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Abstract

In federated learning (FL), devices contribute to the global training by uploading their local model

updates via wireless channels. Due to limited computation and communication resources, device schedul-

ing is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and

resource allocation policy to maximize the model accuracy within a given total training time budget for

latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in

terms of the number of training rounds and the number of scheduled devices per round, is derived. Based

on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems.

First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth

to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device

scheduling algorithm is introduced, which in each step selects the device consuming the least updating

time obtained by the optimal bandwidth allocation, until the lower bound begins to increase, meaning

that scheduling more devices will degrade the model accuracy. Experiments show that the proposed

policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and

cell radius.

This work is sponsored in part by the National Key R&D Program of China 2018YFB1800800 and 2018YFB0105005, the

Nature Science Foundation of China (No. 61871254, No. 91638204, No. 61861136003), and Hitachi Ltd. Part of this work has

been accepted in IEEE ICC 2020 [1]. (corresponding author: Sheng Zhou)

W. Shi, S. Zhou, and Z. Niu are with the Beijing National Research Center for Information Science and Technology,

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China (e-mail: swq17@mails.tsinghua.edu.cn;

sheng.zhou@tsinghua.edu.cn; niuzhs@tsinghua.edu.cn).

M. Jiang and L. Geng are with Hitachi (China) Research & Development Cooperation, Beijing 100190, China (e-mail:

miaojiang@hitachi.cn; lgeng@hitachi.cn).

ar
X

iv
:2

00
7.

07
17

4v
1 

 [
cs

.I
T

] 
 1

4 
Ju

l 2
02

0



2

Index Terms
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I. INTRODUCTION

According to Cisco’s estimation, nearly 850 zettabytes of data will be generated each year at

the network edge by 2021 [2]. These valuable data can bring diverse artificial intelligence (AI)

services to end users by leveraging deep learning techniques [3], which are developing rapidly

in recent years. However, training AI models (typically deep neural networks) via conventional

centralized training methods requires aggregating all raw data to a central server. Since uploading

raw data via wireless channels can drain the wireless bandwidth and cause privacy issues when

the raw data are uploaded to the central server [4], it is hardly practical to use conventional

centralized training methods in wireless networks [5].

To address the aforementioned issues, researchers have proposed a new distributed model

training framework called Federated Learning (FL) [6], [7]. A typical wireless FL system

leverages the computation capabilities of multiple end devices, which are coordinated by a central

controller, for example a base station (BS), to train a model in an iterative fashion [8]. In each

iteration of FL (also known as a round), the participating devices use their local data to update

the local models, and then the local models are sent to the BS for global model aggregation. By

updating the model parameters locally, FL leverages both the data and computation capabilities

distributed on devices, and hence can reduce the model training latency as well as preserving

the data privacy. Therefore, FL becomes a promising technology for distributed data analysis

and model training in wireless networks [9], [10], and has been used in many applications, for

instance, resource allocation optimization in vehicle-to-vehicle (V2V) communications [11] and

content recommendations for smartphones [12].

However, implementing FL in real wireless networks encounters several key challenges that

have not been fully resolved yet. Due to the scarce spectrum resources and stringent training

latency budget, only a limited number of devices are allowed to upload local models in each

round, where the device scheduling policy becomes crucial and can affect the convergence rate

of FL in two ways. On the one hand, in each round, the BS cannot perform the global model

aggregation until all scheduled devices have finished updating their local models and uploading

the local model updates. Therefore, straggler devices with limited computation capabilities or bad
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channel conditions can significantly slow down the model aggregation. As a result, scheduling

more devices leads to a longer latency per round, due to the reduced bandwidth allocated to

each scheduled device and a higher probability of having straggler devices. On the other hand,

scheduling more devices increases the convergence rate w.r.t. the number of rounds [13], [14],

and can potentially reduce the number of rounds required to attain the same accuracy. Therefore,

if we look at the total training time, which is the number of rounds times the average latency

per round, the device scheduling is essential and should be carefully optimized to balance the

latency per round and the number of required rounds. Moreover, the scheduling policy should

also adapt itself to the dynamic wireless environment.

Recently, implementing FL in wireless networks has received many research efforts. To

reduce the uploading latency introduced by global model aggregation, novel analog aggregation

techniques have been proposed in [15]–[17]. For analog aggregation, the scheduled devices

concurrently transmit their local models via analog modulation in a wireless multiple-access

channel, and thus the BS receives the aggregated model thanks to the waveform-superposition

property. Although the uploading latency can be greatly reduced, stringent synchronization among

devices is required. While for digital transmission based FL, the scheduled devices need to

share the limited wireless resources and the resource allocation problems have been studied by

a series of work. The authors of [18] adopt TDMA for the MAC layer, and jointly optimize the

device CPU frequency, the transmission latency, and the local model accuracy to minimize the

weighted sum of training latency and total device energy consumption. A similar FL system but

with FDMA is considered in [19]. On the other hand, the frequency of global aggregation under

heterogeneous resource constraints has been optimized in [20], [21]. In [18]–[21], all devices

are involved in each round, which is hardly feasible in practical wireless FL applications due

to the limited wireless bandwidth. Another series of work proposes to use device scheduling

to optimize the convergence rate of FL. A heuristic scheduling policy that jointly considers the

channel states and the importance of local updated models, is proposed in [22]. However, the

proposed scheduling policy is only evaluated by experiments and the convergence performance

cannot be theoretically guaranteed. A greedy scheduling policy is proposed in [23] that schedules

as many devices as possible within a given deadline for each round. Nevertheless, the deadline

is chosen through experiments and can hardly be adapted to dynamic channels and device

computation capabilities. In [24], the authors exploit an intuition that the convergence rate of

FL increases linearly with the number of scheduled devices, and accordingly an energy-efficient
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joint bandwidth allocation and scheduling policy is proposed. The relation between the number

of rounds required to attain a certain accuracy and the scheduling policy is derived in [25], and

three basic scheduling policies, namely random scheduling, round-robin, and proportional fair,

are compared. However, due to the complicated relation between the number of rounds required

to attain a certain accuracy and the per round latency, the convergence rate w.r.t. the number

of rounds obtained by [25] cannot be directly transformed into the convergence rate w.r.t. time.

The authors of [26] jointly optimize the uplink resource block allocation and transmission power

to maximize the asymptotic convergence performance of FL, while the performance can hardly

be guaranteed for latency constrained wireless FL applications. Therefore, the model accuracy

within certain training time budgets (i.e., convergence rate w.r.t. time), which is critical for latency

constrained FL applications [27], [28], has not been addressed yet.

In this paper, we aim to optimize the convergence rate of FL w.r.t. time rather than the number

of rounds. Specifically, we formulate a joint bandwidth allocation and scheduling problem to

maximize the accuracy of the trained model, and further decouple the problem into two sub-

problems, i.e., bandwidth allocation and device scheduling. For the bandwidth allocation problem,

assuming a given set of scheduled devices, the implicit optimal solution that minimizes the

latency of the current round is first obtained, and an efficient binary search algorithm is proposed

to numerically get the optimal bandwidth allocation and the corresponding round latency. For the

device scheduling problem, by relaxing the objective into minimizing the upper bound of the loss

function based on a derived convergence bound that incorporates device scheduling, we design a

greedy algorithm that adds devices one by one with the shortest updating time to the scheduled

devices set, until the convergence bound begins to increase, meaning that scheduling more devices

will reduce the convergence rate. Our main contributions are summarized as follows.

• We theoretically bound the impact of the device scheduling in each round, based on which

the convergence analysis from [20] is extended to derive a convergence bound of FL in

terms of the number of rounds and the number of scheduled devices. The bound applies

for non-independent and identically distributed (non-i.i.d.) local datasets and an arbitrary

number of scheduled devices in each round.

• The obtained convergence bound quantifies the trade-off between the latency per round and

the number of required rounds to attain a fixed accuracy, and thus the device scheduling

can be accordingly optimized to maximize the convergence rate of FL.

• Using the obtained convergence bound, we design a device scheduling policy according to
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TABLE I

SUMMARY OF MAIN NOTATIONS

Notation Definition
M; M Set of devices; size of M
R; T ; K Cell radius; total training time budget; total number of rounds within T
Di; Di; di Local dataset of device i; size of Di; batch size of the local update of device i
D; D Global dataset; size of D

Fi(w); F (w) Local loss function of device i; global loss function
wi,k(j) Local model of device i in the j-th local update of the k-th round

w
Π[k]

k ; w̃ Global model in the k-th round; the global model that has the minimum loss within T
Πk Scheduling policy of the k-th round, i.e., the subset of scheduled devices

tcp
i,k; tcm

i,k; tround
k (Π) Computation latency; communication latency; round latency under policy Π

B; N0 System bandwidth; noise power density
Pi; hi,k Transmit power of device i; channel gain of device i in the k-th round
γi,k Bandwidth allocation ratio of device i in the k-th round
τ ; η Number of local updates performed by the scheduled devices between two adjacent

global aggregations; learning rate
ρ; β; δi Convexity of Fi(w); smoothness of Fi(w); divergence of the gradient ∇Fi(w)

the learned loss function characteristics, gradient characteristics, and system dynamics in

real time, in order to minimize the loss function value under a given training time budget.

• Our experiments show that the optimal number of scheduled devices increases with the

non-i.i.d. level of local datasets, and the proposed scheduling policy adapts to non-i.i.d.

local datasets and can achieve near-optimal performance. Moreover, the proposed schedul-

ing policy outperforms several state-of-the-art scheduling policies in terms of the highest

achievable accuracy within the total training time budget.

The remainder of this paper is organized as follows. In Section II, we introduce the system

model and formulate the convergence rate optimization problem. We derive a convergence bound

and approximately solve the problem in Section III. The experiment results are shown in Section

IV and we conclude the paper in Section V.

II. SYSTEM MODEL

We introduce the basic concepts of FL, the procedure of FL, the latency model, and the

problem formulation in this section. The main notations are summarized in Table I.

We consider an FL system consisting of one BS and M end devices, and the devices are

indexed byM = {1, 2, . . . ,M}. Each device i has a local dataset Di = {xi,d ∈ Rs, yi,d ∈ R}Did=1,

with Di = |Di| data samples. Here xi,d is the d-th s-dimensional input data vector at device i,
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TABLE II

LOSS FUNCTIONS FOR POPULAR MACHINE LEARNING MODELS

Model Loss function f(w,xi, yi)

Linear regression 1
2

∥∥yi −wTxi
∥∥2

Squared-SVM λ
2
‖w‖2 + 1

2
max{0; 1− yiwTxi}, where λ is a constant

Neural network Cross-entropy on cascaded linear and non-linear transform, see [3] for details

and yi,d is the labeled output of xi,d. The whole dataset is denoted by D = ∪
i∈M
Di with total

number of samples D =
∑
i∈M

Di.

The goal of the training process is to find the model parameter w, so as to minimize a

particular loss function on the whole dataset. The optimizing objective can be expressed as

min
w

{
F (w) ,

1

D

∑
i∈M

DiFi(w)

}
, (1)

where the local loss function Fi(w) is defined as Fi(w) , 1
Di

∑
{xi,d,yi,d}∈Di f(w,xi,d, yi,d), and

the loss function f(w,xi,d, yi,d) captures the error of the model parameter w on the input-output

data pair {xi,d, yi,d}. Some examples of loss functions used in popular machine learning models

are summarized in Table II.

A. Federated Learning over Wireless Networks

FL uses an iterative approach to solve problem (1), and each round, indexed by k, contains

the following 3 steps.

1) The BS first decides to schedule which devices to participate in the current round, and the

set of scheduled devices in round k is denoted by Πk. Then the BS broadcasts the current

global model w
Π[k−1]

k−1 to all scheduled devices, where Π[k−1] , [Π1,Π2, . . . ,Πk−1] denotes

the historical scheduling decisions up to the (k − 1)-th round.

2) Each scheduled device i ∈ Πk receives the global model (i.e., wi,k(0) ← w
Π[k−1]

k−1 ) and

updates its local model by applying the gradient descent algorithm on its local dataset:

wi,k(j + 1) = wi,k(j)− η∇Fi(wi,k(j)), j = 0, 1, . . . , τ − 1, (2)

where η is the learning rate. In practice, the local dataset may have thousands or even

millions of data samples, making the gradient descent impractical. Therefore, stochastic

gradient descent (SGD), which can be regarded as a stochastic approximation of gradient

descent, is widely used as a substitution. In SGD, the gradient ∇Fi(wi,k(j)) is computed
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on Db,i, a randomly sampled subset from Di, where Db,i is called mini-batch and di = |Db,i|

is called batch size. The local model update is repeated for τ times and τ is considered as

a fixed system parameter. Then the updated local model wi,k(τ) is uploaded to the BS. In

the following part of the paper, we use wi,k to denote wi,k(τ) unless otherwise specified.

3) After receiving all the uploaded models, the BS aggregates them (i.e., weighted averages

the uploaded local models according to the size of local datasets) to obtain a new global

model:

w
Π[k]

k =

∑
i∈Πk

Diwi,k∑
i∈Πk

Di

. (3)

B. Latency Model

We consider an arbitrary round k, the total latency of the k-th round consists of the following

parts:

1) Computation Latency: To characterize the randomness of the computation latency of local

model update, we use the shifted exponential distribution [29], [30]:

P[tcp
i,k < t] =

1− e−
µi
τdi

(t−aiτdi) , t ≥ aiτdi,

0 , otherwise,
(4)

where ai > 0 and µi > 0 are parameters that indicate the maximum and fluctuation of the

computation capabilities, respectively. We assume that ai and µi stay constant throughout the

whole training process. Moreover, we ignore the computation latency of the model aggregation

at the BS, due to the relatively stronger computation capability of the BS and low complexity

of the model aggregation.

2) Communication Latency: Regarding the local model uploading phase of the scheduled

devices, we consider an FDMA system with total bandwidth B. The bandwidth allocated to

device i is denoted by γi,kB, where γi,k is the allocation ratio that satisfies
∑M

i=1 γi,k ≤ 1

and 0 ≤ γi,k ≤ 1. Therefore, the achievable transmission rate (bits/s) can be written as ri,k =

γi,kBlog2

(
1 +

Pih
2
i,k

γi,kBN0

)
, where Pi denotes the transmit power of device i, that stays constant

with different rounds, and hi,k denotes the corresponding channel gain, and N0 is the noise

power density. Thus the communication latency of device i is

tcm
i,k =

S

ri,k
, (5)

where S denotes the size of wi,k, in bits. Since the transmit power of the BS is much higher than

that of the devices and the whole downlink bandwidth is used by BS to broadcast the model,
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here we ignore the latency of broadcasting the global model.

Due to the synchronous model aggregation of FL, the total latency per round tround
k (Πk) is

determined by the slowest device among all the scheduled devices, i.e.,

tround
k (Πk) ≥ max

i∈Πk
{tcm
i,k + tcp

i,k}. (6)

C. Problem Formulation

A joint bandwidth allocation and scheduling problem is formulated to optimize the convergence

rate of FL w.r.t. time. Specifically, we use K to denote the total number of rounds within the

training time budget T , and minimize the global loss function of w̃ within T , where w̃ is the

optimal model parameter that has the minimum global loss function value in the whole training

process and defined as

w̃ , arg min
w∈{w

Π[k]
k :k=1,2,...,K}

F (w). (7)

For simplicity, we use [K] and [M ] to denote {1, 2, . . . , K} and {1, 2, . . . ,M}, respectively. The

optimization problem can be written as follows:

min
K,Π[K],γ[K],t

round
[K]

F (w̃) (P1)

s.t.
K∑
k=1

tround
k (Πk) ≤ T, (C1.1)

tcp
i,k +

S

γi,kBlog2

(
1 +

Pih2
i,k

γi,kBN0

) ≤ tround
k (Πk), (C1.2)

Πk ⊂M,∀k ∈ [K], (C1.3)

M∑
i=1

γi,k ≤ 1, ∀k ∈ [K], (C1.4)

0 ≤ γi,k ≤ 1,∀k ∈ [K],∀i ∈ [M ], (C1.5)

where Π[K] = [Π1,Π2, . . . ,ΠK ], γ[K] , [γ1,γ2, . . . ,γK ] with γk , [γ1,k, γ2,k, . . . , γM,k], and

tround
[K] , [tround

1 (Π1), tround
2 (Π2), . . . , tround

K (ΠK)].

To solve P1, we need to know how K and Π[K] affect the loss function of the final global

model, i.e., F (w̃). Since it is almost impossible to find an exact analytical expression of F (w̃)

w.r.t. K and Π[K], we turn to bound F (w̃) in terms of K and Π[K]. While in our problem, the

local computation latency tcp
i,k and wireless channel state hi,k can vary with different k, thus the
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optimal scheduling policy Π∗[K] can be non-stationary. Moreover, due to the iterative nature of

FL, the global model is related to the scheduling policies of all past rounds. As a result, it is

very hard to bound F (w̃) under a non-stationary scheduling policy.

In the next section, P1 is solved in the following way. First, we decouple P1 into two sub-

problems, namely device scheduling and bandwidth allocation. Then given the scheduled devices,

the bandwidth allocation problem is analytically solved. Further, based on the optimal bandwidth

allocation, and a derived convergence bound of FL under a stationary random scheduling policy,

we approximately solve the device scheduling problem with a joint device scheduling and

bandwidth allocation algorithm.

III. JOINT DEVICE SCHEDULING AND BANDWIDTH ALLOCATION

P1 is decoupled as follows. First, given the scheduling policy of the k-th round (i.e., Πk), the

bandwidth allocation problem of the k-th round can be written as follows:

min
γi,k,t

round
k (Πk)

tround
k (Πk) (P2)

s.t. tcp
i,k +

S

γi,kBlog2

(
1 +

Pih2
i,k

γi,kBN0

) ≤ tround
k (Πk), (C2.1)

M∑
i=1

γi,k ≤ 1, (C2.2)

0 ≤ γi,k ≤ 1, ∀i ∈ [M ]. (C2.3)

Then we denote the optimal value of tround
k (Πk) as t∗k(Πk), the device scheduling problem can

be written as follows:

min
K,Π[K]

F (w̃) (P3)

s.t.
K∑
k=1

t∗k(Πk) ≤ T, (C3.1)

Πk ⊂M.∀k ∈ [K]. (C3.2)

A. Bandwidth Allocation

The optimal solution of P2 can be obtained using the following theorem.
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Algorithm 1 Binary Search for the Objective Value of P2
1: Give a big enough tup, initialize tlow = max

i∈Πk
{tcp
i,k}, t = tup, and set success = False

2: while NOT success do
3: For each user i ∈ Πk, compute the required bandwidth allocation ratio γi,k using (8) by

substituting t∗k(Πk) = t
4: Compute the summation of required bandwidth allocation ratio s =

∑
i∈Πk

γi,k
5: if 1− ε ≤ s ≤ 1 then
6: Obtain the solution with accuracy level ε, set success = True
7: else if 0 < s < 1− ε then
8: Halve the searching region according to tup = t, t = t+tlow

2
9: else

10: Halve the searching region according to tlow = t, t =
t+tup

2
11: end if
12: end while
13: return t, and γi,k,∀i ∈ Πk

Theorem 1. The optimal bandwidth allocation of P2 is as follows

γ∗i,k =
Sln2(

t∗k(Πk)− tcp
i,k

)
(W (−Γi,ke−Γi,k) + Γi,k)

, (8)

where Γi,k ,
N0Sln2

(t∗k(Πk)−tcp
i,k)Pih2

i,k

, W (·) is Lambert-W function, and t∗k(Πk) is the objective value

of (P2) that satisfies∑
i∈Πk

γ∗i,k =
∑
i∈Πk

Sln2(
t∗k(Πk)− tcp

i,k

)
(W (−Γi,ke−Γi,k) + Γi,k)

= 1. (9)

Proof. See Appendix A.

Due to the Lambert-W function in (9), in which the argument is related to t∗k(Πk) via Γi,k,

we cannot analytically solve (9) to derive t∗k(Πk). Thus a binary search algorithm (Alg. 1) is

proposed to get the optimal value of P2 numerically. Begin with the target value t that equals

to the upper bound of the initial searching region [tlow, tup], we iteratively compute the required

bandwidth for the current target value t by substituting t∗k(Πk) = t into (8) (step 3), and derive

the total required bandwidth allocation ratio (step 4). The searching region is halved and the

smaller half will be retained if the bandwidth is surplus (steps 7-8), while the larger half will

be retained if the bandwidth is deficit (steps 9-10). The searching terminates when the given

precision requirement (i.e., ε) is satisfied (steps 5-6), and thus the complexity of Alg. 1 is on

the order of O
(
|Πk|log2

( tup

ε

))
.
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Fig. 1. Illustration of definitions of different parameter vectors.

B. Convergence Analysis

Before the convergence analysis, we first introduce some notations, as shown in Fig. 1. For

the stationary random scheduling policy Π, we use wΠ
k to denote w

Π[k]

k . Two auxiliary model

parameter vectors are introduced, where wk (k ≥ 1) is used to denote the model parameter

vector that is synchronized with wΠ
k−1 at the beginning of the k-th round, and is updated by

scheduling all devices (i.e., wk ,
∑
i∈MDiwi,k∑
i∈MDi

) in the k-th round. While vk (k ≥ 1) is used

to denote the model parameter vector that is synchronized with wΠ
k−1 at the beginning of the

k-th round, and is updated by centralized gradient descent. In the centralized gradient descent

procedure of the k-th round, vk is updated according to vk ← vk − η∇F (vk) for τ times.

To facilitate the analysis, we make the following assumptions on the loss functions F (·).

Assumption 1. We assume the following for the loss functions of all devices:

• Fi(w) is convex.

• Fi(w) is ρ-Lipschitz, i.e., ‖Fi(w)− Fi(w′)‖ ≤ ρ ‖w −w′‖, for any w,w′.

• Fi(w) is β-smooth, i.e., ‖∇Fi(w)−∇Fi(w′)‖ ≤ β ‖w −w′‖, for any w,w′.

• For any i and w, the difference between the local gradient and the global gradient can be

bounded by ‖∇Fi(w)−∇F (w)‖ ≤ δi, and define δ ,
∑
iDiδi
D

.

These assumptions are widely used in the literature of convergence analysis for FL [19], [20],

[25], [26], although the loss functions of some machine learning models (e.g., neural network)

do not fully satisfy them, especially the convexity assumption. However, our experiment results

show that the proposed scheduling policy works well even for the neural network.

To begin with, we derive the upper bound of the difference between the global model aggre-

gated form a stationary random scheduling policy Π (i.e., wΠ
k ) and wk.



12

Definition 1. We define a policy Π as a stationary random scheduling policy if and only if Π is a

size-|Π| subset, which is uniformly random sampled from all devices M, and |Π| stays constant

during the whole training process.

Theorem 2. For any k and stationary random scheduling policy Π (|Π| ≥ 1), we have

E
{
F (wΠ

k )− F (wk)
}
≤ M − |Π|

|Π|
·
β
∑M

i=1

∑M
j=1

(
D2
iD

2
j

(
g2
i (τ) + g2

j (τ)
))

2M(M − 1)D2
minD

2︸ ︷︷ ︸
A

, B(Π), (10)

where Dmin , mini∈MDi, gi(x) , δi
β

((ηβ + 1)x − 1), and the expectation is taken over the

randomness of Π.

Proof. See Appendix B.

Note that we always have the learning rate η > 0, otherwise the gradient descent procedure

becomes trivial. We also have β > 0 and δi > 0, otherwise the loss function and its gradient

become trivial. Therefore, gi(x) > 0 for x = 1, 2, . . . , τ , and thus A > 0, where A is defined in

(10). It is obvious that A is not related to Π, and M−|Π|
|Π| decreases with |Π|. Therefore, scheduling

fewer devices leads to a larger upper bound of E
{
F (wΠ

k )− F (wk)
}

, as thus, a larger upper

bound of E
{
F (wΠ

k )
}

. This means that scheduling fewer devices slows down the convergence

rate w.r.t. the number of rounds, which is consistent with conclusions from existing work [23],

[24]. Furthermore, when Π = M (i.e., schedule all devices), B(Π) achieves its lower bound

zero, which is consistent with the definition of wk.,

Then, we can combine Theorem 2 with the convergence analysis in [20] to derive the following

theorem, which bounds the difference between w̃ and w∗. In Theorem 3, w̃, defined in (7), is the

optimal model parameter that has the minimum global loss function value in the whole training

process, and w∗ is the true optimal model parameter that minimizes F (w).

Theorem 3. When η ≤ 1
β

and Π is a stationary random scheduling policy, the difference between

F (w̃) and F (w∗) satisfies:

E
{

1

F (w̃)− F (w∗)

}
≥ 1

ε0 + ρh(τ) +B(Π)
, (11)

where ε0 ,
1+
√

1+4ηϕK2τ(ρh(τ)+B(Π))

2ηϕKτ
, ϕ , ω

(
1− βη

2

)
, ω , mink

1

‖wΠ
k −w∗‖

, h(x) , δ
β
((ηβ +

1)x − 1)− ηδx, and the expectation is taken over the randomness of Π.

Proof. See Appendix C.
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Theorem 3 quantifies the trade-off between the latency per round and the number of required

rounds. Scheduling more devices increases the latency per round, and thus decreases the number

of possible rounds within the given training time budget T (i.e., K), while a smaller K can

decrease the lower bound of E
{

1
F (w̃)−F (w∗)

}
. At the same time, scheduling more devices

decreases the value of B(Π) as shown by Theorem 2, while a smaller B(Π) can increase the

lower bound of E
{

1
F (w̃)−F (w∗)

}
. As a result, the scheduling policy should be carefully optimized

to balance the trade-off between the latency per round and the number of required rounds, in

order to minimize the loss function of the optimal global model (i.e., F (w̃)).

C. Device Scheduling Algorithm

In real wireless networks, the local computation latency tcp
i,k and wireless channel state hi,k can

vary in different rounds k, due to the fluctuation of the wireless channels and device computation

capabilities. Therefore, at the k-th round, tcp
i,k′ and hi,k′ for k′ > k are unknown, making the

constraint (C3.1) in P3 intractable because of the unknown t∗k′(Πk′) for k′ > k. To address

this issue, we solve P3 myopically. Consider an arbitrary round k and an arbitrary scheduling

policy Πk, we approximately view that Πk is used in the whole training process, and thus the

number of total rounds can be approximated by K̂ =
⌊

T
t∗k(Πk)

⌋
, where b·c denotes floor function.

Furthermore, for a given global loss function, F (w∗) is a constant, and thus minimizing F (w̃)

is equivalent to maximizing 1
F (w̃)−F (w∗)

. Since the learning rate η can be chosen small enough

to satisfy η ≤ 1
β

, the objective of P3 can be approximated by maximizing the lower bound of

E
{

1
F (w̃)−F (w∗)

}
according to Theorem 3, which is equivalent to minimizing the denominator

of the right hand side of (11). Consequently, P3 can be approximated by the following myopic

problem in each round:

min
Πk

1 +

√
1 + 4ηϕK̂2τ (ρh(τ) +B(Πk))

2ηϕK̂τ
+ ρh(τ) +B(Πk) (P4)

s.t. K̂ =

⌊
T

t∗k(Πk)

⌋
, (C4.1)

Πk ⊂M. (C4.2)

P4 is still a combinatorial optimization problem due to the constraint (C4.2), which is hard to

solve. Therefore we propose a greedy algorithm (Alg. 2) to schedule devices. In steps 2-3 of Alg.

2, the round latency of scheduling each unscheduled device is given by Alg. 1, based on which
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Algorithm 2 Greedy Scheduling Algorithm
1: Initialize Π← ∅
2: Greedy scheduling: x← arg min

i∈M
t∗({i}), with t∗(·) given by Alg. 1

3: Update M←M\ {x}, Π← Π ∪ {x}
4: Estimate K̂ =

⌊
T

t∗({x})

⌋
and C =

1+
√

1+4ηϕK̂2τ(ρh(τ)+B(Π))

2ηϕK̂τ
+ ρh(τ) +B(Π)

5: while |M| > 0 do
6: Greedy scheduling: x← arg min

i∈M
t∗(Π ∪ {i}), with t∗(·) given by Alg. 1

7: Estimate K̂ =
⌊

T
t∗(Π∪{x})

⌋
and C ′ = 1+

√
1+4ηϕK̂2τ(ρh(τ)+B(Π∪{x}))

2ηϕK̂τ
+ ρh(τ) +B(Π ∪ {x})

8: if C ′ > C then
9: Break

10: else
11: Update M←M\ {x}, Π← Π ∪ {x}, and C ← C ′

12: end if
13: end while
14: return Π

we choose the device with the minimum latency into the scheduled devices set. Consequently, we

initialize the value of the objective function of P4 in step 4. Then, a similar process is iteratively

performed in steps 6-7, until the objective function of P4 starts to increase or all devices are

scheduled. The complexity of Alg. 2 is on the order of O(|M|3) (because of calling Alg. 1 for

O(|M|2) times), which is much more efficient than the naive brute force search algorithm on

the order of O(2|M|).

However, due to the unknown optimal model w∗, it is non-trivial to analytically estimate the

value of ϕ, and thus we treat ϕ as a system parameter that remains fixed throughout the training

process. It is shown in the experiments that a fixed ϕ performs well across different system

settings like data distributions and cell radius, while the searching for an appropriate value of ϕ

is not difficult as well.

D. The Whole Policy

In this subsection, we propose the complete procedure of the wireless FL with our fast converge

scheduling policy (as shown in Alg. 3), which enables the BS to schedule devices in real-time

and minimizes the global loss function within the training time budget.

In Alg. 3, steps 1-2 are the initialization phase, initializing wΠ
0 , w̃ for the global model, and ρ̂,

β̂, δ̂, which are used to record the real-time estimations of the convergence property parameters.

In each round, Alg. 2 is called to obtain the device scheduling policy based on the estimated ρ̂,
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Algorithm 3 Wireless FL with Fast Converge Scheduling Policy
1: Initialize wΠ

0 and w̃ as a constant or random vector
2: Initialize t← 0, ρ̂← [ρ̂1, ρ̂2, . . . , ρ̂M ], β̂ ← [β̂1, β̂2, . . . , β̂M ], and δ̂ ← [δ̂1, δ̂2, . . . , δ̂M ]
3: for k = 1, 2, . . . do
4: Estimate ρ̂ =

∑
i∈MDiρ̂i
D

, β̂ =
∑
i∈MDiβ̂i
D

, and δ̂ =
∑
i∈MDiδ̂i
D

5: Call Alg. 2 to derive the scheduling policy Πk

6: Call Alg. 1 to derive the bandwidth allocation γk and the optimal round latency t∗k(Πk)
7: t← t+ t∗k(Πk)
8: if t > T then
9: break

10: end if
11: The BS broadcasts the global model wΠ

k−1 to all scheduled devices
12: for each scheduled device i ∈ Πk in parallel do
13: Receive wΠ

k−1 and set wi,k(0)← wΠ
k−1

14: Perform local model update for τ times according to (2)

15: Estimate ρ̂i =
‖Fi(wΠ

k−1)−Fi(wi,k)‖
‖wΠ

k−1−wi,k‖
, and β̂i =

‖∇Fi(wΠ
k−1)−∇Fi(wi,k)‖
‖wΠ

k−1−wi,k‖
16: Send wi,k, ρ̂i, β̂i, and Fi(wΠ

k−1) to the BS
17: end for
18: Receive wi,k from each scheduled device and update the global model according to (3)
19: Receive ρ̂i and β̂i from each scheduled device and update the corresponding terms in ρ̂

and β̂, respectively
20: Estimate ∇Fi(wΠ

k−1) =
wΠ
k−1−wi,k
τη

21: Compute ∇F (wΠ
k−1) =

∑
i∈Πk

Di∇Fi(wΠ
k−1)∑

i∈Πk
Di

, estimate δ̂i =
∥∥∇Fi(wΠ

k−1)−∇F (wΠ
k−1)

∥∥ for

each i and update the corresponding term in δ̂
22: Receive Fi(wΠ

k−1) from each scheduled device and compute F (wΠ
k−1) =

∑
i∈Πk

DiFi(w
Π
k−1)∑

i∈Πk
Di

23: if F (wΠ
k−1) < F (w̃) then

24: w̃ = wΠ
k−1

25: end if
26: end for

β̂ and δ̂ (step 5). Then in step 6, Alg. 1 is called to obtain the optimal bandwidth allocation for

scheduled devices and the corresponding round latency 1. We update the accumulated training

latency and check if it exceeds the budget T in steps 7-9. Despite the regular FL local update

procedure (steps 13-14), each scheduled device i ∈ Πk also needs to estimate ρi and βi based on

the local loss and gradient of wΠ
k−1 and wi,k according to step 15. Then in step 16, the updated

local models, the estimations, and the loss function values are sent to the BS. The BS receives

1When the devices are updating the local models, they can send pilot signals to the edge server to estimate the channel and

inform the edge server of their progress of local computation with low communication overhead. Therefore, perfect information

of tcp
i,k and hi,k is assumed to be known unless otherwise specified.
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the uploaded local models, based on which the global model is updated according to (3) (step

18), and updates the estimation records of ρ̂ and β̂ (step 19). We update δ̂ in a similar way in

steps 20-21 and update w̃ in steps 22-25. Note that Alg. 2 needs the estimated ρi, βi, and δi for

all devices to compute the convergence bound (according to step 7 in Alg. 2, and (10)), while

only the devices that have been scheduled in the last round have the up-to-date estimations. To

address this issue, for each device that has not been scheduled in the last round, we use the

latest estimation in the past rounds to approximate the up-to-date estimation. Therefore, ρ̂, β̂,

and δ̂ are used to record the estimations and estimate ρ̂, β̂, and δ̂ according to step 4.

In an arbitrary round k, the additional computational complexity of Alg. 3 at the BS compared

to the conventional FL mainly consists of three parts: 1) the computational complexity of Alg. 2,

which is O(|M|3); 2) the computational complexity of Alg. 1, which is O
(
|Πk|log2

( tup

ε

))
; 3) the

computational complexity of maintaining ρ̂, β̂, and δ̂, which is O(|Πk|). Because |Πk| ≤ |M|,

the total additional computation complexity at the BS is O(|M|3) in each round. While the

additional computation complexity at each device i is O(1) in each round, due to the estimation

of ρi and βi. For the signaling overhead, compared to the conventional FL, each scheduled device

needs to send 3 extra scalars to the BS in each round (i.e., ρ̂i, β̂i, and Fi(wΠ
k−1)) as shown in step

16, which is negligible compared to sending the high-dimensional local updated model wi,k.

IV. EXPERIMENT RESULTS

In this section, we evaluate the performance of FL under the proposed scheduling policy.

A. Environment and FL Setups

Unless otherwise specified, we consider an FL system that consists of M = 20 devices located

in a cell of radius R = 600 m and a BS located at the center of the cell. Assume that all devices

are uniformly distributed in the cell at the beginning of each round to reflect mobility [15]. The

wireless bandwidth is B = 20 MHz, and the path loss exponent is α = 3.76. The transmit power

of devices is set to be Pi = 10 dBm, and the power spectrum density of the additive Gaussian

noise is N0 = −114 dBm/MHz.

We evaluate the training performance of the proposed policy under two well-known learning

tasks, the MNIST dataset [31] for handwritten digits classification and the CIFAR-10 dataset

[32] for image classification. The MNIST dataset has 60,000 training images and 10,000 testing

images of the 10 digits, and the CIFAR-10 dataset has 50,000 training images and 10,000 images
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of 10 types of objects. We accept the common assumption that each device has equal amount of

training data samples and the local training datasets are non-overlapping with each other [15],

[20]. Different training data distributions are considered, including i.i.d. case and non-i.i.d. cases.

For the i.i.d. dataset, the original training dataset is randomly partitioned into 20 pieces and each

device is assigned a piece. While for the non-i.i.d. cases, the original training dataset is first

partitioned into 10 pieces according to the label, and each piece with the same label is then

randomly partitioned into 2l shards (i.e., 20l shards in total). Finally, each device is assigned l

shards with different labels. The parameter l captures the non-i.i.d. level of local datasets, where

smaller l corresponds to a higher non-i.i.d. level. Following [22], [33], we train a multilayer

perceptron (MLP) model with a single hidden layer with 64 nodes, and use ReLU activation.

The mini-batch size is set to be 128 for the local model update, and each scheduled device

performs τ = 5 local updates between two adjacent global aggregations. The learning rate η

is set to be 0.01 for MNIST and 0.02 for CIFAR-10. The MLP model has 50,816 multiply-

and-accumulate (MAC) operations for MNIST. Assuming that all devices are of the same kind,

having maximum CPU frequency of 1 GHz/s and can process one MAC operation in each CPU

cycle, and thus we set a = 0.5 ms/sample and further set µ = 1
a

for the computation latency

model [34]. The total training time budget T is set to be 60 seconds for MNIST and 200 seconds

for CIFAR-10, and the initial values of ρ̂i, β̂i, and δ̂i are 1.5, 12, and 2, respectively.

B. Evaluation of the Fast Converge Scheduling Policy

As mentioned in Section III.C, the system parameter ϕ needs to be determined through exper-

iments, thus we study the effects of ϕ first. Fig. 2(a), (c) show the highest achievable accuracy

within the training time budget v.s. the value of ϕ on MNIST and CIFAR-10, respectively, and

Fig. 2(b), (d) show the average number of scheduled devices v.s. the value of ϕ on MNIST

and CIFAR-10, respectively. From Fig. 2(b), (d), we notice that the proposed fast converge

scheduling policy (denoted by FC) schedules more devices with larger ϕ. This finding is due to

the following reason. According to Alg. 2, FC schedules devices by minimizing the objective

function of P4, in which the term B(Π) is not related to ϕ and other terms decrease with ϕ.

Therefore, minimizing B(Π) is more important with larger ϕ, which requires scheduling more

devices. Furthermore, Fig. 2(a) shows that when ϕ = 0.05, FC has the best performance in terms

of the highest achievable accuracy, which is 92.3%, 90.6%, and 89.0% for i.i.d. and non-i.i.d.

data distributions with l = 2 and l = 1 on MNIST. While on CIFAR-10, ϕ = 0.05 achieves good
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(a) (b)

(c) (d)
Fig. 2. Impact of ϕ on the accuracy and number of scheduled devices of proposed FC scheduling. (a), (c) show the highest

achievable accuracy within the training time budget T v.s. the value of ϕ on MNIST and CIFAR-10, respectively. (b), (d) show

the average number of scheduled devices v.s. the value of ϕ on MNIST and CIFAR-10, respectively. The markers represent the

results when the estimation errors of the computation latency tcp
i,k and the channel state hi,k occur. T is set to be 60 seconds

for MNIST and 200 seconds for CIFAR-10. Results are averaged over 5 trails.

performance as shown in Fig. 2(c), confirming that FC adapts to different datasets. Therefore,

we set ϕ = 0.05 in the following experiments. Moreover, it is shown in Fig. 2(a), (c) that the

convergence performance is not sensitive to the value of ϕ as long as 0.02 ≤ ϕ ≤ 0.5, indicating

that large step can be taken to reduce the searching cost for ϕ in practice. The performance of

the proposed policy with estimation errors of the computation latency tcp
i,k and the channel state

hi,k is also reported in Fig. 2. We simulate the estimation error by an Gaussian distribution with

0 mean and αtcp
i,k or αhi,k standard deviation for tcp

i,k or hi,k, repectively, where tcp
i,k and hi,k is the

true value. The average number of scheduled devices with estimation errors is almost the same

as that without estimation error as shown in Fig. 2(b), (d), indicating that the performance loss is

mostly caused by the round latency. The main reason for the increasing round latency is that the

estimation errors can cause the device scheduling algorithm (Alg. 2) to schedule inappropriate

devices. Nevertheless, Fig. 2(a), (c) show that the proposed policy is robust to estimation errors.
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Fig. 3. Instantaneous results of the proposed fast convergence policy, denoted by FC, on MNIST. (a), (b), (c), (d), and (e) show

the test accuracy, global loss, number of scheduled devices, estimated ρ, estimated β, and estimated δ, respectively.

Then the instantaneous results of FC on MNIST are shown in Fig. 3. Fig. 3(a) shows the model

accuracy of wΠ
k and w̃ on the testing dataset v.s. the number of rounds. Note that the accuracy of

w̃ is mostly higher than that of wΠ
k under the same data distribution, which is consistent with the

definition of w̃. We also notice that the number of scheduled devices increases with the non-i.i.d.

level due to the higher values of the estimated ρ, β, and δ. For l = 1 and l = 2 datasets, since the

local datasets of different devices are non-i.i.d., differences between the local updated models

are greater than that of the i.i.d. dataset, and thus the value of δ that characterizes the differences

between model updates is higher. Similar results can be observed for β and ρ, indicating that the

loss function is less smooth and convex for the non-i.i.d. datasets. Further, since ρ, β, and δ tend

to decrease during the training as shown by Fig. 3(d), (e), and (f), respectively, FC schedules

more devices in the beginning of the training process, which helps FL to converge faster [33].

C. Comparison of Different Scheduling Policies

To show the effectiveness of the convergence analysis, we compare FC with a set of baseline

policies that schedule fixed numbers of devices (i.e., remove steps 8-9 in Alg. 2, and stop schedul-

ing new devices until reaching the fixed number). Fig. 4 shows the highest achievable accuracy

of FC, the baseline policies, and centralized training on MNIST and CIFAR-10, respectively.



20

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of scheduled devices

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

Ac
cu

ra
cy

 (%
)

MNIST, central
MNIST, i.i.d.
MNIST, FC, i.i.d.
MNIST, non-i.i.d. (l=2)
MNIST, FC, non-i.i.d. (l=2)
MNIST, non-i.i.d. (l=1)
MNIST, FC, non-i.i.d. (l=1)

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of scheduled devices

30

35

40

45

50

Ac
cu
ra
cy
 (%

)

CIFAR-10, central
CIFAR-10, i.i.d.
CIFAR-10, FC, i.i.d.
CIFAR-10, non-i.i.d. (l=5)
CIFAR-10, FC, non-i.i.d. (l=5)
CIFAR-10, non-i.i.d. (l=2)
CIFAR-10, FC, non-i.i.d. (l=2)

(b)
Fig. 4. The highest achievable accuracy within the training time budget T v.s. the number of scheduled devices. T is set to

be 60 seconds and 200 seconds for MNIST and CIFAR-10, respectively. The curves show the results of centralized training

and the baseline policies that schedule fixed numbers of devices, and the markers represent FC. Results are averaged over 5

independent trails.

The result of centralized training can be treated as the upper bound of performance, where the

central trainer is assumed to have 20 times stronger computation capability compared to the

devices and all training data have been aggregated to the central trainer. We notice that for the

baseline policies, scheduling either too few or too many devices degrades the model accuracy

for l = 1 and l = 2 on MNIST and all three cases on CIFAR-10. The reason is the trade-off

between the latency per round and the number of the rounds, that is: scheduling more devices

can potentially reduce the number of required rounds to attain a fixed accuracy but with larger

latency per round, while scheduling fewer devices can reduce the latency per round but with

slower convergence rate w.r.t. the number of rounds. For FC, since the number of scheduled

devices can be optimized, there is only one point for each dataset in the figure which actually

corresponds to the average number of scheduled devices. As shown in Fig. 4, FC performs close

to the optimal points for all data distributions, because the proposed FC achieves a good trade-

off between the latency per round and the number of rounds. Moreover, the optimal number of

scheduled devices increases with the non-i.i.d. level, indicating that a fixed scheduling policy

cannot adapt to all different distributions of the datasets.

Furthermore, we compare FC with 4 other baseline policies. The first baseline is the random

scheduling policy (denoted by RD) with the empirically optimal number of scheduled devices for

l = 2 on MNIST, which is NRD = 3. The second one is the proportional fair policy (denoted by

PF) proposed in [25] that schedules NPF devices with the best instantaneous channel conditions

out of all M devices, where we set NPF = NRD in the experiments. The third one is the client
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(a) (b)

(c) (d)
Fig. 5. The FL convergence performance under different scheduling policies on MNIST. Results are averaged over 5 independent

trails. (a) The test accuracy v.s. time with R = 600 m and l = 1 dataset. (b) The average number of scheduled devices and

the corresponding average latency per round w.r.t. different scheduling policies with R = 600 m and l = 1 dataset. (c) The

test accuracy v.s. time with R = 200 m and i.i.d. dataset. (d) The average number of scheduled devices and the corresponding

average latency per round w.r.t. different scheduling policies with R = 200 m and i.i.d. dataset.

selection policy proposed in [23], which iteratively schedules the device that consumes the

least time in local model updating and uploading, until reaching a preset time threshold Th,CS,

and all scheduled devices are allocated equal bandwidth. Here we use two different thresholds

T low
h,CS = 0.4 second and T high

h,CS = 1.5 second, namely CS-l and CS-h, to adapt to various data

distributions and cell radius. The last one is the joint scheduling and resource allocation policy

proposed in [26] that optimizes the asymptotic convergence performance by scheduling as many

devices as possible within a given time threshold Th,AS. In the experiments, we set T low
h,AS = 0.4

second and T high
h,AS = 1.5 second for AS-l and AS-h, respectively.

The convergence performances w.r.t. time on MNIST under different scheduling policies are

reported in Fig. 5(a) and (c) for R = 600 with l = 1 dataset and R = 200 with i.i.d. dataset,

respectively. Fig. 5(b) and (d) show the corresponding average number of scheduled devices and

average latency per round. For R = 600 m with l = 1 dataset, we notice that FC reaches 80%

test accuracy after 17.35 seconds of training, while PF needs 54.71 seconds to attain the same
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TABLE III

HIGHEST ACHIEVABLE ACCURACY FOR ALL POLICIES UNDER VARIOUS DATA DISTRIBUTIONS AND CELL RADIUS.

Policy
MNIST CIFAR-10

R = 200 m R = 600 m R = 1000 m R = 200 m R = 600 m R = 1000 m
FC (proposed) 89.9/91.2/92.6 89.0/90.6/92.3 87.0/88.6/92.1 44.5/48.2/50.2 43.6/46.7/49.1 42.5/44.9/48.4

RD 85.4/88.0/90.5 80.0/86.0/90.1 65.2/78.5/87.8 42.0/44.7/47.5 39.9/41.3/45.3 32.0/33.6/38.0
PF 84.3/88.1/90.6 82.6/87.6/90.6 81.8/87.6/90.5 42.1/45.0/48.0 42.1/44.3/47.4 41.2/43.5/46.2

CS-l 88.8/91.3/92.5 79.8/88.2/92.1 75.6/86.3/91.9 35.4/43.6/49.6 34.9/43.0/48.9 32.3/41.4/48.2
CS-h 88.6/89.5/90.2 88.7/89.3/90.3 87.1/88.4/90.1 43.5/46.2/47.9 43.3/44.8/47.7 41.9/45.1/47.2
AS-l 89.2/91.4/92.5 80.9/88.7/92.3 76.1/87.4/92.0 37.1/43.9/49.4 34.2/43.2/48.8 31.3/41.7/47.8
AS-h 88.5/89.3/90.1 88.2/89.1/89.9 86.9/87.9/89.8 42.5/45.6/47.1 42.9/44.6/47.0 42.0/44.3/46.8

accuracy and other policies are even slower. Also note that under the given training time budget

T = 60 seconds, the highest achievable accuracy is 89.0% under FC, which is 9.0%, 6.4%,

9.2%, and 8.1% higher than RD, PF, CL-l, and AS-l, respectively. For R = 200 m with i.i.d.

dataset, FC attains 92.6% test accuracy within the training time budget, exceeds RD, PF, CL-h,

and AS-h over 2.1%, 2.0%, 2.4%, and 2.5%, respectively. The advantage of FC is twofold:

Firstly, FC schedules the devices with better channel conditions and computation capabilities

according to Alg. 2, and thus can reduce the per round latency compared to RD and PF. For

example, for R = 600 m with l = 1 dataset, FC is able to schedule on average 6.26 devices

within 0.62 second per round while PF needs 0.94 second for only 3 devices as shown in Fig.

5(b). Secondly, FC achieves a better trade-off between the latency per round and the number of

required rounds. Since the time thresholds for CS-l, CS-h, AS-l, and AS-h are fixed, they can

hardly adapt to various data distributions and cell radius. As shown in Fig. 5(a) and (b), CS-l and

AS-l schedule too few devices due to the low time threshold, and thus converge slower than FC

for R = 600 m with l = 1 dataset. While Fig. 5(c) and (d) show that CS-h and AS-h converge

slower than FC for R = 200 m with i.i.d. dataset because of scheduling too many devices.

Table III summarizes the highest achievable accuracy on MNIST and CIFAR-10 under different

data distributions and cell radius. Each item gives the results of l = 1, l = 2, and i.i.d. datasets

on MNIST and l = 2, l = 5, and i.i.d. datasets on CIFAR-10, respectively. It is shown that

FC adapts to different system settings and datasets, achieving the highest accuracy under most

settings. Although CS-l, CS-h, AS-l, and AS-h have similar or even higher (but no more than

0.2%) accuracy compared to FC under some settings (e.g., R = 200 m with l = 2 on MNIST for

CS-l and AS-l, R = 1000 m with l = 1 on MNIST for CS-h and AS-h, and R = 1000 m with
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l = 5 on CIFAR-10 for CS-h), the accuracy degrades notably under other settings, indicating that

CS-l, CS-h, AS-l, and AS-h are not flexible or robust. Since the optimal number of scheduled

devices and the per round latency vary under different system settings, choosing the optimal Th

for CS and AS accordingly is neither efficient nor practical for wireless FL.

V. CONCLUSION

In this paper, we have studied a joint bandwidth allocation and scheduling problem to optimize

the convergence rate of FL w.r.t. time. We derive a convergence bound of FL to characterize the

impact of device scheduling, based on which a joint bandwidth allocation and scheduling policy

has been proposed. The proposed FC policy achieves a desirable trade-off between the latency

per round and the number of required rounds, in order to minimize the global loss function of

the obtained model parameter under a given training time budget. The experiments reveal that

the optimal number of scheduled devices increases with the non-i.i.d. level of local datasets.

In addition, the proposed FC policy can schedule near-optimal number of devices according

to the learned loss function characteristics, gradient characteristics and system dynamics, and

outperforms state-of-the-art baseline scheduling policies under different data distributions and

cell radius. In the future, FL systems with heterogenous device computation capabilities and

resource constraints can be considered, where joint optimization of the batch size, the number

of local updates, and the device scheduling policy can be studied.

APPENDIX A

PROOF OF THEOREM 1

For γ > 0, since

d

dγ

(
γBlog2

(
1 +

Ph2

γBN0

))
= Blog2

(
1 +

Ph2

γBN0

)
− BPh2

(γBN0 + Ph2)ln2

>
B

ln2

(
Ph2

γBN0

1 + Ph2

γBN0

)
− BPh2

(γBN0 + Ph2)ln2

= 0, (12)

where the inequality is because ln(1 + x) > x
1+x

, for x > 0. Therefore, γi,kBlog2

(
1 +

Pih
2
i,k

γi,kBN0

)
monotonically increases with γi,k. While it is obvious that γi,kBlog2

(
1 +

Pih
2
i,k

γi,kBN0

)
> 0 for a

non-trivial bandwidth allocation (i.e., γi,k > 0), and thus tcp
i,k+ S

γi,kBlog2

(
1+

Pih
2
i,k

γi,kBN0

) monotonically
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decreases with γi,k. If any device has finished the whole local model update process earlier

than other devices, we can reallocate some bandwidth from that device to other slower devices.

As a result, the round latency, which is determined by the slowest device, can be reduced.

The reallocation of bandwidth can be performed until all devices finish local updating at the

same time. Therefore, the optimal solution of P2 can be achieved if and only if all bandwidth

is allocated and all scheduled devices have the same finishing time. As a result, the optimal

solution and corresponding objective value is given by the following equations
tcp
i,k + S

γ∗i,kBlog2

(
1+

Pih
2
i,k

γ∗
i,k
BN0

) = t∗k(Πk), ∀i ∈ Πk,

∑M
i=1 γ

∗
i,k = 1,

0 ≤ γ∗i,k ≤ 1,∀i ∈ [M ].

(13)

Solving (13) directly leads to Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

Based on Assumption 1, the definition of F (w), and triangle inequality, we immediately have

the following lemma.

Lemma 1. If Assumption 1 holds, then F (w) is convex, ρ-Lipschitz, and β-smooth.

Due to that F (w) is β-smooth, we have

E
{
F (wΠ

k )− F (wk)
}
≤ β

2
E
∥∥wΠ

k −wk

∥∥2
. (14)

Substituting wΠ
k =

∑
i∈ΠDiwi,k∑
i∈ΠDi

into the right-hand side of (14) yields

β

2
E
∥∥wΠ

k −wk

∥∥2
=
β

2
E
∥∥∥∥∑i∈Π Diwi,k∑

i∈ΠDi

−wk

∥∥∥∥2

=
β

2
E
∥∥∥∥∑i∈Π Di(wi,k −wk)∑

i∈Π Di

∥∥∥∥2

=
β

2
E

∥∥∥∥∥
∑M

i=1 I{i ∈ Π}Di(wi,k −wk)∑
i∈ΠDi

∥∥∥∥∥
2

≤ β

2
E

∥∥∥∥∥
∑M

i=1 I{i ∈ Π}Di(wi,k −wk)

|Π|Dmin

∥∥∥∥∥
2

=
β

2
·

∥∥∥∑M
i=1 P{i ∈ Π}Di(wi,k −wk)

∥∥∥2

(|Π|Dmin)2 , (15)
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where I(·) is the indicator function, P(·) is the probability notation, and Dmin , mini∈MDi.

Note that Π is a stationary random scheduling policy, and thus P{i ∈ Π} = |Π|
M

and P(i, j ∈

Π, i 6= j) = |Π|(|Π|−1)
M(M−1)

. Therefore, we expand the numerator of the second term of (15) as follows:∥∥∥∥∥
M∑
i=1

P{i ∈ Π}Di(wi,k −wk)

∥∥∥∥∥
2

=
M∑
i=1

P(i ∈ Π)‖Di(wi,k −wk)‖2 +
∑
i 6=j

P(i, j ∈ Π)DiDj(wi,k −wk)
T(wj,k −wk)

=
M∑
i=1

|Π|
M
‖Di(wi,k −wk)‖2 +

∑
i 6=j

|Π|(|Π| − 1)

M(M − 1)
DiDj(wi,k −wk)

T(wj,k −wk)

(a)
=

M∑
i=1

|Π|
M
‖Di(wi,k −wk)‖2 −

M∑
i=1

|Π|(|Π| − 1)

M(M − 1)
‖Di(wi,k −wk)‖2

=
|Π|(M − |Π|)
M(M − 1)

M∑
i=1

‖Di(wi,k −wk)‖2. (16)

The equality of (a) is based on the fact that

∑
i 6=j

DiDj(wi,k −wk)
T (wj,k −wk) =

∥∥∥∥∥
M∑
i=1

Di(wi,k −wk)

∥∥∥∥∥
2

−
M∑
i=1

‖Di(wi,k −wk)‖2

=
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M∑
i=1

Diwi,k −
M∑
i=1

Diwk
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2

−
M∑
i=1

‖Di(wi,k −wk)‖2

= −
M∑
i=1

‖Di(wi,k −wk)‖2. (17)

Furthermore, we bound the term
∑M

i=1 ‖Di(wi,k −wk)‖2 as follows:

M∑
i=1

‖Di(wi,k −wk)‖2 =
M∑
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(
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2

=
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2
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(
D2
iD

2
j

D2
‖wi,k −wj,k‖2

)

≤
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i=1

M∑
j=1

(
D2
iD

2
j

D2
(‖wi,k − vk‖2 + ‖wj,k − vk‖2)

)
. (18)
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Based on Lemma 3 in [20], we have ‖wi,k − vk‖ ≤ gi(τ) and ‖wj,k − vk‖ ≤ gj(τ), where

gi(x) , δi
β

((ηβ + 1)x − 1). Substituting into (18) yields
M∑
i=1

M∑
j=1

(
D2
iD

2
j

D2
(‖wi,k − vk‖2 + ‖wj,k − vk‖2)

)
≤
∑M

i=1

∑M
j=1

(
D2
iD

2
j

(
g2
i (τ) + g2

j (τ)
))

D2
.

(19)

Finally, combining (14), (15), (16), (18), and (19) together, we have Theorem 2:

E
{
F (wΠ

k )− F (wk)
}
≤
β(M − |Π|)

∑M
i=1

∑M
j=1

(
D2
iD

2
j

(
g2
i (τ) + g2

j (τ)
))

2M(M − 1)|Π|D2
minD

2
. (20)

APPENDIX C

PROOF OF THEOREM 3

First, we have the following lemma.

Lemma 2. If the following conditions hold:

1) η ≤ 1
β

2) ηϕ− ρh(τ)+B(Π)
τε2

> 0

3) F (vk)− F (w∗) ≥ ε, k = 1, 2, . . . , K

4) F (wΠ
K)− F (w∗) ≥ ε

for some ε > 0, ϕ , ω
(
1− βη

2

)
and ω , mink

1

‖wΠ
k −w∗‖

, then the global loss function of

wireless FL can be bounded by

E
{

1

F (wΠ
K)− F (w∗)

}
≥ K

(
ηϕτ − ρh(τ) +B(Π)

ε2

)
, (21)

where the expectation is taken over the randomness over Π.

Proof. First, we define θk = F (vk)− F (w∗). According to (30) in [20], we have

1

θK
− 1

F (w0)− F (w∗)
≥ Kτωη

(
1− βη

2

)
+

K−1∑
k=1

(
1

F (wΠ
k )− F (w∗)

− 1

θk

)
, (22)

where ω , mink
1

‖wΠ
k −w∗‖

. Each term in the summation in the right-hand side of (22) can be

further expressed as

1

F (wΠ
k )− F (w∗)

− 1

θk
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(
F (wΠ
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(F (wΠ
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F (vk)− F (wΠ
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(F (vk)− F (wk))−

(
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)

(F (wΠ
k )− F (w∗)) θk

, (23)
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where the last inequality is due to Theorem 1 in [20]. Assume that θk = F (vk) − F (w∗) ≥ ε

for all k. By summing up (26) in [20] for all τ steps of centralized gradient descent of vk,

we have F (vk) ≤ F (wΠ
k−1). Therefore, F (wΠ

k ) − F (w∗) ≥ F (vk+1) − F (w∗) ≥ ε, and thus(
F (wΠ

k )− F (w∗)
)
θk ≥ ε2, consequently

−1

(F (wΠ
k )− F (w∗)) θk

≥ − 1

ε2
. (24)

Substituting (24) into (23) yields

1

F (wΠ
k )− F (w∗)

− 1

θk
≥
−ρh(τ)−

(
F (wΠ

k )− F (wk)
)

ε2
.

Then take expectation over the randomness of Π and apply Theorem 2, we have

E
{

1

F (wΠ
k )− F (w∗)

− 1

θk

}
≥ −ρh(τ)−B(Π)

ε2
. (25)

Then substitute (25) into (22) and take expectation over the randomness of Π, we have

E
{

1

θK
− 1

F (w0)− F (w∗)

}
≥ Kτωη

(
1− βη

2

)
+

K−1∑
k=1

E
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1

F (wΠ
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− 1

θk

}
≥ Kτωη

(
1− βη

2

)
+ (K − 1)

−ρh(τ)−B(Π)

ε2
. (26)

Also assume that F (wΠ
K)− F (w∗) ≥ ε. Similar to the argument as for obtaining (24), we have

−1

(F (wΠ
K)− F (w∗)) θK

≥ − 1

ε2
. (27)

Subsequently, we have

1

F (wΠ
K)− F (w∗)

− 1

θK
=
θK −

(
F (wΠ

K)− F (w∗)
)

(F (wΠ
K)− F (w∗)) θK

=
F (vK)− F (wΠ

K)

(F (wΠ
K)− F (w∗)) θK

=
(F (vK)− F (wK))−

(
F (wΠ

K)− F (wK)
)

(F (wΠ
K)− F (w∗)) θK

(a)

≥
−ρh(τ)−

(
F (wΠ

k )− F (wk)
)

(F (wΠ
k )− F (w∗)) θk

(b)

≥
−ρh(τ)−

(
F (wΠ

k )− F (wk)
)

ε2
. (28)

The inequality of (a) is due to Theorem 1 in [20], and the inequality of (b) is due to (27).

Substituting Theorem 2 into (28) and taking expectation over the randomness of Π yield

E
{

1

F (wΠ
K)− F (w∗)

− 1

θK

}
≥ −ρh(τ)−B(Π)

ε2
. (29)

Then sum up (29) and (26), we have

E
{

1

F (wΠ
K)− F (w∗)

− 1

F (w0)− F (w∗)

}
≥ K

(
τωη

(
1− βη

2

)
− ρh(τ) +B(Π)

ε2

)
. (30)
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Since F (w0)− F (w∗) > 0 due to the definition of w∗, we have

E
{

1

F (wΠ
K)− F (w∗)

}
≥ E

{
1

F (wΠ
K)− F (w∗)

− 1

F (w0)− F (w∗)

}
≥ K

(
τωη

(
1− βη

2

)
− ρh(τ) +B(Π)

ε2

)
= K

(
ηϕτ − ρh(τ) +B(Π)

ε2

)
. (31)

Based on Lemma 2, we can now proof Theorem 3. Since the condition η ≤ 1
β

in Theorem 3,

the first condition in Lemma 2 is always satisfied.

When ρh(τ)+B(Π) = 0, ε can be chosen arbitrarily small to satisfy conditions 2-4 in Lemma

2. Because the right hand side of (11) and (31) is equal when ρh(τ) + B(Π) = 0, Theorem 3

is directly from Lemma 2.

When ρh(τ) +B(Π) > 0, we consider the right hand side of (31) and let
1

ε0
= K

(
ηϕτ − ρh(τ) +B(Π)

ε20

)
. (32)

Solving for ε0 and ignoring the negative solution, we have

ε0 =
1 +

√
1 + 4ηϕK2τ (ρh(τ) +B(Π))

2ηϕKτ
. (33)

Since ε0 > 0, ηϕτ − ρh(τ)+B(Π)

ε20
> 0 based on (32). We note that ηϕτ − ρh(τ)+B(Π)

ε2
increases with

ε when ρh(τ) +B(Π) > 0, hence condition 2 in Lemma 2 is satisfied for any ε > ε0.

Suppose that there exists ε > ε0 satisfying conditions 3 and 4 in Lemma 2. Then all the

conditions in Lemma 2 are satisfied, and we have

E
{

1

F (wΠ
K)− F (w∗)

}
≥ K

(
ηϕτ − ρh(τ) +B(Π)

ε2

)
≥ K

(
ηϕτ − ρh(τ) +B(Π)

ε20

)
=

1

ε0
.

(34)

It contradicts with condition 4 in Lemma 2, and thus there does not exist ε > ε0 that satisfy

both conditions 3 and 4 in Lemma 2. Therefore, either ∃k that satisfies F (vk)−F (w∗) ≤ ε0 or

F (vk)− F (w∗) ≤ ε0. Then we have

min

{
min

k=1,2,...,K
F (vk);F (wΠ

K)

}
− F (w∗) ≤ ε0. (35)

Based on Theorem 2 and Theorem 1 in [20], we have E{F (wΠ
k )} ≤ F (vk) + ρh(τ) +B(Π) for

any k. Substituting into (35) yields

min
k=1,2,...,K

E
{
F (wΠ

k )− F (w∗)
}
≤ ε0 + ρh(τ) +B(Π). (36)
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Then based on the Jensen’s inequality and the convexity of f(x) = 1
x
, we have

E

 1

min
k=1,2,...,K

F (wΠ
k )− F (w∗)

 ≥ 1

E
{

min
k=1,2,...,K

F (wΠ
k )− F (w∗)

}
≥ 1

min
k=1,2,...,K

E {F (wΠ
k )− F (w∗)}

≥ 1

ε0 + ρh(τ) +B(Π)
. (37)

Combine (37) with the definition of F (w̃) (i.e., (7)) and (33), we have Theorem 3 proved.
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