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Abstract

Large intelligent surface (LIS) has recently emerged as a potential low-cost solution to reshape the

wireless propagation environment for improving the spectral efficiency. In this paper, we consider a

downlink millimeter-wave (mmWave) multiple-input-multiple-output (MIMO) system, where an LIS is

deployed to assist the downlink data transmission from a base station (BS) to a user equipment (UE).

Both the BS and the UE are equipped with a large number of antennas, and a hybrid analog/digital

precoding/combining structure is used to reduce the hardware cost and energy consumption. We aim to

maximize the spectral efficiency by jointly optimizing the LIS’s reflection coefficients and the hybrid

precoder (combiner) at the BS (UE). To tackle this non-convex problem, we reformulate the complex

optimization problem into a much more friendly optimization problem by exploiting the inherent

structure of the effective (cascade) mmWave channel. A manifold optimization (MO)-based algorithm

is then developed. Simulation results show that by carefully devising LIS’s reflection coefficients,

our proposed method can help realize a favorable propagation environment with a small channel

matrix condition number. Besides, it can achieve a performance comparable to those of state-of-the-art

algorithms, while at a much lower computational complexity.
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I. INTRODUCTION

Millimeter-wave (mmWave) communication is regarded as a promising technology for future

cellular networks due to its large available bandwidth and the potential to offer gigabits-per-

second communication data rates [1]–[4]. Utilizing large antenna arrays is essential for mmWave

systems as mmWave signals incur a much higher free-space path loss compared to microwave

signals below 6 GHz [5], [6]. Large antenna arrays can help form directional beams to compensate

for severe path loss incurred by mmWave signals. On the other hand, high directivity makes

mmWave communications vulnerable to blockage events, which can be frequent in indoor and

dense urban environments. For instance, due to the narrow beamwidth of mmWave signals, a

very small obstacle, such as a person’s arm, can effectively block the link [7], [8].

To address this blockage issue, large intelligent surface has been recently introduced to improve

the spectral efficiency and coverage of mmWave systems [9]–[12]. Large intelligent surface (LIS),

also referred to intelligent reflecting surface (IRS), has emerged as a promising technology to

realize a smart and programmable wireless propagation environment via software-controlled

reflection [13]–[18]. Specifically, LIS is a two-dimensional artificial structure, consisting of a

large number of low-cost, passive, reconfigurable reflecting elements. With the help of a smart

controller, the incident signal can be reflected with reconfigurable phase shifts and amplitudes.

By properly adjusting the phase shifts, the LIS-assisted communications system can achieve

desired properties, such as extending signal coverage [19], improving energy efficiency [20],

mitigating interference [21], [22], enhancing system security [23], and so on.

A key problem of interest in LIS-assisted communication systems is to jointly devise the

reflection coefficients at the LIS and the active precoding matrix at the BS to optimize the

system performance. A plethora of studies have been conducted to investigate the problem under

different system setups and assumptions, e.g. [9], [11], [19]–[28]. Among them, most focused on

single-input-single-output (SISO) or multiple-input-single-output (MISO) systems [9], [19]–[23].

For the MIMO scenario where both the BS and the UE are equipped with multiple antennas,

[24] proposed to optimize the spectral efficiency via maximizing the Frobenius-norm of the

effective channel from the BS to the UE. Nevertheless, maximizing the Frobenius-norm of the

effective channel usually results in a large condition number, and as a result, its performance

improvement is limited. In [25], an alternating optimization (AO)-based method was developed to
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maximize the capacity of LIS-aided point-to-point MIMO systems via jointly optimizing LIS’s

reflection coefficients and the MIMO transmit covariance matrix. Specifically, the AO-based

method sequentially and iteratively optimizes one reflection coefficient at a time by fixing the

other reflection coefficients. Although achieving superior performance, this sequential optimiza-

tion incurs an excessively high computational complexity for practical systems. In [11], two

optimization schemes were proposed to enhance the channel capacity for LIS-assisted mmWave

MIMO systems. Nevertheless, this work is confined to the scenario where only a single data

stream is transmitted from the BS to the UE. To improve the bit error rate (BER) performance,

[26] proposed a geometric mean decomposition (GMD)-based beamforming scheme for LIS-

assisted mmWave MIMO systems. To simplify the problem, only the angle of arrival (AoA)

of the line-of-sight (LOS) BS-LIS link and the angle of departure (AoD) of the LOS LIS-UE

path were utilized to design the reflection coefficients. This simplification, however, comes at

the cost of sacrificing the spectral efficiency. Besides the above works, other studies [27], [28]

considered multiple-user (MU)-MIMO scenarios. For example, [27] considered using the LIS at

the cell boundary to assist downlink transmission to cell-edge users.

In this paper, we consider a point-to-point LIS-assisted mmWave systems with large-scale

antenna arrays at the transmitter and receiver, where an LIS is deployed to assist the downlink

transmission from the transmitter (i.e. BS) to the receiver (i.e. UE). Our objective is to maxi-

mize the spectral efficiency of the LIS-assisted mmWave system by jointly optimizing the LIS

reflection coefficients and the hybrid precoding/combining matrices associated with the BS and

the UE. To address this non-convex optimization problem, we first decouple the LIS design

from hybrid precoder/combiner design. We then focus on the reflection coefficient optimization

problem. By exploiting the inherent structure of the effective mmWave channel, it is shown

that this complex LIS optimization problem can be reformulated into an amiable problem that

maximizes the spectral efficiency with respect to the passive beamforming gains (which have

an explicit expression of the reflection coefficients) associated with the BS-LIS-UE composite

paths. A manifold-based optimization method is then developed to solve the LIS (also referred to

as passive beamforming) design problem. Simulation results show that our proposed method can

help create a favorable propagation environment with a small channel matrix condition number.

Also, the proposed method exhibits a significant performance improvement over the sum-path-

gain maximization method [24] and achieves a performance similar to that of the AO-based
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Fig. 1. LIS-assisted mmWave hybrid downlink system.

method [25], while at a much lower computational complexity.

The rest of the paper is organized as follows. In Section II, the system model and the joint

active and passive beamforming problem are discussed. The passive beamforming problem is

studied in Section III, where a manifold-based optimization method is developed. The hybrid

precoding/combining design problem is considered in Section IV. The comparison with the

state-of-art algorithms is discussed in Section V. Simulation results are provided in Section VI,

followed by concluding remarks in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a point-to-point mmWave MIMO system as illustrated in Fig. 1, where the BS

and the UE are equipped with a large number of antennas, and the LIS is deployed to assist the

downlink data transmission from the BS to the UE. For simplicity, we assume that the direct link

between the BS and the UE is blocked due to unfavorable propagation conditions. Nevertheless,

our proposed scheme can be extended to the scenario in which a direct link between the BS and

the UE is available. The BS is equipped with Nt antennas and Rt radio frequency (RF) chains,

and the UE is equipped with Nr antennas and Rr RF chains, where Rt ≪ Nt and Rr ≪ Nr.

To exploit the channel diversity, multiple, say Ns, data streams are simultaneously sent from the
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BS to the UE, where Ns ≤ min{Rt, Rr}. At the BS, a digital baseband precoder F BB ∈ CRt×Ns

is first applied to the transmitted signal s ∈ CNs , then followed by an analog RF beamformer

F RF ∈ CNt×Rt . The transmitted signal can be written as

x = F RFF BBs, (1)

where s is assumed to satisfy E[ssH ] = I. Also, a transmit power constraint is placed on the

hybrid precoding matrix F RFF BB, i.e. ‖F RFF BB‖2F ≤ ρ, ρ is the transmit power.

The transmitted signal arrives at the UE via propagating through the BS-LIS-UE channel,

where the LIS comprises M passive reflecting elements and each element behaves like a single

physical point which combines all the received signals and then re-scatters the combined signal

with an adjustable phase shift [21]. Let G ∈ CM×Nt denote the channel from the BS to the

LIS, and R ∈ CNr×M denote the LIS-UE channel. Also, let φm ∈ [0, 2π] denote the phase shift

introduced by the mth element of the LIS, and

Φ , diag(ejφ1, · · · , ejφM ) ∈ C
M×M . (2)

The signal received by the UE can thus be given as

y = WH
BBW

H
RFHeffF RFF BBs+WH

BBW
H
RFn, (3)

where W RF ∈ CNr×Rr and W BB ∈ CRr×Ns represent the analog combiner and the digital

baseband combiner, respectively, Heff , RΦG stands for the effective (i.e. cascade) channel

from the BS to the UE, and n ∈ CNr ∼ CN (0, σ2I) denotes the additive white Gaussian noise.

In this paper, we assume that perfect channel state information (CSI) is known for joint

transceiver and LIS design. Channel estimation for LIS-assisted systems is an important and

challenging issue that has been studied in a variety of works, e.g. [29]–[32]. In particular, [30]–

[32] discussed how to estimate the channel for LIS-assisted mmWave systems. Suppose that

the transmitted signal follows a Gaussian distribution. The achievable spectral efficiency can be

expressed as [33]

R = log2 det

(

I+
1

σ2
(W RFW BB)

†HeffF RFF BB

× FH
BBF

H
RFH

H
eff(W RFW BB)

)

. (4)
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where A† denotes the Moore-Penrose pseudo inverse of the matrix A. It should be noted that

since the analog precoder and combiner are implemented by analog phase shifters, entries of

F RF and W RF have constant modulus.

B. Channel Model

Due to the small wavelength, mmWave has limited ability to diffract around obstacles. As a

result, mmWave channels exhibit a sparse multipath structure and are usually characterized by

the Saleh-Valenzuela (SV) channel model [26], [34]–[37]. Suppose uniform linear arrays (ULAs)

are employed at the BS and the UE, and the LIS is a uniform planar array (UPA) consisting

of a large number of reconfigurable passive elements. The BS-LIS channel G and the LIS-UE

channel R can be given as

G =

√

NtM

P

P∑

i=1

α̃iaRLIS
(θri , η

r
i )a

H
TBS

(γt
i), (5)

R =

√

MNr

L

L∑

i=1

β̃iaRUE
(γr

i )a
H
TLIS

(θti , η
t
i), (6)

where P (L) is the total number of signal paths between the BS and the LIS (the LIS and the

UE), θri (θti) and ηri (ηti) denote the azimuth and elevation angles of arrival (departure) associated

with the LIS, γr
i (γt

i ) represents the angle of arrival (departure) associated with the UE (BS),

α̃i (β̃i) is the complex channel gain, aRj
, j ∈ {LIS,UE} and aTi

, i ∈ {BS,LIS} denote the

normalized array response vectors associated with the receiver and the transmitter, respectively.

Specifically, for ULA with N antennas, the normalized array response vector is given by

a(γ) =
1√
N
[1 · · · ej

2πd
λ

(n−1) sin(γ) · · · ej
2πd
λ

(N−1) sin(γ)]T , (7)

where d and λ are the antenna spacing and the signal wavelength. For UPA with M = My×Mz

elements, the normalized array response vector can be written as

a(θ, η) =
1√
M

[1 · · · ej
2πd
λ

((m1−1) cos(η) sin(θ)+(m2−1) sin(η))

· · · ej
2πd
λ

((My−1) cos(η) sin(θ)+(Mz−1) sin(η))]T . (8)
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C. Problem Formulation

Our objective is to jointly devise the hybrid precoding/combining matrices and the passive

beamforming matrix Φ to maximize the spectral efficiency (4):

max
{F RF,F BB,W RF,W BB,Φ}

log2 det
(
I +

1

σ2
(W RFW BB)

†Heff

× F RFF BBF
H
BBF

H
RFH

H
eff(W RFW BB)

)

s.t. ‖F RFF BB‖2F ≤ ρ,

|F RF(i, j)| = |W RF(i, j)| = 1, ∀i, j,

Heff = RΦG

Φ = diag(ejφ1, · · · , ejφM ). (9)

Such an optimization problem is challenging due to the non-convexity of the objective function

and the per-element unit-modulus constraint placed on analog precoding and combining matrices.

To simplify the problem, we first ignore the constraint introduced by the hybrid analog/digital

structure and consider a fully digital precoder/combiner. Let F ∈ CNt×Ns be a fully digital

precoder which has the same size as the hybrid precoding matrix F RFF BB, and W ∈ CNr×Ns

be a fully digital combiner which has the same size as the hybrid combining matrix W RFW BB.

The problem (9) can be simplified as

max
{F ,W ,Φ}

log2 det
(
I +

1

σ2
(W )†HeffFFHHH

effW
)

s.t. ‖F ‖2F ≤ ρ

Heff = RΦG

Φ = diag(ejφ1, · · · , ejφM ). (10)

Once an optimal fully digital precoder/combiner is obtained, we can employ the manifold

optimization-based method [38] to search for a hybrid precoding/combining matrix to approxi-

mate the optimal fully digital precoder/combiner. Such a strategy can be well justified because it

has been shown in many previous studies [33], [35], [36], [38] that, due to the sparse scattering

nature of mmWave channels, hybrid beamforming/combining with a small number of RF chains

can asymptotically approach the performance of fully digital beamforming/combining for a

sufficiently large number of antennas at the transceiver.
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Given a fixed Φ (i.e. Heff), the optimal F and W can be obtained via the singular value

decomposition (SVD) of Heff . Define the effective channel’s ordered SVD as

Heff = UΣV H = [U 1 U 2]




Σ1 0

0 Σ2








V H

1

V H
2



 , (11)

where U is an Nr ×Q unitary matrix, Σ is a Q× Q diagonal matrix of singular values, V is

an Nt ×Q unitary matrix, in which Q , rank(Heff). The matrix Σ1 is of dimension Ns ×Ns

and V 1 is of dimension Nt ×Ns. Then with a fixed Φ, the optimal solution to (10) is given as

F opt = V 1Λ
1/2, W opt = U 1, (12)

where Λ = diag(p1, . . . , pNs
), pi = max(1/λ−σ2/Σ2

1(i, i), 0), i = 1, . . . , Ns denotes the optimal

amount of power allocated to the ith data stream, 1/λ is the water level satisfying
∑Ns

i=1 pi = ρ.

Thanks to the massive array gain provided by the LIS and large number of antennas at the

BS, the effective signal-to-noise ratio (SNR) is large, in which case an equal power allocation

scheme is near-optimal [35]. Therefore we can approximate F opt as:

F opt ≈
√

ρ

Ns
V 1. (13)

Substituting the optimal fully digital precoder and combiner into (10), we arrive at a problem

which concerns only the optimization of the passive beamforming matrix Φ:

max
Φ

log2 det

(

I +
ρ

Nsσ2
Σ

2
1

)

s.t. Φ = diag(ejφ1, · · · , ejφM ). (14)

The above objective function can be bounded by

log2 det

(

I +
ρ

Nsσ2
Σ

2
1

)
(a)

≤Ns log2(1 +
ρ

N2
s σ

2
tr(Σ2

1))

(b)

≤Ns log2(1 +
ρ

N2
s σ

2
tr(HeffH

H
eff)), (15)

where (a) is due to Jensen’s inequality and (b) becomes equality when Ns = Q. Therefore,

alternatively, [24] proposed to maximize the bound of the spectral efficiency:

max
Φ

tr(HeffH
H
eff)

s.t. Φ = diag(ejφ1, · · · , ejφM ). (16)
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Nevertheless, the objective of (16) does not consider the fairness among different singular values

and thus results in a large condition number of Heff . A large condition number indicates an

unfavorable propagation condition since we prefer the power of the channel to be uniformly

distributed over singular values to support multi-stream transmission [39]. To address this issue,

we will develop a new approach to solve (14). Our proposed method obtains more balanced

singular values of Σ1 which can help substantially improve the spectral efficiency, as suggested

by our empirical results.

III. PROPOSED PASSIVE BEAMFORMING DESIGN METHOD

Optimizing (14) is much more challenging than directly optimizing the Frobenius-norm of

Heff , as the singular value can not be expressed by Heff in an explicit way. To address this

difficulty, we exploit the structure of mmWave channels to gain insight into the SVD of the

effective channel. Recall (5)–(6) and assume |β1| ≥ |β2| ≥ . . . ≥ |βL| and |α1| ≥ |α2| ≥ · · · ≥
|αP |, where αi ,

√
NtM
P

α̃i, and βi ,

√
MNr

L
β̃i. We will justify the order of {βl} and {αp} later.

The effective channel Heff = RΦG can be written as

RΦG

=

( L∑

i=1

βiaRUE
(γr

i )a
H
TLIS

(θti , η
t
i)

)

Φ

×
( P∑

j=1

αjaRLIS
(θrj , η

r
j )a

H
TBS

(γt
j)

)

=
L∑

i=1

P∑

j=1

βiαjaRUE
(γr

i )a
H
TLIS

(θti , η
t
i)ΦaRLIS

(θrj , η
r
j )

︸ ︷︷ ︸

dij

aH
TBS

(γt
j)

=

L∑

i=1

P∑

j=1

βiαjdijaRUE
(γr

i )a
H
TBS

(γt
j)

=ARUE
DAH

TBS
, (17)
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where D is an L×P matrix with its (i, j)th entry given by D(i, j) = βiαjdij , and dij is defined

as

dij ,aH
TLIS

(θti , η
t
i)ΦaRLIS

(θrj , η
r
j )

=vH(a∗
TLIS

(θti , η
t
i) ◦ aRLIS

(θrj , η
r
j ))

=vHpij (18)

with ◦ stands for the Hadamard (elementwise) product, v , diag(ΦH), and pij , (a∗
TLIS

(θti , η
t
i)◦

aRLIS
(θrj , η

r
j )). Here dij is referred to as the passive beamforming gain associated with the (j, i)th

BS-LIS-UE composite path which is composed of the jth path from the BS to the LIS and the

ith path from the LIS to the UE.

Also, ARUE
and ATBS

in (17) are respectively defined as

ARUE
,[aRUE

(γr
1) · · · aRUE

(γr
L)],

ATBS
,[aTBS

(γt
1) · · · aTBS

(γt
P )]. (19)

For ULA with N antennas, it can be easily verified that

|aH(γi)a(γj)| → 0, N → ∞ (20)

for any sin(γi) − sin(γj) 6= 0. This asymptotic orthogonality also holds valid for other array

geometries such as UPA [40]. Therefore when Nt and Nr are sufficiently large, ARUE
and ATBS

can be considered as orthonormal matrices in which the columns vectors form an orthonormal set

(each column vector has unit norm and is orthogonal to all the other column vectors). If the phase

shift vector v is properly devised such that the off-diagonal elements of D are small relative to

entries on the main diagonal, then Heff = ARUE
DAH

TBS
can be treated as an approximation of

the truncated SVD of Heff , in which case the optimization problem (14) turns into

max
v

Ns∑

i=1

log2

(

1 +
ρ

Nsσ2
|D(i, i)|2

)

s.t. D(i, i) = αiβidii, ∀i ∈ {1, · · · , Ns},

dii = vHpii,

|dij| = |vHpij| < τ, ∀i 6= j,

v = [ejφ1 · · · ejφM ]H , (21)
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where τ is a small positive value and the constraint |dij| < τ is to make sure that D is

approximately a non-square diagonal matrix such that Heff = ARUE
DAH

TBS
approximates a

truncated SVD of Heff . One could question that such a constraint (i.e. |dij| < τ, ∀i 6= j) not

only complicates the problem, but also confines the solution space of v, and thus may prevent

from achieving a higher spectral efficiency. We will show that this constraint can be ignored

and this omission does not affect the validity of our proposed solution. Specifically, we focus

on solving

max
v

Ns∑

i=1

log2

(

1 +
ρ

Nsσ2
|D(i, i)|2

)

s.t. D(i, i) = αiβidii, ∀i ∈ {1, · · · , Ns},

dii = vHpii,

v = [ejφ1 · · · ejφM ]H , (22)

and we will show that for a sufficiently large M , the solution to (22) automatically ensures that

off-diagonal entries of D are small relative to entries on its main diagonal. Thus it is expected

that solving (22) leads to an effective solution of (14).

A. Manifold-Based Method for Passive Beamforming Design

In this subsection, we develop a manifold-based method to solve (22). Note that other methods

such as the semidefinite relaxation (SDR) method, the block coordinate descent (BCD) method

[41] and the penalty dual decomposition (PDD) method [42] can also be employed to address

(22). The reason we choose to use the manifold optimization technique is that it achieves a good

balance between the computational complexity and the performance. Recalling that D(i, i) =

αiβiv
Hpii, the optimization (22) can be rewritten as

max
v

Ns∑

i=1

log2(1 + aiv
HP iiv)

s.t. v = [ejφ1 · · · ejφM ]H , (23)

where P ii , pii(pii)H , and ai ,
ρ

Nsσ2 |αiβi|2. The main difficulty involved in solving (23) is the

non-convex unit modulus constraint. We employ the manifold optimization technique to address
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this difficulty. The search space of (23) can be regarded as the product of M complex circles,

i.e.,

S × S · · · × S
︸ ︷︷ ︸

M times

, (24)

where S , {u ∈ C : uHu = 1} is one complex circle [43]. The product of such M circles is a

submanifold of CM , known as the complex circle manifold (CCM) [44], which is defined as

M = SM , {u ∈ C
M : |ui| = 1, i = 1, 2, · · · ,M}. (25)

More background on optimization on manifolds can be found in [44].

For a smooth real-valued objective function on some manifold, many classical line-search

algorithms such as the gradient descent method can be applied with certain modifications [45].

We start with some basic definitions. The tangent space TvkM is the set consisting of all tangent

vectors to M at the point vk [44]. Here, the tangent space of the complex circle manifold admits

a closed-form expression, i.e.,

TvkM = {z ∈ C
M : ℜ{z ◦ (vk)∗} = 0}, (26)

where ◦ denotes the Hadamard product. Since the descent is performed on the manifold, we

need to find the direction of the greatest decrease from the tangent space, which is known as

the negative Riemannian gradient. For the complex circle manifold, the Riemannian gradient of

the objective function f(v) , −∑Ns

i=1 log(1 + aiv
HP iiv) at the point vk is a tangent vector

∇Mf(vk) given by [44]

∇Mf(vk) =ProjT
v
kM(∇f(vk))

=∇f(vk)− ℜ{∇f(vk) ◦ (vk)∗} ◦ vk, (27)

where Proj(·) is the orthogonal projection operator and the Euclidean gradient ∇f(vk) is given

as

∇f(vk) = −
Ns∑

i=1

1

ln 2

2aiP
iivk

1 + ai(vk)HP iivk
. (28)

After we obtain the Riemannian gradient, we can transplant many line-search algorithms, such

as the gradient descent method, from the Euclidean spaces to the Riemannian manifolds [45].

Specifically, we update vk with a step ̟k

v̄k = vk −̟k∇Mf(vk), (29)
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Algorithm 1 Proposed Algorithm for Solving (23)

1: Initialize v0 ∈ M and give a pre-defined threshold ε.

2: repeat

3: Compute the Euclidean gradient ∇f(vk) using (28);

4: Compute the Riemannian gradient ∇Mf(vk) with (27);

5: Choose an Armijo step size ̟k ( [44], see section 4.2.2);

6: Update v̄k = vk −̟k∇Mf(vk);

7: Update vk+1 = R(v̄k) using (30);

8: until the gap of the objective function values between two iterations is smaller than ε .

9: Obtain the optimal solution v⋆.

where ̟k is chosen as the Armijo step size [44]. In general, v̄k does not lie in the complex circle

manifold, thus the retraction is needed to map the updated point v̄k on the tangent space TvkM
onto the complex circle manifold M with a local rigidity condition preserving the gradients at

vk. In this case, the retraction operator is defined as [44]

vk+1 = R(v̄k) , v̄k ◦ 1

|v̄k| . (30)

The algorithm above is summarized in Algorithm 1, which is guaranteed to converge to a critical

point of (23) [44].

B. Discussions

Next, we discuss for a sufficiently large M , why the constraint |di,j| < τ, ∀i 6= j in (21) can

be ignored and the solution to (22) yields small values of {dij, ∀i 6= j}.

Define k , 2πd
λ

, f(θ, η) , cos(η) sin(θ), g(η) , sin(η), and p̄ij ,
√
Mpij . We have

p̄ij ,
√
M(a∗

TLIS
(θti , η

t
i)⊙ aRLIS

(θrj , η
r
j ))

=
1√
M

[1 . . . ejk((m1−1)(∆fij )+(m2−1)(∆gij)

. . . ejk((My−1)(∆fij )+(Mz−1)(∆gij)]T , (31)

where ∆fij , f(θrj , η
r
j ) − f(θti , η

t
i) and ∆gij , g(ηrj ) − g(ηti). Therefore, we can calculate
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|(p̄ij)H p̄mn| as

|(p̄ij)H p̄mn|

=
1

M

∣
∣
∣
∣
∣

My∑

m1=1

Mz∑

m2=1

ejk((m1−1)(∆Fijmn)+(m2−1)(∆Gijmn)

∣
∣
∣
∣
∣

=
1

M

∣
∣
∣
∣
∣

sin
(
1
2
kMy∆Fijmn

)

sin
(
1
2
k∆Fijmn

)
sin
(
1
2
kMz∆Gijmn

)

sin
(
1
2
k∆Gijmn

)

∣
∣
∣
∣
∣
, (32)

where ∆Fijmn , ∆fmn −∆fij and ∆Gijmn , ∆gmn −∆gij . Due to the random distribution of

AoA and AoD parameters, we have ∆Fijmn 6= 0 or ∆Gijmn 6= 0 for any {m,n} 6= {i, j} with

probability one. Thus we have

lim
M→∞

| (p̄ij)H p̄mn |= 0, ∀m 6= i ‖ n 6= j, (33)

where ‖ denotes the OR logic operation which means either m 6= i or n 6= j is true. Also, it is

easy to verify that (p̄ij)H p̄ij = 1.

Define A , {p̄ii : i = 1, . . . , Ns} and B , {p̄mn : {m,n} ∈ E}, where E , U − I, in which

U ,{{m,n} : m ∈ {1, . . . , L}, n ∈ {1, . . . , P}} (34)

I ,{{i, i} : i ∈ {1, . . . , Ns}} (35)

Let C , {cu}M−LP
u=1 denote an orthonormal set whose vectors are orthogonal to those vectors in

A∪B. Clearly, the set of vectors in D , A∪ B ∪ C form an orthonormal basis of CM . Hence,

any vector in CM can be expressed as a sum of the basis vectors scaled

v =

Ns∑

i=1

kiip̄
ii +

∑

{m,n}∈E
kmnp̄

mn +

M−LP∑

u=1

kucu. (36)

It should be noted that

M = vHv =

Ns∑

i=1

|kii|2 +
∑

{m,n}∈E
|kmn|2 +

M−LP∑

u=1

|ku|2. (37)
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Substituting (36) into the objective function of (23), we have

Ns∑

i=1

log2(1 + ai|vHpii|2)

=

Ns∑

i=1

log2

(

1 + ai

∣
∣
∣
∣

( Ns∑

i=1

kiip̄
ii +

∑

{m,n}∈E
kmnp̄

mn

+

M−LP∑

u=1

kucu

)H

pii

∣
∣
∣
∣

2)

=
Ns∑

i=1

log2

(

1 +
ai
M

|kii|2
)

. (38)

Therefore (23) can be re-expressed as

max
{kii,kmn,ku}

Ns∑

i=1

log2(1 +
ai
M

|kii|2)

s.t.

Ns∑

i=1

|kii|2 ≤ M,

v = [ejφ1 · · · ejφM ]H ,

v =
Ns∑

i=1

kiip̄
ii +

∑

{m,n}∈E
kmnp̄

mn +
M−LP∑

u=1

kucu. (39)

If no unit modulus constraint is placed on the phase shift vector v, then it is clear that the

objective function value of (39) is maximized when
∑Ns

i=1 |kii|2 = M , which means that kmn =

0, ∀{m,n} ∈ E and ku = 0. As a result, we have

dmn = (v⋆)Hpmn =

(
Ns∑

i=1

kiip̄
ii

)H

pmn = 0 ∀{m,n} ∈ E (40)

Hence the solution to (39) or (23), v⋆, yields exactly zero off-diagonal entries of D. With the

unit modulus constraint v = [ejφ1 · · · ejφM ]H ,
∑Ns

i=1 |kii|2 will not be exactly equal to M but

the solution will force
∑Ns

i=1 |kii|2 to be close to M as much as possible in order to obtain a

maximum objective function value. As a result, the values of {|kmn|}, ∀{m,n} ∈ E are small
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relative to {|kii|, i = 1, . . . , Ns}. Note that we have

dpq = (v⋆)Hppq

=





Ns∑

i=1

kiip̄
ii +

∑

{m,n}∈E
kmnp̄

mn +

M−LP∑

u=1

kucu





H

ppq

=







kpq√
M

q 6= p

kpp√
M

q = p
(41)

Therefore the optimal solution to (23) yields an approximately diagonal matrix D whose off-

diagonal entries {dij, i 6= j} are small relative to its diagonal entries {dii, i = 1, . . . , Ns}.

C. Ordering of {βi} and {αi}

Note that we assumed a decreasing order of the path gains {βi} and {αi} earlier in this paper,

i.e. |β1| ≥ |β2| ≥ . . . ≥ |βL| and |α1| ≥ |α2| ≥ · · · ≥ |αP |. Nevertheless, from (22), we can

see that different orders of {βi} and {αi} may lead to different solutions and thus different

performance, and it is unclear whether arranging the path gains {βi} and {αi} in a decreasing

order is a good choice. To gain an insight into this problem, let us examine the optimization

(39) which is a variant of (22). As discussed above, if we ignore the unit-modulus constraint

placed on v, (39) can be simplified as a conventional power allocation problem:

max
{k̃ii}

Ns∑

i=1

log2(1 + ai|k̃ii|2)

s.t.

Ns∑

i=1

|k̃ii|2 ≤ 1, (42)

where k̃ii , kii√
M

. Recall that ai = ρ
Nsσ2 |αiβi|2, where αi =

√
NtM
P

α̃i, and βi =
√

NrM
L

β̃i.

Thanks to the large dimensions of Nt, Nr, and M , it can be expected that the effective signal-

to-noise ratios (SNRs) {ai} have large values even the nominal SNR ρ
σ2 is small. It is well-known

that in the high SNR regime, it is approximately optimal to equally allocate power to different

data streams. Therefore the question is how to arrange the orders of {βi} and {αi} such that
∑Ns

i=1 log2(1 + ai/Ns) can be maximized.
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Let {τl}Ll=1 be a permutation of the set {1, . . . , L} and {πp}Pp=1 a permutation of the set

{1, . . . , P}. We can write

S ,

Ns∑

i=1

log2(1 + ai/Ns) =

Ns∑

k=1

log2(1 + e|απk
|2|βτk |2)

=
Ns∑

k=1

log2(|απk
|2) +

Ns∑

k=1

log2

(
1

|απk
|2 + e|βτk |2

)

,S1 + S2. (43)

where e ,
ρ

N2
s σ

2 . We see that S1 is a constant once {απk
}Ns

k=1 is determined. Hence, we focus

on the value of S2. Note that

2S2 =

Ns∏

k=1

(
1

|απk
|2 + e|βτk |2

)

. (44)

Without loss of generality, we assume

1

|απ1
|2 ≤ 1

|απ2
|2 ≤ · · · ≤ 1

|απNs
|2 . (45)

Clearly, according to the dual rearrangement inequality [46], S2 attains its maximum if and only

if

|βτ1 |2 ≥ |βτ2 |2 ≥ · · · ≥ |βτNs
|2. (46)

This means that similar to {απk
}Ns

k=1, {|βτk |}Ns

k=1 should also be arranged in a decreasing order.

This explains why we arrange the path gains of {βi} and {αi} in a descending order.

IV. HYBRID PRECODING/COMBINING DESIGN

After obtaining the passive beamforming matrix Φ
⋆, we conduct the SVD of H⋆, i.e. H⋆ =

RΦ
⋆G = U ⋆

Σ
⋆(V ⋆)H and the optimal precoder/combiner can be obtained via (12). As dis-

cussed earlier in this paper, we search for an analog precoding (combining) matrix F RF (W RF)

and a baseband precoding (combining) matrix F BB (W BB) to approximate the optimal precoder

(combiner) F opt (W opt). In the following, we focus our discussion on the hybrid precoding design

as the extension to the hybrid combining design is similar. Such a problem can be formulated

as [38]

min
w∈M2,FBB

‖F opt − F RFF BB‖2F , (47)
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Algorithm 2 Proposed Algorithm for Joint Transceiver and LIS Design

Input: R, G, Ns, Rt, Rr, ρ, σ2;

First step

1: Optimizing Φ
⋆ by Algorithm 1 developed in Subsection III-A;

Second step

2: Compute the optimal precoding and combining matrices, i.e. F opt and W opt, using (12)

3: Obtain hybrid precoding and combining matrices, i.e. F BB, F RF W BB and W RF, via the

manifold-based method discussed in Section IV;

Output: Φ
⋆, F BB, F RF, W BB, and W RF.

where w , vec(F RF) and the search space is a complex circle manifold defined as M2 , SNtRt .

Specifically, we adopt the fast manifold-based optimization method in [38] to solve (47), where

we optimize F RF and F BB in an alternating manner. The detailed procedure can be found in [38]

and thus omitted here. It should be noted that the method is guaranteed to converge to a critical

point [38], [44] and has a computational complexity at the order of O(NtRtNsL2), where L2 is

the number of iterations required to converge.

V. SUMMARY AND DISCUSSIONS

First of all, we would like to clarify that different from other state-of-the-art methods [24],

[25], our proposed method is designed specifically for mmWave systems. It relies on the sparse

scattering structure of mmWave channels to obtain a good approximation of the SVD of the

effective channel. On the other hand, as will be shown in the subsequent analysis and simulation

results, utilizing the inherent sparse structure of mmWave channels enables us to achieve a better

tradeoff between the spectral efficiency performance and the computational complexity.

A. Computational Complexity Analysis

For clarity, the proposed algorithm is summarized in Algorithm 2. Specifically, our proposed

algorithm consists of two steps. The first step aims to obtain LIS’s reflection coefficients via

solving the passive beamforming optimization problem (23). A manifold-based method, i.e.

Algorithm 1, is developed. The dominant operation for Algorithm 1 at each iteration is to
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calculate the Euclidean gradient (28), which has a computational complexity at the order of

O(M). Note that P ii = pii(pii)H , and thus calculating (pii)Hv is enough to obtain (28).

Therefore the first step involves a computational complexity of O(ML1), where L1 denotes the

number of iterations required to converge. The second step solves a hybrid beamforming problem

which involves calculating the optimal precoder/combiner and searching for an analog precoding

(combining) matrix and a baseband precoding (combining) matrix to approximate the optimal

precoder (combiner). The optimal precoder/combiner can be obtained by performing the SVD of

the effective channel, whose complexity is at the order of O(NrNt min(Nr, Nt)). The proposed

manifold-based algorithm for finding the analog/diginal precoding (combining) matrices, as dis-

cussed in the previous section, has a complexity of O(NrRrNsL2+NtRtNsL2), where L2 denotes

the number of iterations required to converge. Thus, the overall computational complexity of our

proposed algorithm is at the order of O(ML1 +NrNt min(Nr, Nt) +NrRrNsL2 +NtRtNsL2).

Note that there is no alternating process between these two steps. We only need to execute

each step once for our proposed algorithm. Since each step of our proposed algorithm is ensured

to converge, the convergence of our proposed algorithm is guaranteed.

B. Computational Complexity Comparison

In this subsection, we compare our proposed method with some state-of-the-art methods devel-

oped for spectral efficiency optimization for IRS-aided MIMO systems. Note that these methods

are not specially designed to mmWave systems with hybrid precoding/combining structures. To

apply them to our problem, a similar two-step procedure is required. Let us first consider the

alternating optimization (AO)-based algorithm [25]. In the first step, the AO-based algorithm [25]

is used to optimize the LIS’s reflection coefficients Φ and the transmit covariance matrix Q. The

first step involves a computational complexity at the order of O(NrNt(M + min(Nr, Nt))L +

((3N3
r + 2N2

rNt + N2
t )M + NrNtmin(Nr, Nt))I), where L is the number of realizations for

initialization and I denotes the number of outer iterations [25]. Note that the first step requires

to calculate the SVD of the effective channel. Hence the optimal precoder/combiner can be

directly obtained without involving additional computational complexity. In the second step,

similar to our work, we resort to the manifold-based algorithm to find the hybrid precoder and

combiner to approximate the optimal precoder/combiner, which involves a same computational

complexity at the order of O(NrRrNsL2 + NtRtNsL2). Therefore the overall computational
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complexity of the AO-based algorithm [25] is at the order of O(NrNt(M + min(Nr, Nt))L +

((3N3
r +2N2

rNt+N2
t )M +NrNtmin(Nr, Nt))I +NrRrNsL2+NtRtNsL2). Note that although

both the AO-based algorithm [25] and our proposed algorithm have a computational complexity

scaling linearly with M , our proposed algorithm achieves a substantial complexity reduction as

compared with [25]. To see this, suppose Nt ≥ Nr and Nr ≫ min{Rr, Rt} ≥ Ns, which is a

reasonable setup for practical systems. In this case, the complexity of our proposed method is

dominated by O(ML1 + N2
rNt). As a comparison, the computational complexity of the AO-

based algorithm [25] is dominated by O(2N2
rNtMI). Considering the fact that L1

1 is much

smaller than 2N2
rNtI , our proposed method has a much lower computational complexity than

the AO-based method [25].

The complexity of other existing methods can be similarly analyzed. Specifically, the overall

computational complexity of the weighted minimum mean square error (WMMSE)-based method

in [27] is at the order of O((N3
r + N3

s + max(N3
t , N

2
t Nr) + (M3 + TM2))I2 + NrRrNsL2 +

NtRtNsL2), where I2 (T ) denotes the outer (inner) iterations. On the other hand, the overall

computational complexity of the sum-path-gain maximization (SPGM)-based method in [24] is

at the order of O(M3L3+NrNtmin(Nr, Nt)+NrRrNsL2+NtRtNsL2), where L3 denotes the

number of iterations. Assuming M ≥ Nt > Nr > Ns, the dominant computational complexity

of respective algorithms is summarized in Table I. We see that the computational complexity of

both [27] and [24] scales cubically with the number of reflecting elements M .

TABLE I

COMPUTATIONAL COMPLEXITY COMPARISON

Algorithm Dominant computational complexity

T-SVD-BF (proposed) O(ML1 +N2
rNt).

AO-based algorithm in [25] O(2N2
rNtMI)

WMMSE-based algorithm in [27] O((M3 + TM2)I2)

SPGM-based algorithm in [24] O(M3L3)

1Simulation results show that our proposed manifold-based algorithm converges within only a few, say, ten iterations.
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Fig. 2. Simulation setup.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed joint transceiver and LIS design

method. The proposed method is based on the approximation of the truncated SVD of the

effective (cascade) channel, and thus is referred to as Truncated-SVD-based beamforming (T-

SVD-BF). In our simulations, we adopt a three-dimensional setup as shown in Fig. 2. The

coordinates of the BS, the LIS and the UE are respectively given as (xBS, 0, zBS), (0, yLIS, zLIS),

and (xUE, yUE, zUE), where we set xBS = 2m, zBS = 10m, yLIS = 148m, zLIS = 10m, xUE = 5m,

yUE = 150m, and zUE = 1.8m. The distance between the BS (LIS) and the LIS (UE) can be

easily calculated and given as 148m (9.8m).

Slightly different from our previous definition, the effective channel is modeled as follows by

considering the transmitter and receiver antenna gains [47]

Heff = GtGrRΦG (48)

where Gt and Gr represent the transmitter and receiver antenna gains, respectively. The BS-LIS
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channel G and the LIS-UE channel R are modeled as follows

G =

√

NtM

P

(

α̃1aRLIS
(θr1, η

r
1)a

H
TBS

(γt
1)

+

P∑

i=2

α̃iaRLIS
(θri , η

r
i )a

H
TBS

(γt
i)

)

, (49)

R =

√

MNr

L

(

β̃1aRUE
(γr

1)a
H
TLIS

(θt1, η
t
1)

+

L∑

i=2

β̃iaRUE
(γr

i )a
H
TLIS

(θti , η
t
i)

)

, (50)

where α̃1(β̃1) ∼ CN (0, 10−0.1κ) denotes the complex gain of the LOS path, κ is the path loss

given by [37]

κ = a+ 10b log10(d̃) + ξ (51)

in which d̃ denotes the distance between the transmitter and the receiver, and ξ ∼ N (0, σ2
ξ).

The values of a, b σξ are set to be a = 61.4, b = 2, and σξ = 5.8dB as suggested by LOS

real-world channel measurements [37], α̃i(β̃i) ∼ CN (0, 10−0.1(κ+µ)) stands for the complex gain

of the associated NLOS path, and µ is the Rician factor [26], [48]. Unless specified otherwise,

we assume that the LIS employs a UPA with M = My×Mz = 16×16, the BS and the UE adopt

ULAs with Nt = Nr = 64. Other parameters are set as follows: Rt = Rr = 6, Ns = 4, L = P =

7, µ = 10, Gt = 24.5dBi, Gr = 0dBi. The carrier frequency is set to 28GHz, the bandwidth is

set to 251.1886MHz and thus the noise power is σ2 = −174 + 10 log10B = −90dBm.

We compare our proposed method with the following three state-of-the-art algorithms, namely,

the sum-path-gain maximization (SPGM) method which aims to maximize the Frobenius-norm of

the effective channel Heff [24], the AO-based algorithm [25], and the WMMSE-based algorithm

[27]. Note that the WMMSE-based method is designed for multicell-multiuser scenarios. But it

can easily adapted to the point-to-point scenario considered in this paper.

A. Perfect Channel State Information

In this section, we assume perfect channel state information (CSI) is available at the BS.

In Fig. 3, we plot the spectral efficiency of respective algorithms versus the transmit power

ρ, where “digital” and “hybrid” respectively represent the spectral efficiency achieved by fully
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Fig. 3. Spectral efficiency versus transmit power ρ.
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Fig. 4. Convergence behavior of the proposed algorithm for solving (23)

digital precoding/combining matrices and hybrid precoding/combining matrices. Here hybrid

precoding/combining matrices are obtained via the manifold optimization-based method devel-

oped in Section IV. We observe that for all four algorithms, the performance of hybrid precod-

ing/combining is very close to that of fully digital precoding/combining, which corroborates the

claim that hybrid beamforming/combining with a small number of RF chains can asymptotically

approach the performance of fully digital beamforming/combining for a sufficiently large number
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Fig. 5. Spectral efficiency and average run time versus number of LIS elements, M .

of transceiver antennas. In addition, we see that our proposed method T-SVD-BF presents a clear

performance advantage over the SPGM method and the WMMSE-based method. Particularly, the

substantial improvement over the SPGM can be attributed to the fact that our proposed method

yields a well-conditioned effective channel matrix with a smaller condition number, thus creating

a more amiable propagation environment for data transmission. We also note that our proposed

method achieves performance close to the AO-based method. The convergence behavior of our

proposed manifold-based algorithm used to solve the passive beamforming design problem (23)

is depicted in Fig. 4, where we set ρ = 30dBm. It can be seen that the proposed manifold-based

algorithm has a relatively fast convergence rate and attains the maximum objective function value

within only ten iterations.

Fig. 5 depicts the spectral efficiency and average run time of respective algorithms versus

the number of LIS elements, where the transmit power ρ is set to 50dBm, and to vary M , we

fix My = 16 and increase Mz . All algorithms are executed on a 2.90GHz Intel Core i7 PC

with 64GB RAM. We see that for all four algorithms, the spectral efficiency increases as the

number of passive elements increases. For this setup, the SPGM and the WMMSE methods

achieve similar performance. Our proposed method outperforms the SPGM and the WMMSE

by a big margin, and the performance gap becomes more pronounced as M increases. It is also



24

1 1.5 2 2.5 3 3.5 4

Ns 

10

15

20

25

30

35

S
pe

ct
ra

l e
ffi

ci
en

cy
 (

bi
ts

/s
/H

z)

Digital-AO
Digital-T-SVD-BF (proposed)
Digital-WMMSE
Digital-SPGM
Hybrid-AO
Hybrid-T-SVD-BF (proposed)
Hybrid-WMMSE
Hybrid-SPGM

Fig. 6. Spectral efficiency versus the number of data streams Ns.

observed that the spectral efficiency of our proposed method is slightly lower (by about 4%

spectral efficiency loss) than that of the AO-based method. Nevertheless, our proposed method

is much more computationally efficient than the AO-based method, as reported in Fig. 5 (b). For

instance, the average run time required by our proposed method T-SVD-BF is 0.1988 second

when M = 192, while it takes the AO-based method about 26.7357 seconds to yield a satisfactory

solution. Such a substantial complexity reduction makes our proposed method a more practical

choice for LIS-assisted mmWave communications where a large number of antennas as well

as a large number of reflecting elements are likely to be employed to compensate the severe

path loss. In addition, it is observed that our proposed method outperforms the WMMSE-based

method in terms of both spectral efficiency and computational complexity.

In Fig. 6, we plot the spectral efficiency versus the number of data streams, where the transmit

power ρ is set to 30dBm and the number of passive elements is set to M = 256. It is observed

that the spectral efficiency of T-SVD-BF, AO and WMMSE improves rapidly as Ns increases,

while the performance improvement of SPGM is quite limited. Again, we observe that T-SVD-BF

achieves a substantial computational complexity reduction, at the expense of mild performance

degradation compared to the AO-based method. The average run time of our proposed method

is 0.5637 second when Ns = 3, while it takes the AO-based method about 35 seconds.

To gain an insight into how the LIS helps realize a favorable propagation environment, we use



25

60 80 100 120 140 160 180 200 220 240 260

M

0

50

100

150

200

250

300

350

T
ru

nc
at

ed
 c

on
di

tio
n 

nu
m

be
r

AO
T-SVD-BF (proposed)
WMMSE
SPGM

Fig. 7. Truncated condition number versus the number of LIS elements M .

the truncated condition number as a metric to evaluate the capability of respective algorithms

in reconfiguring the wireless channel. As is well known, the channel matrix condition number

is regarded as an auxiliary metric for measuring how favorable the channel is. The truncated

condition number is defined as
Σ

2
1
(1,1)

Σ
2
1
(Ns,Ns)

, where Σ1(i, i) denotes the ith largest singular value

of the effective channel Heff. Fig. 7 shows the truncated condition number versus the number

of passive reflection elements. We observe that the truncated condition number of SPGM grows

as M increases, whereas the truncated condition numbers of the proposed method and the AO-

based method are small and remain almost unchanged with an increasing M . This result indicates

that our proposed method and the AO-based method are superior to SPGM in building a more

favorable wireless channel. It also explains why SPGM does not gain much with the increase of

the number of passive elements. An interesting observation is that the WMMSE-based method

performs worse than our proposed method, despite of the fact that it has a smaller truncated

condition number. The reason lies in that although the WMMSE-based method obtains more

balanced singular values, the singular values are generally smaller (in terms of magnitude) than

those singular values obtained by our proposed method, which prevents the WMMSE method

from achieving a higher spectral efficiency.
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Fig. 8. Spectral efficiency versus the estimation error β.

B. Imperfect Channel State Information

In practice, due to channel estimation errors, perfect knowledge of channel state information

(CSI) is usually unavailable. It is therefore important to evaluate the performance of respective

algorithms with inaccurate knowledge of AoAs and AoDs. To this end, let δ , θ− θ̂ denote the

estimation error of the AoA/AOD parameter, where θ denotes the true AoA (AoD) and θ̂ is the

estimated AoA (AoD). Note that our channel model consists of a set of AoA/AoD parameters, and

we assume that the estimation errors for these AoA/AoD parameter are modeled as independent

and identically distributed (i.i.d.) random variables following a same uniform distribution [49]:

f(δ) =







1
2β
, if − β ≤ δ ≤ β

0, otherwise
(52)

In our simulations, we set Nt = Nr = 64, M = My × Mz = 16 × 16 = 256, L = P = 7,

and ρ = 50dBm. Fig. 8 depicts the spectral efficiency versus the estimation error β, where β

varies from 0 to 2◦, as suggested in [49]. We see that our proposed method behaves similarly

as the AO-based method: both methods suffer nearly a same amount of performance loss as the

estimation error increases. This result indicates that our proposed method does not exhibit higher

sensitivity to inaccurate CSI than other methods. Moreover, it can be observed that our proposed

method still presents a clear performance advantage over the SPGM and the WMMSE-based

methods in the presence of channel estimation errors.
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VII. CONCLUSION

In this paper, we considered an LIS-assisted downlink mmWave MIMO system with hybrid

precoding/combining. The objective is to maximize the spectral efficiency by jointly optimizing

the passive beamforming matrix at the LIS and the hybrid precoder (combiner) at the BS (UE). To

tackle this non-convex problem, we developed a manifold optimization (MO)-based algorithm by

exploiting the inherent structure of the effective (cascade) mmWave channel. Simulation results

showed that by carefully designing phase shift parameters at the LIS, our proposed method can

help create a favorable propagation environment with a small channel matrix condition number.

Besides, it can achieve a performance comparable to those of state-of-the-art algorithms, while

at a much lower computational complexity.
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