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Abstract— Network Slicing is expected to become a game
changer in the upcoming 5G networks and beyond, enlarging
the telecom business ecosystem through still-unexplored vertical
industry profits. This implies that heterogeneous service level
agreements (SLAs) must be guaranteed per slice given the
multitude of predefined requirements. In this paper, we pioneer
a novel radio slicing orchestration solution that simultaneously
provides latency and throughput guarantees in a multi-tenancy
environment. Leveraging on a solid mathematical framework,
we exploit the exploration-vs-exploitation paradigm by means
of a multi-armed-bandit-based (MAB) orchestrator, LACO,
that makes adaptive resource slicing decisions with no prior
knowledge on the traffic demand or channel quality statistics.
As opposed to traditional MAB methods that are blind to the
underlying system, LACO relies on system structure information
to expedite decisions. After a preliminary simulations campaign
empirically proving the validness of our solution, we provide a
robust implementation of LACO using off-the-shelf equipment to
fully emulate realistic network conditions: near-optimal results
within affordable computational time are measured when LACO
is in place.

Index Terms— 5G-and-beyond, virtualization, network slicing,
MAB, latency control, resource management.

I. INTRODUCTION

THE quest for new sources of revenue that revitalizes
the mobile industry has spawned an unprecedented

hype around the fifth-generation of mobile networks (5G)
and, in particular, the network slicing concept. Enabled by
software-defined networking (SDN) and network function vir-
tualization (NFV), network slicing allows telco operators to
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Fig. 1. Illustration of the network slicing concept.

offer virtualized slices of infrastructure resources on-demand
to heterogeneous 3rd-party services [1]. A high-level view of
the system considered in this paper is described in Fig. 1.
The figure represents a series of sliceable base stations as a
pool of radio resources (coloured cubes in the figure). The
resource allocation process is considered hierarchical: while
bundles of radio resources are assigned to different tenants
(namely radio slices), each tenant autonomously schedules its
bundle of radio resources to each individual user following
classic radio scheduling policies. The difference between such
operations is subtle but of paramount importance: a slice
controller operates at a larger timescale and thus over a
coarser granularity [2], [3]. While most prior work on network
slicing focuses on average bit-rate guarantees [3], [4], latency
considerations have received little attention. Latency aspects
however are gaining more and more attraction as a quest
to face advanced use-cases requirements, e.g., autonomous
driving and platooning [5] in Vehicle-to-everything (V2X)
enabled scenarios. In this context, accurate resource allocation
schemes and inter-slice isolation aspects are fundamental
features to support the provisioning of latency-constrained
services.

Given the plethora of works on classic radio scheduling
[6], [7], we keep this aspect out of the scope of this
paper and we focus instead on the former impelling need: a
proper design of an orchestration solution that autonomously
assigns chunks of radio spectrum (slices) in relatively larger
time-scales pursuing the goal of guaranteeing simultane-
ously latency and throughput constraints. From the best
of our knowledge, there is a non-negligible lack of works
focusing on both aspects simultaneously in sliced-network
environments.
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To fill this gap, we design a LAtency-Controlled Orchestra-
tor (LACO), a network slice controller that maps virtual radio
resource allocations to physical resources while still guaran-
teeing latency requirements.1 Specifically, LACO augments
such prior work by accommodating resources to (granted)
slices such that latency agreements are satisfied. This unlocks
a new business opportunity for the telco operators that may
apply customized pricing models according to the elasticity of
offered slice latency constraints.

Technical Challenges: While designing LACO, two sources
of uncertainty need to be under control: i) the behavioral
dynamics of the (aggregated) demand across involved tenants
and ii) the inherent randomness of the wireless channel. These
system dynamics have been traditionally modeled via either
complex solutions that are hard to solve in realistic settings or
via simplistic assumptions at the expense of low performance
figures. In our work, we explore a novel approach by designing
a scheme that learns the implications that allocation decisions
have on per-slice latency without explicitly making assump-
tions on the underlying dynamics. To this aim, we first model
our decision-making problem as a Markov Decision Process2

(MDP), which allows us to neglect low-level details of the
tenant demands and channel dynamics while letting us retain
some knowledge on the consequences that a given action may
have on the most immediate next system state.

An MDP model helps us to fully explore the problem
features. However, the process of learning the state transi-
tion probability matrix of each of the embedded Markov
chains incurs in prohibitive overhead as a reinforcement
learning agent has to explore the whole space of state-action
trajectories—the so-called curse of dimensionality. To address
this, we resort to a Multi-Armed Bandit (MAB) model where
the attained reward depends only on the action taken from
a bounded set of possible actions. Importantly, in contrast
to traditional MAB methods, LACO is model-aware (though
not model-dependant), i.e., it exploits (abstracted) information
regarding the underlying system to expedite the selection of
highly rewarding actions, which is particularly attractive when
dealing with dynamic non-stationary scenarios.

The main contributions of our paper can be summarized as
follows:

• We introduce a Discrete-Time Markov Chain (DTMC)
model to capture the dynamics of the (instantaneous)
aggregate slice traffic demand and the wireless channel
variations.

• We present a latent variable regression model to accu-
rately anticipate the transition probability matrix of the
proposed DTMCs.

• We formulate the dynamic slice resource provisioning as
a Markov Decision Process (MDP).

1Note that LACO does not compete with state-of-the-art throughput-only
slice controllers—in fact, we purposely assume the presence of an admission
controller that ensures that the aggregate load incurred by granted slices is
within the system capacity region.

2With a little misuse of nomenclature, we will refer to Markov Decision
Process (MDP) rather than Semi-Markov Decision Process (SMDP) despite
considering continuous time scales.

• We design a model-aware Multi-Armed Bandit (MAB)
method to guide the decision-making process, which
relies on the above DTMC models and anticipated tran-
sition probabilities to speed up convergence.

• We present an exhaustive simulations campaign to assess
the performance of our approach.

• We implement and field-test our solution using off-the-
shelf equipment that emulates real network conditions:
LACO shows its innovative performance gain against
considered legacy techniques.

The remainder of the paper is structured as follows.
Section II formulates our problem and presents the main build-
ing blocks of LACO. Section III introduces an DTMC model
that helps us expedite the action-space exploration phase and
Section IV deeply analyzes it. In Section V, we introduce our
decision process as a Markov Decision Process (MDP) and
present a model-aware Multi-Armed Bandit decision-making
engine integrated in LACO. Section VI presents our prelim-
inary simulation campaign to validate the design principles
of LACO, whereas Section VII details the implementation of
our novel solution into off-the-shelf equipment with realistic
network performance. Finally, Section VIII summarizes related
literature and Section IX concludes the paper with some final
remarks.

II. LACO: THE FRAMEWORK OVERVIEW

Our solution relies on the concept of slicing-enabled net-
works wherein multiple network tenants are willing to obtain a
network slice with predefined service level agreements (SLAs).
Such SLAs may be expressed in terms of maximum slice
throughput and average access latency. Within the context
of our paper, we define the average access latency as time
the traffic belonging to a certain slice needs to wait before
being served due to scheduling procedures. In particular,
we focus on the radio access network (RAN) domain and
design LACO, a RAN controller that dynamically provisions
spectrum resources to admitted network slices while providing
latency guarantees. In the following, we overview the main
system building blocks with detailed notation and assumptions.

A. Business Scenario

We consider different entities in our system: i) an infrastruc-
ture provider owning the physical infrastructure who offers
isolated RAN slices as a service, ii) tenants who acquire and
manage slices with given SLAs to deliver services to end-
users, and iii) end-users, who demand radio resources from
such tenants/slices.

Let us define I as the set of running network slices
and Ui as the set of end-users associated to the i-th slice.
The total amount of wireless resources (radio spectrum) is
split into multiple non-overlapping network slices, each one
belonging to one single tenant i ∈ I.3 Based on fixed SLAs,
each network slice is characterized by maximum throughput
and expected latency denoted by Λi and Δi, respectively.

3We assume a one-to-one mapping between slices and tenants. Therefore,
we use i ∈ I interchangeably throughout the paper as a tenant identifier or its
associated slice. Note that this assumption can be easily relaxed in the model.



ZANZI et al.: LACO: A LATENCY-DRIVEN NETWORK SLICING ORCHESTRATION IN BEYOND-5G NETWORKS 669

TABLE I

NOTATION TABLE

We assume that an admission control process4 is concurrently
running on a higher tier so that the average aggregate load can
be accommodated within the overall system capacity.

B. Notation

We use conventional notation. We let R and Z denote the
set of real and integer numbers. We use R+, R

n, and R
n×m to

represent the sets of non-negative real numbers, n-dimensional
real vectors, and m×n real matrices, respectively. Vectors are
denoted as column vectors and written in bold font. Subscripts
represent an element in a vector and superscripts elements in
a sequence. For instance, 〈x(t)〉 is a sequence of vectors with
x(t) = [x(t)

1 , . . . , x
(t)
n ]T being a vector from R

n, and x(t)
i the

i’th component of the t’th vector in the sequence. Operation
[·]T represents the transpose operator while [x1, . . . , xn]diag

translates the vector into a diagonal matrix. Last, � and �

indicate an all-ones and all-zeroes vector, respectively, and �·�
is the ceiling operation.

C. Problem Definition

Assuming that an instance of LACO is executed per base
station (BS) as shown in Fig. 1, we focus our problem design
and performance evaluation on a single BS characterized by a
capacity C, which is the sum of a discrete set of available
physical resource blocks (PRBs) of fixed bandwidth. This
resource availability must be divided into subsets of PRBs
(i.e., slices), and our job is to dynamically assign such subsets
to each network slice i ∈ I. We refer to such assignment as the
configuration of slice i, denoted by the variable yi. Obviously,
we shall guarantee

∑
i∈I yi ≤ C. For the sake of clarity,

we summarize all mathematical variables used throughout the
paper in Table I.

We consider a time-slotted system where time is divided
into decision epochs n = {1, 2, . . . , N}. The decision epoch
duration ε may be decided according to the infrastructure
provider policies, ranging from few seconds up to several
minutes. While the admission controller (pre-)selects a subset
of slices that can co-exist without exceeding the capacity of
the system in average, the dynamic nature of the slice’s load
and wireless channel may cause instantaneous load surges or

4Given the plethora of solutions in the literature, the admission control
design is out of the scope of this work. We refer the reader, for example,
to [2], [4] for more details.

channel quality fading effects and hence induce a non-zero
mean delay.

We denote the experienced instantaneous signal-to-noise
ratio (SNR) of slice i (averaged out across all users of the
slice) and the instantaneous aggregate traffic demand within
time-slot n as γ

(n)
i and λ

(n)
i , respectively. As each tenant

i may show different behavior in terms of wireless channel
evolution (according to θi) and traffic demands (according to
ρi), we also assume γ(n)

i and λ
(n)
i are drawn from different

univariate probability density function, i.e., γ(n)
i ∼ f(x, θi)

and λ
(n)
i ∼ f(x, ρi). Importantly, we do not assume any

knowledge on such random variables; we exploit machine
learning techniques to learn the inherent channel and demand
models, which allow our system to dynamically adapt the slice
configurations y(n)

i at every decision epoch n while mitigating
latency constraint violations.

Formally, the above-described problem becomes:
Problem LATENCY-CONTROL:

minimize lim
N→∞

N∑
n=1

E

[∑
i∈I

r
(n)
i

]

subject to E

⎡
⎣ λ

(n)
i

ζ
(
y
(n)
i , γ

(n)
i

)
+ r

(n)
i

⎤
⎦ ≤ Δi, ∀i ∈ I;

∑
i

y
(n)
i ≥ C, ∀n;

y
(n)
i , r

(n)
i ∈ Z+, ∀i ∈ I;

where ζ(·)(n) is a mapping function that returns the number
of bits that can be served using the allocated number of PRBs
(y(n)

i ) and the current SNR level γ(n)
i , as per [8, §7.1.7].

The traffic demand might not be satisfied within a single
decision epoch incurring in packet queuing and additional
delay. Therefore, in our formulation we introduce r(n)

i as a
deficit value indicating the number of bits not served within the
agreed slice latency tolerance Δi during the time-slot n (i.e.,
dropped). The objective of Problem LATENCY-CONTROL is
hence to find a sequence of 〈y(n)

i 〉 configurations such that
the expected total non-served traffic demand is minimized.
Hereafter whenever is evident from context, we drop the super-
script (n) to reduce clutter. To address the problem, we rely
on a two-layer scheduling approach commonly adopted in
the network slicing context [3], [9]. On the one side, an
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Fig. 2. Workflow illustration.

inter-slice scheduler is in charge of defining the PRB allocation
strategy to meet the networking requirements while ensuring
resource isolation among slices. On the other side, a lower
layer intra-slice scheduler enforces the assignment of the
pre-allocated subset of PRBs to the connected end-users. Our
work mainly focuses on the higher-level inter-slice scheduler,
leaving the implementation of intra-slice scheduling strategies
open to address tenant-specific requirements.

D. Working Flow

For a given slot n, problem LATENCY-CONTROL can be
easily linearized5 and solved with standard optimization tools.
However, this approach may exhibit sub-optimal behavior in
future epochs if the statistical distributions of f(x, θi) and
f(x, ρi) are not stationary. Hence, we propose a novel two-fold
approach that: i) models channel and traffic demand variations
based on previous observations, and ii) iteratively applies slice
settings towards the goal of honouring SLAs.

Fig. 2 depicts the building blocks of our solution. LACO
relies on the concept of Markov Decision Process (MDP)
as described in Section V to decide which configuration yi

should be enforced to all active slices i, adapting its choice
at every epoch n according to the observed reward function
that measures the incurred latency. In turn, this information
is asymptotically calculated within Discrete-Time Markov
Chain (DTMC) model described in Section III. The transition
probabilities of such DTMC are updated according to previous
observations in the Monitoring and Prediction of Channel
Variations module, described in Section IV.

III. DTMC MODEL

Hereafter, we analyze the system dynamics through a
Markov Chain-based (MC) model that computes expected
channel conditions and violations on latency tolerance.
It should be noted that channel variations and traffic demands
are independently obtained according to each slice, thus each
DTMC may be treated individually without the need to setup a
Markov chain accounting for the overall system configuration.
Such global DTMC could anyway be easily obtained as
linear combination of the individual DTMCs. For the sake
of tractability, we consider a single (virtual) user ūi with an

5Function ζ(·) can be easily approximated with a linear function by applying
piece-wise linearization.

Fig. 3. Radio channel variations as Markov chain.

aggregate traffic demand resulting from the set of users ui ∈
Ui belonging to slice i.6 We also assume a finite number of
channel quality levels G, which may bound each instantaneous
user channel quality γi, as depicted in Fig. 3. This is a system
design choice and allows operators to trade off high accuracy
for convergence speed, by ranging from a fine-grained scale
(large G), e.g. by letting each channel quality level be equal
to the modulation and coding scheme (MCSs) as defined in
the 3GPP standard document [8], to a coarse-grained scale
that may capture the channel variation behaviors with limited
accuracy, as detailed in Section IV.

Let us consider a discrete-time stochastic process Xt
7 that

takes values from a finite and discrete state space, which
is denoted by S = {S0,0, . . . , Sg,d, . . . , SG,1 | 0 ≤ g ≤
G, d ∈ {0, 1}}.8 In particular, a realization of Xt when visiting
state Sg,d represents virtual user ūi experiencing channel
level g ∈ G with an associated delay exceeding the one
specified by the slice SLA (d = 1) or otherwise (d = 0).
When considering wireless channel conditions as Rayleigh
distributed, it is common practice to model the variations
as a sequential visiting of consecutive states, as the channel
does not vary faster than the Markov chain time-slot [11].
Hence, we define the probability to improve the user channel
condition from level g to level g + 1 as pg,g+1 whereas
the probability to get a bad channel from level g to level
g − 1 as qg,g−1. As shown in recent works like [12], [13],
accurate scheduling strategies might mitigate the interference
effects coming from multiple base stations serving the same
sets of slices thus improving the overall channel conditions.
However, such schemes introduce additional complexity and
synchronization overhead, which hardly fit with our view of
a lightweight base station oriented solution. Last, given the
available physical resource blocks assigned to a particular slice
yi, the channel quality level g and the overall traffic demand
within the time-slot, we model the probability to incur in delay
constraint violation as mg and the probability to keep the
access delay within the agreed bound as lg . This process can
be formulated as a two-dimensional DTMC M := (S, P ),

6This assumption can be readily relaxed by considering the convolution of
single cumulative distribution functions of every user channel and demand
variation [10].

7The time scale t of DTMC state switch is much shorter than the decision
epoch n used in the MDP described in Section V.

8Each DTMC is defined within a state space Si. We remove the index i to
limit the clutter, as the analysis can be easily extended to any other slice.
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where P denotes the following transition probability:

P =
∣∣∣∣Km M
L Kl

∣∣∣∣ ,where Kx={m,l} = {k(x)
ij } (1)

with k(x)
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− pi,i+1 − qi,i−1 − xi if i = j,

qi,j if i = j + 1,
pi,j if i = j − 1,
0 otherwise;

and M = {mi}diag, L = {li}diag.

Note that we assume pG,G+1 = q1,0 = 0 and each square
block Kx={m,l},M and L with [G×G] size so that the
square matrix P has dimension [2G× 2G]. Without loss of
generality, we assume that such transition probabilities do not
depend on the particular time-slot we are evaluating. Thus,
we define our DTMC as a time-homogeneous MC where the
process Xt evolves based on Π(t) = Π(0) P t where the row
vectors Π(t) and Π(0) represent the first order state probability
distribution at time n and 0, respectively. In order to evaluate
the long-term behavior of our system, we need to calculate
the steady-state probability Π∗ = {π∗

s} of being in each of
the defined states. It yields that

Π∗ = lim
n→∞Π(t) = Π(0) lim

n→∞P t = Π(0)P ∗. (2)

The above-described Markov chain is irreducible, as each
state may reach through available paths any other state. There-
fore, by stochastic theory, if a Markov chain is irreducible
and non-periodic, the steady-state probability distribution Π∗

always exists, is unique and is independent from the initial
conditions.

Recalling the total probability theorem and using Eq. (1),
we calculate the steady-state probability distribution as the
solution of the following equations{

(PT − �diag)Π∗ = 0
� Π∗ = 1

(3)

where �diag is the identity matrix.

IV. DTMC MONITORING AND PREDICTION

The asymptotic behavior of a Markov chain depends on the
transition probability matrix P , which in turn depends on the
stochastic processes of the slice traffic demands and wireless
channel variations. While several models have been already
defined in the literature to derive such probabilities [14],
the latency control objective and the need of an accurate
estimation exacerbate the problem and render model-fitting
approaches impractical. This brings additional complexity and
delay the convergence process to the optimal solution.

We apply the concept of unsupervised learning to estimate
the transition probabilities based on previous observations.
In particular, we rely on the well-known theory of proba-
bilistic latent variable [15]. Let us consider w ∈ W as the
stochastic latent variable denoting the current channel quality
level. Formally, we redefine the transition probability of the
above-described DTMC as

ρg
a,b = Pr(Xt = Sg,b | Xt−1 = Sg,a, g = w) (4)

that is the probability to move from state Sg,a to Sg,b when
the channel level is exactly g = w. To easily understand this,
note that ρg

0,1 = mg, ρg
1,0 = lg whereas ρg

0,0 and ρg
1,1 are

the probabilities to stay within the same state Sg,0 and Sg,1,
respectively. We use an expectation maximization technique
to estimate such probabilities. To this aim, we enumerate the
transitions between a and b upon g in hg

a,b based on the number
of times Xt switches to another state (or stays within the same
state) between t and t + 1. We then derive the a posteriori
probability as follows

Pr(g = w | Xt = Sg,b, Xt−1 = Sg,a)

=
Pr(Xt = Sg,b | Xt−1 = Sg,a, g = w)Pr(g = w)∑

z∈W
Pr(Xt = Sg,b | Xt−1 = Sg,a, g = z)Pr(g = z)

,

(5)

and the likelihood probability as the following

Pr(Xt = Sg,b | Xt−1 = Sg,a, g = w)

=

∑
g∈G

hg
a,bPr(g = w | Xt = Sg,b, Xt−1 = Sg,a)∑

{α,β}∈{0,1}2

∑
g∈G

hg
α,βPr(g = w|Xt = Sg,β , Xt−1 = Sg,α)

(6)

and

Pr(g = w)

=

∑
{α,β}∈{0,1}2

hg
α,βPr(g = w | Xt = Sg,β , Xt−1 = Sg,α)

∑
{α,β}∈{0,1}2

hg
α,β

(7)

The above system of equations can be solved using an iterative
method that yields ρg

a,b. Finally, we calculate the weight
of each latent variable based on a given set of previous
observations as per the following equation

ω(w | Ŝi) =

∑
{α,β}∈Ŝi

ρw
α,β∑

g∈W
∑

{α,β}∈Ŝi
ρg

α,β

, (8)

where Ŝi denotes the history of transitions (or lack thereof)
across Xt among different states belonging to level 0 or 1
in the DTMC depicted in Fig. 3. We can generalize the
probability to move from a state wherein the latency is under
control Sg,0 to a state incurring unexpected latency Sg,1,
i.e., exceeding the threshold defined in the slice SLA, using
the following expression

ρa,b =Pr(Xt+1 =Sb|Xt = Sa, Ŝi) =
∑

w∈W
ω(w | Ŝi)ρw

a,b. (9)

In the next section, we design a control-theory process by
means of a Markov Decision Process (MDP) that optimally
selects the best slice configuration yi based on the probability
to exceed the access latency constrained by the slice SLA.
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V. MARKOV DECISION PROCESS

We model the decision problem as a Markov Decision
Process (MDP) defined by the set of states Σ = {σ}, the set
of actions Φ = {φ}, the transition function T (σ, φ, σ′), and
the reward function R(σ, φ). The set of states accounts for all
the radio resource splitting options among different tenants,
namely slicing configuration cσ = {y1, y2, . . . , yi, . . . , yI}
expressed in terms of PRBs, where

∑
i∈I yi = C, i.e., the

overall capacity is exactly split between running slices.
We assume that each slicing configuration is issued at every
decision epoch n. The transition function characterizes the
dynamics of the system from state σ to state σ′ through action
φ. Analytically, P (σ′ | σ, φ) is the probability to visit state σ′

given the previous visited state σ and the action φ. Finally,
the function R(σ, φ) measures the reward associated to the
transition from the current state σ performing action φ. We
shall consider an MDP with an infinite time horizon. Future
rewards will be discounted by a factor 0 < χ < 1 to ensure
the total reward obtained is finite.

When dealing with MDPs is common practice to define
a “policy” for the decision agent, namely a function P(n) :
Σ(n) → Φ(n) that specifies which action φ to perform at time
n when in state σ. As soon as the Markov decision process
is combined with a defined policy, this automatically fixes the
next action for each state so that the resulting combination
exactly behaves similarly to a Markov chain. The final aim
of the decision agent is to find the policy that maximizes the
expected total reward, or, equivalently, to discover the policy
P∗ that maximizes the value function.

A. Reward Definition

Each state (or slicing configuration) is associated with a
reward value that influences the agent during the decision
process. The rationale behind is that we need to bind the action
reward to the probability of exceeding the latency constraints
defined in the slice SLA. In the following, we introduce
the reward function used in our experiments with a detailed
overview of its behavior.

Given a slicing configuration cσ = {yi | i ∈ I}, we can
analytically build a Discrete-Time Markov Chain, as described
in Section III. If the associated transition probability matrix
P is perfectly known, we can also derive the steady-state
probabilities Π∗ = {π∗

s} to be within any single state using
Eq. (3). Thus, we can compute the probability to have the
access latency of our system under control. This can be used
to formulate the instantaneous reward value

R(σ(n), φ(n)) =

⎛
⎝ ∑

s∈Sg,0

π∗
s

⎞
⎠

η

(10)

where s is the index of all states Sg,0, ∀g ∈ G such that
the slice latency is under control, whereas η ∈ [0, 1] is an
adjustable value decided by the infrastructure provider to pro-
vide action fairness in the reward function when η tends to 0,
or maximum likelihood of keeping latency under control when
η tends to 1. Then our objective is to maximize the expected

aggregate reward obtained as lim
N→∞

N∑
n=1

E
[
χnR

(
σ(n), φ(n)

)]
.

However, given the fully-connected structure of our Markov
Decision Process, i.e., all states are reachable from any MDP
state, our objective is equivalent to maximize the instantaneous
reward given by (10) at each decision epoch n.

Nonetheless, the assumption of perfect knowledge on the
transition probability matrix P might be not realistic. There-
fore, we need to rely on the transition probabilities ρa,b

inferred based on the previous observations, as explained
in Section IV, Eq. (9). The larger the set of observations,
the higher the accuracy of our probability estimation and the
higher the reward attained to the instantaneous best action
taken by the MDP.

B. Complexity Analysis

Once we have fully characterized our proposed MDP,
we can solve it by using dynamic programming solutions such
as Value Iteration [16]. These approaches require exploring the
entire state space of the MDP (several times) and the associ-
ated rewards. Let us consider a scenario with I online slices
running in our system. Assume that each slice configuration
yi can take values from integer multiples of a minimum PRB
chunk size Θ and that the slicing configuration must be con-
sistent, i.e.,

∑
i∈I yi = C. Then, we can calculate the overall

number of states equal to ( C
Θ+I−1)!

(I−1)! C
Θ !

. This poor state scalability,
as well known as the curse of dimensionality, compromises
the feasibility of MDP models under practical conditions.
However, MDPs provide insights regarding the structure of
the problem itself and are very helpful to design ausiliary
solutions, such as Multi-Armed Bandit (MAB) models, which
are better suited for functional deployments. Therefore, in the
next section we rely on a novel MAB design that exploits
information from the underlying MDP to expedite the learning
process while attaining near-optimal results.

C. Multi-Armed Bandit Problem

The online decision-making problem has been addressed
in the past with several mathematical tools [17]. The lim-
ited information about real-time channel quality and effective
traffic demand forces the operator to choose, like a gambler
facing diverse options to play, the number of radio resources
to assign to each running slice. This automatically falls in the
fundamental exploration-vs-exploitation dilemma: the gambler
needs to carefully balance the exploitation operations on
known slicing configurations that provided the best revenues
in the past against the exploration of new slicing configuration
that might eventually produce higher revenues.

This class of decision process can be formulated as a
Multi-Armed Bandit (MAB) problem, which emulates the
action of selecting the best (single) bandit (or slot machine)
that may return the best payoff. Each slot machine returns
unpredictable revenues out of fixed statistical distribution,
not known a priori, that is iteratively inferred by previous
observations. This matches well the randomness of the channel
quality and the traffic demand we aim to capture whereas each
bandit can be mapped onto a state of the MDP, i.e., a specific
slicing configuration. The final objective of such a problem is
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to maximize the overall gain after a finite number of rounds.
This class of problems is usually assessed by a defined metric
called regret Ω, which is defined as the difference between
the reward that can be gained by an optimal oracle, i.e., using
an optimal policy that knows the reward distributions a priori,
and the expected reward of the myopic online policy.

Reusing notation from our MDP model, let us define each
arm σ ∈ Σ as a different slicing configuration cσ = {yi | i ∈
I}. Once selected, each arm provides an instantaneous reward
R(σ) defined as the following

R(σ) =
∑
i∈I

(
ζ(yi, γi)− λi

Δi

)
(11)

where the slicing configuration is yi ∈ cσ , ζ(·) computes the
number of bits that can be served using yi configuration and
given the current channel quality γi, and λi is the slice traffic
demand, as described in Section II-C.

While using such reward function requires low overhead,
as it only needs to calculate the incurred latency after selecting
a slicing configuration, it only converges to a near-optimal
solution after exploring several configurations, which results
in overly long training periods (as shown in Section VI).
This is an inherent issue with classic MAB methods, which
are blind to the underlying system structure. Conversely,
in this paper we resort to a novel model-assisted approach that
exploits the system model of Section V-A to guide the explo-
ration/exploitation process with (abstract) system information.
In this way, as opposed to using the traditional reward model
of Eq. (11), we define our bandit’s reward as the expectation of
access latency exceeding slice SLA defined in Eq. (10). This
has a two-fold advantage: i) during the initial training period,
the DTMC associated to each state of the MDP is updated
(and enhanced) with more accurate values of the transition
probabilities: this helps to find steady-state probabilities (and
in turn an updated reward per slicing configuration) that
reflect the real behavior of our system as time goes on;
and ii) the slicing configuration selection accounts directly
for stochastic behaviors of both channel quality and traffic
demand, while reducing the state space to those that may
benefit the entire system. Many algorithms have been proposed
to optimally solve the MAB while learning from previous
observations [18]. One of the main issues is that collecting
rewards on a short-time basis may negatively impact on the
decision of the best bandit. Thus, we rely on a modified version
of the so-called Upper Confidence Bound (UCB) algorithm
devised by [19] that overcomes this issue by measuring not
only the rewards collected up to the current time interval, but
also the confidence in the reward distribution estimations by
keeping track of how many times each bandit has been selected
zσ,n. The pseudo-code is listed in Algorithm 1.

Initially, we explore all bandits, i.e., slicing configuration
σ ∈ Σ, to get a consistent reward (line 2-6). Then we select
the best configuration that maximizes the empirical distribution
ρ̂σ accounting for a confidence value. This confidence value
depends on the number of times we have explored that par-
ticular configuration as well as the accuracy of the transition
probabilities we calculate for the associated DTMC. Note that
this is different to traditional UCB algorithms. Specifically,

Algorithm 1 LACO
1. Input: Σ, N,Ψ = {ψ(σ)}, I, ω, ε,S
2. Initialization: zσ, ρ̂σ = 0, ∀σ
3. Procedure:
4. for all n ∈ N do
5. if n = 0 then
6. for all σ ∈ Σ do
7. GET reward: ρ̂σ = R

(n)
σ

8. zσ = zσ + 1
9. end for

10. else
11. σ∗ = argmax

σ∈Σ
ρ̂σ + ψ(σ)

√
2 log

�
k zk

zσ

12. UPDATE ρ̂σ∗ ← R
(n)
σ∗

13. zσ = zσ + 1
14. end if
15. for all TTIs ∈ ε do
16. for all i ∈ I do
17. UPDATE ω(w | Ŝi)← Si

18. end for
19. end for
20. UPDATE ψ(σ∗)← ω(·)
21. end for
22. End Procedure

we define a Markov accuracy value ψ(σ) = ( (
�

w ω(w|Ŝi))
2

W
�

w ω(w|Ŝi)2
),

where W represents the cardinality of the set W . Note that
ψ(σ) depends on the weights ω(·) obtained through the
performed observations Ŝi, as reported in Eq. (8). Interestingly,
ψ(σ) ∈ (0, 1], i.e., when the DTMC has no relevant observa-
tions to build its transition probabilities this function returns
ψ(σ) = 1 whereas, when a relevant number of observations
allow to determine accurate transition probabilities, its value
tends to 0. The value of ψ(σ) is updated at the end of every
decision interval (line 20) after monitoring the effects of the
last decision on the Markov Latent variable distribution (lines
15− 19).

D. Regret Analysis

Here, we mathematically calculate the bounds of our solu-
tion, LACO, for multi-armed bandit problems. Let us consider
a player selecting an arm σ ∈ Σ every decision epoch n. Every
time arm σ is pulled down, it returns a rewardR(n)

σ drawn from
an unknown distribution with mean ρ̄σ and empirical mean

value calculated until time n as ρ̂(n)
σ =

�n
s=1 R(s)

σ

n . We denote
σ∗ as the arm providing the maximum average reward such
that ρ̄σ∗ > ρ̄σ, ∀σ 
= σ∗. If the arm selection is performed
using LACO, it yields that the regret is obtained as

ΩLACO
N (Σ) = Nρ̄σ∗ − E[

N∑
n=1

R(n)
σ | σ ∈ PLACO]

= Nρ̄σ∗ −
Σ∑

σ=1

ρ̄σE[z(n)
σ ]; (12)

where PLACO = {σn} is the policy as defined in Section V
that consists of a set of moves that LACO will play at time



674 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 1, JANUARY 2021

n whereas zσ,n is the overall number of decision epochs arm
σ has been pulled down till time instant n. Now consider
LACO as a uniformly good policy, i.e., any suboptimal arm
σ 
= σ∗ is chosen by our policy up to round n so that E[zσ,n] =
o(nα), ∀α > 0. It holds that

lim
N→∞

Σ∑
σ=1

N−1ρ̄σE[z(N)
σ ] = Σρ̄σ∗ . (13)

Hence, we can express the regret lower bound as the following

lim
N→∞

inf
ΩLACO

N (Σ)
logN

≥
∑

σ: ρ̄σ<ρ̄σ∗

ρ̄σ∗ − ρ̄σ

Div(ρ̄σ, ρ̄σ∗)
(14)

where Div(ρ̄σ, ρ̄σ∗) is the Kullback-Leibler divergence of
one statistical distribution against the other and it is used
to measure how one distribution might diverge from another
probability distribution.

Now consider the Hoeffding’s inequality for multiple i.i.d.
variables xn with mean μ. It yields that Pr(|

�n
i=1 xi

n − μ| ≥
δ) ≤ 2e−2nδ2

. Our algorithm LACO applies an upper confi-

dence interval δ =
√

2 log σkzk

zσ
. Therefore, it yields that

Pr

⎛
⎝|ρ̂σ,n − ρ̄σ| <

√
2 log

∑
k zk

zσ

⎞
⎠ ≥ 1− 2

n4
(15)

and also that

Pr

(
P(n+1) = σ | z(n)

σ >
4 logn
ρ̄σ∗ − ρ̄σ

)
≤ 4
n4
. (16)

We can then derive the expectation of number of times
sub-optimal arm σ 
= σ∗ is pulled down as follows

E[z(N)
σ ] ≤ 4 logN

ρ̄σ∗ − ρ̄σ
+ 8 (17)

and the regret upper bound as the following

E
[
ΩLACO

N (Σ)
] ≤ ∑

σ: ρ̄σ<ρ̄σ∗

4 logN
ρ̄σ∗ − ρ̄σ

+ 8 (ρ̄σ∗ − ρ̄σ) . (18)

VI. PERFORMANCE EVALUATION

In this section, we evaluate our solution through an exhaus-
tive simulation campaign that takes into account complexity,
revenue and SLA violation metrics.

A. Simulations Setup

To assess heterogeneous slices, we simulate the network
load demand of slice i at each time-slot (i.e., each transmission
time interval (TTI) in Long Term Evolution (LTE) systems)
by extracting a random value from a Normal distribution
Ni(μi, ν

2
i ), where μi and νi represent the mean value and

standard deviation, and let Li describe its latency constraint.
Moreover, we model the SNR channel variation as another ran-
dom variable drawn by a Rayleigh distribution and derive the
probability distribution encompassing the whole SNR range.
For every channel instantiation, we extract the corresponding
Modulation and Coding Scheme (MCS) as defined by the

3GPP standard.9 The MCS index m ∈M combines one possi-
ble modulation scheme and a predefined coding rate providing
a compact way to represent a simple concept: the better the
radio conditions, the more bits can be transmitted per time unit,
and vice versa. Fixing the channel bandwidth, the expected
average throughput achievable by one slice during one epoch
depends on both the modulation and coding schemes used
and, most importantly, on the number of PRBs reserved for
the slice. In a wider timescale ,10 the average capacity can
be approximated as Ci =

(∑M
m Γmπm,i

)
Tiyi where Γm

represents the average number of bits per LTE subframe that
can be transmitted using the m-th MCS index, πm,i is the
steady-state probability distribution output of the first stage
Markov chain model, Ti defines the decision interval size, and
yi accounts for the number of PRBs allocated to the i-th slice.
We refer the reader to Table I. In the LTE radio interface,
the maximum amount of PRBs is fixed to 100 when operating
at conventional bandwidth values of 20 MHz. In order to
support massive type communication and Ultra-Reliable Low-
Latency Communication (URLLC) use-cases, the 5G New
Radio (NR) introduces significant enhancements in the radio
frame composition. Not only 5G NR will support wider
channel bandwidth (up to 100 MHz), but also introduce the
support for multiple different types of subcarrier spacing.
For back-compatibility reasons, even in 5G NR the time
duration of radio frames and subframes are fixed to 10 ms
and 1 ms, respectively [20]. The number of slots within each
subframe however would change according to the subcarrier
configuration, which eventually translates in shorter PRB time
duration and thus a different PRB availability depending on the
selected configuration. It must be noticed that all the subcarrier
spacing are defined as Δf = 2j ·15 KHz, j = {0, . . . , 4}, thus
leading at the definition of time-frequency grids containing an
amount of PRBs which is multiple of those contained in the
traditional LTE grids. In this context, we assume a simple
mapping function, as the one described in [21], implemented
at intra-slice scheduler to homogenize the resources of poten-
tially heterogeneous radio access technologies.

Traffic demands are compared with the current channel
availability to derive the possibilities to pass from one state to
another. It must be noticed that the accuracy of the resulting
steady-state distribution strictly depends on the precision of
such comparison. For this reason, we constantly monitor and
update the transition probabilities of the Markov chain based
on the resource allocation adopted in the current decision inter-
val. During the arm selection, if the chosen configuration does
not provide enough resources to meet the latency requirements,
the steady-states will be mostly distributed in the lower part
of the Markov chain leading to a minor reward that, in turn,
guides the MAB agent to take a different action (i.e., selecting
a different arm) in the following decision round.

For benchmarking purposes, we implement two widely
used MAB algorithms, namely “legacy” UCB and Thompson

9We refer the reader to [8] for an exhaustive explanation of the mapping
between SNR and MCS.

10Note that we assume a timescale larger than our epochs used in the
decision-making process.
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Fig. 4. Impact of different resource allocation chunk sizes.

Sampling (TS).11 On the one hand, UCB adopts a deterministic
approach to deal with the exploration-vs-exploitation dilemma,
but its performance generally degrades as the number of arms
increases. On the other hand, Thompson sampling adopts
a probabilistic approach that scales better with the number
of arms, but it may provide sub-optimal results when the
distribution of reward changes over time (i.e., in non-stationary
scenarios). Conversely, LACO combines the advantages of
them both by adopting a probabilistic model (MDP) guiding
an exploration phase derived from UCB.

B. Multi-Armed Bandit Problem Behavior

We first explore the trade-off between action space (and its
granularity) and the associated reward loss. To this aim, we set
up a simple experiment with 2 slices with equal SLA require-
ments in a deterministic and static environment. We then
apply LACO using 3 different action sets: {0, 2, 4, . . . , 100},
{0, 5, 10, . . . , 100} and {0, 10, 20, . . . , 100} PRBs (with 50,
20 and 10 available configurations each), labelled “2 PRBs“,
“5 PRBs“ and “10 PRBs“, respectively. The results, shown
in Fig. 4 make it evident that the higher the granularity the
longer the exploration phase(s): over 50 intervals for “2 PRBs“
whereas it takes around 10 intervals for “10 PRBs“. Interest-
ingly, the loss in reward attained to the latter configuration is
only 2%. Therefore, due to a faster convergence time at the
expense of minimal reward loss, we empirically select Θ = 10
PRBs for our purposes.

C. Slice SLA Violation Analysis

We thus grant spectrum-time resources in the granularity
of chunks of 1 second × 10 PRBs. In the first scenario,
we investigate the capacity of LACO to adapt the resource
allocation at variable traffic loads. For this reason, we consider
only two slices with equal requirements, i.e., ν2

i = 10 Mb/s
and Δi = 20 ms for i = 1, 2. To assess real scenarios with
non-stationary traffic patterns, we vary the mean load of each
slice i following a sinusoidal curve in counter-phase between
μi = 8 Mb/s and μi = 40 Mb/s. This forces the resource

11Due to space limits, we refer the reader to the literature introducing such
algorithms, e.g. [22].

Fig. 5. Cumulative dropped traffic due to latency constraints violations.

allocation process to span across the whole configuration set
when dealing with SLAs guarantees. As shown in Fig. 5,
the cumulative dropped traffic of each slice changes when
different MAB algorithms are used. The behaviour of UCB
shows high variability after few decision intervals. As soon as
all the arms are selected, the agent starts learning about the
statistics of the outcomes and builds a ranked list. The need
for a comprehensive knowledge of all the arms leads to several
“bad” choices during the exploration phase. This slows down
the convergence to the optimal configuration and penalizes
performance. From the obtained rewards, TS builds a bivariate
probability distribution across the expected reward of each
arm, extracts a random sample and chooses the arm associated
to the maximum value. This approach performs well in static
scenarios as TS favours exploitation of the empirical results
obtained in the first attempts; but in time-varying scenario as
the one we are considering, the reward distribution associated
to each arm fluctuates over time rendering TS unable to
adapt fast enough in highly-dynamic scenarios. In contrast,
the LACO’s model-awareness allows for quicker convergence
and so it accommodates real-time traffic requirements in
dynamic environments and as a result reduces the amount of
data violating delay deadlines.

Obviously, heterogeneous throughput/latency requirements
impact the system differently. Fig. 6a shows the effect of
such variations on the system extending the previous scenario
and considering increasing values of resource requirements as
10 ·α Mb/s, and 10 ·β ms, respectively. As expected, smoother
delay requirements (horizontal direction in the figure) allow
to serve more traffic within the latency bounds defined by
the SLA, although the impact becomes negligible after few
incremental steps. This is due to long decision intervals
when compared to the timescale of fast channel variations.
A proper resource configuration selection allows to match
the offered traffic requirements with the expected channel
capacity, allowing the incoming traffic to be served within
few milliseconds. As the offered traffic approaches the channel
capacity boundary (vertical direction in the figure), the same
task becomes more challenging and the admission and control
process should consider this aspect when granting/rejecting
access to new network slices. LACO ’s abilities to adapt to
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Fig. 6. (a) Effects of different slice requirements; (b) CDF of latency experienced by served traffic; (c) Empirical cumulative regret for a variable number
of slices.

demand variations not only mitigates the amount of traffic vio-
lating delay requirements but also improves the distribution of
data delivery delay overall. As shown by Fig. 6b, the empirical
CDF of delay for each slice in the same scenario presented
above remarkably improved with a mean delay equal to 2.6,
3.9 and 4.9 ms for LACO, TS and UCB, respectively.

Finally, we implement an optimal offline policy with full
knowledge of the system, i.e., an oracle policy that knows the
future with the corresponding latency violations. We compare
both LACO and TS to this optimal policy for a variable
number of slices. The aggregated demand is adapted to ensure
we operate within the system capacity. In Fig. 6c, we depict
the temporal evolution of the cumulative reward loss over
time (regret) for both approaches. The figure illustrates how
the regret increases with time much rapidly for TS, a difference
that increases with the number of slices.

D. Convergence time

The next generation of mobile networks (5G) promises to
support the provisioning of high throughput and low-latency
services even in highly dense scenarios [2]. These capa-
bilities are tightly bounded with the possibility to exploit
higher communication frequencies together with wider spec-
trum bandwidth. In the 5G context, bandwidth is expected to
increase up to 100MHz, leading to additional complexity in
the management of radio resources. In order to assess LACO
performances in such scenarios, we investigate the conver-
gence time of our solution to the optimal slice configuration
in different bandwidth settings. To enable more efficient use
of the spectrum resources and reduce the power consumption
at UE side, 5G New Radio (NR) introduces the concept
of bandwidth parts (BWP) [20], where each BWP can be
configured by different numerologies defining specific signal
characteristic, e.g., in terms of subcarrier spacing. Without
loss of generality, we assume all the end-users belonging to
the same slice operating under similar numerology settings.
Moreover, we keep the subcarrier spacing fixed to Δf =
15 KHz as in legacy LTE systems. Such coarse resource
allocation scheme is mandatory to support LTE devices but,
it can be easily mapped to finer resource block structures
as defined within the 5G domain at lower layer intra-slice
schedulers [21].

Fig. 7a compares the convergence time of different MAB
algorithms for an increasing number of slices and bandwidth
availability over a time period of N = 1000 decision intervals.
It should be noticed that depending on channel statistics
and real-time slice requirements, multiple resource allocation
settings (namely arms) may provide optimal performance
making unfeasible a single convergence point. Thus, we opted
to simulate the worst-case scenario allowing for a unique
optimal resource configuration in each simulation run. In line
with previous observations, we fix Θ = 0.1C. Despite a
common initial exploration phase (highlighted in orange), from
the picture it is evident how the curse of dimensionality
affects the overall convergence time. This is more evident
for the legacy UCB approach (depicted in red), which hardly
copes with the increasing size of the action space and in
some runs did not converge to a solution within the time
boundary of our experiment. Focusing on LACO performances
(depicted in black), the number of decision intervals necessary
to converge to the optimal resource allocation outperforms
Thompson Sampling (in blue) by scaling almost linearly with
the number of slices (and PRB availability) after the initial
exploration phase.

Convergence to the optimal slice configuration also shows
its dependency on the radio channel statistics. To measure the
sensitivity of the decision process at the SNR fluctuations,
Fig. 7b considers a fixed number of slices (i.e., 3) deployed in
a system characterized by average channel statistics with an
increasing variance. In every scenario, the average (per slice)
channel realization is derived from a Rayleigh distribution
characterized by a scale parameter τ = {0.1, 0.2, 0.3, 0.4},
respectively. This introduces an increasing level of variability
in the SNR distribution according to the formula Var =
4−π

2 τ2, as depicted in the plots of the central column. On
the left-hand side of the same picture, it can be noticed
how higher SNR variability has very limited impact on the
decision steps. This feature is inherited by the Markov Chain
model described in Section III. In particular, provided that
the slice requirements fit within the admissibility region of
the system, a higher SNR variability will simply map into a
wider excursion over the Markov chain steady states without
affecting the final reward of the same arm.

Finally, on the right-hand side of the picture, we depict
the empirical CDFs of the overall latency occurred per slice.
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Fig. 7. Sensitivity analysis of bandwidth availability and SNR variability on the convergence time to the optimal slice resource allocation.

Fig. 8. Experimental setup (a); Architecture overview (b); Arm selection over time (c).

In (almost) static channel conditions, slices’ latency distrib-
ution suffer from having poor channel conditions, which are
barely sufficient to support requested data volumes. In this
context, slices with less stringent delay requirements, namely
the MTC and eMBB, are lightly penalized to meet the expected
latency threshold w.r.t. the URLLC one. When increasing the
channel variability, the average channel conditions improve
easing the allocation resource task thus favouring the satisfac-
tion of overall latency requirements.

VII. EXPERIMENTAL PROOF OF CONCEPT

In order to illustrate, validate and analyze the performance
of our LACO solution, we developed it as a standalone
software module running on top of an open source platform

that implements the LTE protocol stack, namely srsLTE [23],
attached to a USRP12 Software-Defined Radio (SDR) device
as radio front-end. Our testbed is depicted in Fig. 8a and
consists of one LTE eNB (a modification of srseNB) and
commercial Android tablets13 as UEs. Any single UE emulates
the aggregated traffic of multiple UEs within one slice. We use
mgen14 to generate different downlink traffic patterns. Due to
our LTE spectrum testing license restrictions, we use 10 MHz
bandwidth in LTE band 7 and use SISO configuration for

12USRP B210 from National Instruments/Ettus Research
(https://www.ettus.com/all-products/UB210-KIT/).

13Samsung Galaxy Tab S2 (https://www.samsung.com/de/tablets/galaxy-tab-
s2-9-7-t813/SM-T813NZKEDBT/).

14mgen (https://www.nrl.navy.mil/itd/ncs/products/mgen).
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simplicity. This renders a maximum capacity of ∼ 36 Mb/s
with highest SNR. Finally, in accordance with the findings
described in Section VI-B, we set the minimum PRB alloca-
tion value at 10% of the overall availability.

A. Implementation

The architecture of our software implementation and
LACO’s interfaces with srseNB are depicted in Fig. 8b.
LACO interacts with the eNB’s Medium Access Con-
trol (MAC) layer to implement two key features:

• Monitoring agent. This feeds LACO with real-time
SNR reports generated by the physical (PHY) layer from
feedback received from the UEs, the selected MCSs and
corresponding transport block size (TBS) value used to
encode information at the MAC layer, and other traffic
statistics such as packet size and arrival times;

• Policy Enforcer. This allows LACO to dynamically
enforce the PRB allocation policies calculated by our
MAB model, as described in Section V-C.

The main feature of our implementation is the possibility
to collect, with TTI granularity, the traffic arrival rate and
the TBS values to be used in each transmission frame. This
information, together with the scheduling buffer size and data
arrival times, is essential to compute the latency experienced
by the different slices running in the system.

The different metrics are collected in a time series database,
namely InfluxDB, and periodically reported to LACO which
constructs a virtual queue (one per slice) to track the dynamics
of packets arriving at the eNB, from their entrance into
the scheduling buffer to their transmission. This approach
is particularly useful as Internet Protocol (IP) packets are
multiplexed while advancing the transmission path in the eNB,
complicating the computation of slice latencies by external
modules. Our approach aims to characterize the PRB allo-
cation policy currently enforced into the system. In case of
constant traffic and low latency requirements for example,
poor channel conditions will result in lower TBS values and a
sudden increase of the virtual queues size. Such event directly
maps into an additional delay suffered by IP packets at the
Radio Link Control (RLC) layer. Note that higher packet
rates also lead to larger waiting times, which might result in
exceeding slices SLAs boundaries. In such cases, the violation
of pre-defined SLA latency boundaries triggers the DTMC
model described in Section III to a delay state and the selected
PRB allocation policy is assigned with a lower reward value.
Conversely, in a stable system where serving rate and packet
arrival rate are balanced, the size of the virtual queues get
smaller and the DTMC model is mostly characterized by non-
delay states.

B. Experimental Results

We consider a scenario accounting for two slices character-
ized by the following requirements. The first slice (labelled
Ultra Reliable Low Latency Communications or URLLC)
demands ΔURLLC = 10 ms communication delay and is
characterized by a constant bit rate equal to 9.6 Mb/s. The sec-
ond slice (labelled enhanced Mobile Broaband or eMBB) is

characterized by a constant throughput equal to 11.2 Mb/s
with a more relaxed latency requirements ΔeMBB = 20 ms.
We set LACO’s decision interval to 15 seconds and let our
experiment run over the downlink direction for 100 decision
intervals. Fig. 8c shows the evolution of the PRB allocation
configuration decisions taken by LACO over this time span
and how fast the convergence to a suitable layout is achieved.
The monitoring information about incoming traffic at GTP
level collected during the experiment are depicted in the upper
plots of Figs. 9a and 9b. It should be noticed that these values
represent aggregated values (sum) over monitoring intervals of
200ms. Latency and SNR information are depicted in the third
and fourth plots of each figure. In this case, we use maximum
and average as aggregation functions, respectively.

As described in Section V-C, during the starting procedure
the MAB algorithm explores all available arms with the aim of
collecting an initial feedback on the system dynamics. Fig. 9a
depicts the effects of these sequential choices on the latency
experienced by the ongoing traffic flows. The initial steps
drive the allocation of radio resources towards the eMBB
slice thereby providing significant advantages in terms of
experienced delay with respect to the URLLC one. In this
phase, traffic coming from the URLLC might be dropped due
to delay violation ΔURLLC. The scenario changes after the 6-
th decision interval, when the agent selects the configuration
(35-15). Given the current channel quality, that arm does
satisfy the URLLC radio requirements but does not reserve
enough radio resources for the eMBB slice, thus increasing the
latency experienced by its users. Subsequent arm selections
within decision intervals 7 and 8, further reduce the radio
resources assigned to the eMBB slice thus leading the traffic to
violate ΔeMBB. The MAB agent collects this information and
quickly converges to a satisfactory configuration. In Fig. 9b,
we focus on the system dynamics once the convergence is
achieved and clearly notice how both the latency requirements
are satisfied. Interestingly, despite similar traffic requirements,
the algorithm selects the configuration (30-20), which assigns
more resources to the first slice. This is justified by the lower
SNR value experienced by such a slice during the experiment,
as depicted in the bottom plot of Figs. 9a and 9b. The URLLC
slice thus requires more PRBs to compensate for the lower
MCS used during the communication and successfully meets
the latency requirements. For illustration purposes, we select
a vanilla PRB allocation policy, namely round-robin (RR),
as a generic non-latency-aware benchmark and compare the
performance of the two schemes running in the same scenario.
The results of our experiments are summarized in Fig. 10,
where both plots depict the empirical CDF of the latency,
the RLC buffer density and the dropping rate incurred by
each slice for the two allocation schemes. The performances
of the system when LACO is in place are depicted on the
left-hand side picture, whereas the right-hand side shows the
results of the RR-based slice scheduling scheme. In both
plots, the URLLC slice is shown in blue and the eMBB
one in orange. Based on these results, we can observe that
LACO successfully meets both slices latency requirements.
This is achieved by providing the required resources to the
URLLC and eMBB slices (Fig. 8c) according to their different
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Fig. 9. Comparison of system dynamics during a) discovery phase and b) MAB convergence.

Fig. 10. Evaluation of different performance metrics for different scenarios.

latency needs. This results in the URLLC slice allowing SLA
latency requirements (≤ 10ms) at a very low average latency
cost increase for the eMBB slice. In our experiments, very
few traffic (∼ 2%) experienced a latency above the 10 ms
target of URLLC when using LACO, in contrast to ∼ 10%
experienced with RR. Despite of negligible impact, note that
by our design choice parts of fragmented packets are sent
even if above the latency threshold to avoid long HARQ based
retransmission procedures [24], which may negatively affect
the slice performance. Moreover, we wish to highlight that
for LACO the amount of violations due to the exploration and
convergence period could be significantly reduced if desired
by introducing a policy aimed at minimizing such cases. The
performance gap further increases when comparing the eMBB
results. Given that RR sequentially allocates resources to
the URLLC slice and, when the buffer is empty, to eMBB,

it consistently favours the URLLC slice over the eMBB one.
Thus, despite the higher channel quality condition experi-
enced by the eMBB slice, in every scheduling period the
resource availability for the eMBB slice is highly reduced.
This provides a better performances for URLLC traffic, but at
a significant degradation cost for eMBB users, as confirmed
by Fig. 10b (bottom-right), which depicts the amount of traffic
dropped during the experiment. The latency performance is
strongly related with the traffic queue waiting in the transmis-
sion buffers. For this reason, the two figures depict the buffer
size density distribution obtained during the experiments.
It is clear from the comparison how different PRB allocation
schemes affect the transmission buffer size at RLC layer. In the
LACO case, they are generally lightly loaded, finally providing
shorter serving time for incoming packets. In the RR scenario
however, the eMBB traffic suffers higher congestion, which
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leads to augment packet’s waiting time, and consequently
increases the rate of latency violations.

VIII. RELATED WORK

The RAN design problem has always been at the forefront
of the mobile operators and a vast amount of research has been
devoted to novel RAN architectures [25], [26] and efficient
radio resource schedulers [21], [27]. Recently, network slicing
has been proposed as a new means for mobile operators to
deploy isolated network services owned by different customers
over a common physical infrastructure. However, as high-
lighted in [28], RAN needs additional functionalities to fully
exploit SDN and NFV principles, specially in the partition
and isolation of radio resources. The authors of [3] focus
on efficient sharing of the RAN resources and proposed a
RAN slicing solution that performs adaptive provisioning and
isolation of radio slices. Their work is based on dynamic
virtualization of base station resources, which gives tenants
the ability to independently manipulate each slice. Although
the proposed architecture may guarantee isolation through
different control planes, no mechanism is in place to ensure the
satisfaction of delay requirements. [29] provides an empirical
study of resource management efficiency in slicing-enabled
networks through real data collected from an operational
mobile network, considering different kinds of resources and
including radio access, transport and core of the network.
Similarly, the authors of [30] formulate an optimization
framework to deal with resource partitioning problem, where
inter-slice isolation is assured through a virtualized layer that
decouples the reservation choice from the physical resource
availability and proposing different abstraction types of radio
resource sharing. In [31] the authors present an Earliest
Deadline First (EDF) scheduling approach in the context of
network slicing. Differently from us, their approach works
on a single MAC scheduler and assumes for every TTI a
complex fine-tuning of the quota of resources to be assigned
to each slice, thus limiting the implementation of dedicated
intra-scheduling solutions.

The exploration-vs-exploitation trade-off, typical of
Multi-Armed Bandit (MAB) problems is particularly suited
to problems that require sequential decision-making. For this
reason, a wide set of variations from the classical MAB
model has been proposed in the literature [17], [32], together
with novel algorithms to address them [33]. In this regard,
the work of [34] investigates the MAB problems in case of
Markovian reward distribution, where arms change their state
in a two-state Markovian fashion. The authors addressed
the problem assuming that the Markov chain evolves only
when the arm is played, showing that the proposed sample
mean-based index policy achieves regret performances
comparable to legacy UCB algorithm. The authors of [22]
performed a complete regret analysis of the TS algorithm,
generalizing the original formulation to distributions other
than the Beta distribution. The MAB framework is also
applied in [35] to deal with rate adaptation problem in
802.11-like wireless systems. The authors demonstrate that
exploiting additional observations significantly improve the

system performance. Similarly, [36] deals with scheduling
transmissions in presence of unknown channel statistics. The
proposed algorithm learns the channels’ transmission rates
while simultaneously exploiting previous observations to
obtain higher throughput. This led to the design of a queue-
length-based scheduling policy using the channel learning
algorithm as a component in time-varying environment.
The authors of [37] presented an algorithm for multivariate
optimization on large decision spaces based on an innovative
approach combining hill climbing optimization and Thompson
sampling. While the scalability of their algorithm has been
proven through exhaustive simulations, the framework lacks
a complete analysis of regret bounds aimed at demonstrating
the impact of hill climbing in combinatorial decision making.
Finally, similar to us, [38] deals with an MAB formulation
where the reward distributions are characterized by temporal
uncertainties. Interestingly, they were able to mathematically
capture, in terms of reward, the added complexity embedded
in the non-stationarity feature when compared to the legacy
framework.

The key novelty of LACO relies on the exploitation
of (abstract) information of the underlying system structure
to expedite solutions. Conversely, prior works are blind to
such type of information and need to spend substantial time
exploring very bad decisions before achieving it.

IX. CONCLUSION

Major efforts in the design of next-generation mobile
systems pivot around network slicing and (mobile edge)
low-latency services. This paper aims to bridge the gap
between them both by designing LACO, a RAN-specific
network slice orchestrator that considers network slice requests
with strict latency requirements. Despite the efforts devoted by
5G researchers and engineers to network slicing, to the best
of our knowledge, this is the first radio slicing mechanism
that provides formal delay guarantees. To make network
slicing decisions in environments with varying wireless chan-
nel quality and user demands, LACO builds on a learning
Multi-Armed Bandit (MAB) method that is model-aware
as opposed to classic MAB approaches that are blind to
information regarding the underlying system. In addition,
we exploit information from the system model to expedite
the exploration-vs-exploitation process. Our results derived
from an implementation with off-the-shelf hardware show that
LACO is able to guarantee strict slice latency requirements at
affordable computational costs.
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