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Abstract

In cellular systems, the user equipment (UE) can request a change in the frequency band when its

rate drops below a threshold on the current band. The UE is then instructed by the base station (BS)

to measure the quality of candidate bands, which requires a measurement gap in the data transmission,

thus lowering the data rate. We propose an online-learning based band switching approach that does

not require any measurement gap. Our proposed classifier-based band switching policy instead exploits

spatial and spectral correlation between radio frequency signals in different bands based on knowledge

of the UE location. We focus on switching between a lower (e.g., 3.5 GHz) band and a millimeter wave

band (e.g., 28 GHz), and design and evaluate two classification models that are trained on a ray-tracing

dataset. A key insight is that measurement gaps are overkill, in that only the relative order of the bands

is necessary for band selection, rather than a full channel estimate. Our proposed machine learning-

based policies achieve roughly 30% improvement in mean effective rates over those of the industry

standard policy, while achieving misclassification errors well below 0.5% and maintaining resilience

against blockage uncertainty.

I. INTRODUCTION

With each successive cellular standard using a rapidly increasing number of different frequency

bands in different parts of the spectrum, the band selection problem has become ever more

complicated. In particular, user equipment (UEs) would like to use the band or bands that
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maximize their quality of experience (QoE), which is highly correlated to their achieved data

rate. The choice of the optimal frequency band can be challenging. On the one hand, lower

frequency bands generally have more benign propagation properties and thus produce higher

signal to noise ratios (SNRs), but higher frequency bands such as millimeter wave (mmWave)

offer much higher bandwidth as well as beamforming gains and will typically be more lightly

loaded. So, if the SNR on a mmWave band is acceptable, it is likely to provide a much higher

data rate than a lower band and a UE would usually benefit from being efficiently switched over

to the mmWave band. Similarly, if coverage is lost on the mmWave band, the UE should be

quickly switched back to the lower frequency band.

Despite its increasing importance, the signaling procedure for band switching has seen only

incremental changes over the evolution of multiple successive 3GPP standards [2], [3]. This

signaling (or control plane) procedure is shown in Fig. 1 and described as follows. If the received

power at the UE drops below a certain threshold on its current frequency band, call it fj ,

it requests a band switch from its serving base station (BS). This request is followed by a

measurement gap, where the data (or user plane) flow is stopped to allow the user to tune

its reception circuitry to the frequency of the target band, call it fj′ , j′ 6= j, to measure the

channel. The industry standards justify ceasing the data flow to preserve the UE battery. After

obtaining the measurements, the user reports them back to the BS. The BS estimates, based

on the measurements, whether the user would benefit from switching to fj′ or not, and hence,

grants or denies the request. A key issue with the aforementioned procedure is its dependence

on the measurement gap which despite being a control plane procedure causes interruption in

the flow in the data plane and reduces the user overall throughput. The 3GPP standards also

introduced mobile load balancing (MLB) as a means of transferring traffic served by a congested

BS to nearby BSs that have spare resources [4]. However, MLB requires periodic communication

between BSs about their resources, introducing a significant overhead. MLB is also triggered by

the BS desire to relieve its congestion, while the band switch is triggered when the UE desires

to maximize its QoE.

It would be desirable to introduce a reliable method that can support the band switch procedure

without interrupting the user data flow by measurement gaps. The aim of this paper is to propose

a novel online-learning based gap-free algorithm for band switching that utilizes the spatial and

spectral correlations over different frequency bands along with the previous band switching

requests and decisions for nearby users. This online-learning based algorithm adapts to the



3

UE BS

Received power of the user on fj drops below threshold

Request band switch to fj′
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Measure the new channel at fj′
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Fig. 1. The band switch procedure between frequency bands in one base station (BS) in the downlink direction.

changes in the environment as experienced by the users. Precisely, we propose a predictive

algorithm, based on deep neural network (DNN) classifiers, which allow the BS to decide whether

to grant or deny the band switching requests without the need for measurement gaps.

A. Related Work

Predicting the success of a band switch from one frequency band to another without explicitly

measuring the channel at the target frequency band falls under the genre of problems commonly

referred to as: “channel estimation using out-of-band information” [5]. In the simplest form of

this problem, there are forward and backward (downlink and uplink) links occupying the same

frequency bands at different time slots. In this case, we can use channel reciprocity [6] to estimate

the channel of the backward link using the measurements on the forward link, or vice versa. Even

with a separation of frequency duplex bands on the order of ten megahertz, a spatial correlation

between the signals on the two frequency bands still exists due to the common propagation paths,

blockages, and reflectors [6], [7]. Interestingly, the spatial correlation between two frequency

bands that are separated by tens of gigahertz still exits [8]. However, it cannot be directly used

to accurately estimate the channel on one frequency band by only using the measurements

from the other, but it can be used to aid the channel estimation and reduce its complexity.

For example, this correlation was exploited in [9]–[12] for cell discovery, channel covariance

estimation, and beam selection in mmWave bands using sub-6 GHz measurements. In the case
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of band switching, we are not interested in accurate channel estimation since the objective is not

to use the estimate in decoding the messages, beam selection, or precoder/combiner design used

in multiple-input multiple-output (MIMO) communications. Instead, our goal is much simpler:

ranking the downlink channel quality of the two frequency bands or technologies.

The major challenge in exploiting the spatial correlation between frequency bands is the lack

of accurate mathematical models that describe how the channel changes across these frequencies

(or technologies). This challenge makes a data-driven or a machine learning (ML) approach more

attractive to follow and implement. With more publicly available datasets that are based on field-

measurements or sophisticated ray-tracing simulations [13], [14], we expect the interest in this

approach to dramatically increase. Nevertheless, the applications involving dual-band ray-tracing

datasets with ML classification to study channels is a nascent research area.

Although relevant to dual-band resource management, the work in [15] did not address the

impact of measurement gaps on UE data rates. It focused on granting resources to users at

mmWave first, while we allow granting resources to both mmWave and sub-6 GHz simultane-

ously without any specific preference. Furthermore, statistical path loss models were used for

both mmWave and sub-6 GHz bands which may be privy to the spatial and spectral correlation

of channels that we otherwise capture using ray-tracing datasets.

The work in [16] studied only one type of 3GPP dual-band handovers, which we call the

“legacy” policy later in this paper. However, similar to [15], the use of statistical path loss

models voids the opportunity to exploit the correlation across bands; therefore insights about the

performance of the various algorithms, including the second type of 3GPP dual-band handover

algorithms—the “blind” policy—could not be derived. Furthermore, the objective was to improve

energy efficiency through handover avoidance, unlike our proposed algorithm the objective of

which is to improve the UE data rates by eliminating measurement gaps.

In [17] dual connectivity was studied. Dual connectivity requires a local coordinator to manage

the traffic between the cells, unlike band switch procedures. As a result, a backhaul latency

constraint between the BSs was imposed. Furthermore, empirical pathloss models were used.

Multiple BSs with a single UE were simulated while our focus on a single BS with dual band

and multiple UEs. The use of a single UE may prevent the employment of ML techniques due

to the limited number of learning observations—a problem we avoid altogether through the use

of a ray-tracing dataset of RF propagation paths from UEs to a BS. Moreover, a band switch

time-to-trigger mechanism was introduced in [17], whereby the band switch is only granted after
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the band switch criterion is fulfilled for a period of time. This, unlike our proposed approach,

introduces further latency to the band switch procedure [18].

B. Contributions

In this paper, we provide an answer to the question whether a reliable band switch method

exists to maximize the users’ achievable data rates. Specifically, this paper makes the following

contributions:

1) Motivate the use of deep learning in ranking the downlink channel quality of the two

frequency bands—a mathematically intractable problem and a requirement for the band

switching procedure.

2) Offer several insights about the different band switch policies and their respective impact

on performance. Furthermore, we show how the choice of the band switch threshold can

have adverse impacts on the performance.

3) Motivate a data-driven approach to band switching, where we use a ray-tracing dataset in

deep learning.

4) Create a unified framework to describe the band switch policies in a single equation and use

this equation to explain the various band switching policies and their relevant performance.

II. SYSTEM MODEL

In this section, we describe the adopted network and channel models.

A. Network Model

We consider a radio network comprised of one BS serving single-antenna user equipment

(UEs) in an arbitrary association area. The BS has two frequency bands; one in the sub-6 range

and one at mmWave. Note that we assume that sub-6 and mmWave BSs are co-located to

minimize the financial costs of deployment. Moreover, the BS utilizes a different number of

antennas for each frequency band. Let j ∈ {sub-6,mmWave} denote the frequency band and let

N (j) denote the number of antennas on the j th band, then the received signal at the ith UE from

the BS at the j th frequency band is

r(i,j) = P
(j)
TXh

∗
(i,j)f(i,j)s(i,j) + n(i,j), (1)
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where P (j)
TX is the transmit power of BS on the j th frequency band, h(i,j) ∈ CN(j)×1 is the channel

vector, f(i,j) is the beamforming vector, s(i,j) is the transmitted signal, and n(i,j) ∼ Normal(0, σ2
j )

is the thermal noise computed over the bandwidth B(j) including the UE noise figure. We focus

on codebook-based analog beamforming, where the beamforming vector is chosen from a pre-

defined codebook F (j) [19]. In this case, the BS chooses the optimal beamforming vector f?

that maximizes the receive SNR from the ith user on the jth frequency band from the codebook

F (j)

f?(i,j) := arg max
f(i,j)∈F(j)

|h∗(i,j)f(i,j)|2. (2)

Let the codebook size be denoted by N (j)
CB and assume that all codewords are normalized, i.e.,

‖f(i,j)‖2 = 1. Based on this, the received SNR at time step t at the ith UE on the j th frequency

band is

γ(i,j)[t] =
P

(j)
TX [t]

σ2
j

|h∗(i,j)[t]f?(i,j)[t]|2, (3)

and the instantaneous achievable rate is

R(i,j)[t] = B(j) log2(1 + γ(i,j)[t]), (4)

where B(j) is the available bandwidth at the j th frequency. Note that the rate in (4) does not

include the overhead of switching to a different frequency band nor the beam training overhead.

These overheads cause a loss in throughput, which is typically related to the coherence time of

the channel and the frame length.

B. Channel Model

Here we discuss the channel coherence time, the beam training time, the band switching

overhead, and the effective throughput.

Channel coherence time: Let the coherence time for sub-6 GHz and mmWave frequency

bands be denoted as T sub-6
C and TmmWave

C , respectively. The exact values depend on the environ-

ment, the antenna configuration, and the user movement. Hence, to maintain the generality of the

framework, we do not assume specific values for the channel coherence times and we discuss

our choices of the coherence times in Section VI, which is only needed to numerically evaluate

the performance of the different algorithms.

Beam training time: For the beam training overhead, we define the training penalty per beam

as Tbeam. Thus, the total beam training time, TB, is related to the number of all possible beams,

which is the size of the codebook F (j) in our case (i.e., TB = TbeamN
(j)
CB ).
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Band switching overhead: At the beginning of each radio frame, the UE can request a band

switch operation from its serving BS if it is not satisfied by its current signal quality. We are

using two time slots per frame, and a time slot does not necessarily have an integer duration

that is compliant with the standards. The radio frame duration is not constant and is equal to the

channel coherence time. These band switches can only happen at the beginning in the first time

slot with zero delay by design. The BS uses a certain policy to determine whether the change to

a different frequency band should be granted or denied. However, there is a time penalty for the

band switch request, which is used by the BS to take a decision regarding the user request. We

denote this overhead by TH , which is determined by the algorithm or the policy used in the BS

to respond to the band switch request and the existence or absence of a measurement gap. The

exact values of TH are given in Section III, where we present different band switch policies.

Effective throughput: Using the previous definitions for the channel coherence time TC , the

beam training time TB, and the band switch overhead TH , we can define the instantaneous weight

w(i,j,k)[t] for the ith UE that is connected to the BS on the j th frequency band at the time step t

as

w(i,j,k)[t] := max

(
0, 1− T

(j)
B + T

(k)
H

T
(j)
C

)
(5)

which accounts for the prolonged band switching overhead as a result of longer measurement

gaps, since the throughput cannot be below zero. Here, the j th band is the band after the band

switch decision is made, which is a new frequency band if the band switch was granted and

the old frequency band if the band switch was denied. This enables us to compute the effective

throughput for the said UE as

R
(i,j,k)
E [t] = w(i,j,k)[t]R(i,j)[t]. (6)

After discussing the system model and providing the necessary definitions, we present the

current polices discussed in the industry standards [2] for the BS to make band switch decisions

in the next section.

III. BAND SWITCH POLICIES

A band switch policy has to answer the following two questions: (i) when should the UE

request this band switch? (ii) what is the information needed by the BS to make a decision for

the band switch request and how? The first is typically solved by a pre-defined rate threshold
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Fig. 2. Legacy band switch timing diagram. The shaded gray rectangles represent the measurement gaps.

rthreshold, such that if the UE rate is below this threshold, it requests a band switch. For the second

question, the standards specify two policies today [2]. These policies are the measurement-based

legacy approach and the blind approach. We also discuss the optimal policy as a benchmark.

This policy is optimal in that it does not require the UE to use a measurement gap, and therefore

the UE throughput is at the highest possible given the channel conditions, as we show later in

the section. To provide a unified framework for the different polices, we define the following

decision variables: xbr, y ∈ {0, 1}, where xbr = 1 if the UE requests a band switch, and xbr = 0

otherwise, and y = 1 if the BS grants the band switch and y = 0 otherwise. It is understood

that y is only defined if xbr = 1. Further, the threshold rthreshold is defined for all policies except

the optimal policy. It is set based on how soon the UE should request the band switch from the

BS.

A. Legacy Policy

The legacy policy, also known as the measurement-based policy, is shown in Fig. 2. When

the user throughput is below the threshold rthreshold, it requests a band switch from the BS and

it stops its transmission to measure the channel at the desired frequency band. After measuring

the downlink channel, the user reports the measurements back to the BS, which decides whether

to grant or deny the band switch request based on the measurements provided by the user. The

measurement gap duration, denoted by TG, is set to be a fraction of the coherence time [2]

TG := ρTC , 0 < ρ ≤ 1. (7)

Further, if we denote the overhead due to a band switch signaling request and its decision

response as β > 0, then the band switch time overhead T (legacy)
H is equal to TG +β. By using this

policy, the BS can make an informed decision regarding the band switch using the rates from

both bands, which guarantees a certain QoE for the user. However, this comes at the expense
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of the measurement gap, where the BS stops its transmission to the UE so it can measure the

target channel, which causes an interruption in the data flow and reduces the UE throughput.

By employing this policy, one of three scenarios are possible at the beginning of each frame:

(i) the UE does not request a band switch, which happens if its current rate is higher than the

threshold; (ii) the UE requests a band switch and it is granted by the BS, which happens if the

user’s current rate is lower than the threshold, and the rate at the target band is higher than its

current rate; or (iii) the UE requests a band switch, but it is denied, which happens if the UE

current rate is lower than the threshold, and the rate at the target band is lower than its current

rate. For the legacy policy, the decision variables are defined as

x
(i)
br [t] = 1[(R(i,j)[t] < rthreshold)], ∀i, (8)

y(i)[t] = 1[(R̂(i,j′)[t] > R(i,j)[t])], ∀i, (9)

where j is the current serving BS, j′ is the target BS, and R̂(i,j′) is the estimated rate the UE

would get if the band switch were granted.

B. Blind Policy

Similar to the legacy policy, when the UE throughput is below the threshold, it requests a band

switch from the BS. However, in this policy, the BS instructs the UE to band switch to a different

band without any need for a measurement gap. Given the nature of this band switch approach,

if the SNR is worse at the target frequency, the throughput drops significantly. Hence, although

the measurement gap is eliminated, the BS cannot guarantee the user a higher throughput after

the band switch, which causes a low QoE for the user. The decision variables in this case are

as follows

x
(i)
br [t] = 1[(R(i,j)[t] < rthreshold)], ∀i, (10)

y(i)[t] = 1, ∀i, (11)

since the band switch requests are always granted by the BS. Here, T (blind)
H = β, which is only

for the signaling overhead since there is no measurement gap requirement.

C. Optimal

To define an upper bound for the various band switch policies, we define the optimal policy

to be the one where the BS knows the instantaneous quality of the channels of the different
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bands perfectly, so there is no need for a measurement gap. Hence, it asks the user to switch to

a different band if the target rate is higher than its current rate. It also eliminates the need for a

pre-defined rate threshold, since the band switch request and decision are combined and executed

at the beginning of each frame by the BS. Based on this, the optimal effective throughput in

this case is given by

R
?(i)
E [t] = max

j∈{sub-6,mmWave}

(
1− T

(j)
B

T
(j)
C

)
R(i,j)[t]. (12)

Finally, the decision variables can be written as

x
(i)
br [t] = 1, ∀i, (13)

y(i)[t] = 1[(R̂(i,j′)[t] > R(i,j)[t])], ∀i. (14)

D. Overhead of Band Switching

Based on the previous discussion, besides the standards-imposed signaling overhead require-

ment of β, which is common across all policies, only the legacy policy causes band switch

overhead. This overhead is equal to the measurement gap. Hence, T (i,j,k)
H = T

(i,j,k)
G + β for

k ∈ {legacy} and T
(i,j,k)
H = β, k ∈ {blind, optimal}. Note that deterioration in user throughput

due to band switch overhead in the legacy policy drives the setting of the pre-defined threshold to

lower values to avoid spending long times in measurement gaps. When this threshold is set low,

the signal quality has to be bad for the user to request the band switch. This prevents the user from

utilizing possibly better channels on other frequency bands or technologies. Moreover, with the

introduction of mmWave frequency bands [20] in the fifth generation of wireless communications

(5G) standard, the design of the band switch procedure becomes yet more critical since radio

frequency signals at mmWave bands are more sensitive to blockages by various objects. For

example, it was shown in [21] that the antenna gains on the mmWave bands can suffer from

up to 25 dB attenuation due to the user hand grip on the mobile device and it varies with the

different hand grips. Hence, under large blockage losses, the user would benefit from a fast

transition to other frequency bands, and relying on the measurement gaps does not help.

The objective of this work is to propose a new band switch policy that eliminates the

measurement gap, as in the blind policy, but ensures a certain QoE as in the legacy policy.

Our policy relies on deep learning classification, which we introduce in the next section, before

discussing the details of our algorithm.
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TABLE I

DEEP NEURAL NETWORK CLASSIFIER LEARNING FEATURES

Parameter Type Description

x0 Bias term Integer This is equal to unity.

x1 R
(sub-6)
E Float Effective achievable rate in the sub-6 GHz band.

x2 R
(mmWave)
E Float Effective achievable rate in the mmWave band.

x3 Source technology Binary (= 1 for sub-6 and = 0 for mmWave).

(x4,x5,x6) Coordinates Float The coordinates of the UEs distance from the base station.

based on the coordinates of ith UE (i.e., di[t]).

x7 Band switch requested Binary UE requested band switch (x(i)br = 1)?

y Band switch decision Binary UE band switch request is granted (y(i) = 1)?

IV. PROPOSED POLICY

For our proposed policy, we define N as the set of users within the serving BS area. This set

has a cardinality |N | := TsimulationNUE. Here, Tsimulation is the total simulation time and is equal

to the number of stratified samples the total set N is divided into (i.e., partitions). Also, NUE is

the number of active UEs within the BS serving area. Further, we define a set of users U (also

within the serving BS area) with an objective to improve the band switch performance using the

proposed policy, but without a measurement gap.

To achieve this objective, we use the locations and measurements of the set N \U , also served

by this base station, such that U ⊂ N . This is achieved by exploiting the spatial and spectral

correlation of the channels over different frequency bands and different locations.

We keep the minimum threshold criteria used in the legacy and blind polices, where the UE

requests a band switch if its rate drops below a pre-defined threshold, rthreshold. Then the BS

grants the band switch if the estimated rate at the target frequency is higher than the UE current

rate. The difference is that the BS does not ask the UE to interrupt its transmission to measure

the channel, but instead uses a machine learning approach to estimate the rate at the target

frequency. Hence, the decision variables xbr, y are defined in the same way as in the legacy

approach given in (8) and (9).

The major challenge in this approach, which relies on exploiting the spatial and spectral

correlation between the channels, is the lack of accurate mathematical models that capture these

correlations. Hence, we propose the use of DNN classifiers in the solution of our problem.

We use the classifiers to predict the band switch of other locations in the proximity of these
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Fig. 3. Illustration of our proposed algorithm. The list of learning features is shown in Table I.

learned locations. Our algorithm is illustrated in Fig. 3 and is specified in Algorithm 1. The

main steps of Algorithm 1 are as follows:

• Construct the dataset for the UEs within the serving BS area in the current time step t,

which contains the rates from the spatially correlated wireless channels and band switch

decisions and the stratified sets1 N (t) and U (t) (i.e., partitions).

• Train the classifier using a randomly sampled subset of this dataset (or the learning set).

The size of this subset is given by |N (t) \ U (t)| := d(1− qexplotation)N
(t)
UEe, where qexploitation is

a fraction of the total dataset size and N (t)
UE is the stratified subset size (UE count).

• Use this classifier to predict the band switch for the set of UEs belonging to the subset

U (t).

Classifier choice: For the classifier we consider two options: DNN and extreme gradient

boosting (XGBoost) trees. XGBoost is a scalable tree boosting system that achieves high clas-

sification performance [22]. DNN is a feed-forward architecture that uses layers of neurons of

a given depth d and width w and can approximate arbitrary functions under assumptions on the

activation functions [23]. An activation function defines the output of a neuron with respect to

its inputs. A DNN optimizes a convex loss function through a learning rate η > 0. XGBoost

optimizes an objective function containing a convex loss function (e.g., binary logistic loss) and

a regularization term α‖w‖1 + 1
2
λ‖w‖22 + γT , where w is the vector containing the leaf weights

in the boosted tree, α and λ are the regularization terms for their respective norms, γ is the

complexity control, and T is the number of leaves.

Classifier training: We train the hyperparameters of the classifiers using grid search and

K-fold cross-validation. The list of learning features is shown in Table I. Let the feature matrix

1Given that the set N is stratified, it should be clear that
Tsimulation⋃

t=1

N (t) = N since N (t) is disjoint.
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Algorithm 1: Measurement gap free band switch policy
Input: Parameters listed in Tables II and III. Instantaneous rates by UE location per

frequency band (or technology) of a given BS association area. Simulation time

Tsimulation. Set of all UEs N and target UEs U ⊂ N , defined by qexploitation.

Output: A vector ŷ containing a prediction whether the measurement gap-free band switch

should be granted or denied for the set U in the same BS association area, a

confusion matrix C, and the area under the receiver operating characteristic

(ROC) curve for the set.

1 for t := 1 to Tsimulation do

2 Stratified sampling with no replacement from N into N (t). Let N (t)
UE := |N (t)|.

3 N
(t)
learning := d(1− qexploitation) ·N (t)

UEe

4 At random, sample with no replacement a subset of users from N (t) into a set U (t).

5 Build the learning dataset [X |y] for UEs {1, 2, . . . , N (t)
learning}, where X is in Table I

and y is based on (9), both for all N (t)
learning UEs.

6 Randomly split the data [X |y] into a training and a test data (using qtraining split ratio).

7 Train the DNN classifier balancing the weights of classes y in the training data and use

grid search on K-fold cross-validation to tune the hyperparameters based on the

binary cross-entropy loss function [23].

8 forall u ∈ U (t) do

9 Use the DNN classifier to predict ŷ(u) based on X(u).

10 end

11 Obtain ξ the area under the ROC curve for this model using ŷ := [ŷ(u)].

12 Build the confusion matrix C by observing y and ŷ.

13 Invalidate the DNN classifier.

14 end

be denoted by X ∈ RNUE×p, p > 2. The industry standards require two features for the band

switch decision, as we showed in Section III. The supervisory label vector is a column vector

y ∈ {0, 1}NUE , where 0 means the band switch was denied and 1 means granted based on (8).

Our proposed approach is shown in comparison to the legacy approach in Fig. 4 and it operates

in two phases: a) learning phase and b) exploitation phase.
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Fig. 4. Proposed band switch time diagram. The shaded gray rectangles represent the transmission gaps.

Learning phase: In the learning phase, the UE follows the legacy approach discussed earlier

while the proposed algorithm stores the learning features X and y. Machine learning is then

applied on this data to build a classifier that estimates band switch decisions but without the need

for a measurement gap. During this phase, we let all UEs request band switches by setting x7

to unity (or rthreshold to +∞). This is in order for the classifier to learn the relationship between

channels regardless of band switch requests. We use both DNN and XGBoost classification

algorithms in the implementation of this phase and compute class weights for imbalanced the

classes y.

Exploitation phase: In the exploitation phase, the classifier uses prediction to eliminate the

measurement gap for the set of UEs U which were not used in the learning phase. The predicted

decision either grants or denies the band switch from the j th band. The exploitation phase

essentially represents the generalization capacity of the classifier for the current radio frame.

Classifier invalidation: the invalidation (i.e., purging and retraining) of classifiers dealing with

wireless channels in online-learning setting prevents changes in the channel state information

from not being reflected onto the classifier [24]. Given that we only allow the band switching

to take place in the beginning of the radio frame as stated earlier, this leaves the classifier with

(TRF−1) timeslots to realistically collect data and train. The number of measurements per radio

frame is |N \ U| = d(1− qexploitation) · |N |e, after which the classifier must be invalidated.

V. PERFORMANCE MEASURES

In this section we describe our choices of the performance measures to benchmark our

algorithm. These measures describe the performance of both the QoE of the users and the

performance of the classifier.
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A. Effective Achievable Rate

For the different policies discussed, we evaluate the effective rate of all the users in the

network using (6). We are interested in the statistics of the effective achievable rates. Namely,

the cumulative distribution function (CDF) and the mean.

B. Confusion Matrix

We define the misclassification count E : 0 ≤ E ≤ n as the number of incorrectly predicted

band switches during the exploitation phase. We build a confusion matrix C ∈ Z2×2
+ having the

true and predicted band switch decision counts and write

E := Tr(JC>), (15)

where J is a 2 × 2 anti-diagonal identity matrix. The misclassification error µ can be derived

by dividing E by n := bqexploitationNUEc.

C. ROC Area Under the Curve

The receiver operating characteristic (ROC) curve is a two-dimensional curve used to visu-

alize classifiers based on the tradeoff between hit rates and false alarm rates. To compare the

performance of classifiers, we reduce the ROC performance to a single scalar quantity known

as the ROC area under the curve [25]. This area ξ : 0 ≤ ξ ≤ 1.0 where 0.5 means the classifier

is as good as a random guess and 1.0 means it produces perfect prediction.

So far, we have discussed the different band switch policies, including our proposed policy.

We have highlighted the desired performance measures we are interested in. In the next section,

we discuss the data we use and how we construct in detail.

VI. DATASET CONSTRUCTION

To test the performance of the proposed algorithm, we rely on the DeepMIMO dataset [13].

The choice of this dataset is based on its use of accurate ray-tracing tools to generate spatially

and spectrally correlated channels for specific scenarios. Hence, we avoid using oversimplified

mathematical models that could lead to misleading results. A better choice would be to use a

dataset that is based on actual field-measurements. However, such dataset is not available yet to

the best of our knowledge, and is highly non-trivial to generate.
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In the O1 outdoor scenario of the DeepMIMO dataset, the UEs are placed on a uniform grid

on a main street for both the sub-6 GHz and mmWave frequency bands, where the BS uses

OFDM and uniform planar array (UPA) antennas. The adopted O1 scenario is shown in Fig. 5.

A. Channel Coherence Time

The channel coherence time over which the channel remains highly correlated is known to be

given by [26]

TC(α) ≈ c

fcvs sinα
, (16)

where c is the speed of light, vs is the speed of the UE, α is the angle between the direction of

travel and the direction of the BS, vs sinα is the relative speed of the user with regards to the

BS, and fc is the center frequency. This equation has been widely used to measure the channel

coherence time for the sub-6 GHz range, where omni-directional antennas are used. However,

at mmWave, where directional antennas along with beamforming are employed to combat the

high isotropic path loss, (16) does not accurately measure coherence time [27]. This is because

by combining directional antenna arrays with beamforming, the signal power is focused on a

beamwidth-defined angular space directed towards the UE location. Hence, only the variations

in the channel within this angular space are relevant, which increases the channel coherence

compared to (16). The coherence time of the beamformed channel, referred to as the beam

coherence time, is given by [27]

TC(α) ≈ D

vs sinα

Θ

2
, (17)

where D is the Euclidean distance from the serving BS and Θ is the beamwidth of the beams

used by serving BS (in radians). Since UEs are located at different locations with different

distances to the BS, they have different coherence times. However, to maintain a fixed frame

length for all users connected at the same band, we assume the cell-center beam coherence time

(e.g., the 1st percentile). This conservative assumption is also motivated by the practical case

where the BS may not have full knowledge of the UE parameters, such as their distance and

accurate location. To sum up, we assume that the coherence time for sub-6 GHz and mmWave

bands is given by

T sub-6
C :=

(
c

fcvs sinα

)
0.01

, (18)

TmmWave
C :=

(
D

vs sinα

Θ

2

)
0.01

, (19)
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respectively, where (X )0.01 is the 1st percentile of the set X . For the frame time, we set the

frame duration to be equal to the channel coherence time for simplicity. Hence, the overheads

for beam training and band switch, mentioned earlier, are related to a single parameter, which

is the coherence time.

B. Band-Selective Blockage

Further, we choose to have occasional blockage in the mmWave frequency band. To generate

this blockage using DeepMIMO, we generate two channels: one with blockage and the other

without blockage. We further combine the mmWave channels into one by introducing a Bernoulli

random variable for the ith UE:

bi ∼ Bernoulli(p), i = 1, 2, . . . , NUE (20)

h(i)[t] = bih
(i)
b [t] + (1− bi)h(i)

nb [t], (21)

where p is the blockage probability, h(i)
b is the channel with blockage on the first mmWave path,

and h
(i)
nb is the channel with no blockage, all for the ith UE. Hence, some locations along the

street are assumed to be blocked from the BS (non-line of sight), while others have a line of

sight. To study the behavior of the proposed algorithm against uncertainty, we vary the blockage

probability p in the simulation during the exploitation phase.

C. Analog Beamforming

We adopt a multi-antenna setup, where the BS employs a UPA of M (j)
y and M (j)

z antennas in

the elevation and azimuth directions respectively at the j th band. Therefore, we write the channel

in (1) as h ∈ CM
(j)
y M

(j)
z ×1 in a vectorized form. In our implementation of analog beamforming,

we focus on discrete Fourier transform (DFT) codebooks. We focus on DFT codebooks as they

are a common practice for effective codebook design when the channels are spatially correlated

[28]. Let the M × N
(j)
CB matrix F(j) be the concatenation of M beamforming vectors in the

codebook F (j), then the matrix F(j) is constructed as

F(j) = F(j)
z ⊗ F(j)

y (22)

where F
(j)
y ∈ CM

(j)
y ×M

(j)
y and F

(j)
z ∈ CM

(j)
z ×M

(j)
z concatenate the DFT codebook vectors in the y

and z directions for the j th frequency band. In the next section, we use this dataset to evaluate

the performance of the proposed algorithm and compare it with the other algorithms discussed

in Section III.
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Fig. 5. Scenario O1 of the DeepMIMO dataset [13]. We use base station (BS) 3 and users on User Grid 1.

TABLE II

RADIO ENVIRONMENT PARAMETERS

Parameter Value

Subcarrier bandwidth (sub-6, mmWave) (180, 1800) kHz

Center frequency (3.5, 28) GHz

UE noise figure 7 dB

DeepMIMO Scenario O1 Base Station 3

DeepMIMO Scenario O1 number of antennas (Mx,My,Mz) (1, 64, 4)

DeepMIMO Scenario O1 OFDM limit 64

Band switch threshold rate for sub-6 GHz rsub-6
threshold 1.72 Mbps

Band switch threshold rate for mmWave rmmWave
threshold 7.00 Mbps

Measurement gap fraction of coherence time ρ 0.6

VII. SIMULATION RESULTS

In this section, we evaluate the proposed algorithm using the DeepMIMO dataset described

in Section VI using the performance measures outined in Section V.

A. Setup

The DNN and XGBoost classifier hyperparameters are both shown in Table III. As mentioned

earlier, the users are placed on a uniform grid on a main street in the association area of this
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TABLE III

HYPERPARAMETERS OF CLASSIFIERS USED IN THE IMPLEMENTATION OF OUR ALGORITHM

DNN XGBoost

Parameter Value Parameter Value

Exploitation split qexploitation 0.8 Exploitation split qexploitation 0.8

K-fold cross-validation K 2 K-fold cross-validation K 2

Optimizer [29] `1 regularization term α {0,1}

Learning rate η 0.05 `2 regularization term λ {0,1}

Activation function sigmoid Complexity control term γ {0,0.02,0.04}

Depth of neural network d {1,3,5} Sample weights {0.5,0.7}

Width of the hidden layer w {3,5,10} Child weights {0,10}

co-sited BS such that the ith UE has the Cartesian coordinate (xi, yi, zi). This grid has an area

of 550 m and a width of 35 m for an area of 19,250 square meters. The spacing between every

two adjacent users in this uniform grid is 0.2 m. The height of all UEs zi = 2 m is constant

throughout the simulation. We set the mmWave channel blockage probability in (20) to p = 0.4

during the learning phase. Given that we choose not to perform oversampling in beamforming,

NCB := My. We set the beam training time Tbeam := 1 µs [27]. Further, in (18) and (19), we

set α ∼ Uniform(0, π) and Θ := 102/My following [27]. The users move at a vehicular speed

vs = 50 km/h within the BS association area every discrete time step t. There is a total of

54,480 users in the simulation divided into partitions of 5,448 users, hence Tsimulation = 10 radio

frames. In an attempt to find the absolute training dataset size that best maximizes the ROC

area, we choose from qtraining ∈ {1× 10−3, 5× 10−3, 7× 10−3, 1× 10−2, 3× 10−2, 5× 10−2, 7×

10−2, 1× 10−1, 3× 10−1, 4× 10−1, 5× 10−1, 7× 10−1}. With 12 OFDM subcarriers per physical

resource block (PRB) and a subcarrier spacing of 15 kHz, we have the bandwidth B = 180 kHz

per PRB. We use one PRB for the sub-6 GHz frequency band and ten PRBs for the mmWave

frequency band. In other words, Bsub-6 = 180 kHz and BmmWave = 1800 kHz. Initially, the

coherence times for sub-6 GHz and mmWave based on (18) and (19) are 6.17 and 19.16 ms

respectively. This is justified due to the increased beamforming gain at mmWave, which slows

down the time fluctuation of the channel [27], [30]. We choose the transmit energy of 0.1 W/Hz

at mmWave and set the transmit energy at sub-6 GHz to 1 W/Hz. We set the measurement

gap fraction ρ to 0.6 aligned with the industry standards of the gap duration per frame [31].

Further, we set the band switch thresholds as 1.72 Mbps and 7.00 Mbps for sub-6 GHz and
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Fig. 6. Instantaneous throughput distributions for both sub-6 and mmWave frequency bands.

mmWave as the empirical means of the throughput distributions. The exploitation ratio qexploitation

of 0.8 means that the total number of UEs that will use the trained model for band switching

is 0.8× 54,480 = 43,584 UEs. In the learning phase, we set the band switch request threshold

to +∞. This allows us to capture all the available spatial correlation information between the

channels without any omission.

We simulate the radio environment (given in Table II) using three different scenarios:

• Scenario A: All users start in sub-6 and attempt to change band to mmWave.

• Scenario B: All users start in mmWave and attempt to change band to sub-6 GHz.

• Scenario C: 70% are in sub-6 and 30% are in mmWave.

We refer to the source code for the details of the implementation of this simulation [32].

Before presenting the results for these scenarios, we start with analyzing the raw data from the

dataset. In Fig. 6, we show the distribution of the effective throughput over all users for the

3.5 GHz and the 28 GHz bands. From the marginal distributions, we can see that the effective

throughput for the mmWave bands goes up to 12 Mbps, while it only goes up to 3 Mbps for

the 3.5 GHz band. This is due to the large bandwidth that is available in the mmWave band.

However, due to blockage, these high rates only occur with a small probability, since the two

CDF curves cross at 0.8. Overall, the figure shows that the effective rate at mmWave can be

very high, due to the large bandwidth, or very low due to the blockage. This wide range of rates

motivates the optimized design of the band switch policy, since ineffective design can cause

significant deterioration in the UE throughput, or can prevent the user from harvesting a high
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Fig. 7. The distribution of the absolute difference between the rate on 3.5 GHz and 28 GHz.

rate from mmWave bands.

From the joint distribution, the general trend is that a higher throughput on 3.5 GHz means

a higher throughput on 28 GHz. This is due to the correlation between the channels caused by

common propagation paths, reflectors, and obstructions. By simple computations using the joint

distributions, one can see that the 25% of the users can get higher throughput on the 28 GHz

band. Intuitively, these are the users who do not suffer from blockage and are at a short distance

from the BS. These users would benefit from operating at mmWave. To quantify this gain, we

plot Fig. 7, which shows the distribution of the absolute difference between the throughput at

3.5 GHz and 28 GHz, |∆RE| := |Rsub-6
E − RmmWave

E |. Next, we analyze the performance of the

different band switch policies discussed earlier.

B. Band Switch Policies

1) Scenario A: We start with Scenario A, where all the users start in 3.5 GHz band and can

request a band switch to the 28 GHz band. The results are shown in Fig. 8, where we show

the distribution of the effective throughput under different band switch policies. Starting with

the legacy approach, the effect of the measurement gap is clear in the figure and results in a

performance gap compared to the optimal policy, especially in the low rate regime, where the

negative impact of the measurement gap is detrimental. Precisely, the effect is more dominant

for users suffering from a low throughput at sub-6 GHz and requested a band switch from the
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Fig. 8. The distribution of the effective throughput for Scenario A under different band switch polices.

BS, but their request got denied because the throughput at mmWave is also low, possibly due

to blockage. Hence, having a measurement gap makes their throughput even worse. This can be

observed from the curve for the small throughput regime. Further, we observe that there are more

users in the small throughput range (i.e., less than 0.5 Mbps) in the blind policy than the legacy

policy. This can be justified as follows: for the same class of users suffering from extremely low

throughput in the sub-6 GHz band, but would not benefit from switching to the mmWave, the

legacy policy instructs them to stay in the sub-6 GHz band at the expense of a measurement

gap, while the blind policy switches these users to the mmWave band, which deteriorates their

throughput even more. However, there is a point where the throughput at mmWave is around

the same as the sub-6 GHz. At this point, the blind policy is more efficient since it has the

advantage of not requiring a measurement gap.

For the proposed algorithm, Fig. 8 also shows that it has the best performance compared to

the previous two; it is identical to the optimal in the low rate regime and identical to the other

policies in the high rate regime. This is due to: (i) the elimination of the measurement gap,

hence users with low throughput do not suffer more if their band switch request got denied as

in the legacy approach, and (ii) the accurate band switch decisions, which prevents switching

users to a band with low throughput as in the blind policy. Note that there is a performance gap

between the three policies and the optimal in the high rate regime. This performance gap is due

to the band switch threshold introduced in these policies, but missing from the optimal. Hence,
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Fig. 9. The distribution of the effective throughput for Scenario B under different band switch polices.

TABLE IV

NORMALIZED MEAN EFFECTIVE THROUGHPUT FOR DIFFERENT SCENARIOS

Normalized mean effective throughput RE

Scenario Legacy Blind Proposed Optimal

Scenario A 0.55 0.54 0.75 1.00

Scenario B 0.43 0.88 1.00 1.00

Scenario C 0.35 0.76 1.00 1.00

users with high throughput in the sub-6 GHz band do not benefit from the higher throughput in

the mmWave bands following these policies. But this is not the case for the optimal algorithm,

since the BS picks the band with the maximum throughput each frame without a threshold.

However, as we will show later, our proposed algorithm can overcome this issue by increasing

the band switch threshold, without losing its accuracy. Finally, to quantify the gains provided

by the different band switch policies, we list the mean effective throughput in Table IV. Based

on the values for Scenario A, the proposed algorithm provides a gain in the mean effective

throughput of 39% and 37% over the blind and the legacy policies, respectively, and just 20%

behind the optimal algorithm. Overall, the results for this scenario are promising and show the

effectiveness of the proposed algorithm.

2) Scenario B: For the second scenario, the results are shown in Fig. 14. There are a

few differences between this scenario and Scenario A. Firstly, all policies achieve the same

performance in the high rate regime, which is due to the assumption that all users start in the
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TABLE V

BAND SWITCH GRANTS AND REQUESTS BASED ON THE BAND SWITCH POLICY AND THE SCENARIO

Scenario Policy Band switches requested Band switches granted

Scenario A Legacy 22,458 2,751

Blind 22,458 22,458

Proposed 22,458 2,724

Scenario B Legacy 41,609 32,558

Blind 41,609 41,609

Proposed 41,609 32,569

Scenario C Legacy 43,033 21,514

Blind 43,033 43,033

Proposed 43,033 21,619

mmWave band. To be precise, the high throughput regime (above 4 Mbps) can only be achieved

on mmWave bands as shown in Fig. 6. Hence, given that the users start in the mmWave band and

this range is above the band switch threshold, these users remain in mmWave regardless of the

policy, which justifies the identical performance of the different policies in the high throughput

regime. Secondly, the blind policy achieves an identical performance to the optimal policy for

the low throughput region. To justify this, we need the data in Table V, which show the number

of band switch requests and the number of the granted ones for each policy and each scenario.

From this table, we can see that up to around 70% of the band switch requests in this scenario

are granted (assuming the optimal policy). Hence, the blind policy is identical to the optimal

policy 70% of the time. Among this 70% of the users are the users who suffer from extremely

low throughput at mmWave, mostly due to blockage. Hence, the blind algorithm results in the

optimal decision for these users which justifies the identical performance for the low throughput

regime. However, the blind policy also makes the wrong decision 30% of the time, which results

in a gap between this policy and the optimal policy in the medium throughput regime. Finally, the

legacy is always the worst in this scenario, which is due the measurement gap and the fact that

the blind policy is accurate 70% of the time without having a measurement gap. The averages

of the effective throughput are also shown in Table IV. The proposed policy achieves 130% gain

in the throughput compared to the legacy policy and 13% compared to the blind policy. Also,

the effective throughput for the proposed is almost identical to the optimal policy.
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Fig. 10. The distribution of the effective throughput for Scenario C under different band switch polices.

3) Scenario C: The results for this scenario are presented in Fig. 10. As expected, the results

lie between the previous two, and all the curves can be justified using the same arguments we

above. The reason we include this scenario is to have an idea on the gains we might observe

in practice, since part of the users will be using mmWave and the others using sub-6 GHz. The

mean gains are also presented in Table V.

Overall, the results for the different scenarios show the superiority of the proposed policy com-

pared to the legacy and the blind policies; up to 130% improvement in the effective throughput

depending on the considered scenario. It also justifies the use of a machine learning approach to

solve this problem. Next, we provide more technical discussions on the accuracy of the proposed

algorithm, more insights, and possible extensions to this work.

C. Discussion

We start with discussing the predictive accuracy of the proposed algorithm. Fig. 11 shows

that our proposed algorithm usually made the right decisions; only a very few times did it deny

the band switch when it was supposed to grant it (and vice versa).

To compare the performance of the ML classifiers2, we show the performance of XGBoost

alongside DNN. In Fig. 11 and Fig. 12, we show the confusion matrix for the three considered

2These comparisons may not be general for any ML algorithm, but are valid for these important ML classification algorithms.
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Fig. 11. The confusion matrix C for the three scenarios using DNN.
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Fig. 12. The confusion matrix C for the three scenarios using XGBoost.

scenarios using DNN and XGBoost respectively. Precisely, the misclassification error (µ) using

DNN (XGBoost) is 0.47% (0.53%), 0.17% (0.73%), and 0.39% (0.61%) for Scenarios A, B, and

C, respectively. The run-time complexity of XGBoost using the hyperparameters in Table III has

an upper bound in O(n + n log n) = O(n log n) [22], where n := Nlearning. However, for DNN

this complexity is super-linear since training DNNs requires matrix multiplications [23]. Matrix

multiplications have a run-time complexity between O(n2) and O(n3). Hence, the classifier

choice between DNN and XGBoost is a trade-off between decision speed and accuracy: if

accuracy is desired, then choose DNN, but if less run-time complexity is desired for decision

speed, XGBoost is a more attractive choice.

The second point we highlight here is the amount of training data that we require to have an

accurate prediction. In Fig. 13, we show the ROC area (ξ) and the misclassification error (µ)

for different training data sizes. In particular, the figure shows that training using only 1,362
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Fig. 13. The classification performance of the proposed algorithm for different training data sizes and different scenarios.

measurements (i.e., 1/40 of the data for a grid of an area of 19,250 square meters) is enough

to have an excellent performance—less than 2% misclassification error. In other words, having

knowledge about the previous band switch decisions of 7 random samples per 100 square meters

is enough to predict the band switch decisions for the rest of the locations. This absolute number

depends on the spatial correlation between the channels on different locations, as well as the

hyperparameters and the choice of the machine learning algorithm. Further, this insight should

be understood alongside the other considerations, such as the user grid size, the collection period,

and the blockage probabilities, as discussed in this section.

Note that our presented results so far are for a single band switch threshold value. However,

we claim that the performance gap between the optimal algorithm and the proposed one can be

reduced by increasing the threshold. To verify this claim, we show the mean effective throughput

for different band switch thresholds in Table VI. In Scenario A, we observe that as we increase

the band switch threshold rthreshold, the performance gap between the mean effective throughputs

of the proposed and the optimal rates shrink considerably. While both the legacy and blind

rates also get better, their performance is not close to the optimal: the legacy because of the

measurement gap and the blind because of the undesired band switch. However, in Scenario B,

both the blind and legacy rates deteriorate as we increase the band switch thresholds. In the

legacy policy, it is also due to the measurement gaps, and for the blind policy, it is because

users who were getting up to 10 Mbps on mmWave are now getting 3 Mbps at best as shown
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Fig. 14. The distribution of the effective throughput for Scenario B under different band switch polices.

TABLE VI

IMPACT OF DIFFERENT BAND SWITCH THRESHOLDS FOR SCENARIOS A AND B

Normalized mean effective throughput RE

rthreshold Legacy Blind Proposed Optimal

1.72 0.55 0.54 0.75 1.00

Scenario A 2.00 0.45 0.46 0.77 1.00

2.60 0.34 0.60 1.00 1.00

2.00 0.43 0.88 1.00 1.00

Scenario B 9.00 0.39 0.84 1.00 1.00

12.50 0.33 0.76 1.00 1.00

in Fig. 6. As expected, we do not see much of a change in the proposed rate as we increase the

band switch threshold, aligned with the CDFs in Fig. 7 and Fig. 14.

Further, to show the behavior of the proposed policy against uncertainty due to the change

of the blockage probability as in (20), we simulate Scenario C using p ∈ {0.2, 0.4, 0.6, 0.8} in

the exploitation data, while the learning data is fixed at p = 0.4. Then, we compute the mean

effective throughput as shown in Fig. 15. The classifier remains resilient against uncertainty

of band-selective blockage contrary to the other policies (with a significance up to the third

decimal). This is due to the ability of the classifier to learn from the spatial relationship of the

channels even with blockage as a result of: 1) coordinates being part of the learning features

and 2) the relaxation of rthreshold value in the learning phase.
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Fig. 15. Normalized mean effective throughput for different blockage probabilities p in the exploitation phase

VIII. CONCLUSIONS

In this paper, we used both deep neural networks and XGBoost classifiers to rank the downlink

channel quality of the frequency bands prior to the band switch, which is a mathematically

intractable problem. The use of classifiers in an online learning setting eliminates the dependence

on measurement gaps during a band switch in a dual-band base station. We exploited the spatial

and spectral relationships in both the sub-6 GHz and mmWave bands through the use of a ray-

tracing dataset. This brought forward two benefits: 1) reduces link latency by removing the need

for a measurement gap and 2) reduces complexity in the UE and BS because channel estimation

in the other frequency band is not required. We revealed insights as to why the deep learning

classification method was needed and why it worked. We simulated one dual-band base station

with many UEs in its association area and varied the blockage probability. In this simulation,

our method improved downlink throughput by up to 1.3x compared with the legacy policy over

different scenarios with a misclassification error less than 0.3%. The observed improvement is

due to the classifier ability to exploit the spatial correlation of channels across the different

frequency bands and thus accurately predict the effective achievable rate on the target frequency

without the dependency on a measurement gap. This band selection method is better suited for

5G and beyond where maintaining high data rates is desired without interrupting the data flow.

We focused on the case where the BS has only two bands: one centered at 3.5 GHz and the

other at 28 GHz, since the dataset we use supports these two bands. An interesting extension is
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for multiple bands, or when a handoff between multiple BSs is required due to mobility, when

subsequent band switches are required (also known as the “ping-pong” effect), or when the BS

uses different radio units per frequency band as in [33].
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