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Abstract—Generalized index modulation (GIM) which implic-
itly conveys information by the activated indices is a promising
technique for next-generation wireless networks. Due to the
prohibitive challenge of bit-to-index combination (IC) mapping
optimization, conventional GIM system obtains the bit-to-IC
mapping table randomly, which may suffer from some perfor-
mance loss. To circumvent this issue, we propose a low-complexity
graph theory assisted bit-to-IC gray coding for GIM systems by
minimizing the average hamming distance (HD) between any two
ICs having one different value. Specifically, we decompose and
transform the optimization problem into two subproblems using
the graph theory, i.e., 1) Select an IC set whose corresponding
graph has the minimum degree; 2) Design a bit-to-IC mapping
principle to minimize the weight of the selected graph. Low-
complexity algorithms are developed to solve the subproblems
with a significant reduced complexity. Both simulation and
theoretical results are shown that the GIM systems with our
proposed mapping table are capable of providing significant
performance gains over the conventional counterparts without
the need for any additional feedback-link and without extra
computational complexity. It is also shown that the proposed
bit-to-IC mapping table is straightforward for any GIM systems
over generalized fading channels.

Index Terms—Index modulation, graph theory, bit-to-index-
combination, gray coding.

I. INTRODUCTION

AS a spectrum and energy efficient yet simple digital
modulation scheme, generalized index modulation (GIM)

employs the activate indices as an additional means to transmit
information [1]-[2]. Since GIM exploits a completely new
domain to increase the spectral efficiency without increasing
the hardware complexity, it has been widely employed in
domains such as transmit antennas (TAs), time slots, dispersion
matrices, subcarriers, radio frequency (RF) mirrors, transmit
light emitting diodes, relays, modulation types, precoder ma-
trices, spreading codes, signal powers, loads and so on [1]-[9].

The concept of GIM was first employed in the TA domain,
namely spatial modulation (SM), where only a single TA is
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activated to transmit one amplitude phase modulation (APM)
symbol [10]-[14]. To increase the throughput, generalized SM
(GSM) was proposed in [15]-[16], where Nu out of Nt TAs
are activated to transmit Nu APM symbols, and is capable
of achieving flexible transmission rate by configuring antenna
setups. Researches have demonstrated that GSM is one of
the promising candidates in millimeter wave channels and
massive multiple-input multiple-output (MIMO) communica-
tion scenarios [17]-[24]. In order to exploit the diversity of
SM, space time block coded (STBC) based SM was proposed
in [25], where Nu out of Nt TAs are activated to transmit
Nu ×Nu STBC symbols. In the dispersion matrices domain,
generalized space time shift keying (GSTSK) was proposed in
[26]-[29], where P out of Q preassigned space-time dispersion
matrices are activated with the aid of P APM symbols. To
further increase the transmission rate of GSTSK, multi-set
GSTSK (MS-GSTSK) was proposed in [1], where Nu out of
Nt TAs are activated to transmit a single GSTSK codeword. In
summary, the GIM based MIMO system is capable of striking
a flexible tradeoff between the spatial multiplexing gain and
the spatial diversity gain.

To further exploit the benefits of GIM, orthogonal fre-
quency division multiplexing (OFDM) with index modulation
(OFDM-IM) was proposed in [30], which employs the acti-
vated subcarrier indices to transmit information. Since only
part of subcarriers are utilized to transmit APM symbols,
OFDM-IM exhibits lower peak average power ratio (PAPR)
and inter carrier interference than the conventional OFDM
[31]. Therefore, OFDM-IM achieves higher spectral efficiency
and is more robust against the frequency selective channel.
Due to the above advantages, numerous enhanced variants of
OFDM-IM were proposed in [32]-[40].

However, the existing state-of-the-art of GIM is mainly
focused on the performance analysis of the transceiver design.
Since Nu out of Nt elements are activated to transmit infor-
mation in a GIM system, there are a total of Nall = CNuNt index
combinations (ICs) available, and N = 2blog2(Nall)c out of Nall
ICs are selected for bit-to-IC mapping, which can be seen in
Fig. 1 (a). As shown in Fig. 1 (b), to find the optimal IC set and
the best mapping principle with the optimal average bit error
probability (ABEP), CNNall

N ! ABEPs have to be calculated,
which makes the bit-to-IC mapping prohibitively complicated
and challenging.

Recently, some novel bit-to-symbol mapping principles
were developed for the SM system (Nu = 1) in [41]-[43].
However, they are not suitable for GIM systems (Nu > 1).
As a result, in existing GIM researches, both the IC selection



2 IEEE TRANSACTIONS ON , VOL. , NO. , 2020

and the mapping principle are randomly selected, resulting
in performance loss. Although there existed a novel bit-to-
symbol mapping for GSM based Euclidean distance in [44],
it relies on the feedback of channel state information (CSI),
which imposes substantial link budget and extra complexity.
To the best of authors’ knowledge, there is no general gray
coding guideline for GIM systems without CSI feedback.

Against the above backgrounds, we propose a low-
complexity bit-to-IC gray coding for GIM with the aid of
graph theory [45] in this paper, where the bit-to-IC opti-
mization problem is formulated by utilizing the idea of gray
coding to minimize the average Hamming distance (HD) of
any two ICs with only one different element. Specifically, we
firstly transform each selected IC set with a specific mapping
principle into a weighted graph and transform the optimization
objective into obtaining one weighted graph with the minimum
weight from all weighted graphs, where the weight is the HD
of information bits between two adjacent vertexes. As shown
in Fig. 1 (c), the optimization problem is decomposed into
two subproblems, i.e., 1) Select an IC set whose corresponding
graph has the minimum degree; 2) Design a bit-to-IC mapping
principle to minimize the weight of the selected graph. The
specific contributions of this paper are summarized as follows.

1) We transform the mapping issues into graph theory
assisted optimizations and design a maximum degree
first (MDF) based low-complexity algorithm with the
complexity order of O(N). We also demonstrate that
it is comparable to the optimal algorithm using the
mathematical techniques of induction.

2) We consider the original N blocks of information bits
as a completed weighted graph, and transform the bit-
to-IC mapping into finding the IC graph with the min-
imum weight. To solve the problem, we design a low-
complexity minimum weight first (MWF) algorithm with
the complexity order of O(N2).

3) The proposed bit-to-IC mapping principle is straight-
forward for any GIM systems over generalized fading
channel. Moreover, both theoretical and simulation re-
sults show that the GIM system employing our proposed
method achieves significant performance gains over the
conventional counterparts without additional feedback
link and without computational complexity.

The remainder of this paper is organized as follows. Section
II gives a brief introduction to classic GIM systems and
formulates the mapping problem. Section III presents the
problem formulation with the aid of graph theory. Section
IV introduces the optimization of the IC selection, while the
optimization of the bit-to-IC mapping is presented in Section
V. Simulation results are presented in Section VI. Finally,
Section VII concludes this paper.

Notation: ‖·‖2 denotes the two norm of a matrix. |·| repre-
sents the cardinality of a set. (·)∗, (·)T and (·)H stand for
the conjugate, transpose and the Hermitian transpose of a
vector/matrix, respectively. x � y implies that x is much
larger than y and n! denotes the factorial operator. Cnm is the
binomial coefficient and b·c denotes the floor operator.
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Fig. 1. Bit-to-IC mapping methods.

II. PROBLEM FORMULATION

A. GIM system model

In a GIM system, a block of information bits with length
of B is partitioned into two parts: 1) B1 = blog2(CNuNt )c bits
are used to select an IC Ii = (i1, ..., iNu) i = (1, 2, ..., N);
2) B2 = Nulog2(M) bits are used to modulate Nu M -
APM symbols as s = (si1 , ..., siNu ). Especially, we have
s = (1, ..., 1) for the case of M = 1. Hence, one GIM symbol
can be expressed by [27]

Xi =

iNu∑
q=i1

Aqsq, (1)

where Aq is a dispersive matrix occupying T time slots.
Especially, Aq of GSM can be expressed by [27]

Aq = [0 · · · 0︸ ︷︷ ︸
q−1

1 0 · · · 0︸ ︷︷ ︸
Nt−q

]T . (2)

The received signal Y ∈ CNr×T can be formulated as
Y = HXi + N, (3)

where H ∈ CNr×Nt denotes the channel matrix, and n ∈
CNr×T is the noise matrix, whose elements follow the Gaus-
sian distribution as CN (0, σ2).

At the receiver, assume that the estimated channel matrix is
given by

Ĥ = H + He, (4)

where He ∈ CN (0, σ2
e) and there is no channel estimation

error for the case of σ2
e = 0. The ML detector is expressed as

X̂ = arg min
X∈X

∥∥∥Y − ĤX
∥∥∥2

, (5)

where X is the set of GIM symbols.
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B. ABEP analysis of GIM systems over generalized fading
channel

Assuming that Xi and Xj are two different GIM symbols,
the ABEP upper bound is expressed as

Pb = 1
B2B

2B∑
i=1

2B∑
j 6=i

d(Xi,Xj)P (Xi → Xj), (6)

where d(Xi,Xj) denotes the HD between Xi and Xj ,
P (Xi → Xj) denotes the pairwise error probability (PEP)
event, which can be obtained by
P (Xi → Xj |Ĥ)

= P

(∥∥∥Y − ĤXi
∥∥∥2 ≥ ∥∥∥Y − ĤXj

∥∥∥2)
= P

(∥∥N−HeX
i
∥∥2 ≥ ∥∥H(Xi −Xj) +N−HeX

j
∥∥2)

≈ Q
(√

‖H(Xi−Xj)‖2
2(σ2+‖Xi‖2σ2

e)

) (7)

where Q(x) = 1
π

π
2∫
0

exp
(
− x2

2 sin θ2

)
dθ. Assuming that ∆ =

(Xi −Xj) and γ =
∥∥H(Xi −Xj)

∥∥2
, the PEP event can be

obtained as

P
(
Xi → Xj

)
= 1

π

π
2∫
0

∫
γ

exp
(
− γ

4(σ2+‖Xi‖2σ2
e)sin

2θ

)
fγ(γ)dγdθ

= 1
π

π
2∫
0

Mγ(− 1
4(σ2+‖Xi‖2σ2

e)sin
2θ
)dθ,

(8)
where Mγ(s) =

∫
γ

esfγ(γ)dγ is the MGF of γ.

According to [46], we have
γ =

∥∥H(Xi −Xj)
∥∥2

=
H

vec(HH)H︸ ︷︷ ︸
u

(INr ⊗∆∆H)︸ ︷︷ ︸
B

vec(HH)︸ ︷︷ ︸
u

= uHBu.

(9)

Based on [47], the MGF of γ is given by

Mγ(s) =
exp(−ūH(Ru)

−1
(I− (I− sRuB)−1)ū)

|I− sRuB|
, (10)

where ū = E(u),Ru = E(uuH).
Then the PEP can be obtained by

P
(
Xi → Xj

)
= 1

π

π
2∫
0

Mγ(− 1
4(σ2+‖Xi‖2σ2

e)sin2θ
)dθ

= 1
π

π
2∫
0

exp(−ūH(Ru)−1(I−(I+ RuB

4(σ2+‖Xi‖2σ2e)sin
2θ

)
−1

)ū)∣∣∣∣I+ RuB

4(σ2+‖Xi‖2σ2e)sin
2θ

∣∣∣∣ dθ.

(11)
To further simplify the calculation of (11), we use the

characteristic function in (7) by [36]

Q(x) ≈ 1

12
e−

x2

2 +
1

4
e−

2x2

3 . (12)

Then, the value of P (Xi → Xj) can be approximately ex-
pressed by

P
(
Xi → Xj

)
≈
∫
γ

( 1
12
e
− γ

4(σ2+‖Xi‖2σ2e) + 1
4
e
− γ

3(σ2+‖Xi‖2σ2e) )fγ(γ)dγ

= 1
12
Mγ(− 1

4(σ2+‖Xi‖2σ2
e)
) + 1

4
Mγ(− 1

3(σ2+‖Xi‖2σ2
e)
)

= 1
12

exp(−ūH (Ru)−1(I−(I+ RuB

4(σ2+‖Xi‖2σ2e)sin
2θ

)
−1

)ū)∣∣∣∣I+ RuB

4(σ2+‖Xi‖2σ2e)sin
2θ

∣∣∣∣
+ 1

4

exp(−ūH (Ru)−1(I−(I+ RuB

3(σ2+‖Xi‖2σ2e)sin
2θ

)
−1

)ū)∣∣∣∣I+ RuB

3(σ2+‖Xi‖2σ2e)sin
2θ

∣∣∣∣ .

(13)
Hence, the ABEP is mainly associated with the value of ū,

Ru, ∆ = (Xi −Xj) and d(Xi,Xj).
Since the values of ū, Ru are associated with the specific

channel, which are calculated in Appendix, the ABEP can be
further improved by optimizing the value of d(Xi,Xj) and
∆ = (Xi −Xj) for a given channel model.

C. Bit-to-IC mapping optimization

For a GIM system with Nt elements and Nu activated ones,
there are a total of CNNall

= Nall!
N !(Nall−N)! possible IC sets Iq ,

q = (1, ..., CNNall
). In the conventional GIM system, a specific

IC set is selected randomly from {I1, ..., ICNNall
}. For each

selected IC set Iq , there are N ! ways for the bit-to-IC mapping,
resulting in different ABEPs. In this paper, we mainly focus
on the optimization of the bit-to-IC mapping without APM
symbol, i.e., select one IC and one mapping principle to obtain
the smallest ABEP of M = 1 as

minPb
s.t.∀Iq,Mq,

(14)

where Mq is the bit-to-IC mapping set of the select IC set
Iq . To satisfy (14), one out of CNNall

N ! = Nall!
(Nall−N)! mapping

principles should be selected, which becomes impractical for
a relatively large value of Nall.

Specifically, for the case of M = 1, the activated IC only
transmits symbol ′1′, so that the ABEP can be represented as

Pb = 1
B2B

2B∑
i=1

2B∑
j 6=i

d(Xi,Xj)P (Xi → Xj)

=
1

B2B

2B∑
i=1

2B∑
j 6=i

d(Xi,Xj)P (Xi → Xj |nerr = 1)︸ ︷︷ ︸
P 1
b

+ · · ·+

1

B2B

2B∑
i=1

2B∑
j 6=i

d(Xi,Xj)P (Xi → Xj |nerr = Nu)︸ ︷︷ ︸
PNub

,

(15)
where Pnerr

b nerr = 1, ..., Nu denotes the ABEP of the PEP
event with nerr erroneous indices. According to (1)-(13), we
usually have
P (Xi → Xj |nerr = 1)� · · · � P (Xi → Xj |nerr = Nu).

(16)
Therefore, the optimization can be decomposed into Nu

steps as follows.
Step 1: Find the IC set I1 and the mapping set M1 by

(I1,M1) = min
∀Iq,Mq

P 1
b .

Step 2: Find the IC and the mapping set (I2,M2) from
(I1,M1) by (I2,M2) = min

∀I1,M1
P 2
b .

...
Step Nu: Find the IC set and the mapping set

(INu ,MNu) from (INu−1,MNu−1) by (INu ,MNu) =
min

∀INu−1,MNu−1
PNub .

Since the value of P (Xi → Xj |nerr) is independent of the
bit-to-IC mapping in some GIM systems, the optimization is
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Fig. 2. A weighted graph Gwnerr (V,E) for a specific IC set.

finally represented as

(I1,M1) ≈ min
∀Iq,Mq

2B∑
i=1

2B∑
j 6=i

d(Xi,Xj |nerr = 1)

(I2,M2) = min
∀I1,M1

2B∑
i=1

2B∑
j 6=i

d(Xi,Xj |nerr = 2)

...

(INu ,MNu) = min
∀INu−1,MNu−1

2B∑
i=1

2B∑
j 6=i

d(Xi,Xj |nerr = Nu),

(17)
where dnerr

ij = d(Xi,Xj |nerr) ∈ D denotes the HD of the PEP
event with nerr erroneous indices, where the HD set D is

D = (1, ..., 1︸ ︷︷ ︸
C1
B

, 2, ..., 2︸ ︷︷ ︸
C2
B

, ..., u, ..., u︸ ︷︷ ︸
CuB

, ..., B︸︷︷︸
CBB

). (18)

To simplify the optimization, the above formulations will
be transformed to graph theory based problems and low-
complexity search algorithms will be designed.

III. GRAPH THEORY BASED PROBLEM FORMULATION

A. Definitions of graphs

A graph G = (V (G), E(G)) consists of two finite sets,
where V (G) denotes the vertex set of graph with |V (G)| = n
and E(G) denotes the edge set of graph with |E(G)| = m.
Each edge e in E is assigned as an unordered pair of vertices
(u, v), which is called the end vertices of e.

Incidence: When a vertex vi is an end vertex of some edge
ej , vi and ej are said to be incident with each other.

Adjacent: Two vertices are said to be adjacent if they are
the end vertices of the same edge.

Degree: Let v be a vertex of the graph G. The degree d(v)
of v is the number of edges of G incident with v by counting
each self-loop twice. δ(G) and ∆(G) represent the minimum
degree and maximum degree of G, respectively.

Subgraph: Let G1 be a graph with vertex set V (G1) and
edge set E(G1). If G1 = (V (G1), E(G1)) is a subgraph of
G = (V (G), E(G)), we have V (G1) ⊂ V (G) , E (G1) ⊂
E (G).

Weighted graph: Let Gw(V,E) be a weighted graph,
where each edge e has been assigned a weight w(e).

Completed graph: If Gc(V,E) is a completed graph with
V = (v1, ..., vn), we have d(v1) = d(v2) =, ...,= d(vn) =
n− 1.

B. Problem formulation
In this subsection, we reformulate the optimization of (17)

into the formulation associated with a graph. Specifically, Fig.
2 presents a weighted graph Gnerr

(V,E) for a specific IC set
of V = (I1, ..., IN ), where Ii and Ij are adjacent if there are
nerr different elements between them, and the weight of this
edge is wi,j = dnerr

ij .
For the weighted graph Gwnerr

(V,E) shown in Fig. 2, the
corresponding weighted adjacent matrix is expressed as

I1 · · · Ii · · · IN

Anerr =

I1

...
Ij

...
IN



0 · · · dnerr
1,i · · · dnerr

1,N
...

. . .
...

. . .
...

0 · · · dnerr
j,i · · · 0

...
. . .

...
. . .

...
dnerr
N,1 · · · 0 · · · 0

 ,
(19)

where the i-th row and j-th column Ai,jnerr
is expressed as

Ai,jnerr
= Aj,inerr

=

{
dnerr
i,j , if length(setdiff(Ii, Ij)) = nerr

0, else
,

(20)
where setdiff(x,y) is a function returning the different values
between x and y and length(x) is a function returning the
length of x. Hence, (17) can be finally represented as

(I1,M1) ≈ min
∀Iq,Mq

W (A1),

(I2,M2) = min
∀I1,M1

W (A2),

...
(INu ,MNu) = min

∀INu−1,MNu−1
W (ANu),

(21)

where W (Anerr) =
2B∑
i=1

2B∑
j=1

Ai,j
nerr

.

Based on the above analysis, we mainly aim to find the
set (I1,M1) in this paper. According to (21), it consists of
two steps: 1) find the set I1; 2) find the set M1. Assuming
that the graph Ga1(V,E) denotes a graph with Nall vertexes
as V (Ga1) = (I1, I2, ..., INall), where Ii and Ij are adjacent if
there are nerr = 1 different elements. Then, finding the optimal
IC set I1 can be reformulated as problem formulation 1.

Problem formulation 1: Find a subgraph G1(V,E) from
Ga1(V,E) with the minimum degree δ(G1).

For a subgraph G1(V,E) with V (G1) = (I1, ..., IN ), N
blocks of information bits are mapped to this graph, resulting
in N ! kinds of weighted graphs. We should find one mapping
principle to have the minimum weight. Since N blocks of
information bits consist of one weighted completed graph
Gwc (V,E), where the weight between two adjacent vertexes
is the HD between the corresponding information bits. Then,
finding the optimal mapping set M1 can be transformed into
problem formulation 2.

Problem formulation 2: Find a subgraph Gw1 (V,E) from
the weighted complete graph Gwc (V,E) with the minimum
weight, where Gw1 (V,E) and G1(V,E) have the same vertex
set and edge set.

IV. GRAPH THEORY ASSISTED IC SELECTION

In this section, we mainly focus on solving the problem
formulation 1 in Section III-B. As introduced in Section III-
B, we have to remove Nre = Nall−N vertexes from the graph
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Fig. 3. The proposed MDF algorithm for IC selection having Nt = 5 and Nu = 3.

Ga1(V,E). There are a total of CNre
Nall

possible IC graphs, result-
ing in different degrees. To find the graph with the minimum
degree, the optimal algorithm has to calculate the degrees of
CNre
Nall

graphs, which becomes prohibitively complicated and
challenging. In this section, we propose a low-complexity
MDF algorithm to address the above issue. Specifically, the
IC selection consists of Nre steps. For each step, the vertex
with the maximum degree is removed, and the degree of
remaining vertexes is updated. Repeat the above processes
until we remove Nre vertexes. The complexity order of the
MDF algorithm is O(NreN), which becomes straightforward
for any setup of Nt and Nu. For easy understanding, we
present an example of the IC selection as follows.

A. MDF assisted IC selection for Nt = 5 and Nu = 3

Fig. 3 presents the MDF assisted IC selection for Nt = 5
and Nu = 3. As shown in Fig. 2, the initial graph Ga1(V,E)
has 10 vertexes as

V (Ga1) = [(1, 2, 3)︸ ︷︷ ︸
I1

, (1, 2, 4)︸ ︷︷ ︸
I2

, (1, 2, 5)︸ ︷︷ ︸
I3

, (1, 3, 4)︸ ︷︷ ︸
I4

, (1, 3, 5)︸ ︷︷ ︸
I5

(1, 4, 5)︸ ︷︷ ︸
I6

, (2, 3, 4)︸ ︷︷ ︸
I7

, (2, 3, 5)︸ ︷︷ ︸
I8

, (2, 4, 5)︸ ︷︷ ︸
I9

, (3, 4, 5)︸ ︷︷ ︸
I10

].

(22)
We have to remove Nre = 2 ICs for the bit-to-IC mapping.

Step 1: Remove the first vertex with the maximum degree.
As shown in Fig. 3, we have d(I1) = ... = d(I10) = 6 at the
beginning, so that any vertex is suitable for removal. Taking
removing the vertex I1 for example, we update the degree of
each vertex as

d(I2) = d(I3) = d(I4) = d(I5) = d(I7) = d(I8) = 5,
d(I6) = d(I9) = d(I10) = 6.

(23)
Step 2: Remove the second vertex with the maximum

degree. Taking removing the vertex I6 for example, we update
the degree of each vertex as

d(I2) = d(I3) = d(I4) = d(I5) = 4,
d(I7) = d(I8) = d(I9) = d(I10) = 5.

(24)

As a result, an optimal IC with the minimum degree is Io =
(I2, I3, I4, I5, I7, I8, I9, I10).

B. MDF assisted generalized IC selection

For a generalized IC selection, we have to remove Nre
vertexes from {I1, ..., INall}, so that the IC selection consists
of Nre steps. Firstly, we obtain the initial graph Ga,01 (V,E)
including Nall vertexes. Assuming that A0(Ii) denotes the
adjacent vertex set of Ii, we have

d0(Ii) = |A0(Ii)| = CNu−1
Nu

(Nt−Nu), Ii ∈ V (Ga,01 )). (25)
Step t (t = 1, ..., Nre): Remove the l-th vertex with the

maximum degree based on the graph V (Ga,t−1
1 ). Then, update

the adjacent vertex set At(Ii) = At−1(Ii)\I l. The degree of
the remaining vertex can be updated as dt(Ii) = |At(Ii)|.
Repeat the above operations Nre times, so that the complexity
order of the proposed MDF algorithm is O(NreN).

C. Proof of the proposed MDF algorithm

In this subsection, we will demonstrate that the proposed
MDF algorithm is identical as the optimal one using the math-
ematical induction technique. The proposed MDF algorithm
consists of Nre steps. As shown in Section IV-B, the degree
of each vertex becomes different from step 2. Assuming that
d1 = (d1(I1), ..., d1(INall−1)), we have δ1 =

∑
d1 and the

proof is given as follows.

1) In the t = 2-th step, assuming that d1(Iq) = max(d1),
we have d1(Iq) ≥ d1(Ip) p 6= q. Then, we obtain
two different graphs Hp(V

2, E2) and Hq(V
2, E2) by

removing the p-th vertex or the q-th vertex. Assuming
that the total degrees of Hp(V

2, E2) and Hq(V
2, E2)

are δ2,p and δ2,q , it is straightforward to have

δ2,p = δ1 − d1(Ip), δ2,q = δ1 − d1(Iq). (26)
It is evident that δ2,q < δ2,p.

2) In the t = K-th step, δK =
Nall−K∑
i=1

dK(Iq) has the

smallest value. Assuming that dK(Iq) = max(dK), we
have dK(Iq) ≥ dK(Ip) p 6= q. In the t = (K + 1)-
th step, by removing the q-th or p-th vertex, we obtain
δK+1,q = δK − dK(Iq) and δK+1,p = δK − dK(Ip). It
is easy to obtain that δK+1,q ≤ δK+1,p.

3) It is concluded from the above two steps that the pro-
posed MDF algorithm always has the minimum degree.
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V. GRAPH THEORY ASSISTED BIT-TO-IC MAPPING

In this section, we mainly focus on solving the problem
formulation 2 of section III-B. For a specific IC graph, there
are a total of N ! mapping choices, resulting in N ! weighted
graphs. The aim of the bit-to-IC mapping is to find one
weighted graph with the minimum weight. To tackle this issue,
a MWF based low-complexity mapping principle is proposed.
Specifically, the proposed algorithm consists of N steps. In
each step, one block of information bits are mapped to a
specific IC index. We first decide which IC index should be
mapped based on the adjacent matrix. Next, one block of
information bits which make the current weighted graph to
have the minimum weight will be mapped to this IC index.
Repeat the above operations N times. For easy understanding,
we will introduce an example first and then present the
generalized algorithm.

A. Bit-to-IC mapping for Nt = 5, Nu = 3

For the case of Nt = 5, Nu = 3, we reformulate the selected
IC set as

Io = [(1, 2, 4)︸ ︷︷ ︸
I1

, (1, 2, 5)︸ ︷︷ ︸
I2

, (1, 3, 4)︸ ︷︷ ︸
I3

, (1, 3, 5)︸ ︷︷ ︸
I4

,

(2, 3, 4)︸ ︷︷ ︸
I5

, (2, 3, 5)︸ ︷︷ ︸
I6

, (2, 4, 5)︸ ︷︷ ︸
I7

, (3, 4, 5)︸ ︷︷ ︸
I8

].
(27)

Step 1: Obtain the adjacent matrix A1 as

I1 I2 I3 I4 I5 I6 I7 I8

A1 =

I1

I2

I3

I4

I5

I6

I7

I8



0 d1
12 d

1
13 0 d1

15 0 d1
17 0

d1
21 0 0 d1

24 0 d1
26 d

1
27 0

d1
31 0 0 d1

34 d
1
35 0 0 d1

38

0 d1
42 d

1
43 0 0 d1

46 0 d1
48

d1
51 0 d1

53 0 0 d1
56 d

1
57 d

1
58

0 d1
62 0 d1

64 d
1
65 0 d1

67 d
1
68

d1
71 d

1
72 0 0 d1

75 d
1
76 0 d1

78

0 0 d1
83 d

1
84 d

1
85 d

1
86 d

1
87 0


.

(28)

Then, its corresponding nonzero index set can be expressed as

A =



2 3 5 7 0
1 4 6 7 0
1 4 5 8 0
2 3 6 8 0
1 3 6 7 8
2 4 5 7 8
1 2 5 6 8
3 4 5 6 7


, (29)

where the elements of the i-th row of A represent the IC
indices with one different element with the IC Ii.

Step 2: The bit-to-IC mapping can begin at any IC vertex
with any bits index as

b1 = (000), b2 = (001), b3 = (010), b4 = (011),
b5 = (100), b6 = (101), b7 = (110), b8 = (111).

(30)

Assuming that Mn n = 1, ..., N denotes the n-th mapping
vector, V nb is the set of the nonzero elements ofMn, and V nI
is the index set of these nonzero elements, we have M0 =
[0, 0, 0, 0, 0, 0, 0, 0] and V 0

I = [φ] V 0
b = [φ] at the beginning.

Especially, V nb and V nI also present the bits index set and IC
index set that have been mapped, respectively. Taking b2 →
I1 for example, we have M1 = [2, 0, 0, 0, 0, 0, 0, 0], V 1

I =
[1], V 1

b = [2] and Mleft = [1, 3, 4, 5, 6, 7, 8]. Then, the next

mapping process begins at the set A1 = [2, 3, 5, 7]. Taking
I2 for example, we have to find one bit index from Mleft
to have the minimum HD between I1 and I2. It is easy to
obtain b1 → I2. Finally, update the mapping set as M2 =
[2, 1, 0, 0, 0, 0, 0, 0], V 2

I = [1, 2], V 2
b = [2, 1] and Mleft =

[3, 4, 5, 6, 7, 8].

Step 3: Find the 3-rd IC index that has the largest number
of adjacent vertexes with VI for mapping by

li = length(intersect(Ai, V t−1
I )), i /∈ V t−1

I , t = 3, ..., N,
it = arg max

∀i,
(li),

(31)
where intersect(x,y) is a function returning the same val-
ue between x and y. According to (31), we have l3 =
[l1, l2, l3, ..., l8] = [0, 0, 1, 1, 1, 1, 2, 0], and the mapping starts
at I7. Next, find one bit index fromMleft to have the minimum
HD with the mapped ICs I1 and I2. Specifically, we have

(b3 → I7)→ d(I7, I1) + d(I7, I2) = d1
71 + d1

72 = 3,
(b4 → I7)→ d(I7, I1) + d(I7, I2) = d1

71 + d1
72 = 3,

(b5 → I7)→ d(I7, I1) + d(I7, I2) = d1
71 + d1

72 = 3,
(b6 → I7)→ d(I7, I1) + d(I7, I2) = d1

71 + d1
72 = 3,

(b7 → I7)→ d(I7, I1) + d(I7, I2) = d1
71 + d1

72 = 5,
(b8 → I7)→ d(I7, I1) + d(I7, I2) = d1

71 + d1
72 = 5.

(32)

Hence, we have I7 ∈ {b3, b4, b5, b6}. Taking b3 → I7 for ex-
ample, we update the mapping set M3 = [2, 1, 0, 0, 0, 0, 3, 0],
V 3
I = [1, 2, 7], V 3

b = [2, 1, 3] and Mleft = [4, 5, 6, 7, 8].

Step 4: Find the 4-th IC index for mapping using V 3
I =

[1, 2, 7]. According to (31), we have l4 = [l1, l2, l3, ..., l8] =
[0, 0, 1, 1, 2, 2, 0, 1], so that we can start at I5. Since

(b4 → I5)→ d(I5, I1) + d(I5, I7) = d1
51 + d1

52 = 2,
(b5 → I5)→ d(I5, I1) + d(I5, I7) = d1

51 + d1
52 = 4,

(b6 → I5)→ d(I5, I1) + d(I5, I7) = d1
51 + d1

52 = 4,
(b7 → I5)→ d(I5, I1) + d(I5, I7) = d1

51 + d1
52 = 4,

(b8 → I5)→ d(I5, I1) + d(I5, I7) = d1
51 + d1

52 = 4,

(33)

it is obvious that b4 → I5. The mapping set can be updated by
M4 = [2, 1, 0, 0, 4, 0, 3, 0], V 4

I = [1, 2, 5, 7], V 4
b = [2, 1, 4, 3]

and Mleft = [5, 6, 7, 8].

Step 5: Find the 5-th IC index for mapping using V 4
I =

[1, 2, 5, 7]. According to (31), we have l5 = [l1, l2, l3, ..., l8] =
[0, 0, 2, 1, 0, 3, 0, 2], so that we can start at I6. Since

(b5 → I6)→ d1
62 + d1

65+d1
67 = 6,

(b6 → I6)→ d1
62 + d1

65+d1
67 = 7,

(b7 → I6)→ d1
62 + d1

65+d1
67 = 5,

(b8 → I6)→ d1
62 + d1

65+d1
67 = 6,

(34)

it is easy to obtain b7 → I6. The mapping set is updated
as M5 = [2, 1, 0, 0, 4, 7, 3, 0], V 5

I = [1, 2, 5, 6, 7], V 5
b =

[2, 1, 4, 7, 3] and Mleft = [5, 6, 8].

Step 6: The 6-th IC index should be mapped is I8 via
l6 = [l1, l2, l3, ..., l8] = [0, 0, 2, 2, 0, 0, 0, 3]. Since

(b5 → I8)→ d85 + d86+d87 = 6,
(b6 → I8)→ d85 + d86+d87 = 7,
(b8 → I8)→ d85 + d86+d87 = 4,

(35)

it is easy to obtain that b8 → I8. The mapping set can be
updated by M6 = [2, 1, 0, 0, 4, 7, 3, 8], V 6

I = [1, 2, 5, 6, 7, 8],
V 6
b = [2, 1, 4, 7, 3, 8] and Mleft = [5, 6].

Step 7: The 7-th IC index should be mapped is I3 via
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l7 = [l1, l2, l3, ..., l8] = [0, 0, 3, 3, 0, 0, 0, 0]. Since
(b5 → I3) =→ d31 + d35+d38 = 7,
(b6 → I3)→ d31 + d35+d38 = 4,

(36)

it is obvious that b6 → I3. The mapping set is updated by
M7 = [2, 1, 6, 0, 4, 7, 3, 8], V 7

I = [1, 2, 3, 5, 6, 7, 8],V 7
b =

[2, 1, 6, 4, 7, 3, 8] and Mleft = [5].
Step 8: Based on Step 7, the final mapping set is M8 =

[2, 1, 6, 5, 4, 7, 3, 8] and δ(G) = 48.

B. MWF based generalized bit-to-IC mapping

In this subsection, a low complexity generalized bit-to-IC
mapping is introduced as follows.

Step 1: Obtain the weighted adjacent matrix A1 and its
corresponding adjacent vertex set A based on the obtained
IC set. Then, initialize the mapping set, mapped IC index
set, mapped bit index set and the bit index set as M0 =
[0, 0, 0, 0, 0, 0, 0, 0], V 0

I = φ, V 0
b = φ and Mb = [1, ..., N ],

respectively.
Step 2: Map the first IC index. Taking I1 = bn for example,

we can update the mapping sets asM1 = [n, 0, 0, 0, 0, 0, 0, 0],
V 1
I = [1], V 1

b = [n] and Mleft =Mb\V 1
b .

Step t+1: Map the t-th IC index. Assuming that
Mt−1(V t−1

I ) = V t−1
b , the t-th IC index it can be obtained

via (31) using A and V t−1
I . Then, we obtain the adjacent set

of Iit as
V itI = intersect(Ait , V t−1

I ). (37)

The bit index for Iit is belong to

Q1 = min
q∈Mleft

(
∑
j∈V itI

d1
it,j). (38)

Then, the mapping sets can be updated by V tI = V t−1
I ∪ it,

V tb = V t−1
b ∪Q1(1), Mt(V

t
I ) = V tb and Mleft =Mb\V tb .

Repeat Steps (t+ 1) until all the IC indices are mapped.
Tables I and II present some mapping examples, where

bpcu denotes the bits per channel use. It can be observed
from Tables I and II that the value of W (A1) with our pro-
posed algorithm is substantial lower than that of conventional
counterpart. We have checked that the proposed mapping
principle is similar as the optimal one at low transmission rates
(i.e. (Nt, Nu) = (4, 2), (5, 2), (6, 2), (6, 3)). For other setups,
it is challenging to obtain the optimal mapping principle
by calculating the weights of CNNall

N ! weighted graphs. The
complexity orders of different bit-to-IC mapping methods are
presented in Table III and their comparisons for specific setups
are presented in Table IV. As observed from Tables III and
IV, it is obvious that the proposed method makes the bit-to-IC
mapping optimization of high throughput practical. Moreover,
by using the bit-to-IC mapping Tables of I and II, the end-to-
end complexity of the proposed method based GIM system is
the same as the conventional counterpart.

VI. SIMULATION RESULTS

In this section, the performances of the GIM systems with
our proposed bit-to-IC mapping principles are compared with
the conventional counterparts using the bit-to-IC mapping
Tables I and II. ML detectors are employed for all the GIM
systems. The main difference between our proposed GIM

TABLE III
COMPLEXITY ORDER OF DIFFERENT BIT-TO-IC METHODS

Scheme IC selection Mapping Total
Conventional O(1) O(1) O(1)

Optimal O(CNNall
N !) O(CNNall

N !)

Proposed O(NreN) O(N2) O(NreN)+O(N2)
TABLE IV

COMPLEXITY COMPARISON OF THE SPECIFIC SETUPS

(Nt, Nu)
(6,3)

4 bpcu
(8,3)

5 bpcu
(10,3)
6 bpcu

(12,3)
7 bpcu

Optimal O(1017) O(1051) O(10123) O(10279)
Proposed O(320) O(1792) O(7680) O(104)

system and the conventional one lies in the bit-to-IC mapping
table used for transmission, which is shown in Tables I and
II. Moreover, the analytical ABEP performances are added as
benchmarkers.
A. Performance comparison of GIM based MIMO systems

Figs. 4 and 5 compare the performance of GSM system hav-
ing Nt = 6, Nu = 2, Nr = 6,M = 2 over different channels.
Specifically, Rayleigh fading channel with different channel
estimated errors and correlated coefficients are employed in
Fig. 4, while Rician channel with K = 5 and Nakagami-
m channel with m = 2 and m = 3 are employed in Fig.
5. The ABEP upper bound of Rayleigh fading channel with
σ2
e = 0, ρt = ρr = 0 and σ2

e = 1/(10SNR/10), ρt = ρr = 0
are calculated via (6) using (13) or (42), while that of Rayleigh
fading channel with σ2

e = 0, ρt = ρr = 0.6 is calculated via
via (6) using (13) and (56). The ABEP upper bound of Rician
channel is calculated via (6) using (49) and (13), while that
of Nakagami-m channel is obtained via (6) using (45) and
(13). As observed from Figs. 4 and 5, the proposed bit-to-IC
mapping based GSM system exhibits better performance than
the conventional counterpart over different fading channels and
imperfect CSI.

Next, Figs. 6-8 compare the performances of the GSM
systems employing the proposed mapping approach to that
of the conventional counterpart under different antenna con-
figurations. Nr = 4, Rayleigh flat fading with perfect CSI
and ML detectors are employed for all the GSM systems.
For simplicity, (Nt,Nu,M) represents the antenna setups in
GSM systems. It is observed from Fig. 6(a) that the proposed
mapping principle based GSM systems with (8, 2, 1), (8, 3, 1),
(8, 4, 1) outperforms the conventional counterparts by 1 dB, 1
dB and 0.6 dB at BER=10−4, respectively. When M increases
to two, they still provide 0.6 dB, 0.6 dB and 0.4 dB gains
over conventional counterpart for (8, 2, 2), (8, 3, 2), (8, 4, 2),
respectively. It can be observed from Fig. 7 that the pro-
posed mapping principle based GSM systems with (10, 2, 1),
(10, 3, 1), (10, 2, 2), (10, 3, 2) outperforms the conventional
counterpart by 0.6 dB, 1 dB, 0.4 dB and 0.55 dB, respectively.
It can be observed from Fig. 8 that the proposed mapping prin-
ciple based GSM systems with (12, 3, 1), (12, 3, 2), (16, 2, 1),
(16, 2, 2) outperforms the conventional counterpart by 0.9 dB,
0.5 dB, 0.7 dB and 0.5 dB, respectively.

Figs. 9 and 10 compare the performances of the MS-GSTSK
systems employing the proposed mapping principle to that of
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TABLE I
BIT-TO-IC MAPPING FOR DIFFERENT GIM SCHEMES

Scheme bit-to-IC mapping
IC set : I→ bits index Nre δ(G) W (A1)

W (A1)

B2B

Nt = 6
Nu = 2

Pro. [(1, 4), (1, 5), (1, 6), (2, 6), (4, 5), (2, 5), (3, 6), (2, 3)]→ [1, 2, 3, 4, 5, 6, 7, 8] 2 28 36 1.5
Con. [(2, 5), (3, 4), (3, 6), (4, 5), (4, 6), (5, 6), (3, 5), (2, 6)]→ [1, 2, 3, 4, 5, 6, 7, 8] 2 38 76 3.17

Nt = 6
Nu = 3
4 bpcu

Pro. [(1, 2, 5), (1, 2, 4), (1, 2, 6), (1, 4, 6), (1, 3, 5), (1, 3, 4), (1, 5, 6), (1, 3, 6)]→ [1, ..., 8]
[(2, 3, 5), (2, 3, 4), (2, 5, 6), (2, 3, 6), (2, 4, 5), (3, 4, 5), (4, 5, 6), (3, 4, 6)]→ [9, ..., 16]

4 108 160 2.5

Con. [(1, 3, 6), (1, 4, 5), (2, 4, 6), (2, 5, 6), (2, 3, 5), (3, 4, 6), (1, 3, 4), (3, 5, 6)]→ [1, ..., 8]
[(4, 5, 6), (1, 3, 5), (3, 4, 5), (2, 3, 4), (2, 3, 6), (2, 4, 5), (1, 5, 6), (1, 4, 6)]→ [9, ..., 16]

4 120 304 4.75

Nt = 7
Nu = 2
4 bpcu

Pro. [(1, 3), (5, 7), (1, 6), (6, 7), (3, 5), (3, 7), (3, 6), (2, 6)]→ [1, ..., 8]
[(1, 5), (4, 7), (1, 4), (2, 7), (4, 5), (2, 5), (4, 6), (2, 4)]→ [9, ..., 16]

5 116 188 2.94

Con. [(3, 7), (5, 7), (2, 4), (2, 6), (3, 6), (4, 5), (1, 7), (2, 3)]→ [1, ..., 8]
[(3, 4), (2, 7), (5, 6), (3, 5), (2, 5), (4, 6), (6, 7), (4, 7)]→ [9, ..., 16]

5 130 312 4.88

Nt = 7
Nu = 3
5 bpcu

Pro.

[(1, 2, 6), (1, 4, 6), (1, 2, 5), (1, 3, 6), (1, 2, 7), (1, 4, 7), (1, 2, 4), (1, 3, 4)]→ [1, ..., 8]
[(1, 5, 7), (1, 5, 6), (2, 5, 6), (1, 3, 5), (2, 5, 7), (1, 3, 7), (2, 3, 5), (3, 5, 7)]→ [9, ..., 16]
[(2, 4, 6), (4, 5, 6), (2, 4, 5), (3, 4, 6), (2, 4, 7), (3, 4, 7), (2, 3, 4), (3, 4, 5)]→ [17, ..., 24]
[(2, 6, 7), (3, 6, 7), (2, 3, 6), (3, 5, 6), (2, 3, 7), (4, 5, 7), (5, 6, 7), (4, 6, 7)]→ [25, ..., 32]

3 348 664 4.15

Con.

[(1, 6, 7), (3, 6, 7), (2, 3, 6), (1, 4, 7), (2, 4, 7), (1, 3, 4), (1, 3, 7), (1, 2, 6)]→ [1, ..., 8]
[(1, 5, 6), (2, 4, 6), (5, 6, 7), (2, 5, 7), (4, 5, 7), (3, 4, 5), (1, 4, 5), (3, 5, 6)]→ [9, ..., 16]
[(3, 5, 7), (4, 5, 6), (1, 3, 5), (2, 4, 5), (2, 5, 6), (2, 3, 5), (3, 4, 6), (1, 5, 7)]→ [17, ..., 24]
[(1, 2, 7), (1, 3, 6), (2, 3, 4), (3, 4, 7), (4, 6, 7), (2, 3, 7), (1, 4, 6), (2, 6, 7)]→ [25, ..., 32]

3 354 1056 6.60

Nt = 8
Nu = 2
4 bpcu

Pro. [(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8)]→ [1, ..., 8]
[(3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)]→ [9, ..., 16]

12 96 128 2

Con. [(4, 8), (6, 8), (3, 5), (3, 7), (4, 7), (5, 6), (2, 8), (3, 4)]→ [1, ..., 8]
[(4, 5), (3, 8), (6, 7), (4, 6), (3, 6), (5, 7), (7, 8), (5, 8)]→ [9, ..., 16]

12 130 312 4.88

Nt = 8
Nu = 3
5 bpcu

Pro.

[(1, 2, 7), (1, 4, 7), (1, 3, 4), (1, 4, 8), (1, 2, 6), (1, 6, 8), (1, 3, 6), (1, 3, 8)]→ [1, ..., 8]
[(1, 5, 7), (1, 5, 8), (3, 4, 5), (3, 5, 8), (1, 2, 5), (2, 5, 8), (3, 4, 6), (5, 7, 8)]→ [9, ..., 16]
[(2, 4, 7), (2, 3, 7), (2, 3, 4), (2, 4, 8), (2, 6, 7), (2, 6, 8), (3, 6, 7), (4, 6, 8)]→ [17, ..., 24]
[(2, 3, 5), (4, 5, 7), (4, 5, 6), (4, 7, 8), (2, 5, 6), (6, 7, 8), (5, 6, 7), (3, 7, 8)]→ [25, ..., 32]

24 240 416 2.6

Con.

[(2, 7, 8), (4, 7, 8), (3, 4, 7), (2, 5, 8), (3, 5, 8), (2, 4, 5), (2, 4, 8), (2, 3, 7)]→ [1, ..., 8]
[(2, 6, 7), (3, 5, 7), (6, 7, 8), (3, 6, 8), (5, 6, 8), (4, 5, 6), (2, 5, 6), (4, 6, 7)]→ [8, 9, ..., 15]

[(4, 6, 8), (5, 6, 7), (2, 4, 6), (3, 5, 6), (3, 6, 7), (3, 4, 6), (4, 5, 7), (2, 6, 8)]→ [16, 17, ..., 23]
[(2, 3, 8), (2, 4, 7), (3, 4, 5), (4, 5, 8), (5, 7, 8), (3, 4, 8), (2, 5, 7), (3, 7, 8)]→ [24, 25, ..., 31]

24 354 1056 6.60

Nt = 8
Nu = 4
6 bpcu

Pro.

[(1, 2, 3, 7), (1, 2, 5, 7), (1, 2, 6, 8), (1, 2, 6, 7), (2, 3, 5, 7), (2, 3, 6, 7)]→ [1, ..., 6]
[(2, 3, 6, 8), (2, 3, 7, 8), (1, 2, 3, 6), (1, 2, 4, 7), (1, 4, 6, 8), (1, 2, 4, 6)]→ [7, ..., 12]
[(2, 3, 5, 6), (2, 3, 4, 6), (2, 4, 6, 8), (2, 4, 6, 7), (1, 2, 3, 8), (1, 2, 5, 8)]→ [13, ..., 18]
[(1, 3, 5, 8), (1, 2, 4, 8), (2, 3, 5, 8), (2, 3, 4, 7), (2, 3, 4, 8), (2, 4, 5, 8)]→ [19, ..., 24]
[(1, 2, 3, 5), (1, 2, 4, 5), (3, 5, 6, 8), (2, 4, 7, 8), (2, 3, 4, 5), (2, 4, 5, 7)]→ [25, ..., 30]
[(2, 5, 6, 8)(2, 4, 5, 6), (1, 3, 6, 7), (1, 5, 6, 7), (5, 6, 7, 8), (1, 6, 7, 8)]→ [31, ..., 36]
[(3, 5, 6, 7), (2, 5, 6, 7), (3, 6, 7, 8), (2, 6, 7, 8), (1, 3, 5, 6), (1, 4, 6, 7)]→ [37, ..., 42]
[(1, 4, 5, 6), (4, 6, 7, 8), (1, 3, 4, 6), (3, 4, 6, 7), (3, 4, 6, 8), (4, 5, 6, 7)]→ [43, ..., 48]
[(1, 3, 7, 8), (1, 5, 7, 8), (1, 3, 4, 8), (1, 4, 7, 8), (3, 5, 7, 8), (2, 5, 7, 8)]→ [49, ..., 54]
[(3, 4, 5, 8), (3, 4, 7, 8), (1, 3, 4, 5), (1, 3, 4, 7), (1, 5, 6, 8), (1, 4, 5, 7)]→ [55, ..., 60]

[(3, 4, 5, 6), (3, 4, 5, 7), (4, 5, 6, 8), (4, 5, 7, 8)]→ [61, 62, 63, 64]

6 928 1916 4.99

Con.

[(1, 2, 4, 8), (1, 2, 6, 7), (1, 6, 7, 8), (2, 4, 7, 8), (1, 3, 4, 6), (4, 6, 7, 8])→ [1, ..., 6]
[(1, 2, 5, 6), (1, 5, 7, 8), (3, 4, 6, 8), (3, 4, 7, 8), (2, 3, 4, 5), (3, 4, 5, 6)]→ [7, ..., 12]
[(2, 5, 7, 8), (4, 5, 6, 7), (1, 4, 5, 8), (1, 3, 6, 8), (2, 3, 6, 8), (1, 4, 5, 7)]→ [13, ..., 18]
[(1, 3, 4, 8), (2, 5, 6, 7), (2, 3, 4, 7), (3, 5, 6, 8), (1, 3, 5, 7), (3, 6, 7, 8)]→ [19, ..., 24]
[(1, 5, 6, 8), (1, 2, 4, 6), (2, 3, 5, 8), (1, 2, 7, 8), (2, 4, 5, 6), (1, 3, 4, 5)]→ [25, ..., 30]
[(1, 4, 6, 7), (2, 4, 6, 8), (2, 4, 6, 7), (1, 4, 6, 8), (1, 4, 5, 6), (2, 5, 6, 8)]→ [31, ..., 36]
[(1, 3, 7, 8), (1, 2, 5, 8), (1, 2, 4, 7), (3, 4, 5, 8), (1, 3, 5, 8), (2, 3, 5, 6)]→ [37, ..., 42]
[(2, 3, 6, 7), (1, 3, 4, 7), (3, 5, 6, 7), (1, 5, 6, 7), (2, 3, 4, 8), (2, 4, 5, 7)]→ [43, ..., 48]
[(3, 4, 5, 7), (2, 4, 5, 8), (4, 5, 7, 8), (1, 3, 5, 6), (4, 5, 6, 8), (2, 3, 5, 7)]→ [49, ..., 54]
[(3, 4, 6, 7), (2, 3, 4, 6), (1, 2, 5, 7), (1, 3, 6, 7), (5, 6, 7, 8), (3, 5, 7, 8)]→ [55, ..., 60]

[(2, 6, 7, 8), (1, 4, 7, 8), (1, 2, 6, 8), (2, 3, 7, 8)]→ [61, 62, 63, 64]

6 952 3360 8.75

Nt = 10
Nu = 2
5 bpcu

Pro.

[(1, 5), (1, 6), (1, 8), (1, 10), (4, 5), (5, 8), (4, 8), (5, 10)]→ [1, ..., 8]
[(1, 4), (1, 7), (4, 9), (7, 10), (4, 7), (6, 10), (4, 10), (8, 10)]→ [9, ..., 16]
[(2, 5), (2, 6), (2, 8), (2, 3), (5, 9), (3, 6), (8, 9), (3, 8)]→ [17, ..., 24]
[(7, 9), (2, 7), (2, 9), (3, 7), (6, 9), (6, 7), (3, 9), (3, 10)]→ [25, ..., 32]

13 348 656 4.1

Con.

[(2, 9), (7, 8), (7, 10), (3, 8), (6, 10), (9, 10), (5, 9), (3, 5)]→ [1, ..., 8]
[(4, 10), (3, 6), (6, 8), (4, 9), (3, 7), (5, 8), (2, 8), (4, 7)]→ [9, ..., 16]
[(5, 7), (2, 7), (3, 10), (8, 9), (4, 8), (3, 4), (4, 6), (6, 7)]→ [17, ..., 24]

[(3, 9), (5, 6), (4, 5), (5, 10), (8, 10), (6, 9), (7, 9), (2, 10)]→ [25, ..., 32]

13 404 1154 7.21

the conventional counterpart. Nr = 2, P = 1, Q = 2,M = 2
are employed for all the MS-GSTSK systems. For the case of
Nu = 2, it is observed from Fig. 9 that the proposed mapping
principle based MS-GSTSK systems with Nt = 6, 10, 16
outperforms the conventional counterparts by 1.2 dB, 1.2
dB and 1.3 dB at BER=10−4, respectively. For the case of
Nu > 2, it is shown from Fig. 10 that the proposed scheme
based MS-GSTSK systems with (Nt, Nu) = (6, 3), (12, 3)
and (8, 4) provides 1.8 dB, 2 dB, and 1.5 dB gains over the
corresponding conventional counterparts, respectively.

B. Performance comparison of recent GIM schemes

Figs. 11 and 12 compare the performances of the OFDM-IM
system employing the proposed mapping principle to that of
the conventional counterpart for Nt = 8, where the channel
model is the same as [30]. For the case of M = 1, it is
observed from Fig. 11 that the proposed mapping principle
based OFDM-IM systems with (Nt, Nu) = (8, 2), (8, 3), (8, 4)
outperforms the conventional counterparts by 2 dB, 3 dB and
2 dB, respectively, while they still provides 0.8 dB, 1.8 dB
and 1.3 dB gains for the case of M = 2.

Finally, Fig. 13 compares the performances of the recent
advanced orbital angular momentum (OAM) based GIM sys-
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TABLE II
BIT-TO-IC MAPPING FOR DIFFERENT GIM SCHEMES.

Scheme bit-to-IC mapping
IC set : I→ bits index Nre δ(G) W (A1)

W (A1)

B2B

Nt=10
Nu=3
6 bpcu

Pro.

[(1, 3, 7), (1, 4, 7), (1, 5, 9), (1, 2, 7), (1, 5, 7), (2, 3, 7), (3, 5, 7), (2, 3, 6)]→ [1, ..., 8]
[(7, 9, 10), (2, 7, 10), (5, 6, 9), (6, 9, 10), (5, 7, 10), (2, 7, 8), (5, 6, 7), (2, 5, 10)]→ [9, ..., 16]
[(1, 3, 10), (1, 5, 8), (1, 6, 8), (1, 2, 6), (3, 5, 8), (3, 5, 10), (1, 5, 6), (3, 6, 10)]→ [17, ..., 24]

[(5, 8, 9), (4, 7, 10), (1, 6, 10), (2, 6, 10), (5, 8, 10), (2, 5, 8), (5, 6, 10), (2, 5, 6)]→ [25, ..., 32]
[(1, 3, 9), (1, 4, 9), (1, 9, 10), (1, 2, 9), (3, 7, 9), (2, 3, 9), (4, 5, 7), (2, 3, 4)]→ [33, ..., 40]
[(7, 8, 9), (2, 8, 9), (6, 7, 9), (2, 9, 10), (7, 8, 10), (2, 4, 8), (6, 7, 8), (2, 4, 5)]→ [41, ..., 48]
[(1, 3, 8), (1, 4, 8), (1, 8, 10), (1, 2, 4), (3, 8, 9), (3, 4, 10), (3, 6, 8), (3, 4, 5)]→ [49, ..., 56]
[(4, 6, 9), (4, 9, 10), (6, 8, 9), (4, 5, 9), (4, 6, 7), (4, 8, 10), (4, 6, 8), (3, 4, 6)]→ [57, ..., 64]

56 636 1262 3.29

Con.

[(2, 9, 10), (7, 9, 10), (6, 7, 9), (2, 8, 10), (6, 8, 10), (2, 7, 8), (4, 7, 10), (5, 9, 10)]→ [1, ..., 8]
[(3, 4, 8), (4, 6, 7), (3, 5, 7), (3, 6, 10), (2, 7, 10), (2, 6, 9), (7, 8, 9), (3, 4, 5)]→ [9, ..., 16]
[(4, 6, 10], (6, 8, 9), (4, 7, 8), (5, 6, 9), (5, 7, 8), (3, 6, 7), (3, 9, 10), (3, 4, 9)]→ [17, ..., 24]
[(4, 5, 6), (4, 8, 9), (5, 8, 10), (5, 7, 10), (3, 8, 10), (3, 7, 9), (3, 6, 8), (3, 5, 6)]→ [25, ..., 32]
[(3, 6, 9), (3, 7, 8), (3, 7, 10), (3, 8, 9), (5, 8, 9), (4, 8, 10), (5, 6, 7), (4, 6, 8)]→ [33, ..., 40]
[(5, 7, 9), (5, 6, 8), (4, 5, 8), (4, 9, 10), (5, 6, 10), (4, 5, 10), (4, 6, 9), (3, 4, 7)]→ [41, ..., 48]
[(3, 4, 6), (4, 5, 7), (2, 6, 10), (2, 7, 9), (4, 7, 9), (3, 5, 10), (4, 5, 9), (3, 5, 8)]→ [49, ..., 56]

[(3, 5, 9), (3, 4, 10), (6, 7, 8), (7, 8, 10), (8, 9, 10), (6, 7, 10), (2, 8, 9), (6, 9, 10)]→ [57, ..., 64]

56 974 3376 8.79

Nt=12
Nu=3
7 bpcu

Pro.

[(1, 2, 8), (1, 2, 11), (1, 2, 7), (1, 4, 6), (1, 2, 10), (1, 6, 10), (1, 2, 6), (1, 6, 11)]→ [1, ..., 8]
[(1, 5, 10), (1, 4, 8), (1, 8, 12), (1, 8, 11), (1, 8, 10), (1, 4, 10), (1, 10, 12), (1, 6, 12)]→ [9, ..., 16]

[(1, 3, 7), (1, 3, 11), (1, 5, 7), (1, 5, 11), (1, 5, 9), (1, 3, 9), (1, 7, 9), (1, 9, 11)]→ [17, ..., 24]
[(1, 3, 8), (1, 3, 4), (1, 7, 12), (1, 4, 7), (3, 8, 12), (3, 9, 11), (1, 5, 12), (1, 9, 12)]→ [25, ..., 32]
[(2, 5, 10), (5, 6, 10), (2, 6, 9), (5, 6, 11), (2, 6, 10), (2, 6, 11), (2, 6, 12), (2, 5, 6)]→ [33, ..., 40]
[(3, 5, 10), (4, 5, 8), (2, 4, 5), (4, 5, 6), (5, 8, 10), (2, 11, 12), (4, 6, 12), (6, 11, 12)]→ [41, ..., 48]
[(5, 7, 10), (3, 5, 11), (2, 5, 9), (5, 6, 9), (3, 5, 12), (3, 5, 9), (2, 5, 12), (5, 9, 11)]→ [49, ..., 56]
[(3, 5, 8), (3, 4, 5), (4, 5, 7), (5, 11, 12), (5, 8, 12), (5, 8, 9), (4, 5, 12), (9, 11, 12)]→ [57, ..., 64]
[(2, 8, 9), (2, 8, 11), (2, 7, 9), (6, 8, 9), (2, 3, 10), (6, 9, 10), (3, 6, 12), (3, 6, 10)]→ [65, ..., 72]
[(4, 8, 9), (2, 4, 8), (6, 7, 8), (4, 6, 8), (4, 9, 10), (3, 4, 10), (6, 8, 12), (6, 8, 10)]→ [73, ..., 80]

[(2, 3, 9), (3, 10, 11), (3, 6, 7), (3, 6, 9), (7, 9, 10), (9, 10, 11), (3, 10, 12), (7, 9, 12)]→ [81, ..., 88]
[(2, 3, 8), (3, 4, 9), (4, 7, 9), (3, 6, 8), (8, 9, 10), (8, 10, 11), (7, 8, 12), (8, 9, 11)]→ [89, ..., 96]

[(2, 7, 8), (2, 7, 11), (6, 7, 9), (5, 6, 7), (2, 7, 10), (9, 10, 12), (7, 10, 12), (4, 6, 11)]→ [97, ..., 104]
[(4, 7, 10), (4, 8, 11), (2, 4, 9), (4, 6, 7), (2, 4, 10), (2, 4, 11), (2, 4, 12), (6, 7, 11)]→ [105, ..., 112]
[(2, 3,7), (3, 7,11), (3, 7,8), (5, 7,11), (2, 3,12), (7, 10,11), (3, 7,12), (10, 11,12)]→ [113, ...,120]
[(5, 7,8), (3, 4,11), (4, 7,12), (7, 8,11), (8, 10,12), (4, 10,11), (4, 9,12), (4, 11,12)]→ [121,...,128]

92 1860 4236 4.73

Con.

[(2, 11,12), (9, 11,12), (2, 10,12), (8, 10,11), (8, 9,11), (8, 10,12), (2, 9,10), (9, 10,12)]→ [1, ..., 8]
[(3, 8, 11), (4, 8, 9), (3, 5, 6), (3, 4, 10), (3, 9, 12), (2, 8, 12), (3, 10, 11), (2, 9, 11)]→ [9, ..., 16]
[(4, 6, 7), (4, 10, 11), (5, 7, 11), (3, 4, 12), (3, 6, 12), (4, 5, 12), (6, 8, 9), (5, 6, 10)]→ [17, ..., 24]
[(4, 6, 10), (7, 11, 12), (6, 7, 9), (4, 5, 8), (3, 4, 7), (5, 8, 12), (7, 10, 11), (5, 9, 11)]→ [25, ..., 32]

[(5, 11, 12), (5, 10, 11), (6, 8, 12), (4, 6, 11), (7, 8, 11), (3, 7, 9), (6, 9, 10), (5, 6, 12)]→ [33, ..., 40]
[(4, 5, 9), (4, 7, 10), (3, 7, 12), (7, 8, 9), (4, 5, 7), (5, 6, 7), (3, 6, 11), (3, 5, 8)]→ [41, ..., 48]

[(6, 9, 11), (3, 6, 8), (3, 8, 12), (4, 5, 6), (5, 8, 9), (3, 5, 10), (4, 8, 10), (7, 8, 10)]→ [49, ..., 56]
[(3, 9, 10), (6, 10, 12), (4, 11, 12), (3, 5, 7), (7, 9, 12), (4, 8, 11), (3, 4, 9), (4, 9, 12)]→ [57, ..., 64]
[(4, 8, 12), (4, 9, 10), (5, 8, 11), (6, 10, 11), (3, 4, 5), (3, 11, 12), (4, 9, 11), (3, 8, 9)]→ [65, ..., 72]
[(6, 8, 10), (6, 9, 12), (5, 7, 10), (3, 6, 9), (6, 7, 11), (4, 5, 11), (4, 6, 8), (5, 9, 10)]→ [73, ..., 80]
[(3, 5, 9), (3, 7, 11), (4, 7, 9), (7, 8, 12), (3, 6, 10), (7, 9, 10), (3, 6, 7), (4, 7, 12)]→ [81, ..., 88]

[(5, 7, 8), (5, 6, 9), (5, 10, 12), (3, 5, 11), (3, 7, 8), (6, 8, 11), (3, 8, 10), (6, 11, 12)]→ [89, ..., 96]
[(7, 10, 12), (3, 4, 8), (5, 9, 12), (3, 7, 10), (4, 6, 12), (5, 6, 8), (4, 7, 8), (4, 7, 11)]→ [97, ..., 104]

[(5, 8, 10), (6, 7, 8), (7, 9, 11), (3, 4, 6), (4, 10, 12), (5, 7, 12), (3, 5, 12), (6, 7, 10)]→ [105, ..., 112]
[(2, 9, 12), (3, 10, 12), (2, 8, 11), (3, 9, 11), (3, 4, 11), (4, 6, 9), (4, 5, 10), (5, 7, 9)]→ [113, ..., 120]
[(9, 10,11), (8, 9,10), (8, 9,12), (6, 7,12), (5, 6,11), (2, 10,11), (10, 11,12), (8, 11,12)→ [121,..., 128]

92 2686 10514 11.73

Nt=16
Nu=2
6 bpcu

Pro.

[(1, 9), (1, 10), (1, 11), (1, 12), (1, 13), (1, 14), (1, 15), (1, 16)]→ [1, ..., 8]
[(2, 9), (2, 10), (2, 11), (2, 12), (2, 13), (2, 14), (2, 15), (2, 16)]→ [9, ..., 16]
[(3, 9), (3, 10), (3, 11), (3, 12), (3, 13), (3, 14), (3, 15), (3, 16)]→ [17, ..., 24]
[(4, 9), (4, 10), (4, 11), (4, 12), (4, 13), (4, 14), (4, 15), (4, 16)]→ [25, ..., 32]
[(5, 9), (5, 10), (5, 11), (5, 12), (5, 13), (5, 14), (5, 15), (5, 16)]→ [33, ..., 40]
[(6, 9), (6, 10), (6, 11), (6, 12), (6, 13), (6, 14), (6, 15), (6, 16)]→ [41, ..., 48]
[(7, 9), (7, 10), (7, 11), (7, 12), (7, 13), (7, 14), (7, 15), (7, 16)]→ [49, ..., 56]
[(8, 9), (8, 10), (8, 11), (8, 12), (8, 13), (8, 14), (8, 15), (8, 16)]→ [57, ..., 64]

56 896 1536 4

Con.

[(5, 10), (5, 12), (5, 14), (5, 16), (8, 9), (7, 8), (9, 16), (10, 15)]→ [1, ..., 8]
[(8, 11), (8, 13), (8, 15), (9, 14), (6, 9), (11, 12), (7, 10), (11, 16)]→ [9, ..., 16]

[(10, 13), (6, 11), (12, 15), (5, 8), (10, 11), (11, 14), (13, 16), (7, 13)]→ [17, ..., 24]
[(9, 12), (12, 13), (14, 15), (9, 10), (7, 16), (6, 15), (7, 14), (6, 12)]→ [25, ..., 32]

[(7, 12), (15, 16), (11, 13), (9, 11), (6, 14), (13, 15), (12, 14), (10, 12)]→ [33, ..., 40]
[(12, 16), (7, 15), (6, 13), (6, 7), (5, 9), (13, 14), (6, 10), (8, 10)]→ [41, ..., 48]
[(7, 11), (14, 16), (6, 16), (6, 8), (9, 15), (8, 14), (8, 12), (9, 13)]→ [49, ..., 56]

[(10, 14), (10, 16), (11, 15), (7, 9), (8, 16), (5, 15), (5, 13), (5, 11)]→ [57, ..., 64]

56 1242 4072 10.6

tem [3] employing the proposed mapping principle to that
of the conventional counterpart. Nt = 6, Nu = 2, Nr = 6
and Nt = 8, Nu = 2, Nr = 8 are used for the OAM-GIM
system, and the channel model is the same as [3]. It is shown
from Fig. 13 that the performance of the proposed mapping
principle based OAM-GIM still outperforms the conventional
counterpart for both the cases of M = 1 and M = 2.

In a word, the performance gains of the proposed mapping
method over the conventional counterpart under different con-
figurations are summarized in Table V.

VII. CONCLUSIONS

In this paper, we investigated the graph theory assisted
bit-to-IC gray coding for GIM systems, where both the IC
selection and bit-to-IC mapping are taken into considera-
tion to improve the ABEP by minimizing the average HD.
Specifically, we transformed the IC selection problem into
searching a subgraph with the minimum degree and designed
a low-complexity MDF algorithm with the complexity order
of O(N). For the selected IC, we reformulated the bit-to-
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Fig. 4. Performance comparison of the proposed and conventional mapping
principles for GSM systems having Nt = 6, Nu = 2, Nr = 6,M = 2 over
different Rayleigh fading channels.
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Fig. 5. Performance comparison of the proposed and conventional mapping
principles for GSM systems having Nt = 6, Nu = 2, Nr = 6,M = 2 over
Rician and Nakagami-m channels.

IC mapping problem into searching a minimum weighted
subgraph from a weighted completed graph and designed a
low-complexity MWF algorithm with the complexity order of
O(N2). It is worth noting that, the proposed IC-selection and
bit-to-IC mapping algorithms are straightforward for any GIM
mapping. Both simulation and theoretical results show that the
GIM systems employing our proposed scheme provide sig-
nificant performance gains over the conventional counterpart
without bringing extra complexity.

APPENDIX A
PEP EXPRESSIONS FOR DIFFERENT CHANNEL MODELS

A. PEP of Rayleigh channel

In the Rayleigh channel, the elements of H are independent
and follow the Gaussian distribution as CN (0, 1), and we have

ū = 0NrNt×1,Ru = INrNt . (39)
According to (11) and (13), the accurate and approximate
PEPs of Rayleigh channel can be expressed as

P
(
Xi → Xj

)
= 1

π

π
2∫
0

∣∣∣I + B
4(σ2+‖Xi‖2σ2

e)sin2θ

∣∣∣−1

dθ

= 1
π

π
2∫
0

κ∏
k=1

(
1 + λk

4(σ2+‖Xi‖2σ2
e)sin2θ

)−Nr
dθ,

(40)
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Fig. 7. Performance comparison of the proposed and conventional mapping
principles for GSM systems having Nt = 10.

and
P
(
Xi → Xj

)
≈ 1

12

κ∏
k=1

(
1 + λk

4(σ2+‖Xi‖2σ2
e)

)−Nr
+ 1

4

κ∏
k=1

(
1 + λk

3(σ2+‖Xi‖2σ2
e)

)−Nr
,

(41)

where λk is the k-th eigenvalue of 44H with ∆ = Xi −Xj .
Furthermore, Eq. (40) can be further simplified for GSM by
[24]

P (Xi → Xj)GSM =γ(ς̄)Nr
Nr−1∑
k=0

(
Nr − 1 + k

k

)
[1−γ (ς̄)]

k
,

(42)
with γ (ς̄) = 1

2

(
1−

√
ς̄/2

1+ς̄/2

)
and ς̄ = ||Xi−Xj ||2

2(σ2+‖Xi‖2σ2
e) .

B. PEP of Nakagami-m channel

In the Nakagami-m channel, the element of r-th row and
t-th column of H can be expressed as [46]

hrt =

√√√√ m∑
i=1

|xi|2 + j

√√√√ m∑
i=1

|yi|2, (43)
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(a) Nt=12, Nu=3
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Fig. 8. Performance comparison of the proposed and conventional mapping
principles for GSM systems having Nt = 12 and Nt = 16.
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Fig. 9. Performance comparison of the proposed and conventional mapping
principles for MS-GSTSK systems having P = 1, Q = 2, M = 2.

where xi, yi ∈ CN (0, 1/2m). Its mean value and variance can
be obtained by [48]

E(hrt) =

(
Γ(m/2+1/2)

Γ(m/2)
√
m/2

exp(j π4 )

)
Var(hrt) = E(|hrt|2)− |E(hrt)|2

= 1
2m2m−

(
Γ(m/2+1/2)

Γ(m/2)
√
m/2

)2

= 1−
(

Γ(m/2+1/2)

Γ(m/2)
√
m/2

)2

.

(44)

Hence, we have

ū =

(
Γ(m/2+1/2)

Γ(m/2)
√
m/2

exp(j π4 )

)
1NrNt×1,

Ru =

(
1−

(
Γ(m/2+1/2)

Γ(m/2)
√
m/2

)2
)

INrNt .
(45)

The PEP of Nakagami-m channel can be obtained by (13) via
(45).

C. PEP of Rician fading channel

According to [46], the Rician fading channel matrix can be
expressed by [46]

H =

√
K

K + 1
H̄ +

√
1

K + 1
H̃, (46)

where H̄ is a fixed matrix with all elements being one, H̃ is
a varied matrix whose elements obey the complex Gaussian

(b) Nt =12, Nu =3(a) Nt =6, Nu =3
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Fig. 10. Performance comparison of the proposed and conventional mapping
principles for MS-GSTSK systems having P = 1, Q = 2, M = 2.
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Fig. 11. Performance comparison of the proposed and conventional mapping
principles for OFDM-IM systems having Nt = 8, M = 1.

distributions associated with CN (0, 1). Hence the element of
r-th row and t-th column of H is expressed as

hrt =

√
K

K + 1
+

√
1

K + 1
h̃rt, (47)

where h̃rt ∈ CN (0, 1) is the r-th row and t-th column of H̃.
The mean and variance of hrt are expressed as

E(hrt) =
√

K
K+1

Var(hrt) = E(|hrt|2)− |E(hrt)|2

= E

[(√
K
K+1 +

√
1

K+1 h̃rt

)(√
K
K+1 +

√
1

K+1 h̃rt

)H]
−|E(hrt)|2

= K
K+1 + 1

K+1E

(∣∣∣h̃rt∣∣∣2)− K
K+1

= 1
K+1 .

(48)
Hence the value of ū and Ru can be obtained by

ū =
√

K
K+1 × 1NrNt×1,

Ru =
√

1
K+1 × INrNt .

(49)

The PEP of Rician fading channel can be obtained by (13) via
(49).
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Fig. 12. Performance comparison of the proposed and conventional mapping
principles for OFDM-IM systems having Nt = 8, M = 2.
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Fig. 13. Performance comparison of the proposed and conventional mapping
principles for GIM system of [3] having M = 2.

D. PEP of correlated channel

According to [46], the correlated channel can be expressed
as

H = HRH̃HT , (50)

where HR ∈ CNr×Nr and Ht ∈ CNt×Nt can be obtained by
hp,qR = ρr

|p−q|, p, q ∈ (1, ..., Nr), (51)
and

hu,vT = ρt
|u−v|, u, v ∈ (1, ..., Nt). (52)

Hence, we have u = vec(HH) = [(HH
R )

T ⊗HH
T ]vec(H̃H).

The value of ū and Ru can be obtained by
ū = E

(
[(HH

R )
T ⊗HH

T ]vec(H̃H)
)

= [(HH
R )T ⊗HH

T ]E
(
vec(H̃H)

)
= ONrNt×1,

(53)

and
Ru = E(uuH)

= E

(
[(HH

R )
T ⊗HH

T ][(HH
R )

T ⊗HH
T ]
H
)

= [(HH
R )T ⊗HH

T ]E
(
vec(H̃H)vec(H̃H)

)
[(HH

R )T ⊗HH
T ]H

= [(HH
R )T ⊗HH

T ]INrNt [(H
H
R )T ⊗HH

T ]H

= [(HH
R )T ⊗HH

T ][(HH
R )T ⊗HH

T ]H .
(54)

TABLE V
PERFORMANCE ADVANTAGE OVER THE CONVENTIONAL MAPPING

METHOD

Setup GSM MS-GSTSK OFDM-IM
Nt = 8
Nu = 2

M = 1 1 dB - 1.5 dB

M = 2 0.6 dB - 0.8 dB
Nt = 8
Nu = 3

M = 1 1 dB - 3 dB

M = 2 0.6 dB - 1.8 dB
Nt = 8
Nu = 4

M = 1 0.6 dB - 2 dB

M = 2 0.4 dB 1.5 dB 1.3 dB
Nt = 10
Nu = 2

M = 2 0.4 dB 1.2 dB -

Nt = 12
Nu = 3

M = 2 0.5 dB 2 dB -

Nt = 16
Nu = 2

M = 2 0.5 dB 1.3 dB -

The accurate and approximate PEPs of correlated channel can
be obtained by (11) and (13) as

P
(
Xi → Xj

)
=

1

π

π
2∫

0

∣∣∣∣I +
RuB

4(σ2 + σ2
e)sin2θ

∣∣∣∣−1

dθ, (55)

and
P
(
Xi → Xj

)
≈ 1

12

∣∣∣I + RuB
4(σ2+σ2

e)

∣∣∣−1

+ 1
4

∣∣∣I + RuB
3(σ2+σ2

e)

∣∣∣−1

.

(56)
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