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Abstract—In this paper, a novel modulation scheme called
set partition modulation (SPM) is proposed. In this scheme, set
partitioning and ordered subsets in the set partitions are used
to form codewords. We define different SPM variants and depict
a practical model for using SPM with orthogonal frequency
division multiplexing (OFDM). For the OFDM-SPM schemes,
different constellations are used to distinguish between different
subsets in a set partition. To achieve good distance properties as
well as better error performance for the OFDM-SPM codewords,
we define a codebook selection problem and formulate such a
problem as a clique problem in graph theory. In this regard,
we propose a fast and efficient codebook selection algorithm. We
analyze error and achievable rate performance of the proposed
schemes and provide asymptotic results for the performance. It
is shown that the proposed SPM variants are general schemes,
which encompass multi-mode OFDM with index modulation
(MM-OFDM-IM) and dual-mode OFDM with index modulation
(DM-OFDM-IM) as special cases. It is also shown that OFDM-
SPM schemes are capable of exhibiting better error performance
and improved achievable rate than conventional OFDM, OFDM-
IM, DM-OFDM-IM, and MM-OFDM-IM.

Index Terms—Orthogonal frequency division multiplexing
(OFDM), index modulation, set partitions.

I. INTRODUCTION

The idea of embedding information in the element per-

mutations of a codeword was first proposed by Slepian in

[1]. Slepian’s idea, which he called permutation modulation

(PM), was hinged upon constructing a codebook by permuting

elements of a codeword. Index modulation (IM) techniques,

which can be considered as a subclass of PM, have attracted

remarkable interest due to their capabilities for achieving

better error performance and improved energy/spectral effi-

ciency compared to conventional systems [2]. IM encodes the

information in the indices of active/inactive sources. For ex-

ample, combinations of the (in)active transmit antenna indices

form the IM codewords in a multi-antenna communication

technique called spatial modulation (SM) [3]. In contrast, the

activation patterns of the subcarriers are used to construct IM

codewords in a multicarrier communication technique called

orthogonal frequency-division multiplexing with index modu-

lation (OFDM-IM) [4]–[6]. Other PM/IM-based applications

exist with manifestations in space, time and frequency (see,

e.g., [7]).

The application of IM to the well-known OFDM structure

brings various advantages [4]–[6], [8]–[16]. For example, it

F. Yarkin and J. P. Coon are with the Department of Engineering Sci-
ence, University of Oxford, Parks Road, Oxford, OX1 3PJ, U.K. E-mail:
{ferhat.yarkin and justin.coon}@eng.ox.ac.uk

This paper was presented in part at the IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC), 8-11
September 2019.

The authors wish to acknowledge the support of the Bristol Innovation &
Research Laboratory of Toshiba Research Europe Ltd.

was shown by [4]–[6] that OFDM-IM is capable of achiev-

ing substantially better error performance than conventional

OFDM. To further improve the error performance, transmit

diversity and trellis-coded modulation were applied to OFDM-

IM in [8] and [9], respectively. These studies show how one

can achieve a diversity gain for the OFDM-IM scheme by sac-

rificing the data rate. In [10], a coordinate interleaved OFDM-

IM scheme was proposed, and it was shown that the proposed

scheme can achieve an additional diversity gain without sacri-

ficing the data rate. In [11], two different generalized OFDM-

IM schemes were proposed to improve the spectral efficiency

and error performance. Moreover, it was revealed by [12], [13]

that OFDM-IM is capable of achieving a better achievable

rate than conventional OFDM for small modulation orders.

A useful guideline to design spectrally efficient OFDM-IM

schemes is reported in [14]. In [15], a binary tree encoding

method was applied to OFDM-IM to cover all of the subcarrier

activation patterns and, therefore, improve the data rate beyond

recent benchmarks. For the same purpose, a discrete cosine

transform based solution for OFDM-IM was implemented in

[16]; substantial data rate improvements compared to OFDM-

IM and conventional OFDM were shown possible.

To encode information in the combinations of the subcar-

riers, a certain number of subcarriers are nulled in OFDM-

IM. Although carrying information on the combinations of ac-

tive/inactive subcarriers results in better error performance and

improved spectral/energy efficiency for small modulation or-

ders, it becomes difficult to achieve spectral efficiencies com-

parable to conventional OFDM for high modulation orders. To

overcome this problem, the idea of employing distinguishable

constellations on different subcarriers rather than nulling them

has been considered [17]–[25]. In [17], an OFDM scheme

called dual mode OFDM with IM (DM-OFDM-IM) was doc-

umented; this method uses two distinguishable constellations

rather than active/inactive subcarriers to encode information.

In [18], a dual-mode index modulation aided OFDM scheme

that employs two PSK constellations with different power lev-

els is proposed. The authors of [19] further considered altering

the number of subcarriers modulated by the same constellation

and provided a more general IM scheme called General-

ized DM-OFDM-IM (GDM-OFDM-IM). In [20], the authors

proposed two different precoding-aided OFDM-IM schemes

that use distinguishable constellations. The first scheme of

[20] can be considered as a generalization of DM-OFDM-

IM since such a scheme partitions the subcarriers into groups

and uses the same amount of constellations as the number of

groups to modulate the subcarriers. In [21], in addition to two

distinguishable constellations, some subcarriers are allowed to

remain unused, which yields a third mode that, as it turns

out, enhances the bit-error-rate (BER) performance relative to

DM-OFDM-IM and OFDM-IM. In [22], Wen et al. proposed a

http://arxiv.org/abs/1910.11151v1
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multi-mode OFDM-IM (MM-OFDM-IM) scheme, which uses

distinguishable constellations on each subcarrier of OFDM

sub-blocks to increase the spectral efficiency as well as to

improve BER performance. In [23] and [24], the MM-OFDM-

IM scheme is generalized. In [25], the MM-OFDM-IM scheme

is extended to space and time domains by using Latin matrices.

Against this background, we develop a new codebook

design method, which we call set partition modulation (SPM).

Our novel contributions can be listed as follows:

• The proposed method uses a novel combinatorial tool,

which is partitions of codeword elements rather than

permutations or combinations of such elements.

• We define different variants of SPM and give a practical

model for applying SPM with OFDM transmissions.

• The proposed OFDM-SPM schemes employ distinguish-

able constellations, similar to MM-OFDM-IM; however,

in OFDM-SPM, the different constellations are used to

distinguish between subsets in a set partition, unlike MM-

OFDM-IM where distinguishable constellations are used

to construct permutations.

• The proposed OFDM-SPM variants are capable of

encompassing DM-OFDM-IM and MM-OFDM-IM

schemes as special cases. Moreover, they are also

capable of achieving a better data rate than such

schemes.

• We define a codebook selection problem for OFDM-

SPM variants to design efficient codebooks, which are

at least as good as OFDM-IM schemes in terms of error

performance at high SNR. We formulate such a problem

as a clique problem and develop an efficient solution for

such a problem.

• The achievable data rate and BER of OFDM-SPM vari-

ants are investigated in this paper, and an upper-bound

on the BER is obtained. We also provide asymptotic

expressions for data rate and BER.

• Our analytical findings show that OFDM-SPM vari-

ants are capable of outperforming conventional OFDM,

OFDM-IM, DM-OFDM-IM, and MM-OFDM-IM in

terms of data rate and BER.

The rest of the paper is organized as follows. In Section II,

we define SPM and its variants. OFDM-SPM and an efficient

codebook selection algorithm are described in Sections III and

IV, respectively. Performance analysis is undertaken in Section

V. We present and compare analytical and numerical results

in Section VI. Finally, we conclude the paper in Section VII.

II. SET PARTITION MODULATION

In this section, we describe the basic idea of SPM. We begin

with some useful definitions and relations.

Definition 1. Set Partition: A set partition is the grouping

the elements of a set in a way that the groups are disjoint and

the union of the groups gives the set.

Definition 2. Stirling Number of the Second Kind: The

Stirling number of the second kind, denoted by
{

N
K

}

, can be

defined as the number of ways to partition an N -element set

into K non-empty subsets.

Table I
SET PARTITIONING AND SPM CODEWORD GENERATION EXAMPLE FOR

N = 4, K = 2.

Set Partitions of X SPM Codeword

S1 =
{{

x1

}

,
{

x2, x3, x4

}}

x1 =
{

µ1, µ2, µ2, µ2

}

S2 =
{{

x2

}

,
{

x1, x3, x4

}}

x2 =
{

µ2, µ1, µ2, µ2

}

S3 =
{{

x3

}

,
{

x1, x2, x4

}}

x3 =
{

µ2, µ2, µ1, µ2

}

S4 =
{{

x4

}

,
{

x1, x2, x3

}}

x4 =
{

µ2, µ2, µ2, µ1

}

S5 =
{{

x1, x2

}

,
{

x3, x4

}}

x5 =
{

µ1, µ1, µ2, µ2

}

S6 =
{{

x1, x3

}

,
{

x2, x4

}}

x6 =
{

µ1, µ2, µ1, µ2

}

S7 =
{{

x1, x4

}

,
{

x2, x3

}}

x7 =
{

µ1, µ2, µ2, µ1

}

Definition 3. Bell Number: The Bell number BN enumerates

the total number of partitions of a set of N elements. The

Bell number is related to Stirling numbers of the second kind

through the equation BN =
∑N

K=1

{

N
K

}

.

Definition 4. Ordered Bell Number: The ordered Bell

number B̆N enumerates the total number of partitions of an

N -element set considering all permutations of subsets for

each partition. The ordered Bell number satisfies the equation

B̆N =
∑N

K=1 K!
{

N
K

}

.

A. SPM

In an SPM system, a codebook of L codewords

x1, x2, . . . , xL is constructed such that each codeword is a

sequence of N elements, which are drawn from a constellation

diagram in the complex plane, i.e., xl =
{

xl1, xl2, . . . , xlN

}

,

l = 1, . . . , L, where xln ∈ C, n ∈
{

1, . . . , N
}

, is an M -

ary symbol. Each codeword is mapped to a partition of an

N -element set X into K subsets. Since the number of ways

one can form the partition is
{

N
K

}

, the SPM codebook size is

given by LSPM =
{

N
K

}

. We call X the generator set of an

SPM codeword. To produce unique codewords for SPM, an

N -element codeword should have at least K distinguishable

elements, and each distinguishable element, µk, k = 1, . . . ,K ,

is used to specify which element in the codewords belongs to

which subset. Therefore, distinguishable elements differentiate

each subset from the other(s).

Example 1. As an example, consider the ways to partition

a four-element set X :=
{

x1, x2, x3, x4

}

into two-element

subsets. This is shown along with the corresponding SPM

codewords in Table I. As seen from the table, to obtain

the codewords in an SPM codebook, we first partition the

elements of the generator set X into two-element subsets Si,
i = 1, . . . , L where L = 71. Then, we use the subset identifiers

µ1 and µ2 to represent the elements that belong to different

subsets. For example, for the first codeword in Table I, we have

the partition S1 :=
{{

x1

}

,
{

x2, x3, x4

}}

. Since the element

x1 and the elements x2, x3, and x4 are in the first and second

subsets, respectively, we assign µ1 to first element and µ2 to

remaining elements.

B. Ordered SPM

Ordered SPM (OSPM) is an extended version of SPM in

which the codebook size is increased by considering permu-

1Note that
{

4

2

}

= 7.
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Table II
SET PARTITIONING AND OSPM CODEWORD GENERATION EXAMPLE FOR

N = 3, K = 2.

Set Partitions of X SPM Codeword

S1 =
{{

x1

}

,
{

x2, x3

}}

x1 =
{

µ1, µ2, µ2

}

S2 =
{{

x2

}

,
{

x1, x3

}}

x2 =
{

µ2, µ1, µ2

}

S3 =
{{

x3

}

,
{

x1, x2

}}

x3 =
{

µ2, µ2, µ1

}

S4 =
{{

x2, x3

}

,
{

x1

}}

x4 =
{

µ2, µ1, µ1

}

S5 =
{{

x1, x3

}

,
{

x2

}}

x5 =
{

µ1, µ2, µ1

}

S6 =
{{

x1, x2

}

,
{

x3

}}

x6 =
{

µ1, µ1, µ2

}

Table III
SET PARTITIONING AND FSPM CODEWORD GENERATION EXAMPLE FOR

N = 3.

Set Partitions of X SPM Codeword

S1 =
{{

x1, x2, x3

}}

x1 =
{

µ1, µ1, µ1

}

S2 =
{{

x1

}

,
{

x2, x3

}}

x2 =
{

µ1, µ2, µ2

}

S3 =
{{

x2

}

,
{

x1, x3

}}

x3 =
{

µ2, µ1, µ2

}

S4 =
{{

x3

}

,
{

x1, x2

}}

x4 =
{

µ2, µ2, µ1

}

S5 =
{{

x1

}

,
{

x2

}

,
{

x3

}}

x5 =
{

µ1, µ2, µ3

}

tations of subsets in a partition. Hence, the codebook size of

OSPM is given by LOSPM = K!
{

N
K

}

. This simple extension

is best illustrated with an example.

Example 2. In Table II, we give an example of a mapping

between set partitions and OSPM codewords for N = 3 and

K = 2. As seen from the table, the first three codewords are

SPM codewords and we further obtain an extended codebook

by taking the permutations of the subsets in a set partition into

account. For this example, by exhibiting additional codewords

obtained from the order of the subsets, we end up with

2!
{

3
2

}

= 6 codewords.

C. Full SPM

In Full SPM (FSPM), the codewords x1, x2, . . . , xLFSPM

are generated by partitioning an N -element set X into non-

empty disjoint subsets in such a way that the number of these

subsets takes any possible value, K ∈
{

1, . . . , N
}

. In other

words, all partitions of an N -element set X into non-empty

disjoint subsets are used to form the FSPM codebook. For

FSPM, the codebook size is equal to the Bell number BN ,

i.e., LFSPM = BN =
∑N

K=1

{

N
K

}

.

Example 3. Let us consider an example of how we define the

codewords in an FSPM codebook when N = 3. Partitions of

a three-element set X :=
{

x1, x2, x3

}

are given in Table III

along with the corresponding FSPM codewords. As seen from

the table, to obtain the codewords in an FSPM codebook, we

first partition the elements of the generator set X into subsets

Si, i = 1, . . . , LFSPM where LFSPM = 5. Note that Bell

number for N = 3 is B3 = 5. Then, we use the subset

identifier µk, k ∈
{

1, . . . ,K
}

, to represent the elements that

belong to the kth subset.

D. Ordered Full SPM

We can further increase the number of codewords in an

FSPM codebook by considering the permutations of the sub-

sets in a partition. In this regard, we define ordered full SPM

(OFSPM) as a modulation scheme that forms its codebook

by using all partitions of an N -element set X along with

all permutations of the subsets in each partition. Hence, the

OFSPM codebook size is given by the ordered Bell number

B̆N , i.e., LOFSPM = B̆N =
∑N

K=1 K!
{

N
K

}

.

III. PRACTICAL MODEL FOR OFDM

We present a practical system model in which we apply

SPM schemes to OFDM transmissions. The transmitter struc-

ture of the OFDM-SPM scheme is shown in Fig. 1. In this

scheme, m input bits enter the SPM transmitter, and these bits

are divided into B = m/f blocks, each having f input bits.

Similarly, the total number of subcarriers NT is also divided

into B = NT /N blocks, each having N subcarriers. For each

block of input bits, f information bits are modulated by an

SPM encoder and the resulting modulated symbols are carried

by N subcarriers.

Since each bit and each subcarrier block have the same

mapping operation, we focus on a single block, the bth
block (where b ∈

{

1, 2, . . . , B
}

), in what follows. In the

bth block, the SPM encoder further divides f information

bits into two parts, one of them having f1 bits and the

other one having f2 bits with f1 + f2 = f . The first f1
bits are used to determine the specific set partition Sbi , i =
1, . . . , L (L ∈

{

LSPM , LOSPM , LFSPM , LOFSPM

}

), of the

N -element generator set X :=
{

x1, x2, . . . , xN

}

belonging

to one of the variants of SPM defined above. The chosen

partition is mapped to the corresponding SPM codeword xb
i

where the superscript b stands for the bth block. Here, each

element in the SPM codeword corresponds to a subcarrier in

the bth block. The remaining f2 bits are used to modulate

symbols on the N subcarriers, considering the corresponding

mapping of the set partition determined by the first f1 bits.

As discussed in the previous subsection, we use different

subset identifiers in order to produce unique SPM codewords.

To preserve the uniqueness property of SPM codewords and

modulate the symbols on each subcarrier, we further assume

that each subset identifier µk is an element of a disjoint M -ary

signal constellation Mk, i.e., µk ∈ Mk and Mk ∩Mk̂ = ∅,

where k, k̂ ∈
{

1, 2, . . . , N
}

and k 6= k̂2. For convenience,

we choose the size of each constellation as M and, therefore,

f2 = N log2 M . By following the useful design guidelines in

[22], we obtain the distinguishable PSK constellationsMk by

rotating each constellation with the angle of 2(k−1)π/(MN),
k = 1, . . . , N , to maximize the distance between constellation

points. To obtain distinguishable QAM constellations, likewise

[22], we employ the well-known set partitioning technique in

[26].

The mapping of f1 bits to the set partitions can be performed

by using a look-up table in a similar manner as was proposed

to map information bits to subcarrier activation patterns in [4],

2Note that the subset identifiers are not necessarily elements of disjoint
M -ary signal constellations and each of them may be chosen as a single
constellation point in the same M -ary constellation. Hence, assigning a unique
constellation point to each subset identifier would be enough to constitute an
SPM scheme. However, in this special case, the number of information bits
transmitted by an OFDM block is decreased by f2 bits since f2 bits are not
used to modulate the subset identifiers.
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Figure 1. Transmitter structure of OFDM-SPM scheme.

Table IV
A LOOK-UP TABLE EXAMPLE CORRESPONDING TO A BIT-TO-PARTITION

MAPPING FOR SPM (N = 4 AND K = 2).

f1 bits Set Partitions of X

[0 0] Sb
1
=

{{

x1

}

,
{

x2, x3, x4

}}

[0 1] Sb
2
=

{{

x2

}

,
{

x1, x3, x4

}}

[1 0] Sb
3
=

{{

x3

}

,
{

x1, x2, x4

}}

[1 1] Sb
4
=

{{

x4

}

,
{

x1, x2, x3

}}

or to permutation indices as detailed in [22]. A look-up table

example illustrating the mapping of f1 bits to the set partitions

is given in Table IV for N = 4 and K = 2. Note that we are

only able to use 2f1 set partitions.3 As seen from the table,

f1 bits are used to determine the specific set partition at first.

The chosen set partition is then used to determine the SPM

codeword as discussed earlier.

Once the mapping between f1 bits and set partitions has

been completed, f2 = N log2 M bits are used to determine

the modulated symbols, or in other words subset identi-

fiers, on each subcarrier. Hence, one of the SPM codewords

xb ∈
{

xb
1, . . . , xbL

}

along with the corresponding modu-

lation symbols {µk} constitutes the symbol vector of the

bth block. After obtaining symbol vectors for all blocks, an

OFDM block creator forms the overall symbol vector x :=
[x(1), x(2), . . . , x(NT )]

T = [x1, . . . , xb, . . . , xB]T ∈ CNT×1.

Here, we assume that each element of x is distributed among

equally spaced subcarriers to ensure diversity in frequency, and

each modulated symbol carried by a subcarrier has unit energy,

i.e., E[|x(t)|2] = 1, t = 1, . . . , NT . After this point, exactly

the same operations as conventional OFDM are applied. The

symbol vector is processed with an NT -point IFFT, and a

cyclic prefix of sufficient length, which is not lower than the

memory of the discrete channel impulse response, is attached

to the beginning of each time-domain symbol vector. After

parallel-to-serial and up-conversion, transmission is operated

over a frequency-selective Rayleigh fading channel.

At the receiver, the received signal is down converted and

the cyclic prefix is then removed from each received baseband

symbol vector before processing with an FFT. After employing

3It is possible to utilize all set partitions by employing binary coding
algorithms [15], [27].

an NT -point FFT operation, the frequency domain received

signal vector can be written as

y := [y(1), y(2), . . . , y(NT )]
T =

√

ESXh + n (1)

where ES is the energy of the transmitted symbol vector

and X = diag(x). Moreover, h and n are NT × 1 channel

and noise vectors, respectively. Elements of these vectors

follow the complex-valued Gaussian distributions CN (0, 1)
and CN (0, N0), respectively, where N0 is the noise variance.

Since the encoding procedure for each block is indepen-

dent of others, decoding can be performed independently at

receiver. Hence, using maximum likelihood (ML) detection,

the detected symbol vector for the bth block can be written as

x̂
b = arg min

Si,µk

||yb −
√

ESXbhb||2 (2)

where yb = [y((b − 1)N + 1), . . . , y(bN)]T , Xb = diag(xb)
and hb = [h((b − 1)N + 1), . . . , h(bN)]T .

IV. CODEBOOK SELECTION

As reported by several studies [22], [28], for a fading

channel, the BER performance of a codebook at a high signal-

to-noise ratio (SNR) is limited by the minimum Euclidean

distance between codeword pairs whose difference matrix has

the minimum rank, i.e., the performance at high SNR is

determined by

dmin = min
i6=j,i,j∈

{

1,...,2f
}

||Xi − Xj ||2 (3)

where Xi = diag(xi) and Xj = diag(xj). Note that here

rank(Xi − Xj) corresponds to the minimum rank among all

Xi and Xj pairs. For OFDM-IM schemes, the minimum rank

codeword pairs are formed by modulation symbols instead of

the symbols carried by the subcarrier indices [22]. It is fairly

easy to see that such minimum rank between codeword pairs

is observed when the matrices Xi and Xj regarding OFDM-

IM codewords have the same subcarrier indices and different

modulation symbols on one of their subcarriers. Moreover, the

rank of the difference matrix of two matrices corresponding

to different subcarrier indices is at least two [22]. Although
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the statement on the modulation symbols is valid for OFDM-

SPM schemes, the statement on symbols carried by subcarrier

indices is not necessarily valid for OFDM-SPM schemes.

This can be shown by comparing the codewords x1 and

x5 in Table I. Here, the only difference between the two

partitions is observed in the second elements. Such a condition

limits the diversity order of the index symbols to one if

we include both codewords in the same codebook. However,

one can also construct the codebook in a way that unit rank

codeword pairs are not included. This ensures the minimum

rank properties for OFDM-SPM codewords are the same as for

OFDM-IM and MM-OFDM-IM. Hence, our aim in codebook

selection for OFDM-SPM variants can be summarized as

obtaining codewords that are at least as good as OFDM-IM

and MM-OFDM-IM. We know that the optimum codebook

selection criterion in a fading channel at high SNR is the well-

known rank-determinant criterion [28]. However, due to the

complexity of the codebook selection problem, our selection

algorithms do not consider product-distances.

The codebook selection problem can be formulated as a

maximum clique problem4 or k-clique problem in a graph. Be-

fore formulating such problem, we begin with some definitions

and notations related to graph theory for clarity. Consider an

undirected graph G = (V,E), where V =
{

v1, v2, . . . , vL
}

is the vertex set and E ⊆ V × V is the edge set of G.

A graph is complete if all its vertices are connected by an

edge, i.e., we have (vl, vl̂) ∈ E for ∀vl, vl̂ ∈ V , vl 6= vl̂. A

clique can be defined as a complete subgraph of a graph [29],

[30]. The clique number or the size of the maximum clique

is denoted by w(G). Moreover, the symmetric L × L matrix

AG = (avlvl̂)vl,vl̂∈V , where avlvl̂ = 1 if (vl, vl̂) ∈ E and

avlvl̂ = 0 if (vl, vl̂) /∈ E, stands for the adjacency matrix of

the graph G.

Now, we formulate our codebook selection problem as

maximum clique and k-clique problems as follows. Assume

that a graph’s vertices represent the OFDM-SPM codewords,

which map to set partitions, and the graph’s edges represent the

Hamming distance between such codeword pairs5. To ensure

similar Hamming distance properties for index symbols as

OFDM-IM benchmarks, we set a condition on the vertex

connections such that two vertices are connected to each

other if the Hamming distance between vertices (codewords)

is greater or equal to two, i.e. E =
{

(vl, vl̂)| vl, vl̂ ∈
V,HamDist(vl, vl̂) ≥ 2

}

where the “HamDist” function is

used to measure the Hamming distance between vertices. Here,

our aim is to finding the maximum clique that includes the

largest possible number of vertices.

On the other hand, if the problem is formulated as a k-

clique problem, one should consider the cliques that includes

a specific number, k, of vertices. Considering the number of

the set partitions, the clique size, k, can be determined. For

4This problem is also equivalent to some other important graph problems
such as the maximum independent set problem and minimum vertex cover

problem.
5Note that the Hamming distance between xi and xj is equivalent to

the rank of the difference matrix Xi − Xj where Xi = diag(xi) and
Xj = diag(xj). Here, we prefer to use Hamming distance rather than rank
for convenience.

example, we have B̆N = 75 ordered set partitions for N = 4
and we are interested in choosing 64 partitions out of 75 to

send six data bits. Hence, we can formulate such a problem

in the same way as the maximum clique problem. However,

in this case, we are interested in the cliques with 64 vertices.

One drawback of the k-clique problem is that we do not know

whether the current graph has a clique of size k. However, we

can proceed to check the cliques by decreasing the clique size

in the absence of a k-clique in the given graph.

A. Brute-force Search for k-clique Problem

One straightforward way of selecting good codewords or,

in other words finding a k-clique, is exhaustively search-

ing among all possible subgraphs. In this regard, the brute-

force search algorithm for the k-clique problem is given in

Algorithm 1. The algorithm starts by initializing the graph

G(V,E) where V =
{

v1, v2, . . . , vL
}

is the vertex set

representing SPM codewords and, E =
{

(vi, vj)| vi, vj ∈
V,HamDist(vi, vj) ≥ 2

}

is the edge set of G. In the

second step, we set κ = 0 where κ is used to adjust the

clique size. Then, in the third step, we divide the graph

constituted by the partitions into subgraphs, Vi, in a way that

each subgraph includes k = 2⌊log2
wU (G)⌋−κ vertices where

wU (G) = N−1 + 1 is an upper-bound on the size of the

maximum clique w(G), i.e., w(G) ≤ wU (G) = N−1 + 16

[31]. Here, we choose the number of vertices, k, in a subgraph

as a power of two since the complexity of the algorithm would

be high if we take all possible values of k into consideration.

The choice of k can also be justified by the use of a fixed-

length bit mapping scheme, since we wish to send the same

amount of data bits even if we consider all possible values of

k. Moreover, N−1 denotes the number of eigenvalues of the

adjacency matrix AG that do not exceed −1. Then, for each

subgraph, we calculate adjacency matrices, AGi
, and initialize

a selected graph as V̂ ∈ ∅. In the fifth step, we check each

adjacency matrix to see whether the subgraph is a k-clique

or not. If the subgraph is a k-clique, the algorithm returns

the current subgraph as the selected graph. If no k-clique

is encountered after checking all subgraphs, we increase κ
by one and go to Step 3 to check whether there is a clique

of smaller size. In that way, the brute-force search algorithm

guarantees reaching the maximum number of bits carried by

set partitions for fixed-length binary coding schemes. Note

that subgraph initialization in Step 3 may require excessive

memory when the number of vertices is high. To avoid such

memory requirements, one can use a combinatorial number

system to obtain vertex combinations from natural numbers.

The combinatorial number system provides a bijective map-

ping between the natural numbers and k-combinations [32].

Hence, Steps 3 and 4 can be integrated into the for-loop in

Step 5 and each subgraph can be constructed in each loop by

using a combinatorial number system. Note also that the for-

loop in Step 5 can be parallelized to speed up the algorithm.

6One may find many bounds on the clique number [30]. The safest strategy
would be calculating all bounds and using the tightest. We found the upper-
bound in [31] sufficiently tight for our problem.
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Algorithm 1: Brute-force search for the k-clique problem

Step 1: Initialize a graph G(V,E) with

V =
{

v1, v2, . . . , vL
}

, the vertex set of SPM codewords,

and, E =
{

(vl, vl̂)| vl, vl̂ ∈ V,HamDist(vl, vl̂) ≥ 2
}

;

Step 2: κ = 0;

Step 3: Initialize subgraphs, Gi(Vi, E), i = 1, . . . , C,

with Vi =
{

vi1, v
i
2, . . . , v

i
k

}

where C =
(

L
k

)

,

k = 2⌊log2 wU (G)⌋−κ, vil , v
i
l̂
∈ V , l, l̂ =

{

1, 2, . . . , k
}

,

vil 6= vi
l̂
;

Step 4: Initialize adjacency matrix, AGi
, of Gi and

V̂ ∈ ∅ where AGi
= (ai

l,l̂
)(vi

l
,vi

l̂
)∈Vi

;

Step 5: Finding the k-clique;

for i = 1 to C do

if ai
l,l̂

= 1, ∀l, l̂ =
{

1, 2, . . . , k
}

and l 6= l̂ then

V̂ = Vi;

break;
end

i← i+ 1;

end

Step 6: Checking the presence of k-clique in G;

if V̂ ∈ ∅ then

κ← κ+ 1;

Go to Step 3;

end

return V̂ ;

B. Vertex Exclusion for the Maximum Clique Problem

Since the maximum clique problem is NP-complete, the

time of execution of exact algorithms will increase expo-

nentially with the number of vertices in the graph [30]. In

this regard, the brute-force search algorithm exhibits high

complexity when the number of vertices is high. To overcome

this problem, we propose a more practical algorithm based on

excluding the vertices that have the minimum number of con-

nections. Although such an algorithm provides a sub-optimal

solution for the codeword selection problem, it is much more

efficient than a brute-force search in terms of complexity. Our

proposed algorithm is given in Algorithm 2. The algorithm

starts by initializing the Hamming graph. Then, in the second

step, we calculate the number of neighbors, |N(vl)|, of each

node vl ∈ V where N(vl) =
{

vl̂ ∈ V ; avlvl̂ = 1
}

is the

neighborhood of vl in G. In the third step, we remove the

nodes that have the minimum number of neighbors until the

remaining graph is a clique, i.e. |N(vl)| = |V | − 1, ∀vl ∈ V .

In this step, |Nc(vl)| is used to update the cardinality of

the neighborhood of vl after removing the node that has the

minimum number of neighbors. As a result, the algorithm

removes the set partitions having the maximum number of

unit Hamming distance pairs one-by-one until we have no set

partition pairs with unit Hamming distances.

C. Complexity Comparison

In this subsection, we compare the complexities of Algo-

rithms 1 and 2 in terms of the algorithm run-times. Results

Algorithm 2: Vertex exclusion for maximum clique prob-

lem

Step 1: Initialize a graph G(V,E) with

V =
{

v1, v2, . . . , vL
}

, the vertex set of SPM codewords,

and, E =
{

(vl, vl̂)| vl, vl̂ ∈ V,HamDist(vl, vl̂) ≥ 2
}

;

Step 2: Calculate the cardinality of the neighborhood,

|N(vl)|, for each node where vl ∈ V ;

Step 3: Finding a clique by excluding vertices;

while |N(vl)| 6= |V | − 1, ∀vl ∈ V do

vmin = argminvl∈V |N(vl)|;
G← G−

{

vmin

}

;

V ← V −
{

vmin

}

;

Calculate the neighborhood cardinality, |Nc(vl)|, for

each node of V where ∀vl ∈ V ;

|N(vl)| ← |Nc(vl)|;
end

return V ;

in units of seconds are shown in Tables V and VI. In the

tables, we also depict the numbers of vertices achieved by each

algorithm in the brackets along with the upper-bound results

on the achievable number of vertices according to [31]. More-

over, results using a built-in function called “FindClique[G]”

in Wolfram Language are provided as a benchmark. Such a

function searches for the maximal set of vertices where the

corresponding subgraph is a clique [33].

In Table V, the complexity results are provided for OFDM-

OSPM schemes having N = 4, 6 and, 8 subcarriers and K = 2
distinguishable constellations in each OFDM sub-block. In

this case, OFDM-OSPM schemes can produce 14, 62 and 254

vertices (SPM codewords) for N = 4, 6 and, 8, respectively.

On the other hand, in Table VI, we provide complexity

results for OFDM-OFSPM schemes having N = 3, 4, 5 and 6
subcarriers. In that case, OFDM-OFSPM schemes are capable

of producing 13, 75, 541, and, 4683 vertices (SPM codewords)

for N = 3, 4, 5 and 6, respectively. As can be seen from

Tables V and VI, Algorithm 1 is not able to provide a practical

solution for most of the cases7. However, Algorithm 2 provides

efficient solutions for all of the cases by outperforming both

Algorithm 1 and the “FindClique[G]” function in terms of

the algorithm run-time. The effectiveness of Algorithm 2

becomes more evident when the number of subcarriers, and

therefore the number of vertices, increases. Furthermore, the

clique number achieved by Algorithm 2 is consistent with the

clique numbers achieved by the “FindClique[G]” function and

obtained by the upper-bound in [31].

V. PERFORMANCE ANALYSIS

In this section, we analyze the data rate and the BER of the

proposed SPM schemes.

A. Data Rate

We analyze the data rate of the proposed OFDM-SPM

schemes in terms of the number of bits corresponding to

7Here,“-” denotes that the algorithm is not able to return a solution within
a reasonable amount of time.
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Table V
THE RUN-TIME COMPLEXITIES (IN SECONDS) OF THE VERTEX SELECTION ALGORITHMS ALONG WITH THE NUMBERS OF ACHIEVED VERTICES (IN

BRACKETS) FOR OFDM-OSPM SCHEME WITH N ∈
{

4, 6, 8
}

AND K = 2.

Algorithm 1 Algorithm 2 FindClique[G] Upper-bound in [31]

N = 4 0.4343 (8) 0.0033 (8) 0.05 (8) (9)

N = 6 - 0.0176 (32) 0.06 (32) (32)

N = 8 - 0.0761 (128) 0.20 (128) (129)

Table VI
THE RUN-TIME COMPLEXITIES (IN SECONDS) OF THE VERTEX SELECTION ALGORITHMS ALONG WITH THE NUMBERS OF ACHIEVED VERTICES (IN

BRACKETS) FOR OFDM-OFSPM SCHEME WITH N ∈
{

3, 4, 5, 6
}

.

Algorithm 1 Algorithm 2 FindClique[G] Upper-bound in [31]

N = 3 0.024 (4) 0.0022 (7) 0.03 (7) (7)

N = 4 - 0.0088 (32) 0.06 (32) (33)

N = 5 - 0.4929 (181) - (225)

N = 6 - 477.0625 (1321) - (1876)

the OFDM-SPM codewords normalized by the number of

subcarriers used to convey each codeword. Here, we do not

take cyclic prefix length into account for convenience. We also

provide some useful expressions for the number of partitions

obtained by SPM schemes along with comparisons regarding

OFDM-IM benchmarks. We assume f2 = N log2 M for each

SPM variant.

1) OFDM-SPM: As discussed in Section II, the number of

set partitions produced by SPM is given by the Stirling number

of the second kind
{

N
K

}

. Considering the fact that each symbol

on each subcarrier has the modulation order M , the achievable

data rate per subcarrier for an OFDM-SPM scheme with N
subcarriers and K subset identifiers in each sub-block is

RSPM =
f1 + f2

N
=
⌊log2

{

N
K

}

⌋+N log2 M

N
(4)

where ⌊.⌋ is the floor operation.

The Stirling number of the second kind,
{

N
K

}

, can be written

as [34]

{

N

K

}

=
1

K!

K
∑

j=0

(−1)j
(

K

j

)

(K − j)N . (5)

It is also straightforward to show that the following recurrence

holds:
{

N

K

}

= K

{

N − 1

K

}

+

{

N − 1

K − 1

}

. (6)

Remark. Consider an OFDM-SPM block having two distin-

guishable constellations, i.e., K = 2, on N subcarriers and

a DM-OFDM-IM block having two distinguishable constel-

lations on N subcarriers in which N − d of the subcarriers

is modulated by one of two different constellations and the

remaining d of them is modulated by the other constellation.8

Except for the case where N = 2 and d = 1, the number of set

partitions obtained by the OFDM-SPM encoder is equal to or

greater than the number of subcarrier combinations obtained

by the DM-OFDM-IM encoder, i.e.,
{

N
2

}

≥
(

N
d

)

for N ≥ 2.

The equality holds for N = 2 and d = 2. This means

that the achievable data rate for OFDM-SPM is equal to or

8It is fair to compare these two schemes since both of the schemes has two
distinguishable constellations.

greater than that of DM-OFDM-IM when the subcarriers of

both schemes carry symbols that have the same modulation

order. One may check that
{

N
2

}

= 2N−1− 1. Moreover, from

the recurrence relation of the binomial coefficient, we have
(

N
d

)

=
(

N−1
d

)

+
(

N−1
d−1

)

. If we compare
(

N
d

)

with
{

N
2

}

, we see

that
{

N
2

}

≥
(

N
d

)

for N ≥ 2 except for the case where N = 2
and d = 1.

For a fixed and relatively small value of K , the asymptotic

value of the Stirling number of the second kind as N → ∞
can be written as

{

N
K

}

∼ KN

K! . Hence, the asymptotic value

of the achievable data rate per subcarrier for an OFDM-SPM

scheme as N →∞ can be written as

RSPM ∼
N log2 K − log2 K! +N log2 M

N
(7)

∼ log2(KM).

Remark. Consider a special MM-OFDM-IM scheme as in

[20] having N subcarriers and K distinguishable constellations

in each OFDM sub-block along with M -PSK symbols on each

subcarrier. To compare the achievable rate of such an MM-

OFDM-IM scheme, we assume that each N/K subcarriers

employ the same constellation/mode. Hence, for this scenario,

we have N !
(N/K)!K mode combinations. Applying the Stirling

approximation9, the achievable data rate per subcarrier for

this MM-OFDM-IM scheme as N → ∞ can be written

as RMM−OFDM−IM ∼ log2(KM). Hence, the proposed

OFDM-SPM scheme is capable of providing asymptotically

the same achievable rate as this special MM-OFDM-IM

scheme.

When N is large, the value of K that maximizes
{

N
K

}

satisfies KN ∼ N
lnN [35]. More precisely, the following

relation holds for sufficiently large N [36]

KN ∈
{

⌊eW (N) − 1⌋, ⌈eW (N) − 1⌉
}

(8)

where ⌊.⌋ and ⌈.⌉ are floor and ceiling operations, re-

spectively. W (N) is the Lambert W function satisfying

W (N) exp(W (N)) = N [37]. There is no exception to the

relation in (8) for 1 ≤ N ≤ 1200 [36]. More importantly,

9lnN ! ∼ N lnN −N as N → ∞.



8

the maximum value of the Stirling number of the second kind

adheres to the relation ln
{

N
KN

}

∼ N lnN − N ln lnN − N
[35]. Hence, the asymptotic maximum achievable rate of the

OFDM-SPM scheme satisfies

Rmax
SPM ∼

N log2(N/e lnN) +N log2 M

N
(9)

∼ log2(N/ lnN) + log2(M)− log2 e.

This asymptotic result shows that a substantially improved data

rate is attainable when we use KN distinguishable constella-

tions in the OFDM-SPM scheme.

2) OFDM-OSPM: The achievable data rate per subcarrier

for an OFDM-OSPM scheme having N subcarriers and K
subset identifiers in each sub-block can be written as

ROSPM =
f1 + f2

N
=
⌊log2 K!

{

N
K

}

⌋+N log2 M

N
(10)

Remark. It is straightforward to show that 2!
{

N
2

}

≥
(

N
d

)

.

However, it is important to note that an OFDM-OSPM code-

book, which incorporates K = 2 element partitions and their

ordered counterparts, subsumes a DM-OFDM-IM codebook.

This can easily be proved by considering set partitions along

with permutations when K = 2. Hence, it can be con-

cluded that OFDM-OSPM is a more general scheme, which

encompasses the subcarrier combinations generated by a DM-

OFDM-IM encoder. It is also important to note that an OFDM-

OSPM encoder produces the same index patterns as an MM-

OFDM-IM encoder for K = N . Hence, MM-OFDM-IM is a

special case of OFDM-OSPM when K = N . Moreover, the

partitions of an N -element set into two subsets would result

in the same index symbols as GDM-OFDM-IM when the set,

K, containing possible numbers of subcarriers having one of a

number of distinguishable constellations in each OFDM sub-

block is given by K =
{

1, 2, . . . , N − 1
}

for GDM-OFDM-

IM. Despite these similarities to IM schemes, it is important to

recognize that OSPM is inherently different due to the use of

set partitions to encode information instead of index patterns

or permutations.

Assuming a fixed K and using the asymptotic representation

for the Stirling number of the second kind, we can write the

following achievable data rate expression as N → ∞ for

OFDM-OSPM:

ROSPM ∼
N log2 K +N log2 M

N
(11)

∼ log2(KM).

Hence, OFDM-OSPM achieves the same asymptotic data rate

as OFDM-SPM when K << N . On the other hand, it is

known that, the value of K that maximizes K!
{

N
K

}

satisfies

K̆N ∼ N
2 ln 2 as N → ∞ [38]. Moreover, we have the

asymptotic relation K̆N !
{

N
K̆N

}

∼ N !/2(ln 2)N+1 [38]. Hence,

the asymptotic maximum achievable rate of the OFDM-OSPM

scheme satisfies

Rmax
OFSPM ∼

log2(N !/2(ln 2)N+1) +N log2 M

N
(12)

∼ log2(N) + log2(M)− log2(e ln 2).

where the second asymptotic relation follows from the Stir-

ling’s approximation.

We can conclude that the OFDM-OSPM scheme is capable

of achieving asymptotically better achievable rate than the

MM-OFDM-IM scheme while the number of exploited dis-

tinguishable constellations is less than N .

3) OFDM-FSPM: The achievable data rate per subcarrier

for an OFDM-FSPM scheme having N subcarriers can be

written as

RFSPM =
f1 + f2

N
=
⌊log2 BN⌋+N log2 M

N
. (13)

Using the asymptotic expression for the Bell number given

in [39], the asymptotic achievable data rate of OFDM-FSPM

can be written as

RFSPM ∼ log2(N/ lnN) + log2(M)− log2 e. (14)

4) OFDM-OFSPM: The achievable data rate per subcarrier

for an OFDM-OFSPM scheme having N subcarriers can be

written as

ROFSPM =
f1 + f2

N
=
⌊log2 B̆N⌋+N log2 M

N
. (15)

Remark. It is straightforward to show that B̆N > N ! for

N ≥ 2, since the ordered set partitions include all per-

mutations of N -element set partitions and the number of

the permutations of N -element partitions is equal to N !. In

other words, for an N -element set X with K = N , S =
{{

x1

}

,
{

x2

}

, . . . ,
{

xN

}}

is a valid set partition, and ordering

the subsets of this set would result in N ! different partitions.

Hence, the resulting OFDM-OFSPM codebook contains the

codeword xb =
{

µ1, µ2, . . . , µN

}

along with the codewords

representing all permutations of the elements of xb. Note

that these codewords form the MM-OFDM-IM codebook, and

OFDM-OFSPM is a more general scheme compared to MM-

OFDM-IM since it covers all codewords formed by an MM-

OFDM-IM encoder.

Using the asymptotic relation for ordered Bell numbers

given in [40], the asymptotic achievable data rate of OFDM-

OFSPM scheme as N →∞ can be written as

ROFSPM ∼
log2(N !/2(ln 2)N+1) +N log2 M

N
(16)

∼ log2(N) + log2(M)− log2(e ln 2).

As can be observed from (9), (12), (14), and (16), the

maximum achievable data rate of each SPM variant exhibits

the same asymptotic behavior as its full SPM counterpart

while exploiting fewer distinguishable constellations. Hence,

OFDM-SPM and OFDM-OSPM are capable of achieving

the same asymtotic date rate as OFDM-FSPM and OFDM-

OFSPM, respectively, by utilizing fewer constellation points.

B. Bit-Error Rate

Let P (Xi → Xj) denote the pairwise error probability

(PEP) associated with the erroneous detection of Xi as Xj
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where Xi = diag(xi) and Xj = diag(xj). From (2), the PEP

conditioned on the channel coefficients is given by

P (Xi → Xj |h) = Q

(

√

ES ||(X
i − Xj)h||2

2N0

)

. (17)

By using the identity Q(x) ≈ 1
12e

−x2/2+ 1
4e

−2x2/3 and av-

eraging over h, an approximate unconditional PEP expression

can be obtained [4]:

P (Xi → Xj) = Eh

[

P (Xi → Xj |h)
]

≈
1/12

det(IN + ES

4N0

CZij)

+
1/4

det(IN + ES

3N0

CZij)
(18)

where IN denotes the N × N identity matrix, C = Eh[hhH ]
and Zij = (Xi − Xj)H(Xi − Xj).

An upper-bound on the average BER is given by the well-

known union bound

Pb ≤
1

f2f

2f
∑

i=1

2f
∑

j=1

P (Xi → Xj)D(Xi → Xj) (19)

where D(Xi → Xj) is the number of bits in error for the

corresponding pairwise error event. Note that the upper-bound

expression given in (19) is valid for all OFDM-SPM schemes.

Assuming C = Eh[hhH ] ≈ IN and considering the fact that

Zij is a diagonal matrix, one can rewrite (18) as

P (Xi → Xj) ≈
1/12

∏N
n=1(1 +

ES

4N0

λn)

+
1/4

∏N
n=1(1 +

ES

3N0

λn)
(20)

where λn is the nth diagonal element of Zij . At high SNR,

one can neglect the one in the denominator of (20) and write

the following approximation

P (Xi → Xj) ≈
1/12

∏

n∈Γ
ES

4N0

λn

+
1/4

∏

n∈Γ
ES

3N0

λn

(21)

where Γ is the set of nonzero diagonal elements of Zij . Finally,

an asymptotic expression for the BER of the OFDM-SPM

variants can be obtained by substituting (21) into (19).

As explained in the previous sections, OFDM-SPM code-

books can be designed in a way that the minimum Hamming

distance between index symbols for the set partitions is equal

to two. Hence, assuming the OFDM-SPM index symbols

achieve this minimum Hamming distance property, the average

BER expression will be dominated by the modulation symbols

at high SNRs and, therefore, the diversity order of the BER

curves is limited to one.

VI. NUMERICAL RESULTS

In this section, we provide numerical data rate and BER

results for the proposed schemes. In figures, OFDM-SPM

(N,K,M) and OFDM-OSPM (N,K,M) stand for OFDM-

SPM schemes having N subcarriers and K distinguishable
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Figure 2. Data rate comparison of OFDM-SPM variants with DM-OFDM-IM,
GDM-OFDM-IM and MM-OFDM-IM.

constellations in each OFDM sub-block along with M -PSK

symbols on each subcarrier, whereas OFDM-FSPM (N,M)
and OFDM-OFSPM (N,M) stand for variants of OFDM-

SPM employing all set partitions and having N subcarriers

with M -PSK symbols in each OFDM sub-block. Moreover,

OFDM-IM (N,Ka,M) stands for the conventional OFDM-

IM scheme having Ka activated subcarriers out of N in each

sub-block and employing M -PSK modulation on the activated

subcarriers. Finally, DM-OFDM-IM (N,M) signifies a dual-

mode scheme having N subcarriers along with two distin-

guishable M -PSK constellations, and MM-OFDM-IM (N,M)
represents a multi-mode scheme having N subcarriers along

with N distinguishable M -PSK constellations in each sub-

block.

In our simulations, we assume all schemes operate over

a Rayleigh fading channel, whose elements are independent

and identically distributed. ML detection is applied under the

assumption that channel estimation is perfect. The use of the

Rayleigh model in the simulations is realistic when consider-

ing environments with a large number of scatterers [41].

A. Data Rate

In Fig. 2, we compare the data rates of the proposed OFDM-

SPM schemes with DM-OFDM-IM, GDM-OFDM-IM, and

MM-OFDM-IM. The data rate results in terms of the number

of index bits per subcarrier are given as a function of N .

Since all the schemes considered in this figure activate all

subcarriers and the modulation order of the carried symbols

on each subcarrier can be chosen to be the same, we ignore

the modulation bits transmitted per subcarrier. Also, we do

not restrict the codebook sizes to a power of two, since all the

codewords in a codebook can be utilized by a binary coding

technique such as Huffman coding regardless of the number of

codewords [15], [27]. To reach the maximum number of index

bits, DM-OFDM-IM modulates half of the subcarriers by one

of the distinguishable constellations and the other half by the

other constellation. Moreover, we assume K =
{

0, 1, . . . , N
}

for GDM-OFDM-IM. To reach the maximum numbers of set
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Figure 3. Achievable rate comparison of OFDM-SPM (4, 2, 2) and OFDM-
OSPM (4, 2, 2) with MM-OFDM-IM (2, 2), DM-OFDM-IM (4, 2), OFDM-
IM (4, 2, 4) and OFDM (BPSK).

partitions for OFDM-SPM and OFDM-OSPM, we substitute

KN ∈
{

⌊eW (N) − 1⌋, ⌈eW (N) − 1⌉
}

and K̆N = N
2 ln 2 ,

respectively, into K . The data rate results verify the remarks

in the previous section and indicate that all SPM variants

outperform DM-OFDM-IM and GDM-OFDM-IM for most of

the values of N . On the other hand, although MM-OFDM-

IM considerably outperforms OFDM-SPM and OFDM-FSPM,

it is outperformed by OFDM-OSPM and OFDM-OFSPM for

almost all values of N .

To gain more insight into the achievable rate of the proposed

schemes, one can substitute a finite input symbol set for

such schemes into the standard mutual information expression.

Assuming equally likely codewords and applying the same

approach as discussed in [13], [42], the achievable rate of the

proposed schemes can be computed by evaluating

R =
1

N

(

f −
1

2f

2f
∑

i=1

Eh,n

[

log2

2f
∑

j=1

eδ(i,j)
])

(22)

where δ(i, j) = −||diag(h)(xi−xj)+n||2+||n||2

N0

. Although this ap-

proach does not yield a closed-form solution, we can easily

obtain numerical data for the theoretical achievable rate of the

proposed schemes.

We compare the achievable rates of OFDM-SPM variants

with the achievable rates of MM-OFDM-IM, DM-OFDM,

OFDM-IM and OFDM schemes in Figs. 3 and 4. The achiev-

able rate curves provided in these figures are obtained by using

(22). The results in Fig. 3 are given for OFDM-SPM (4, 2, 2),
OFDM-OSPM (4, 2, 2), MM-OFDM-IM (2, 2), DM-OFDM-

IM (4, 2), OFDM-IM (4, 2, 4) and OFDM (BPSK) schemes.

Here, OFDM-SPM (4, 2, 2) and OFDM-OSPM (4, 2, 2) en-

coders produce
{

4
2

}

= 7 and 2!
{

4
2

}

= 14 codewords, and then

2log2⌊7⌋ = 4 and 2log2⌊14⌋ = 8 set partitions are selected by

Algorithm 1. As can be observed from the figure, OFDM-SPM

(4, 2, 2), MM-OFDM-IM (2, 2), DM-OFDM-IM (4, 2) and

OFDM-IM (4, 2, 4) exhibit almost the same achievable rate

performance for all SNR values. On the other hand, OFDM-

OSPM (4, 2, 2) outperforms all other IM schemes. Moreover,
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Figure 4. Achievable rate comparison of OFDM-OFSPM (4, 4) and OFDM-
FSPM (4, 4) with MM-OFDM-IM (4, 4), OFDM-IM (4, 2, 8) and OFDM
(8-PSK).

to achieve 1.5 bps, the SNR requirement for OFDM-OSPM

(4, 2, 2) is approximately 12 dB lower than for other IM

schemes.

In Fig. 4, we compare the achievable rates of OFDM-

OFSPM (4, 4) and OFDM-FSPM (4, 4) with MM-OFDM-

IM (4, 4), OFDM-IM (4, 2, 8) and OFDM (8-PSK). Here,

OFDM-FSPM (4, 4) and OFDM-OFSPM (4, 4) encoders pro-

duce BN = 15 and B̆N = 75 codewords, respectively. 32

codewords are then selected according to Algorithm 2 for

OFDM-OFSPM (4, 4) in a way that the rank of the difference

matrices for the codeword pairs in the selected codebook is

at least two [22]. For OFDM-FSPM (4, 4), Algorithms 1 and

2 cannot return 2⌊log2
15⌋ = 8 codewords; they return only

four and five codewords, respectively. To fully exploit the

codewords generated by this scheme and to achieve a high data

rate at high SNR, we use three other codewords in the OFDM-

FSPM (4, 4) scheme in addition to the codewords generated

by Algorithm 2. This limits the minimum Hamming distance

of the codeword pairs to one. This explains why the OFDM-

FSPM (4, 4) scheme is outperformed by all other schemes.

However, Fig. 4 shows that OFDM-OFSPM (4, 4) is capable

of providing a better achievable rate than all other schemes at

high SNR. Moreover, OFDM-OFSPM (4, 4) is, theoretically,

able to achieve 2 bps with an SNR requirement that is almost

13 dB lower than that of MM-OFDM-IM (4, 4).

B. Bit-error Rate

In this subsection, we compare the proposed OFDM-SPM

schemes with conventional OFDM and IM benchmarks in

terms of BER performance.

In Fig. 5, we compare the BER performance of OFDM-SPM

(4, 2, 2) and OFDM-OSPM (4, 2, 2) with MM-OFDM-IM

(2, 2), DM-OFDM-IM (4, 2), OFDM-IM (4, 2, 4), and con-

ventional OFDM (BPSK). Except for OFDM-OSPM (4, 2, 2)
and conventional OFDM (BPSK), all schemes exhibit the same

spectral efficiency, which is 1.5 bps. Spectral efficiencies for

OFDM-OSPM (4, 2, 2) and conventional OFDM (BPSK) are
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Figure 5. BER comparison of OFDM-SPM (4, 2, 2) and OFDM-OSPM
(4, 2, 2) with MM-OFDM-IM (2, 2), DM-OFDM-IM (4, 2), OFDM-IM
(4, 2, 4) and OFDM (BPSK).

1.75 bps and 1 bps, respectively. Here, OFDM-SPM (4, 2, 2)
and OFDM-OSPM (4, 2, 2) encoders produce

{

4
2

}

= 7 and

2!
{

4
2

}

= 14 codewords, and then 2log2⌊7⌋ = 4 and 2log2⌊14⌋ =
8 set partitions are selected by Algorithm 1. As seen from the

figure, OFDM-SPM (4, 2, 2) exhibits almost the same BER

performance as OFDM-IM (4, 2, 4), DM-OFDM-IM (4, 2),
and MM-OFDM-IM (2, 2), and it outperforms conventional

OFDM (BPSK) at medium-to-high SNR. More importantly,

although OFDM-OSPM (4, 2, 2) has higher spectral efficiency

than other schemes, it provides marginally better BER perfor-

mance compared to other schemes at high SNR. The reason

behind this is the codewords related to set partitions in the

OFDM-OFSPM scheme have the capability of preserving the

same Hamming distance properties as the codewords related to

the permutations in the MM-OFDM-IM scheme or the combi-

nations in the DM-OFDM-IM scheme, and the number of such

codewords in the OFDM-OFSPM scheme is larger than those

in the DM-OFDM-IM and MM-OFDM-IM schemes. Having

a higher number of these codeweords is desirable in the high

SNR since they are capable of introducing diversity order of

two unlike the codewords related to conventional modulation,

which limit the diversity order to one. Therefore, they mitigate

the effect of the codewords related to conventional modulation

on the BER performance.

In Fig. 6, OFDM-FSPM (4, 2) and OFDM-OFSPM

(4, 2) are compared with MM-OFDM-IM (4, 2), OFDM-IM

(4, 3, 4), and conventional OFDM (QPSK). Except for OFDM-

FSPM (4, 2) and OFDM-OFSPM (4, 2), all schemes have

the same spectral efficiency of 2 bps. Spectral efficiencies

for OFDM-FSPM (4, 2) and OFDM-OFSPM (4, 2) are 1.75

bps and 2.25 bps, respectively. Here, OFDM-FSPM (4, 2)
and OFDM-OFSPM (4, 2) encoders produce BN = 15 and

B̆N = 75 codewords. Then, 32 codewords are selected accord-

ing to Algorithm 2 for OFDM-OFSPM (4, 2). As discussed in

the previous section, Algorithms 1 and 2 are not capable of

providing 2⌊log2
15⌋ = 8 codewords for OFDM-FSPM (4, 2).

However, we use eight codewords of OFDM-FSPM (4, 2),
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Figure 6. BER comparison of OFDM-FSPM (4, 2) and OFDM-OFSPM
(4, 2) with MM-OFDM-IM (4, 2), OFDM-IM (4, 3, 4) and OFDM (QPSK).
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Figure 7. BER comparison of OFDM-FSPM (4, 4) and OFDM-OFSPM
(4, 4) with MM-OFDM-IM (4, 4), OFDM-IM (4, 3, 8) and OFDM (8-PSK).

including the five FSPM codewords provided by Algorithm

2, to achieve a higher data rate. We also provide results on

the theoretical upper-bound for the OFDM-SPM schemes. As

observed from the figure, upper-bound curves are consistent

with computer simulations, especially at high SNR. Although

OFDM-FSPM (4, 2) cannot provide a BER advantage relative

to OFDM-IM (4, 3, 4) and MM-OFDM-IM (4, 2), OFDM-

OFSPM (4, 2) exhibits superior BER performance relative

to all benchmarks at high SNR while achieving enhanced

spectral efficiency. These results arise from the fact that the

set partitions in the selected OFDM-FSPM codebook exhibit

lower rank than the set partitions in the selected OFDM-

OFSPM codebook. Moreover, the codewords related to set

partitions in OFDM-OFSPM are capable of preserving the

same minimum rank property as the codewords related to

the permutations in the MM-OFDM-IM scheme, although the

number of index bits for the former increases.

In Fig. 7, we compare the BER performance of OFDM-

FSPM (4, 4) and OFDM-OFSPM (4, 4) with MM-OFDM-IM
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(4, 4), OFDM-IM (4, 3, 8), and conventional OFDM (8-PSK)

schemes. We also provide a BER curve (“OFDM-OFSPM

(4, 4), QAM”) for OFDM-OFSPM employing four different 4-

QAM constellations to distinguish the OFDM-OFSPM code-

words. These constellations are obtained by employing the

set partitioning technique described in [26] to a 16-QAM

constellation. We use the same SPM codewords as Fig. 6

for OFDM-SPM variants. In this figure, OFDM-FSPM (4, 4)
and OFDM-IM (4, 3, 8); MM-OFDM-IM (4, 4) and OFDM

(8-PSK); OFDM-OFSPM (4, 4) and OFDM-OFSPM (4, 4),
QAM schemes have the same spectral efficiencies which are

2.75 bps, 3 bps, and 3.25 bps, respectively. Similar results to

Fig. 6 can be observed in Fig. 7 for a higher modulation order.

On the other hand, OFDM-OFSPM (4, 4), QAM outperforms

both OFDM-OFSPM (4, 4) and MM-OFDM-IM (4, 4) at low

SNR values; however, OFDM-OFSPM (4, 4) exhibits slightly

better BER performance than OFDM-OFSPM (4, 4), QAM

and MM-OFDM-IM (4, 4) at high SNR values. The behavior

of the BER curves at low SNR values can be explained by

the minimum Euclidean distances between the codewords.

The minimum Euclidean distance between “OFDM-OFSPM

(4, 4), QAM” codewords is 0.8944; however, the minimum

Euclidean distance between OFDM-OFSPM (4, 4) and MM-

OFDM-IM (4, 4) codewords is just 0.5518. On the other

hand, the BER performance at high SNR will be dominated

by the Euclidean distances between the codewords whose

difference matrix has the minimum rank. In that case, the

Euclidean distance between OFDM-OFSPM (4, 4) and MM-

OFDM-IM (4, 4) codewords is given by 1.4142; however, the

Euclidean distance between “OFDM-OFSPM (4, 4), QAM”

codewords is just 1.2649. The comparison between OFDM-

OFSPM (4, 4) and MM-OFDM-IM (4, 4) results from the

number of index bits. OFDM-OFSPM (4, 4) produces more

index bits than MM-OFDM-IM (4, 4) by using set partitions

rather than permutations. Such index bits become undesir-

able at low SNR due to the minimum Euclidean distance

between the associated codewords. However, at high SNR,

they become desirable since these codewords provide better

Hamming distance properties than the codewords associated

with conventional modulation bits.

VII. CONCLUSION

In this paper, we proposed a novel modulation concept,

which we call set partition modulation. We represented several

variants of the concept and showed a practical implementation

in the context of OFDM. Moreover, we defined a codebook

selection problem for the proposed techniques and expressed

such a problem as a clique problem in graph theory. We further

provided an efficient solution for the codebook selection.

Then, we investigated the performance of the new techniques

in terms of their data rates and BER characteristics, and

we presented asymptotic results regarding the performance.

We compared the proposed OFDM-SPM variants with the

appropriate benchmarks. Through computer simulations and

theoretical calculations, it is shown that the proposed SPM

schemes can provide noteworthy improvements compared to

conventional OFDM, OFDM-IM, DM-OFDM-IM, and MM-

OFDM-IM in terms of data rate and BER.
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