 0, S(i) = ∅, and the
set E = S\

⋃i−1
j=1 S(j) of remaining messages for assignment,

we first identify the user(s) that have decoded the least number
of messages so far, i.e., user(s) in set K , {k|arg mink c(i)},
and check whether there exists a message T̂ ∈ E such that the
condition ck(i) + 1 ≤ s for ∀k ∈ T̂ holds. If no such T̂ can
be found, the process of constructing S(i) is completed, and
we start constructing S(i+ 1) in the same manner. The whole
procedure is completed when E = ∅, i.e., all the messages
have been assigned to a subset. Note that our proposed greedy
scheme covers the case of B = 1, where all the messages are
sent simultaneously, if s ≥

(
K−1
t

)
.

Next we elaborate the proposed greedy content delivery
algorithm in Examples 1 and 2.

Example 1 (continued): N = 5, K = 5, M = 1. t =
MK
N = 1. Suppose s = 2. As illustrated in Fig. 2, the algo-

rithm starts by constructing S(1), i.e., identifying the coded
messages to be delivered in the first time slot, initialized as
c(1) , [c1(1) · · · cK(1)] = 0, S(1) = ∅. Firstly, it is obvious
that K = [K] since ck(1) = 0, ∀k. Hence, one may choose
any of the available messages in E = S. Suppose message
s{1,2} is chosen. We update c1(1) = c2(1) = 1, E = E\{1, 2}.
The algorithm then identifies the updated K = [3, 4, 5],
according to which one may choose from s{3,4}, s{3,5}, s{4,5}
without violating the constraint ck(1) + 1 ≤ s, ∀k. Suppose
s{3,4} is chosen, and we have c1(1) = c2(1) = c3(1) =

c4(1) = 1, E = E\{3, 4}, and K = [5]; and accordingly
one may choose from s{1,5}, s{2,5}, s{3,5}, s{4,5}, while still
keeping the constraint ck(1) + 1 ≤ s, ∀k. Similarly, messages
s{2,3} and s{4,5} can be chosen, and the algorithm for S(1)
is completed since ck(1) = 2, ∀k, and adding any of the
remaining messages will violate the constraint. The algorithm
then turns to construct S(2) similarly, until all the messages
have been chosen, i.e., E = ∅.

Remark 1: As it can be seen above, the content delivery
scheme obtained via Algorithm 1 is not unique. For instance,
another feasible content delivery scheme with s = 2 for
Example 1 is:

S(1) = {{1, 2}, {3, 4}, {1, 5}, {2, 4}, {4, 5}}, and
S(2) = {{1, 3}, {2, 3}, {3, 5}, {1, 4}, {2, 5}}.

Example 2: N = 4, K = 4, M = 1. t = MN
K = 1.

We present the content delivery schemes obtained from
Algorithm 1 for different values of s:
Case 1: s = 1. Algorithm 1 leads to B = 3 time slots, each
with 1

3n channel uses, and

S(1) = {{1, 2}, {3, 4}},
S(2) = {{1, 3}, {2, 4}},
S(3) = {{1, 4}, {2, 3}}.

It is noted that the scheme is the same as the one in [16]
obtained for α = 3 and β = 1, in the sense that the same sets
of messages are transmitted over the same number of time
slots.
Case 2: s = 2. Algorithm 1 leads to B = 2 time slots, and

S(1) = {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}},
S(2) = {{1, 4}, {2, 3}}.

It is noted that there is no β value to induce a scheme in [16]
in this scenario, since β can only take the value of 2 to have
s = 2, making t+ α not divisible by t+ β.

Remark 2: The proposed greedy content delivery scheme
can be easily extended by limiting the number of active users
as in [16]. Specifically, instead of serving as many users
as possible, which is up to K, Algorithm 1 can be applied
for a user subset of size t + α to obtain a content delivery
scheme under the constraints on the number of messages to
decode. While t+α

t+β must be an integer to induce a content
delivery scheme in [16], Algorithm 1 always provides a
delivery scheme for any s value. Therefore, our proposed
greedy scheme can be considered as a generalization of the
one in [16].

Remark 3: It is noted that Algorithm 1 may lead to unequal
number of messages transmitted in different time slots, which
can be highly sub-optimal. An intuitive way to enhance the
performance is to allocate more channel uses to the time
slot with more messages to deliver. In general, once the
non-overlapping partition of S, i.e.,

⋃B
i=1{S(i)}, is obtained,

we can set the blocklength for the transmission of S(i)
proportionally to the number of messages |S(i)|. For instance,
in the case of s = 2 in Example 2, we can allocate 2n

3 channel
uses for S(1) and n

3 channel uses for S(2).
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Figure 2: Illustration of the proposed low-complexity greedy scheme for the network with N = K = 5, and M = 1.

Remark 4: The proposed low-complexity scheme focuses
on limiting s, which determines the complexity of multiuser
detection at the receivers. On the other hand, the beam-
former design resorts to solving the optimization problem
in (12), whose computational complexity depends on the
content delivery scheme. Given the proposed low-complexity
scheme in Algorithm 1, the optimization problem in (12)
can be solved as detailed in the Appendix, which is firstly
decomposed into at most Bu problems in the form of (32).
For each problem, we have at most K(2s − 1) constraints
to characterize the achievable rate region. For the same s
value, the optimization problem for the scheme in [16] can
be decomposed into Bl ,

(
K
t+α

) (t+α)!
δ!(t+β)!δ

subproblems, each
with (t+α)(2s− 1) constraints for the achievable rate region
characterization, where δ = t+α

t+β . Therefore, each optimization
problem in the proposed scheme involves K

t+α times more
constraints compared to [16], but may require solving much
fewer problems.

Table I compares the proposed scheme in Algorithm 1 and
the scheme in [16] in terms of the number of time slots,
or equivalently, the number of optimization problems to be
solved, denoted by Bu and Bl, respectively, and the ratio of the
number of constraints in each of these problems in the former
scheme to the latter. We observe that, by simultaneously
serving as many users as possible, the optimization problem
in each time slot of the proposed low-complexity scheme
has comparable number of constraints, but much fewer such
optimization problems are needed, as compared to the scheme
in [16].

Numerical results for the minimum required power for the
proposed greedy transmission scheme, and the comparison
with the one proposed in [16] will be presented in Section
VII.

V. DEGREES-OF-FREEDOM (DOF) ANALYSIS

In this section we analyze the performance of the scheme
proposed in Algorithm 1 in terms of the DoF it achieves in the
high SNR regime. To this end, we develop a content delivery
scheme which upper bounds the number of time slots B of
the scheme presented in Algorithm 1.

For caching factor t = MK/N , Algorithm 1 constructs, at
each time slot, a set of distinct subsets of users of size t+ 1,
such that no user index appears more than s times in the set.
This procedure is repeated until all the

(
K
t+1

)
distinct subsets

of users are selected exactly once. While Algorithm 1 aims at
minimizing the number of time slots required to deliver all the
multicast messages, it is not possible to know in advance how
many time slots will be needed. To overcome this uncertainty,
we develop a more relaxed scheme, which utilizes a higher
number of time slots than the one presented in Algorithm 1.

We assume that the BS is equipped with NT ≥ K − t
antennas, to simultaneously transmit each coded packet of rate
R/
(
K
t

)
to the t + 1 users that are interested in this message,

while zero-forcing it at the remaining K − t − 1 users [13].
At each time slot all the K users are targeted, and each user
receives no more than s coded packets, and the coded delivery
is performed for a total of B time slots. Assuming equal
blocklength for different time slots in the high SNR regime,
i.e., ni = n/B, ∀i ∈ [B], since NT ≥ K − t, we can lower
bound the per-user DoF as follows [24], [25]:

DoF ≥
(
K
t

)
sB

, (16)

where B is the number of time slots obtained from Algorithm
1.

Next, we present an upper bound on B. We further divide
each time slot to s sub-time-slots for the new content delivery
approach. At each sub-time-slot, the goal is to create a set
of (t + 1)-element subsets of users, such that no user index
appears in more than one subset. Due to the symmetry, it is
easy to verify that the maximum number of such subsets at
each sub-time-slot is

⌊
K
t+1

⌋
. Therefore, we can generate a

set of distinct (t + 1)-element subsets of users, with no user
appearing more than s times by repeating this procedure for s
sub-time-slots. Accordingly, we can generate a set of s

⌊
K
t+1

⌋
distinct subsets of users, each of size t + 1, such that each
user index appears no more than s times. This provides us
with the set of coded packets for delivery at each time slot.
For example, considering Example 1, where N = 5, K =
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Table I: Comparison between Algorithm 1 and [16] in terms of the number of constraints they need to consider for each
optimization problem, and the number of time slots, or equivalently, the number of optimization problems to be solved.

(K, t, s) = (10, 1, 1) (K, t, s) = (10, 2, 1) (K, t, s) = (10, 3, 1)

(β, α) K
t+s

Bu Bl
Bu
Bl

(β, α) K
t+s

Bu Bl
Bu
Bl

(β, α) K
t+s

Bu Bl
Bu
Bl

(1, 1) 5 9 45 0.2 (1, 1) 10
3

40 120 0.3333 (1, 1) 5
2

105 210 0.5
(1, 3) 5

2
9 630 0.0143 (1, 4) 2 40 2100 0.0190 (1, 5) 5

4
105 1575 0.0667

(1, 5) 5
3

9 3150 0.0029 (1, 7) 10
7

40 2800 0.0143

(1, 7) 5
4

9 4725 0.0019
(1, 9) 1 9 945 0.0095

5, t = 1, and s = 2, we can generate the following sets of
subsets of users, each of size 2, in the two sub-time-slots of
the first time slot:

S(1, 1) = {{1, 2}, {3, 4}}, and
S(1, 2) = {{1, 3}, {4, 5}}, (17)

where S(1) = {S(1, 1),S(1, 2)}, and this partitioning is not
unique. We exploit the symmetry in the subsets of users of
size t+ 1, to which the coded packets are targeted, to obtain
the total number of time slots required for transmission. By
creating s

⌊
K
t+1

⌋
(t + 1)-element distinct subsets of users at

each time slot, we need no more than
⌈

( K
t+1)

sb Kt+1c

⌉
time slots to

deliver all the coded messages.
We highlight that, this approach resembles the set generation

process in Algorithm 1, but is stricter as it requires each
user index to appear no more than once in each sub-time-
slot, compared to Line 8 in Algorithm 1. Hence, it results in
fewer selected messages at each time slot, and more time slots.
Moreover, it is guaranteed in Algorithm 1 that each of the K
users decodes at least s−1 messages in each time slot, except
for the final time slot. Therefore, the number of time slots is

also bounded by
⌈

(K−1
t )

s−1

⌉
+ 1. Consequently, we have

Bu , min



(
K
t+1

)
s
⌊
K
t+1

⌋
 ,
⌈(

K−1
t

)
s− 1

⌉
+ 1

 , (18)

and the DoF of the proposed low-complexity scheme satisfies

DoF ≥
(
K
t

)
sBu

. (19)

The lower bound on the DoF of the proposed greedy scheme
is depicted in Fig. 3 for different network parameters, in
comparison with the scheme in [16]. As the greedy scheme
in Algorithm 1, a low-complexity scheme that achieves the
DoF lower bound can always be obtained for any s, while the
scheme in [16] may not exist for some values of s, for which
the DoF is set to 0 in Fig. 3. Note that the achievable DoF
in [16] monotonically increases with α. For any s value, if
an integer β is found such that

(
t+β−1

t

)
= s, then we find

the maximum possible α such that t+ α is divided by t+ β,
yielding the highest DoF of the scheme in [16] as depicted in
Fig. 3. It can be seen from Fig. 3 that, the proposed greedy
scheme can outperform [16] for certain values of s, especially
for small s that is of particular interest in practice. We remark
that, the derived lower bound on DoF can be loose due to

the floor and ceiling operations in (18), and the proposed
greedy scheme may achieve a DoF strictly higher than the
lower bound illustrated here. For instance, in the scenario of
N = K = 9 and M = 1 as considered in Fig. 3(d), the
total number of messages for each user to decode is 8. The
proposed low-complexity scheme for s = 8 delivers all the
coded messages in only one time slot, achieving the same
DoF of 9

8 as the scheme in [16]. Hence, the lower bound on
DoF at s = 8 is very loose as can be seen in Fig. 3(d). We
finally remark that, while the DoF lower bound is in general
loose, it is tight at certain values of s regardless of the values
of N,K, and M . Specifically, when s = 1, or when s is
sufficiently large such that Bu = 1, the scheme obtained via
the relaxed algorithm, which derives the DoF lower bound
in (19), is identical to the one obtained via Algorithm 1 with
equal blocklength allocation over all the time slots; and hence,
the right-hand-side term in (19) is the exact DoF achieved
by the scheme in Algorithm 1 when simply allocating equal
blocklength across all the time slots.

VI. JOINT OPTIMIZATION OF BEAMFORMING AND CODED
CONTENT DELIVERY

In this section, we formulate a sparsity constrained power
minimization problem to jointly optimize the beamformers and
the content delivery scheme. The sparsity induced problem
directly limits the number of messages to be decoded by
each user at any time slot, and the indicator function vT (i)
is identified by setting vT (i) = |RT (i)|0, for ∀i, T , where
| · |0 denotes the `0-norm and is equal to the number of
non-zero elements of a vector. Therefore, we impose an `0-
norm constraint on the rates of messages at any time slot i as
follows:

∑
T ∈Sk

|RT (i)|0 ≤ s, ∀k, i. (20)

In this section, we assume equal blocklength allocation over
all the B time slots for simplicity. Then, the minimum required
power problem with the constrains on the number of messages
to be decoded by any user at any time slot can be formulated
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Figure 3: DoF lower bound for the proposed greedy scheme in Algorithm 1 compared to the DoF of the scheme in [16] as a
function of s for various network parameters.

as follows:

min
{wT (i)},{RT (i)}

1

B

B∑
i=1

∑
T ∈S

‖wT (i)‖2 (21a)

s.t.
∑
T ∈πjSk

RT (i) ≤ 1

B
log2

(
1 +

∑
T ∈πjSk

γTk (i)

)
,

∀πjSk ∈ ΠSk , ∀k, i,
(21b)∑B

i=1
RT (i) ≥ R(

K
t

) , ∀T , (21c)∑
T ∈Sk

|RT (i)|0 ≤ s, ∀k, i, (21d)

where γTk (i) is defined in (9). In this problem, the objective is
to minimize the average transmission power over all the time
slots; constraints (21b)-(21c) guarantee successful decoding of
all the required messages at each user in each time slot; and
constraint (21d) limits the number of messages decoded by
each user in any time slot. Since (21d) limits only the number
of messages decoded by each user in any time slot, without
assuming any specific content delivery scheme, the problem in
(21) includes the content delivery schemes in [16] as a special
case. This formulation also generalizes the one presented in
Section III when the time slots are of equal duration. However,
note that the number of time slots B is a free variable for the
greedy scheme, while it is assumed to be given in (21).

To deal with the discontinuous `0-norm constraint in (21d),
we approximate it with a differentiable continuous function
[26]

f(RT (i), t) ,
2

π
arctan

RT (i)

ξ
, (22)

where ξ > 0 is a prescribed constant that determines the
approximation accuracy. The function in (22) is concave w.r.t.
RT (i), therefore the approximate constraint for (21d)

∑
T ∈Sk

f(RT (i), t) ≤ s, ∀k, i, (23)

is concave and can be treated as a difference of convex func-
tion. Overall, the original problem in (21) can be approximated
by the following problem:

min
{wT (i)},{RT (i)}

B∑
i=1

∑
T ∈S

1

B
‖wT (i)‖2 (24a)

s.t.(21b), (21c) and (23).

Similarly to (12), the problem in (21) can be solved via
the SCA method. Specifically, we introduce ηjπSk

(i) ,∑
T ∈πjSk

γTk (i), then the constraint in (21b) can be rewritten
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similarly to (30b) and (30c), given by∑
T ∈πjSk

RT (i) ≤ 1

B
log2(1 + ηπjSk

(i)), ∀πjSk ∈ ΠSk ,∀k, i,

(25)∑
I∈SCk

|hHk wI(i)|2 −

∑
T ∈πjSk

|hHk wT (i)|2

ηπjSk
(i)

+ σ2
k ≤ 0, ∀πjSk ∈ ΠSk ,∀k, i, (26)

where the constraints in (25) are convex, and the constraints in
(26) are in the form of difference of convex functions. In the
(ν + 1)-th iteration of the SCA algorithm, the constraints in
(26) can be linearized with the first order Taylor expansion at
{wν
T (i)} and {ην

πjSk

(i)}, leading to stricter constraints given

by

∑
I∈SC

k

|hHk wI(i)|2 +

∑
T ∈πjSk

|hHk wν
T (i)|2

ην
2

π
j
Sk

(i)
η
π
j
Sk

(i)

−
2
∑

T ∈πjSk
wνH

T (i)hkh
H
k wT (i)

ην
π
j
Sk

(i)
+ σ2

k ≤ 0, ∀πjSk ∈ ΠSk , ∀k, i,

(27)

where {wν
T (i)} and {ην

πjSk

(i)} are the solutions to the sub-

problem in the ν-th iteration. The same linearization technique
can also be performed for the constraints in (23), yielding
stricter constrains given by∑
T ∈Sk

arctan
(
RT

ν

(i)

t

)
+

t(
t2 +RT ν

2

(i)
) (RT (i)−RT

ν

(i)
)

≤ πs

2
, ∀k, i, (28)

where {RT ν (i)} are the solutions to the subproblem in the
ν-th iteration. Overall, the convex subproblem to be solved in
the (ν + 1)-th iteration is

min
{wT (i)},{RT (i),{η

π
j
Sk

(i)}

1

B

B∑
i=1

∑
T ∈S

‖wT (i)‖2 (29a)

s.t. (21c), (25), (27), and (28).

The initialization of the SCA algorithm for problem (29) for a
given value of s requires a content delivery scheme with less
or equal complexity, which can be obtained via Algorithm 1
in Section IV. The associated beamforming design can be
readily obtained similarly to (31). From problem (21), we can
also conclude that the minimum required power of a content
delivery scheme is a non-decreasing function of s, as the
problem becomes more relaxed as s increases.

VII. SIMULATION RESULTS

We consider a single-cell with radius 500m, and users
uniformly randomly distributed in the cell. Channel vectors
hk are written as hk = (10−PL/10)1/2h̃k, ∀k, where h̃k
denotes an i.i.d. vector accounting for Rayleigh fading of
unit power, and the path loss exponent is modeled as PL =
148.1 + 37.6log10(vk), with vk denoting the distance between

the BS and the user (in kilometers). The noise variance is set
to σ2

k = σ2 = −134 dBW for all the users. Throughout this
section, we assume that the number of transmit antennas is
NT ≥ K − t as required for achieving a satisfactory DoF
performance. All simulation results are averaged over 300
independent trials computed with CVX [27].

The scheme with B = 1 time slot will be referred to as the
full superposition (FS) scheme. FS has the best performance
in terms of transmit power given enough spatial DoF, and
serves as a baseline, but it also has the highest complexity. To
compare our results with those in [16], same number of coded
messages are transmitted to each user in each time slot for both
schemes. We note here that with the use of β parameter, the
scheme in [16] can be improved by serving disjoint subsets of
users simultaneously without increasing the complexity, but
the improvement is only applicable when the size of user
subset can be partitioned equally and exactly. Therefore, the
scheme in [16] cannot handle certain settings such as the case
of s = 2 in Example 1.

We first present the average transmit power as a function
of the target rate R in Fig. 4 for Example 1, assuming that
the BS is equipped with NT = 6 antennas. The scheme in
[16] that satisfies s = 2 is adopted for fair comparison, where
t+ α = 3 users are served in each time slot. We observe that
the proposed greedy scheme provides significant savings in
the transmit power compared to [16] at all rates. The power
savings increase with rate R as a result of the increased
superposition coding gain. Furthermore, the gap between the
proposed greedy scheme and FS is quite small, and remains
almost constant with rate. At R = 8 bps/Hz, the power loss
of the scheme in [16] and ours compared to FS are about 8.5
dB and 0.5 dB, respectively. Hence, we can conclude that the
proposed greedy scheme provides significant reduction in the
computational complexity without sacrificing the performance
much.

The average transmit power as a function of file rate R is
further investigated for the setting with N = 6 files, K = 6
users, M = 1, and NT = 6 antennas. Similarly to Fig. 4, it is
observed in Fig. 5 that our proposed low-complexity greedy
scheme substantially outperforms the scheme in [16] with the
same value of s in the high SNR regime. For example, the
power savings of the greedy delivery scheme compared to [16]
are 8dB and 2dB, for s = 3 and s = 4, respectively, at R =
10 bps/Hz. The power gain is again observed to be larger
as the rate increases, while in the low SNR/rate regime, all
the schemes achieve comparable performance regardless of
s. Also, for the proposed greedy scheme, a larger s allows
achieving the same rate with lower transmit power in the high
SNR regime, at the expense of increased complexity at the
receivers. It is noted that the proposed greedy scheme yields
the same content delivery scheme in terms of the transmitted
coded messages in each time slot as the one in [16] when
s = 1 and s = 2, which correspond to α = 5, β = 1, and
α = 5, β = 2 in [16], respectively.

Fig. 6 and Fig. 7 show the average transmit power versus
rate R for Example 2, with N = 4 files, K = 4 users,
M = 1, and NT = 3 antennas. In Fig. 6, we compare
our greedy content delivery scheme with the one obtained
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Figure 4: Average transmit power P as a function of rate R
for N = K = 5, M = 1, and NT = 6.
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Figure 5: Average transmit power P as a function of rate R
for N = K = 6, M = 1, and NT = 6.

by solving the problem in (21) for s = 2 and s = 3,
by setting B = 3. It is seen that the greedy scheme can
achieve comparable performance, and the performance gap is
small especially for high rates. The optimization-based content
delivery scheme with s = 3 is found to outperform the one
with s = 2 as expected, and the improvement is larger as
the rate increases. In Fig. 7, it is interesting to see that when
the rate is low, the scheme in [16] slightly outperforms both
the FS and the proposed schemes. A similar observation has
been made in [16] showing that a higher rate can be achieved
when transmitting a smaller number of coded messages at low
SNR, reducing the interference from coded packets that are
not decoded at each user. Due to insufficient spatial degrees of
freedom, both the FS and the proposed schemes fail to manage
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Figure 6: Average transmit power P as a function of rate R
for N = K = 4, M = 1, and NT = 3.
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Figure 7: Average transmit power P as a function of rate R
for N = K = 4, M = 1, and NT = 3.

the interference between data streams. We conclude that this
effect occurs only for low rates, as the benefit of superposition
coding becomes more dominant at higher rates. We note that
the greedy scheme coincides with the one in [16] for s = 1
in terms of the transmitted coded messages in each time slot,
but this does not always happen. For instance, when s = 2,
the only option in [16] to keep the same level of complexity
is to serve 3 users in each time slot.

We plot in Fig. 8 the power loss of the proposed scheme
in Algorithm 1 compared to FS as a function of s, that is,
how much more the required transmit power is compared to
the transmit power required by FS. This results in a more
clear plot. Assuming N = 6, K = 6, M = 1, we let s take
values from {1, 2, 3, 4, 5}, where s = 5 corresponds to the
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Figure 8: Power loss w.r.t. FS as a function of s for N = K =
6, M = 1, and NT = 6.

FS scheme in which all the
(
K
t+1

)
= 15 coded messages are

transmitted simultaneously. FS requires less transmit power at
the expense of a high decoding complexity. When s = 1, the
model boils down to the single-cell multigroup multicasting
problem, which has the lowest computation and implementa-
tion complexity. In general, Fig. 8 can be considered as the
trade-off curve between the performance and complexity for
each rate value, both of them increasing with s.

VIII. CONCLUSIONS

In this paper, we have studied cache-aided content delivery
from a multi-antenna BS in the finite SNR regime. We have
formulated a general beamforming scheme that multicasts
coded files over multiple orthogonal time slots. We have
then specialized this general formulation to a low-complexity
greedy scheme by limiting the number of coded messages
targeted at each user at each time slot. This scheme provides
the flexibility to adjust the computational complexity of the
optimization problem and the receiver complexity. We have
then formulated the constraint on the number of coded mes-
sages targeted at each user at each time slot as a sparsity
constraint, and solved the resulting mixed-integer non-convex
optimization problem using the SCA method. Compared with
FS, where all the coded messages are transmitted simultane-
ously, and the scheme obtained via the sparsity-constrained
optimization framework, the greedy scheme achieves compa-
rable performance, and outperforms the one proposed in [16]
for all values of SNR and rate with sufficient spatial degrees
of freedom, while the improvement is limited to high data
rate values when the BS does not have sufficiently many
transmit antennas. Furthermore, the gap between the greedy
delivery scheme and the optimization-based delivery scheme
decreases as the SNR/power increases. When considering
practical implementations, one must choose a suitable value
of s that yields an acceptable performance while keeping the
complexity feasible. The satisfactory DoF performance of the

proposed low-complexity scheme is guaranteed with at least
K− t antennas, while the analysis of overloaded systems with
K users served by less than K − t antennas is left as future
work.

APPENDIX A
AN UPPER BOUND ON THE SOLUTION OF PROBLEM (12)
It is noted that the constrains are in the form of difference of

convex functions, which can be approximated by linearizing
the concave functions, resulting in a convex problem that can
be solved via SCA techniques. To see this, we first rewrite the
problem in (12) as

min
{wT (i)},{RT (i),{η

π
j
Sk

(i)}

B∑
i=1

∑
T ∈S

ni
n
‖wT (i)‖2 (30a)

s.t.
∑
T ∈πjSk

RT (i) ≤ ni
n

log2(1 + ηπjSk
(i)),

∀πjSk ∈ ΠSk ,∀k, i, (30b)∑
I∈SCk

|hHk wI(i)|2 −

∑
T ∈πjSk

|hHk wT (i)|2

ηπjSk
(i)

+ σ2
k ≤ 0, ∀πjSk ∈ ΠSk ,∀k, i, (30c)

(12c), (12d) and (12e),

where ηπjSk
(i) ,

∑
T ∈πjSk

γTk (i). The constraint in (30c) is the

difference of convex function, since
∑
T ∈πjSk

|hHk wT (i)|2/
ηπjSk

(i) is the sum of quadratic-over-linear functions of wT (i)

and ηπjSk
(i). Therefore, a sequence of convex subproblems

can be solved iteratively to approximately tackle this convex-
concave problem [28], with the subproblem in the (ν + 1)-th
iteration given by

min
{wT (i)},{RT (i),{η

π
j
Sk

(i)}

B∑
i=1

∑
T ∈S

ni
n
‖wT (i)‖2 (31a)

s.t.
∑
T ∈πjSk

RT (i) ≤ ni
n

log2(1 + ηπjSk
(i)), ∀πjSk ∈ ΠSk ,∀k, i,

(31b)∑
I∈SCk

|hHk wI(i)|2 +

∑
T ∈πjSk

|hHk wν
T (i)|2

ην
2

πjSk

(i)
ηπjSk

(i)

−
2
∑
T ∈πjSk

wνH

T (i)hkh
H
k wT (i)

ην
πjSk

(i)
+ σ2

k ≤ 0, ∀πjSk∈ΠSk ,∀k, i,

(31c)
(12c), (12d) and (12e),

given the solution of wν
T (i), RT

ν

(i), and ην
πjSk

(i) obtained in

the ν-th SCA iteration. Each of the convex subproblems can
be efficiently solved with standard interior-point algorithms
or off-the-shelf solvers, and the SCA approach is guaranteed
to converge to a stationary solution of the original problem
in (12) [29]. Details of the SCA algorithm are outlined in
Table. II.
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An initial point in the feasible set of problem (12) is required
to initialize the SCA algorithm. We first observe that for any
feasible target rates {RT(i) | ∀ T ∈ S}Bi=1 that satisfy the
constraints in (12c) and (12e), the problem in (12) can be
decoupled and decomposed into B parallel subproblems, each
for a distinct time slot i ∈ [B], given by

{w∗T (i)}T ∈S(i) = arg min
{wT (i)}

∑
T ∈S(i)

‖wT (i)‖2 (32a)

s.t.
∑
T ∈πjSk

RT (i) ≤ ni
n

log2

(
1 +

∑
T ∈πjSk

γTk (i)

)
,

∀πjSk ∈ ΠSk , ∀k, i, (32b)

γTk (i) =
|hHk wT (i)|2∑

I∈SCk
|hHk wI(i)|2 + σ2

k

, ∀k, i, (32c)

‖wT (i)‖2 ≥ 0 for ∀vT (i) 6= 0, (32d)

‖wT (i)‖2 = 0 for ∀vT (i) = 0, (32e)

which is nonconvex. Nevertheless, it can be transformed into a
semidefinite programming problem by introducing WT (i) ,
wT (i)wH

T (i) and dropping the rank-1 constraints on WT (i),
which is given by

{W ∗
T (i)}T ∈S(i) = arg min

{WT (i)}

∑
T ∈S

Tr{WT (i)} (33a)

s.t.
(

2
n
ni

∑
T ∈πjSk

RT (i)

− 1

) ∑
I∈SCk

Tr{HkWI(i)}+ σ2
k


−
∑
T ∈πjSk

Tr{HkWT (i)} ≤ 0, ∀πjSk ∈ ΠSk ,∀k,

(33b)
WT (i) � 0,∀vT (i) 6= 0, (33c)
WT (i) = 0,∀vT (i) = 0, (33d)

and can be efficiently solved with standard interior-point
algorithms. However, the solution obtained with semidefinite
relaxation is not necessarily rank-1. If the obtained WT (i)’s
are all rank-1, then the optimal solution of (32) can be readily
recovered from WT (i). Otherwise, Gaussian randomization
can be adopted to obtain a feasible approximation to the
optimal solution of (32). Note that the solution given by (32)
is an upper bound on the minimum required power in (12)
as the rates {RT(i) | ∀T ∈ S}Bi=1 are not optimized, which
hence can serve as an initial point in the successive convex
approximation algorithm to obtain a tighter upper bound on
the problem in (12).
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