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Deep Learning for Wireless Coded Caching with

Unknown and Time-Variant Content Popularity
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Abstract—Coded caching is effective in leveraging the accumu-
lated storage size in wireless networks by distributing different
coded segments of each file in multiple cache nodes. This paper
aims to find a wireless coded caching policy to minimize the
total discounted network cost, which involves both transmission
delay and cache replacement cost, using tools from deep learning.
The problem is known to be challenging due to the unknown,
time-variant content popularity as well as the continuous, high-
dimensional action space. We first propose a clustering based
long short-term memory (C-LTSM) approach to predict the
number of content requests using historical request information.
This approach exploits the correlation of the historical request
information between different files through clustering. Based
on the predicted results, we then propose a supervised deep
deterministic policy gradient (SDDPG) approach. This approach,
on one hand, can learn the caching policy in continuous action
space by using the actor-critic architecture. On the other hand,
it accelerates the learning process by pre-training the actor
network based on the solution of an approximate problem that
minimizes the per-slot cost. Real-world trace-based numerical
results show that the proposed prediction and caching policy
using deep learning outperform the considered existing methods.

Index Terms—Coded caching, clustering, LSTM, deep rein-
forcement learning, supervised learning.

I. INTRODUCTION

A. Background and Contribution

Recent years have witnessed rapid development in rich

media-enabled applications on mobile devices, such as

YouTube and Youku. The plenty of data requests and large data

size result in considerable traffic burden in both core networks

and wireless access networks. A promising solution, known as

edge caching, is to store the popular contents at the edge of

wireless networks during off-peak periods when the network

resources are abundant. During peak-traffic times, the cached

contents can be served immediately upon user requests without

being fetched from the core network. In this manner, edge

caching can effectively alleviate the traffic burden, reduce the

transmission delay, and improve the user experience. It thus

has received tremendous attention from both academia and

industry. Existing caching techniques can be roughly divided

into two categories, uncoded caching and coded caching. In

uncoded caching, each file is either cached entirely without

partitioning or not cached at all in a cache node. In coded
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caching, each file can be partitioned into multiple segments,

which are then encoded using e.g., maximum distance separa-

ble (MDS) code and cached distributively in different nodes.

In general, coded caching outperforms uncoded caching as the

former can better utilize the accumulated cache size among

different nodes. A brief overview of the seminal works and

the recent development on caching techniques can be found

in [2].

Exploiting the promises of edge caching depends highly on

the knowledge of the content popularity, which, however, is

often unknown in advance. The content popularity may also

change dynamically over time and space due to the arrival of

new contents and the user mobility in wireless environment.

To this end, machine learning has emerged as a powerful

tool to predict the content popularity or user request based

on historical observations, and then make the cache decision

to optimize certain objective functions in wireless networks.

Despite the tremendous previous works on this topic,

learning-based caching still remains as a challenging prob-

lem due to the following factors. First, cache-equipped base

stations or helper nodes in wireless networks usually can

only access the user request information rather than user

or file context. Therefore, traditional context-aware predic-

tion algorithms used for recommendation systems cannot be

applied. Second, due to the limited coverage range, each

base station can only communicate with a limited number

of users. As such, compared with cloud-based learning, the

dataset available in each base station is very sparse and hence

it is difficult to predict user request accurately. Third, the

popularity prediction and cache placement strategy are tightly

coupled because the cache decision will affect the accuracy

of popularity prediction, and in turn, the predicted popularity

will affect the cache decision. Last but not least, in a multi-cell

network, the caching decision among multiple nodes should

be made collaboratively and therefore suffers from the curse

of dimensionality.

In this work, we address some of the above challenges by

applying deep learning techniques for wireless coded caching

in multi-cell networks when the content popularity is unknown

and time-variant. Similar to the network model in [3], each file

is first encoded by an MDS code, then stored distributively at

different cache nodes. A user can recover its requested file

as long as it collects sufficient number of coded bits of the

file from its nearby cache nodes or a macro base station.

The cached contents at each cache node will be updated

in response to the latest predicted content requests. Our

contribution is two-fold. We first propose a clustering-based

long short-term memory (C-LSTM) prediction framework by

http://arxiv.org/abs/2008.09422v2
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using clustering and recurrent neural network (RNN) to online

predict the number of content requests. This framework takes

the historical request patterns as content features for clustering.

The clustering process leverages the correlation in historical

request patterns among all files. The clustering results are

then sent to a bank of LSTM networks to predict the content

requests where each LSTM network corresponds to a cluster.

The LSTM network is a widely used RNN which has been

proved to be very effective to address sequence prediction

problems such as those found in natural language processing.

Compared with the traditional model-based prediction, the

LSTM network is to learn the correlation between sequences

without assuming a prediction model in advance. File request

patterns are not completely unrelated, and the request patterns

for files belonging to the same topical subject are often similar.

In addition, due to peoples daily work, file request patterns are

usually periodic. As such, the C-LSTM prediction framework

is well suited for our problem.

Our second contribution is to propose a supervised deep

deterministic policy gradient (SDDPG) approach to learn how

much coded fraction of each file should be stored in each

cache node based on the predicted content requests. Our

objective is to minimize the total discounted network cost

that involves both transmission delay and cache replacement

cost. We formulate this problem as a non-stationary Markov

decision process (MDP), for which the deep deterministic

policy gradient (DDGP) approach is well-suited as both the

system state and action spaces are continuous and of high

dimension. In order to ensure that the output of the actor

network in DDPG meets the cache capacity constraint in each

cache node, we use the sigmoid function as the activation

function of the output layer and add a linear scaling after

the output layer. To accelerate the learning process, we use

supervised learning to pre-train both the actor and critic

networks where the training samples are generated using the

solution of an approximate problem that minimizes the per-slot

cost instead of the total network cost.

Numerical results based on a real-world dataset show that

the proposed C-LSTM achieves higher prediction accuracy

than the considered existing methods and the proposed SD-

DPG approach provides lower total network cost than existing

policies. Results also verify that coded caching outperforms

uncoded caching in practical environment with unknown con-

tent popularity.

B. Related Works

Machine learning has been widely used for content pop-

ularity estimation and cache strategy learning in wireless

networks. In [4], [5], a transfer learning approach is proposed

to improve the estimation of popularity profile by leveraging

prior information obtained from a surrogate domain. In [6],

the authors take the diversity in content popularity across the

users into account and learn the cache strategy through the

feedback from environment based on deep deterministic policy

gradient algorithm (DDPG). In [7], the fixed global content

popularity is estimated based on collaborative filtering and

then exploited for cache decision to maximize the average

user request satisfaction ratio in small-cell networks. The work

[8] considers the minimization of energy cost for systematic

traffic transmission under a framework consisting of mobile

edge caching and cache-enabled D2D communications. In [9],

the authors propose a scheme based on LSTM and external

memory to enhance the decision making ability of the base

station. In [10], a deep reinforcement learning based joint

proactive cache placement and power allocation strategy is

proposed where a set of nodes cooperatively serve the content

request. Note that the works [4]–[10] assume that the content

popularity is time-invariant and hence may not be applicable

in practical systems where the user preferences are dynamic.

For time-variant content popularity, there are some works

take into account the temporal variation of user preference in

cache placement. In [11], the authors take context information

of users into account and use contextual multi-armed bandit

(MAB) to learn the context-specific content popularity online.

In [12], the authors use a linear prediction model to estimate

future content hits by leveraging content feature and location

differentiation. In [13], the authors learn the relationship

between the future popularity of contents and their context.

In [14], two potential recurrent neural networks (RNNs) are

adopted to predict user mobility and content popularity based

on the context of users. However, the users’ context and

content feature information exploited in [11]–[14] are often

unavailable if the cache node is operated by mobile network

operators, which in general can only observe local content

requests. In our work, we only use the historical content

requests which are easy to observe in the practical system. In

[15], the authors propose a grouped linear regression model to

estimate future requests by using historical user requests only

and then apply reinforcement learning (RL) to learn the cache

strategy. Therein, the prediction of content requests at each

time slot is classified into different groups according to the age

of each content, i.e., the time elapsed since the release of the

content. Compared with [15], this work utilizes the correlation

between file request patterns, which is more useful as shall be

verified with numerical results. The works [16]–[19] apply the

LSTM network for content popularity prediction without any

model assumption. Compared to the independent prediction

of each time series in [16]–[19], clustering considered in our

work also allows similar file request patterns to be processed

using the same LSTM network which improves prediction

accuracy. Another line of work to tackle the time variation

of content popularity is to bypass the prediction stage and to

directly learn the caching strategy using reinforcement learning

as in [20] and [21].

The optimization of coded caching with unknown content

popularity has been studied in [22] and [23]. In particular,

the work [22] use MAB to learn content popularity modeled

by a Zipf distribution and then optimize the coded cache

placement in small-cell networks. In [23], the authors propose

a deep reinforcement learning based approach to maximize the

successful transmission probability in coded caching enabled

fog radio access networks. Note that, both [22] and [23] focus

only on the transient cache decision, not the long-term caching

policy. Different from [22] and [23] which consider only the

impact of the caching strategy on the current moment, we take
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the cache replacement cost into account and aim to minimize

the total discounted weighted-sum of transmission delay and

replacement cost of the network over an infinite time horizon.

It is worth noting that there have been a number of works

that apply deep neural network (DNN) for various communica-

tion tasks. For example, in works [24]–[26], DNNs are used to

solve resource allocation problems. Note that the main purpose

of these works [24]–[26] is to reduce the computational

complexity of solving the interested optimization problems

by utilizing DNN. The use of deep learning techniques in

this work is, however, not only to reduce the computational

complexity but also to improve the performance of the final

result.

C. Organization and Notations

The rest of the paper is organized as follows. Section II

establishes the system model. Section III proposes a clustering

and deep neural network based online prediction approach

for the prediction of request number. Section IV proposes a

deep reinforcement learning based approach for coded cache

placement for total discounted network cost minimization. The

performance of the proposed method is provided in Section V.

Conclusions are drawn in Section VI.

Boldface lower-case and upper-case letters denote vectors

and matrices respectively. Calligraphy letters denotes sets. E(·)
denotes the expectation of a random variable. We use I(x) to

denote the indicator function for feature x; its value indicates

the cluster the feature x belongs to. σ(·) denotes the sigmoid

function.

II. PROBLEM DESCRIPTION

A. Network Model

As illustrated in Fig. 1, we consider a wireless caching

network with one macro base station (MBS), N cache nodes

and K users. Let N+ , {0, 1, . . . , N} denote the set of

cache nodes where the index n = 0 represents the MBS. Let

N , {1, 2, . . . , N} denote the set of cache nodes only. Let

K , {1, 2, . . . ,K} denote the set of users, where each user

can represent a group of users in the same area. Each cache

node has a certain communication range. We let Nk ⊆ N+

represent the set of cache nodes (including MBS) to which

user k can communicate with. The delay of transmitting one

bit from cache node n to user k is denoted as δk,n, for n ∈ Nk

and k ∈ K, and it mainly depends on the communication

distance. We sort the cache nodes in each Nk in the ascending

order of the per-bit delay to user k, such that (j)k denotes

the index of the cache node with the jth shortest delay to

user k. We assume all users in the system can download files

from the MBS but with a much longer per-bit delay, i.e.,

δk,0 > δk,n, ∀n ∈ Nk \ {0}.
We consider a content catalogue consisting of F files,

denoted as set F = {1, 2, . . . , F}. Each file is assumed to have

the same length of B bits. Each cache node can only store up

to M ·B bits (M < F ) and the MBS can access all files in the

catalogue. Note that although the content catalogue is modeled

as static in this paper, the arrival of new files from content

providers in practical systems can be well captured by the

Fig. 1: A content delivery network with coded caching.

time-variant content request distribution as described below.

In specific, we consider a time-slotted system. At each time

slot t ∈ {1, 2, . . .}, let dk(t) = [dk,1(t), dk,2(t), . . . , dk,F (t)]
denote the demand vector of user k, where dk,f (t) ≥ 0
represents the number of requests for file f ∈ F . Considering

the dynamic arrival of new contents, if file f is not available

yet at time slot t, then dk,f (t) = 0, ∀k ∈ K. Further let

d(t) = [d1(t),d2(t), . . . ,dK(t)] denote the demand vector

of all users at time slot t. We assume that the duration of each

time slot t is long enough so that all user requests can be

served within a slot.

Similar to [3], we assume that each file is encoded by a

rateless MDS code and the coded bits are stored independently

and distributively at the cache nodes. With MDS coding, a file

can be retrieved provided that B coded bits are collected in

any order from the MBS or the cache nodes. Let Λn(t) =
[λ1,n(t), λ2,n(t), . . . , λF,n(t)] denote the cache vector variable

of cache node n ∈ N at time slot t, where λf,n(t) ∈ [0, 1]
represents the fraction of coded bits from file f ∈ F cached

at this node. Further let Λ(t) = [Λ1(t),Λ2(t), . . . ,ΛN(t)]
denote the cache vector of all cache nodes. A more practical

case where each λf,n can only take values from a finite and

discrete set shall be considered in the simulation. The delay of

downloading a fraction of coded bits λf,n(t)B on the link from

cache node n ∈ Nk to user k ∈ K is given by λf,n(t)δk,nB.

If user k can retrieve its requested file f at time slot t from

the coded bits collectively stored by its best j cache nodes,

the delay is given by

Df,j
k (t) = B

j−1∑

i=1

λf,(i)k(t)δk,(i)k+B

(
1−

j−1∑

i=1

λf,(i)k(t)

)
δk,(j)k .

(1)

Note that the complete file f can be downloaded by user

k from its best j cache nodes only if
∑j−1

i=1 λf,(i)k < 1 and∑j
i=1 λf,(i)k ≥ 1. In the special case where j = |Nk|, user k

downloads the uncached fraction from the MBS, i.e., (j)k = 0.

For example, in Fig. 1, user 1 requests f1 and receives the

fraction λ1,1 and λ1,2 of f1 from the cache node 1 and

2 respectively. The remaining fraction (1 − λ1,1 − λ1,2) is

obtained from the MBS. According to [3, Lemma 6], the delay

for user k to download file f is

Df
k (t) = max

j∈{1,2,...,|Nk|}
Df,j

k (t). (2)
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Hence, the total transmission delay to meet all user requests

d(t) in time slot t is given by

Cd(t) =
∑

k∈K

∑

f∈F

dk,f (t)D
f
k (t). (3)

In this paper, we also consider the replacement cost for

updating cached content. We define the replacement cost at

each time slot as the total increment of the cached file fraction

as compared with the previous time slot over all cache nodes

and files. Specifically, the replacement cost can be expressed

as

Cr(t) =
∑

f∈F

∑

n∈N

max{λf,n(t)− λf,n(t− 1), 0}. (4)

Considering both the transmission delay and the replacement

cost, we define the network cost at time slot t as

C(t) = Cd(t) + βCr(t), (5)

where β > 0 is a weighting factor to balance the two costs.

B. Problem Formulation

We aim to minimize the expectation of the total discounted

network cost over an infinite time horizon by optimizing the

coded cache placement. The problem can be formulated as

P(t) : min
{Λ(t)}

lim
T→∞

E

[
T∑

t=1

γt−1(Cd(t) + βCr(t))

]
(6a)

s.t.
∑

f∈F

λf,n(t) ≤M, ∀n ∈ N , ∀t (6b)

λf,n(t) ∈ [0, 1], ∀f ∈ F , n ∈ N , ∀t, (6c)

where γ ∈ [0, 1] is a discount factor which reflects the impact

of future network cost on current cache decision. Since the

instantaneous content requests d(t) at each time slot cannot be

foreseen before making the caching decision Λ(t), the problem

is intractable.

In the next two sections, we shall introduce the proposed C-

LSTM approach for request prediction and SDDPG approach

for cache decision to solve (6). The overall execution sequence

of the proposed approach in each time slot is shown in

Fig. 2. At the beginning of each time slot, we first predict

the number of requests for contents recorded in the catalogue

according to historical information. Based on the predicted

number of requests and the cache status of the previous time

slot, the cache decision network decides the cache allocation

of the current time slot. During the time slot, users submit

file requests and the content delivery phase occurs. After

content delivery, we update the parameters of prediction model

according to the actual requests. In the meantime, the cache

decision network is trained based on the actual network cost

observed from the environment.

Fig. 2: The sequential diagram of the system operation.

III. REQUEST PREDICTION USING CLUSTERING AND

LSTM

The traditional prediction methods assume that the files are

independent, so each file corresponds to a prediction network.

However, due to the large number of files in the core network,

this will consume a lot of computing resources. In fact, due to

the daily work of people, most of the file request patterns are

periodic, such as one day or one week. In addition, files with

similar context are usually requested by the same person, so

their received request patterns are similar. In this section, we

first classify the time-variant content requests using K-means

clustering by exploiting the above-mentioned correlation in

historical request patterns among all files. We then utilize the

LSTM network to predict the content requests at each time

slot for each cluster. We refer to the overall algorithm as the

clustering-LSTM (C-LSTM) prediction method.

A. K-means Clustering for Content Requests

Since the number of requests per user is usually small

and hence difficult to predict, we predict the total number

of requests per file in each time slot instead. Let d̃(t) =
[d̃1(t), d̃2(t), . . . , d̃F (t)] where d̃f (t) denotes the predicted

number of requests for file f ∈ F from all users at time

slot t, i.e., the estimation of df (t) =
∑

k∈K dk,f (t).
Let pt,f ∈ R

ρ denote a ρ-dimensional feature vector of file

f at time slot t, which is defined as:

pt,f = [df (t− ρ), df (t− ρ+ 1), . . . , df (t− 1)]. (7)

The feature vector pt,f contains the historical requests of file f
during the previous ρ time slots, where ρ is a design parameter.

To leverage the correlation in historical request patterns among

all files for content request prediction, we propose to partition

the observed feature vectors of all files into C clusters, where

C is a design parameter. By clustering, the request prediction

of a file can not only use the request information of this file

but also the request information from other files and hence can

be more accurate. In addition, since the number of clusters C
is usually much less than the number of files F , the number

of samples that each cluster can use to train the prediction

network is greatly increased compared to the independent

prediction of each file.

We adopt the K-means [27] clustering algorithm for clas-

sification. In order to eliminate the difference in the absolute

value of the request number, let p̄t,f = {d̄f (t−ρ), d̄f(t−ρ+
1), . . . , d̄f (t−1)} denote the normalized feature vector, where

d̄f (t − ρ) = df (t − ρ)/max{pt,f} and max{pt,f} presents

the maximum value of all elements in pt,f . The similarity

between two feature vectors is characterized by the Euclidean

distance between their normalized counterparts. To begin with

(i.e. t = ρ+1), we adopt the method in [28] to select C points
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from the F feature vectors {p̄ρ+1,1, p̄ρ+1,2, . . . , p̄ρ+1,F }, de-

noted as {pc
1,p

c
2, . . . ,p

c
C}, to be the initial cluster centers.

Specifically, we first randomly select one of the F feature

vectors as the first initial cluster center pc
1. We then select each

subsequent initial cluster center at random with a probability

proportional to the distance from itself to the closest center

that has been already chosen.

At the beginning of each time slot t ≥ ρ+1, we determine

the cluster membership of the newly-observed feature vectors

p̄t,f , ∀f ∈ F , according to the minimum Euclidean distance

criterion. More specifically:

I(p̄t,f ) = arg min
i∈1,2,...,C

||p̄t,f − pc
i ||

2
2. (8)

At the end of time slot t, we update the center of each

cluster by averaging the feature vectors within this cluster. In

specific, the new center of cluster i will be

pc
i =

pc
iSi(t− 1) +

∑
I(p̄t,f )=i,f∈F p̄t,f

Si(t− 1) +
∑

I(p̄t,f )=i,f∈F 1
, (9)

where Si(t) represents the accumulated number of feature

vectors in the cluster i at the end of time slot t. With the

increase of time slot t, the center of each cluster gradually

becomes stable. As a result, the correlation between feature

vectors belonging to the same cluster is getting stronger and

stronger. The correlation reflects the similarity in the trend of

changes in the number of file requests.

B. LSTM Network for Request Prediction

The LSTM network [29] is a widely used recurrent neural

network (RNN) for processing sequential data and has been

found extremely successful in many applications, such as

speech recognition [30], machine translation [31], parsing [32]

and image captioning [33]. Therefore, it is well suited for

our considered content request prediction problem. In this

subsection, we first briefly introduce the structure of the LSTM

network. Then, based on the results of clustering in the pre-

vious subsection, we propose a cluster-specific LSTM-based

prediction framework that can update the network parameters

online so as to gradually improve the accuracy of prediction.

The LSTM network is composed of multiple copies of basic

memory blocks and each memory block contains a memory

cell. The block diagram of LSTM cell is shown in Fig. 3. The

input gate gt, forget gate ft and output gate ot are all sigmoid

units to optionally pass information. As its name implies, ft
and gt respectively decide the forgetting amount of the internal

state ct−1 and the updating amount of the new one. The output

ht of LSTM cell can also be shut off, via the output gate

ot. LSTM cells are connected recurrently to each other. At

each moment t, LSTM cell updates the state ct and generates

corresponding output ht (the predicted content request d̃f (t))
according to the cell state ct−1 and output ht−1 at the previous

moment, as well as the input of the current moment xt (the

normalized content request d̄f (t − 1)), and pass them to the

next moment.

For each cluster, we use an LSTM network with three

hidden LSTM-layers, one input layer, and one output layer

Fig. 3: The structure of LSTM cell.

to do the prediction. Let Li(·) denote the output function of

LSTM network corresponding to cluster i, parameterized by a

set θi. At the beginning of time slot t, we first determine the

cluster membership of the newly-observed feature vectors p̄t,f

according to the method proposed in the previous subsection.

For example, if I(p̄t,f ) = i, the predicted number of request

d̃f (t) is given by

d̃f (t) = max{pt,f}Li(p̄t,f |θi). (10)

In order to improve the stability of training, we use the replay

buffer to record training samples. Let RL
i denote the replay

buffer of size SL
i corresponding to cluster i. At the end of time

slot t, the normalized feature vectors and the actual number

of requests are added as training samples to the replay buffer

of the corresponding cluster. For example, if I(p̄t,f ) = i,
add (p̄t,f , df (t)/max{pt,f}) to the replay buffer RL

i . The

oldest sample will be discarded when the replay buffer is

full. Then, the LSTM network is updated by sampling a

minibatch uniformly from the corresponding replay buffer. The

i-th LSTM network is updated by minimizing the loss between

the predicted number of request and the actual number of

request, defined as:

Loss(θi) = (Li(p̄t,f |θi)− df (t)/max{pt,f})
2. (11)

The overall diagram of LSTM prediction is shown in Fig. 4.

With the increase of time slot t, the normalized feature vectors

stored in the same replay buffer become more and more similar

which makes it easier for LSTM network to learn the request

pattern represented by each cluster.

Overall, the proposed C-LSTM prediction algorithm is

outlined in Alg. 1

IV. CACHE DECISION USING SUPERVISED DDPG

In this section, we introduce the proposed SDDPG ap-

proach to learn the coded caching policy based on the results

of request prediction. The SDDPG approach accelerates the

learning process of the existing DDPG algorithm with super-

vised learning. In the following, we first introduce the deep

reinforcement learning framework, then introduce supervised

learning to pre-train the neural network according to the

solution of an approximate problem that minimizes per-slot

network cost.
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Fig. 4: The overall diagram of LSTM prediction.

Algorithm 1 Clustering-LSTM Prediction for Content Re-

quests

1: Initialize C cluster centers.

2: Randomly initialize each LSTM network Li(p̄|θi) with

weights θi, ∀i ∈ {1, 2, . . . , C}.
3: Initialize each replay buffer RL

i of size SL
i , ∀i ∈

{1, 2, . . . , C}.
4: for t = ρ+ 1 : T do

5: Phase 1: Request Prediction at the beginning of time

slot t.
6: for f = 1 : F do

7: Generate and normalize the feature vectors pt,f

according to historical requests.

8: Cluster p̄t,f according to the Euclidean distance

from p̄t,f to each cluster center.

9: Use LSTM network to predict the number of

requests according to (10).

10: end for

11: Phase 2: Network Training at the end of time slot t.
12: for i = 1 : C do

13: Update the center point and the size of cluster i.
14: Store new samples

{(p̄t,f , df (t)/max{pt,f})|I(p̄t,f ) = i} in the replay

buffer RL
i .

15: Get a random minibatch of ML samples from

replay buffer RL
i .

16: Train the LSTM network Li by minimizing the

loss function (11).

17: end for

18: end for

A. Deep Reinforcement Learning Framework

Problem (6) can be viewed as a real-time control problem

which can be solved with RL. The essential elements of RL,

i.e., state, action, reward and return are defined as follows:

• State: The state of system at time slot t is defined as:

st = [d̃(t),Λ(t− 1)], (12)

where d̃(t) is the predicted number of requests for files

Fig. 5: The overall diagram of DDPG.

at time slot t and Λ(t − 1) is the cache status in the

previous time slot.

• Action: The action at time slot t, denoted as at, is defined

as the cache allocation Λ(t) which represents the fraction

of coded bits of each file that should be cached in each

cache node.

• Reward: The reward at time slot t is defined as the

negative actual network cost −C(t) observed at the end

of time slot t, denoted as rt(st, at).
• Return: The return at time slot t is defined as the sum

of discounted future reward from t:

Rt = lim
T→∞

T∑

i=t

γi−tri(si, ai). (13)

Note that the return also depends on the action, and

therefore on the policy. Let µ : S → A denote the policy

mapping any state s ∈ S to any action a ∈ A. We model

the problem (6) as a non-stationary Markov decision process

(MDP) with an initial state distribution p(s1) and transition

dynamics p(st+1|st, µ(st)). Our goal is to learn a policy which

maximizes the expected reward from the start distribution

Jµ = Eri,si∼E [R1], where E stands for the environment. The

action-value function describes the expectation of return Rt

after taking an action at following policy µ in state st. It can

be rewritten recursively as

Qµ(st, at) = Eri≥t,si≥t∼E [Rt|st, µ(st)]

= Ert,st+1∼E [rt(st, µ(st)) + γ(Rt+1|st+1, µ(st+1)]

= Ert,st+1∼E [rt(st, µ(st)) + γQµ(st+1, µ(st+1))].
(14)

Since both state and action are high-dimensional and contin-

uous, the traditional Q-learning cannot be applied. We adopt

the DDPG method [34], an actor-critic architecture based

on the deterministic policy gradient that can operate over

continuous and high-dimensional action spaces. The overall

diagram of DDPG is shown in Fig. 5. It uses a critic network

parameterized by θQ to approximate the action-value function

Q(·) and an actor network parameterized by θµ to approximate

the policy µ. The experience replay is to train the networks

with minimum correlation while the target network is designed

to slowly track the learned network.

Let the replay buffer be denoted as B of size S. At the

beginning of time slot t, the actor generates a proto action
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µ(st|θµ) based on the current state st. To overcome the

challenge of action exploration in the learning procedure,

we add noise sampled from an Ornstein-Uhlenbeck process,

denoted as α, to the proto action, i.e., at = µ(st|θµ) + α.

At the end of time slot t, we first aggregate reward rt from

the environment and store the experienced transition tuple

(st, at, rt, st+1) as a training sample in the replay buffer B.

The oldest sample will be discarded when the replay buffer

is full. Then, the actor and critic networks are updated by

sampling a minibatch uniformly from the buffer. In particular,

the critic network is updated using MSE loss function defined

as:

Loss(θQ) = (Q(st, at|θQ)− yt)
2, (15)

where yt = r(st, at) + γQ(st+1, µ(st+1|θµ)|θQ). The actor

network is updated by applying the chain rule to the expected

return Jµ with respect to the actor parameters:

∇θµJµ ≈ ∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)

= ∇aQ(s, a|θQ)|s=st,a=µ(st|θµ)∇θµµ(s|θµ)|s=st .
(16)

The above is the policy gradient [35].

The target network is a copy of the actor and critic networks,

Q′(s, a|θ
′

Q) and µ′(s|θ
′

µ). It is introduced to improve the

stability of learning. The weights of these target networks are

updated by having them slowly track the learned networks:

θ′ ← τθ + (1 − τ)θ′ with τ ≪ 1. Note that DDPG is an off-

policy algorithm, the replay buffer size S should be as large

as possible to allow the algorithm to take advantage of a large

set of uncorrelated experienced samples.

In order to better use DDPG algorithm to solve the cache

decision problem, we specially design the structure of the

actor network and the critic network. For the actor network,

in order to ensure the actor output meets the cache fraction

constraint (6b), we use sigmoid function, f(x) = 1/(1+e−x),
as the activation function of the output layer. Furthermore,

to meet the cache capacity constraint (6c), we introduce a

scaling process to each actor output. In specific, the cache

vector corresponding to cache node n after scaling is given

by

Λn(t) =
M

∑
f∈F λ̃f,n(t)

[λ̃1,n(t), λ̃2,n(t), . . . , λ̃F,n(t)], (17)

where [λ̃1,n(t), λ̃2,n(t), . . . , λ̃F,n(t)] represents the network

output corresponding to cache node n at time slot t. If

some elements of cache vector variable are greater than 1

after scaling, we just let them equal 1. Note that when the

original output of the actor network before scaling exceeds

the cache capability, the elements in the cache vector variable

will become smaller after scaling, thus yielding reduction in

feedback rewards of the environment. Since DDPG aims to

maximize the discounted future reward, this will, to a certain

extent, restrict the actor from generating solutions that exceed

the cache capacity. The structure of the actor network is shown

in Fig. 6.

State

Action

sigmoid

sigmoid

sigmoid

scaling

scaling

scaling

.

.

.

Fig. 6: The structure of actor network.

Algorithm 2 SDDPG algorithm

1: Randomly initialize critic network Q(s, a|θQ) and actor

network µ(s|θµ) with weights θQ and θµ.

2: Initialize replay buffer B and a random process α.

3: Initialize target network Q′ and µ′ with weights θ
′

Q ← θQ,

θ
′

µ ← θµ.

4: Phase 1-1: Pre-train the actor network.

5: for t = 2 : TA do

6: Solve PA(t) and add ((d̃(t),Λ(t−1)),Λ∗(t)) into TA.

7: end for

8: Train the actor network by minimizing Loss(θµ).
9: Update the target actor network: θ

′

µ ← θµ
10: Phase 1-2: Pre-train the critic network.

11: for t = 2 : TA do

12: Perform steps 17-24 and step 28 of Phase 2.

13: end for

14: Phase 2: DDPG algorithm.

15: Initialize replay buffer B and a random process α.

16: for t = TA, TA + 1, . . . do

17: Select action at = µ(st|θµ) + α.

18: Scale action at to satisfy the cache size constraint.

19: Observe reward rt and new state st+1.

20: Store sample (st, at, rt, st+1) in the buffer B.

21: Get a random minibatch of MB samples

{(si, ai, ri, si+1)} from B.

22: Set yi = ri + γQ′(si+1, µ
′(si+1|θ

′

µ)|θ
′

Q).
23: Update the critic network by minimizing the loss:

24: L(θQ) =
1

MB

∑
i(yi −Q(si, ai|θQ))2.

25: Update the actor network using the sampled gradient

according to (16)

26: Update the target networks

27: θ
′

µ ← τθµ + (1− τ)θ
′

µ.

28: θ
′

Q ← τθQ + (1 − τ)θ
′

Q.

29: end for

For the critic network, due to the different input types and

dimensions, i.e., st and at, we divide the neurons of the first

hidden layer into two parts for feature extraction of st and at
respectively.
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B. Supervised Learning for Pre-Training

Like most model-free reinforcement learning algorithms,

DDPG in general requires a large number of training episodes

to find solutions. Moreover, the reward function in our con-

sidered problem involves both transmission delay and replace-

ment cost and thus is difficult to be learned. To tackle these

issues, in this section, we use supervised learning to pre-

train the actor and critic networks. The training samples are

generated from the solution of a problem that minimizes the

per-slot network cost instead of the total network cost by

approximating the actual requests with the predicted ones.

We first allocate the predicted number of requests d̃(t) to

each user based on the actual number of requests of each user

in the previous time slot. Note that, it can also be allocated

based on the number of requests from a previous window of

time slots. For convenience, we only consider the previous

time slot. The predicted transmission delay is calculated as:

C̃d(t) =
∑

k∈K

∑

f∈F

dk,f (t− 1)∑
k′∈K dk′,f (t− 1)

d̃f (t)D
f
k (t). (18)

Then we decouple the original problem (6) into a series of

subproblems indexed by t. Each subproblem is to minimize

the network cost at the current time slot and it is formulated

as:

PA(t) :min
Λ(t)

C̃d(t) + βCr(t) (19a)

s.t.
∑

f∈F

λf,n(t) ≤M, ∀n ∈ N . (19b)

λf,n(t) ∈ [0, 1], ∀f ∈ F , n ∈ N . (19c)

The problem PA(t) is a convex problem which can be

solved efficiently. Note that the parameters [d̃(t),Λ(t − 1)]
and the optimization variable Λ(t) of the problem PA(t)
correspond to the input st and output at of the actor network,

respectively. Hence, we use the parameters and the optimal

variables of PA(t) as the training set to pre-train the actor

network. The t-th training sample (xt, yt) of training set TA
is defined as ((d̃(t),Λ(t − 1)),Λ∗(t)), where Λ∗(t) is the

optimal solution of PA(t). The loss to minimize is

Loss(θµ) = (yt − µ(xt|θµ))
2. (20)

After pre-training the actor network, we use the output of the

actor network to pre-train the critic network. The method to

pre-train the critic network is the same as the DDPG algorithm

except that the actor network weights are not updated. We

use the first TA time slots for pre-training. After the pre-

training phase, since the solution of PA is only optimal to

the approximate problem instead of the original problem, we

use DDPG to further reduce the total network cost based on

the pre-trained networks.

The proposed SDDPG algorithm is outlined in Alg. 2.

V. SIMULATIONS

In this section, we evaluate the performance of the pro-

posed request prediction algorithm and SDDPG algorithm by

comparing them with several reference methods based on a

real-world dataset.

A. Dataset Description

The dataset used in this paper is YouTube videos from

Kaggle. It records an hourly real-time count observation

(views, comments, likes, dislikes) during May 2018 of 1500

videos released in April 2018. The total number of time slots

is T = 600. Since the number of requests in the dataset is

recorded on a per-file basis without any user information, we

allocate these requests uniformly at random to each user. We

select the 50 files with the largest total number of requests to

be added to the catalogue, i.e., F = 50.

B. Simulation Setup

• Wireless network setting: We consider a hexagonal

multi-cell network with N = 7 cache nodes, each located

at the center of a hexagonal-type cell. Each cache node

can cache up to M = 5 files. The length of each file

B is set to 1GB. The distance between adjacent cache

nodes is set to 500m. There are total 20 users which are

randomly and independently distributed in the network,

excluding an inner circle of 50m around each cache

node. The coverage area of cache node is 500m. The

transmission power of each cache node is set to 1W.

The available channel bandwidth for each user is set

to W = 0.1MHz. The channel pathloss is modeled as

PL(dB) = 148.1 + 37.6log10(d), where d is the distance

in kilometers. The transmit antenna power gain at each

cache node is 1dBi. The noise power spectral density σ2

for all users is set to −152dBm/Hz. The per-bit delay

between each user and each cache node is calculated by

1/R, where R = W log2(1 + SNR) with SNR being the

average received signal-to-noise ratio. The MBS-to-user

delay is thrice the maximum of the cache node-to-user

delay. The discount factor γ is set to 0.99.

• C-LSTM setting: For each cluster to do the prediction,

we use a neural network with three hidden LSTM-layers,

one input layer, and one output layer. The number of

hidden units in each hidden layer is 24, 24 and 12
respectively. We use a fully connected layer as the output

layer and its activation function is set to be linear. The

replay buffer size of each cluster is set to 1000. The

learning rate and batch size are set to 0.0005 and 32

respectively.

• Actor-Critic network setting: We use two feed forward

neural networks with one input layer, two hidden layers

and one output layer to act as the actor and critic

networks. The input of the critic network is the action

at and state st, and the output is the value of Q-function.

The action at and st are assigned 200 neurons each in the

first hidden layer of critic network. We add the outputs

corresponding to the two parts of the neurons as the input

of the second hidden layer, i.e., the input dimension of the

second layer is 200. The number of neurons in the second

layer is 100. Further, we use ReLU [36] as the activation

function for the hidden layers. The activation function

of output layer is set to be linear. The learning rate of

critic network is set to 0.0005. A fully connected neural

network is used as the actor network. The input of the
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actor network is the state st and the output is the action

at. The number of neurons in the first and second hidden

layer are set to 800 and 400, respectively. ReLU is also

used as the activation function for the hidden layers. The

activation function of the output layer is sigmoid, which

makes the output satisfy the cache fraction constraint. The

learning rate of the actor network is set to 0.00001. The

size of replay buffer B and the batch size MB are set to

1000 and 32 respectively. The trace parameter τ is set to

0.0005.

• Pre-training setting: In the pre-training phase, the pre-

training time slot length TA is set to 500. CVX [37] is

used to solve the approximate problem. The learning rate

and the batch size are set to 0.00005 and 32 respectively.

ADAM [38] is chosen as the optimizer for all neural

networks.

Note that the above hyperparameters are chosen based on

experience and simulation results. Specifically, for the number

of neurons in the hidden layer, we first set the number of

neurons in the first hidden layer as the input dimension, and

the number of neurons in each subsequent layer is half of the

previous layer. Next, we increase or decrease the number of

neurons in the hidden layer to find the optimal value while

keeping other parameters unchanged. For the learning rate,

we start from 0.01 and reduce it by half each time to find the

optimal value.

C. Performance of Prediction

We first evaluate the accuracy of the proposed prediction

method by considering the normalized mean square error

(NMSE). The NMSE at time slot t is defined as follows:

EN (t) =
‖d̃(t)− d(t)‖22
‖d(t)‖22

. (21)

We compare our method with the following benchmarks:

• Grouped linear model (GLM) [15]: This method predicts

the future requests by using a grouped linear regression

model based on historical content requests, where the

linear coefficients are designed in a grouped manner

according to the age of each file.

• Long short-term memory (LSTM): Unlike C-LSTM, this

scheme does not cluster features. Instead, each LSTM

network is designed for one file and it only uses the

features from the same file for prediction.

There are two key parameters in the proposed C-LSTM

algorithm, the dimension of feature vector ρ and the cluster

number C. Increasing ρ can introduce more information in the

feature vector for prediction but also can increase the number

of parameters of the LSTM network. Specifically, the number

of parameters in the first LSTM layer is 4q(ρ+1+q) where q is

the number of neurons. As for the cluster number C, if it is too

small, the feature vectors of different trends can be classified

into the same cluster, thus resulting in inaccurate prediction. If

C is more than needed, the feature vectors that have the same

trends may be classified into different clusters. As a result, the

number of samples in some clusters is small, which makes

it difficult to train the LSTM network. In this subsection,
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Fig. 7: Average NMSE vs feature dimension.

we shall find the appropriate value for each parameter via

simulation.

Fig. 7 plots the average NMSE with respect to the dimension

of feature vector ρ. Since prediction is performed within a

finite number of time slots, we compute the average NMSE

by averaging the instantaneous NMSEs over all the time slots

which is defined as ĒN =
∑T

t=1 EN (t)/T . From Fig. 7, we

first observe that the average NMSE of LSTM and all C-

LSTM under different C’s decreases and gradually approaches

a constant as ρ increases. This indicates that the predic-

tion accuracy can be increased by increasing the historical

observation window, but cannot be increased further if the

window size is large enough. In particular, all the NMSE

performances converge at around ρ = 12. Therefore, we fix

ρ = 12, regardless of C, in the rest of our simulation to

balance the average NMSE performance and the number of

parameters to learn. From Fig. 7, it is also observed that

the LSTM-based prediction methods can perform significantly

better than the GLM method proposed in [15]. In particular,

when ρ = 12 and C = 4, the average NMSE of C-LSTM is

43.6% lower than that of GLM. Furthermore, it is observed

when C = 4, the proposed C-LSTM is slightly worse than

LSTM at small ρ (= 2) , but becomes superior when ρ ≥ 4.

In particular, the average NMSE of C-LSTM with C = 4 is

11.6% lower than that of LSTM at ρ = 12. This is due to

the fluctuation of feature vectors in low dimensions, which

causes the feature vectors with different trends to be clustered

together. As the dimension of feature vectors increases, the

impact of fluctuations becomes small and the advantages of

clustering gradually emerge. It is also seen from Fig. 7 that

the cluster size C needs to carefully chosen, which shall be

presented in the next figure.

Fig. 8 plots the average NMSE with respect to the cluster

number C when the dimension of feature vector ρ = 12. As

expected, there exists an optimal number of clusters, which

is C = 4 in the considered example. If C is not chosen

properly, the prediction performance of C-LSTM can be worse

than LSTM. Specifically, when there is no clustering, i.e.,

C = 1, C-LSTM is worse than GLM and LSTM. This is
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due to that the information contained in the feature vector

is very different, and thus the average NMSE can be very

large when the same LSTM network is used for prediction.

When C > 1, similar feature vectors are clustered together

and each cluster is predicted by a separate LSTM network.

By exploiting the correlation among the feature vectors in each

cluster, the prediction performance can be enhanced. When C
is very large, the K-means algorithm becomes sensitive to the

fluctuation in the feature vector, and feature vectors that should

belong to the same cluster may be classified into different

clusters. In addition, larger C means fewer samples in each

cluster, which makes it difficult to train the LSTM network.

As a result, the average NMSE rises again when C further

increases. Thus, we fix C = 4 for the prediction part in the

rest of the simulation.

D. Performance of SDDPG

We compare our method with the following benchmarks:

• Per-Slot Optimization with predicted requests (PSO-P):

Use the predicted number of requests of the current time

slot and the cache variable in the previous time slot as the
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Fig. 10: Average network cost vs β.

input to solve the approximate problem PA(t) directly.

This method only minimizes the per-slot cost, but not

the total cost.

• DDPG: This scheme differs from SDDPG in which there

is no pre-training.

• SDDPG with real request (SDDPG-R): Replace the pre-

dicted number of requests in the state of SDDPG with

the actual number of requests. This is an oracle scheme.

Fig. 9 plots the average network cost at β = 1.5 with respect

to time slot t of the four schemes. The average network cost

of time slot t is defined by (
∑t

i C(i))/t. Please note that the

average network cost of all the four schemes shown in this

figure decreases rapidly during the time slot [500, 520]. This

is due to the fact that the number of requests in our considered

real-word dataset fall down after the peak time. From Fig. 9,

we can observe that the average network cost of DDPG is

much higher than that of the other three schemes. This means

that it is difficult for neural network to find the optimal cache

policy only based on the feedback from environment. As such,

the proposed supervised pre-training is essential to boosting

the performance of DDPG. We also observe that the average

network cost of SDDPG is 16.8% lower than that of PSO-

P and approaches the performance of SDDPG-R which is a

lower bound.

Fig. 10 shows the average network cost with respect to

weight β that balances transmission delay and cache replace-

ment cost. We can see that when β = 0 (only transmission

delay is considered), the performance of SDDPG is worse than

that of PSO-P. This is because when the replacement cost is

not considered, minimizing the total network cost over all time

slots is equivalent to minimizing the transmission delay at each

time slot. Obviously, the solution of PSO-P is already optimal.

SDDPG, on the other hand, moves the solution away from the

optimal solution by using stochastic gradient descent method.

When β > 0, we can find that the gap between SDDPG and

PSO-P decreases first and then increases as β becomes larger.

This is because the advantage of optimization over all time

slots gradually becomes apparent as β grows when β is small.

The gap between SDDPG and PSO-P reaches the maximum
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when β = 1.5. When further increases, we can observe that the

three schemes approach to perform the same. This is because

all three schemes tend to keep the cache state unchanged when

β is large enough. Fig. 10 also shows that the average network

cost of the proposed SDDPG approaches that of SDDPG-R for

a wide range of β, which again indicates that the prediction

is accurate.

E. Practical Coded Caching

In the previous simulation, we assumed an ideal coded

caching scheme with a rateless MDS code so that the cache

variable λf,n(t) can take arbitrary value in [0, 1]. In practice,

considering the finite length of a file, we need to use a more

practical coded caching scheme where each file can only be

partitioned into a finite integer number of segments, denoted

as l ∈ {1, 2, . . .} before MDS coding. That suggests that the

cache variables λf,n(t) can only take values from the discrete

set {0, 1/l, 2/l, . . . , (l − 1)/l, 1}. When the element in the

learned cache vector does not satisfy the discrete constraint, we

choose Λ̂∗
n(t) which is the nearest neighboring cache vector

within the alternative set

An(t) , {Λ̂n(t)|λ̂f,n(t) ∈{⌊λf,n(t)l⌋/l, ⌈λf,n(t)l⌉/l},∑

f∈F

λ̂f,n(t) ≤M, f ∈ F} (22)

as the approximate solution of Λn(t), ∀n ∈ N . More specifi-

cally:

Λ̂∗
n(t) = arg min

Λ̂n(t)∈An(t)
‖Λ̂n(t)−Λn(t)‖2. (23)

Fig. 11 shows the impact of the coding parameter l, where

l → ∞ and l = 1 represent the ideal rateless MDS coding

and no coding, respectively. We can find that the performance

increases as l increases, since the cache decision can be better

fine-tuned. It is observed that the performance with l = 4 is

very close to the case with l →∞. By comparing with l = 1
(uncoded cache), it is also seen that coding brings significant

cost reduction.

VI. CONCLUSION

In this paper, we investigated the coded cache placement

problem in a wireless network with multiple cache nodes using

deep learning techniques. We formulated a cache placement

problem of minimizing the total discounted network cost

which involves transmission delay and replacement cost where

the content popularity is unknown and dynamic. We first

proposed C-LSTM approach to predict the number of requests

using historical content requests. The correlation of the histor-

ical request information between different files was exploited

to improve prediction accuracy. Based on the predicted result,

we then proposed SDDPG approach that combines supervised

learning and deep reinforcement learning to make cache de-

cision. Real-world trace-based numerical results showed that

the proposed C-LSTM approach can achieve higher prediction

accuracy than the considered existing methods. The results

also showed that the proposed SDDPG approach outperforms

the per-slot optimization and DDPG without pre-training.
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