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Abstract—Most works on cell-free massive multiple-input
multiple-output (MIMO) consider non-cooperative precoding
strategies at the base stations (BSs) to avoid extensive channel
state information (CSI) exchange via backhaul signaling. How-
ever, considerable performance gains can be accomplished by
allowing coordination among the BSs. This paper proposes the
first distributed framework for cooperative precoding design in
cell-free massive MIMO (and, more generally, in joint transmis-
sion coordinated multi-point) systems that entirely eliminates the
need for backhaul signaling for CSI exchange. A novel over-the-
air (OTA) signaling mechanism is introduced such that each BS
can obtain the same cross-term information that is traditionally
exchanged among the BSs via backhaul signaling. The proposed
distributed precoding design enjoys desirable flexibility and scal-
ability properties, as the amount of OTA signaling does not scale
with the number of BSs or user equipments. Numerical results
show fast convergence and remarkable performance gains as
compared with non-cooperative precoding design. The proposed
scheme can also outperform the centralized precoding design
under realistic CSI acquisition.

Index terms—Cell-free massive MIMO, distributed precoding,
joint transmission coordinated multi-point, over-the-air signaling.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) and joint
transmission coordinated multi-point (JT-CoMP) are two of
the physical-layer wireless technologies that have attracted the
most attention during the past ten years. In massive MIMO
networks, each base station (BS) is equipped with a large
number of antenna elements and serves a smaller number of
user equipments (UEs) simultaneously by means of highly
directional beamforming techniques [2]–[4]. On the other
hand, JT-CoMP enables coherent transmission from clusters of
cooperating BSs to overcome the inter-cell interference within
each cluster [3], [5], [6]. While the upcoming 3GPP New
Radio (NR) standard for 5G will have massive MIMO as one
of its cornerstones [7], it will not include JT-CoMP (at least
in its first releases) as its implementation in the Long-Term
Evolution-Advanced (LTE-A) standard [8] did not achieve
significant gains in practice. This can be mainly attributed to
the considerable amount of backhaul signaling required for
channel state information (CSI) and data sharing [9] but also
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to a network-centric approach to coherent transmission [10],
whereby the BSs in a cluster cooperate to serve the UEs in
their joint coverage region. The practical implementation of JT-
CoMP was also hindered by other attributes of LTE-A, such as
a frequency division duplex dominated macro-cell deployment
and a rigid frame/slot structure in its time division duplex
(TDD) mode of operation, which did not allow for a flexible
channel estimation.

Cell-free massive MIMO [10], [11] is a recently coined
concept that conveniently combines elements from massive
MIMO [4], small cells [3], and UE-centric JT-CoMP [12]. In
a cell-free context, the massive MIMO regime is achieved by
spreading a large number of low-cost access points across the
network (even in the form of single-antenna BSs [13], [14]),
which provides enhanced coverage and reduced pathloss. All the
BSs operate in TDD mode and jointly serve all the UEs, which
ideally allows to entirely eliminate the inter-cell interference.
To this end, all the BSs are assumed to be connected to a central
processing unit (CPU) by means of backhaul links that provide
the UE-specific data and, if required by the adopted physical-
layer transmission scheme, enable network-wide processing for
the computation of the precoding strategies. More recent works
advocate a purely UE-centric approach to coherent transmission,
where clusters of cooperating BSs are formed so that each UE
is served by its nearest BSs [15]. Both the “all serve all” and the
UE-centric views described above represent a sharp departure
from traditional JT-CoMP, which is normally implemented in a
network-centric fashion with well-defined and non-overlapping
clusters of BSs [5].

Cell-free massive MIMO has been the subject of an extensive
literature over the past few years and is now regarded as a poten-
tial physical-layer paradigm shift for beyond-5G systems [11],
[16]–[18]. Remarkably, cell-free massive MIMO networks have
been shown to outperform traditional cellular massive MIMO
and small-cell networks in several practical scenarios [13],
[14], [19]–[21]. Their performance has been analyzed under
several realistic network and hardware assumptions, e.g., with
hybrid analog-digital precoding [22], [23], with low-resolution
analog-to-digital converters [24], [25], under channel non-
reciprocity [26], as well as with hardware impairments and
limited backhaul capacity [23], [27], [28]. Another important
focus is the global energy efficiency, which has been studied
considering the impact of backhaul power consumption [29] and
quantization [30] among other factors. To avoid CSI exchange
among the BSs via backhaul signaling and to reduce the
overall computational complexity, most of the aforementioned
works (i.e., [10], [13], [15], [18], [21], [23]–[30]) assume
simple non-cooperative precoding strategies at the BSs, such
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as matched filtering (MF), local zero-forcing (ZF), and local
minimum mean squared error (MMSE) precoding, which can
be implemented based on locally acquired CSI (see also [31]).
However, the performance of cell-free massive MIMO systems
can be considerably improved by increasing the level of
coordination among the BSs [19].

Cooperative precoding design for JT-CoMP can be broadly
classified into centralized and distributed approaches. In the
centralized precoding design, the BSs forward their locally
acquired CSI to the CPU via backhaul signaling and the
CPU feeds back the optimized precoding strategies to the
BSs. Here, both the amount of CSI exchange between the
BSs and the CPU and the computational complexity of the
precoding optimization at the CPU may become overwhelming
due to the high dimensionality of the aggregated channels.
In the cell-free massive MIMO literature, such a centralized
approach has been adopted, e.g., in [14], [20], [22], which
assume centralized ZF precoding/combining, and in [19], which
considers centralized MMSE combining among different levels
of coordination. To avoid the centralized computation, [32]
proposed a distributed iterative framework for JT-CoMP that
allows to optimize the precoding strategies locally at each BS
using bi-directional training between the BSs and the UEs [33]
in addition to periodic exchange of cross-term information
among nearby BSs via backhaul signaling. Despite a significant
complexity reduction, the extensive CSI exchange among the
BSs makes the practical implementation of [32] challenging
(see also [9], [18]); furthermore, the backhaul introduces delays
and quantization errors into the CSI exchange that can sensibly
degrade the performance of the precoding design. These issues
are particularly critical in a cell-free massive MIMO context
due to the large number of BSs and UEs involved in the joint
processing.

A. Contribution

Non-cooperative precoding strategies (such as MF, local ZF,
and local MMSE precoding) have been so far preferred in the
cell-free massive MIMO literature as they do not require any
CSI exchange via backhaul signaling. However, the fact that
the channel hardening effect is less pronounced in cell-free
massive MIMO than in cellular massive MIMO [10] suggests
that cooperative precoding design can bring considerable
performance gains over its non-cooperative counterpart. In
this paper, we bridge this gap and propose the first distributed
framework for cooperative precoding design in cell-free massive
MIMO (and, more generally, in JT-CoMP) systems that entirely
eliminates the need for backhaul signaling for CSI exchange.
Focusing on the weighted sum mean squared error (MSE)
minimization, a novel over-the-air (OTA) signaling mechanism
allows each BS to obtain the same cross-term information
that was exchanged among the BSs via backhaul signaling
in [32]. Specifically, this is achieved by introducing a new
uplink signaling resource and a new CSI combining mechanism
that complement the existing uplink and downlink pilot-aided
channel estimations. The proposed distributed precoding design
enjoys desirable flexibility and scalability properties, as the
amount of OTA signaling does not scale with the number of BSs
or UEs; furthermore, there are no delays in the CSI exchange

among the BSs. These practical benefits come at the cost
of extra uplink signaling overhead per bi-directional training
iteration, which, however, results in a minor performance loss
with respect to the distributed precoding design via backhaul
signaling.

The contributions of this paper are summarized as follows:
• Building on existing tools from JT-CoMP and considering

multi-antenna UEs, we describe centralized and distributed
precoding schemes for cell-free massive MIMO under both
perfect CSI and realistic pilot-aided CSI acquisition.
• We propose a distributed precoding design where the CSI

exchange among the BSs via backhaul signaling in [32]
is entirely replaced by a novel OTA signaling mechanism,
which does not scale with the number of BSs or UEs.
• We address relevant implementation aspects of the pro-

posed distributed precoding design and illustrate how the
OTA signaling can be integrated into the flexible 5G 3GPP
NR frame/slot structure [34].
• Numerical results show significant performance gains in

terms of average sum rate over non-cooperative precoding
design even after a small number of iterations; remarkably,
the proposed distributed precoding design via OTA signal-
ing outperforms its centralized counterpart in presence of
imperfect CSI and the huge practical benefits with respect
to the case with ideal backhaul signaling come at the cost
of a very modest performance loss.

Outline. The rest of the paper is structured as follows.
Section II introduces the cell-free massive MIMO system
model. Section III describes the centralized and the distributed
precoding design with perfect CSI. Then, Section IV extends
the previous section by considering realistic pilot-aided CSI
acquisition. As the main contribution of this paper, Section V
presents the distributed precoding design via OTA signaling.
In Section VI, numerical results are reported to illustrate the
remarkable performance of the proposed scheme in different
practical scenarios. Finally, Section VII summarizes our con-
tributions and draws some concluding remarks.

Notation. Lowercase and uppercase boldface letters denote
vectors and matrices, respectively, whereas (·)T and (·)H are
the transpose and Hermitian transpose operators, respectively.
‖·‖ and ‖·‖F represent the Euclidean norm for vectors and the
Frobenius norm for matrices, respectively. Re[·] and E[·] are the
real part and expectation operators, respectively. IL denotes the
L-dimensional identity matrix and 0 represents the zero vector
or matrix with proper dimension. tr(·) is the trace operator
and Diag(·) produces a diagonal matrix with the elements of
the vector argument on the diagonal. [a1, . . . , aL] deHb,k ∈
CM×Nnotes horizontal concatenation, whereas {a1, . . . , aL}
or {a`}`∈L denote the set of elements in the argument. Lastly,
CN (0, σ2) is the complex normal distribution with zero mean
and variance σ2, whereas ∇x(·) denotes the gradient with
respect to x.

II. SYSTEM MODEL

Consider a downlink cell-free massive MIMO network where
a set of BSs B , {1, . . . , B}, each equipped with M antennas,
serves a set of UEs K , {1, . . . ,K}, each equipped with
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N antennas.1 Assuming a TDD setting and, for simplicity,
a single data stream per UE, let Hb,k ∈ CM×N be the
uplink channel matrix between UE k ∈ K and BS b ∈ B,
with Hk , [HT

1,k, . . . ,H
T
B,k]T ∈ CBM×N denoting the

aggregated uplink channel matrix of UE k. Likewise, let
wb,k ∈ CM×1 be the BS-specific precoding vector used by BS b
for UE k, with wk , [wT

1,k, . . . ,w
T
B,k]T ∈ CBM×1 denoting

the aggregated precoding vector used for UE k; here, we assume
the per-BS power constraints

{∑
k∈K ‖wb,k‖2 ≤ ρBS

}
b∈B,

where ρBS denotes the maximum transmit power at each BS.2

Note that, according to the previous definitions, we have
HH
k wk̄ =

∑
b∈BHH

b,kwb,k̄. Hence, the receive signal at UE k
is given by

yk ,
∑
b∈B

∑
k̄∈K

HH
b,kwb,k̄dk̄ + zk ∈ CN×1 (1)

where dk ∼ CN (0, 1) is the transmit data symbol for UE k
and zk is the average white Gaussian noise (AWGN) term at
UE k with elements distributed as CN (0, σ2

k). Upon receiving
yk, UE k uses the combining vector vk ∈ CN×1 to combine
yk and the resulting signal-to-interference- plus-noise ratio
(SINR) reads as

SINRk ,
|
∑
b∈B vH

k HH
b,kwb,k|2∑

k̄∈K\{k} |
∑
b∈B vH

k HH
b,kwb,k̄|2 + σ2

k‖vk‖2
.

(2)
From (2), it is easy to observe that the design of the precoding
vectors depends on the combining vectors and vice versa.
Finally, the sum rate (measured in bps/Hz) is given by

R ,
∑
k∈K

log2(1 + SINRk). (3)

Note that the above sum rate, which uses the SINR expression
in (2), represents an upper bound on the system performance
for fixed precoding and combining vectors, which is achievable
if perfect global CSI is available at all the BSs [36]. The
average sum rate based on (3) will be considered in Section VI
to evaluate and compare the different precoding schemes.

This paper focuses on distributed precoding design, where
each BS b optimizes its precoding vectors {wb,k}k∈K locally
while coordinating with the other BSs. For the sake of compar-
ison, we also illustrate the centralized precoding design, where
the aggregated precoding vectors {wk}k∈K are optimized by
the CPU and the BS-specific precoding vectors are fed back
to the BSs. In both cases, the combining vectors {vk}k∈K are
computed locally by the corresponding UEs. In the following,
we describe realistic pilot-aided CSI acquisition at both the
BSs (in Section II-A) and the UEs (in Section II-B), which
will be heavily referred to in Sections IV and V as part of the
adopted bi-directional training.

A. Uplink Pilot-Aided Channel Estimation

Let hb,k , Hb,kvk ∈ CM×1 be the effective uplink channel
vector between UE k and BS b, and let pk ∈ Cτ×1 be the pilot

1For notational simplicity, we assume the same number of antennas for all
the BSs and the UEs. However, the subsequent analysis and algorithms are
valid for any number of antennas.

2Here, ρBS does not include the hardware power consumption. The impact
of this factor is considered, e.g., in [29] in the context of power control and
in [35] in the context of hybrid analog-digital precoding.

sequence assigned to UE k, with ‖pk‖2 = τ . Moreover, let ρUE

denote the maximum transmit power at each UE. In the uplink
pilot-aided channel estimation phase, each UE k synchronously
transmits its pilot sequence pk using its combining vector vk
as precoder, i.e.,

XUL-1
k ,

√
βUL-1vkp

H
k ∈ CN×τ (4)

where the power scaling factor βUL-1 (equal for all the UEs)
ensures that XUL-1

k complies with the UE transmit power
constraint (see Section V-B for more details on the choice
of βUL-1). Then, the receive signal at BS b is given by

YUL-1
b ,

∑
k∈K

Hb,kX
UL-1
k + ZUL-1

b (5)

=
√
βUL-1

∑
k∈K

hb,kp
H
k + ZUL-1

b ∈ CM×τ (6)

where ZUL-1
b ∈ CM×τ is the AWGN term at BS b with elements

distributed as CN (0, σ2
b ), and the least-squares (LS) estimate

of hb,k is obtained as

ĥb,k ,
1

τ
√
βUL-1

YUL-1
b pk (7)

= hb,k +
1

τ

∑
k̄∈K\{k}

hb,k̄p
H
k̄ pk +

1

τ
√
βUL-1

ZUL-1
b pk. (8)

Here, perfect channel estimation is achieved when:
i) The pilot contamination in the second term of (8) is

eliminated using, for instance, orthogonal pilots (i.e.,
{pH

k̄
pk = 0}k̄∈K\{k}) or non-orthogonal random pilots

with infinite pilot length (i.e., τ →∞);
ii) The channel estimation noise in the third term of (8) is

eliminated using infinite pilot length.
Note that these observations also apply to (13) and (19) in the
following.

On the other hand, the estimation of the channel matrix Hb,k,
which is required in the centralized precoding design, involves
N antenna-specific pilot sequences for UE k. In this context,
let Pk ∈ Cτ×N be the pilot matrix assigned to UE k, with
‖Pk‖2F = τN . In the uplink pilot-aided channel estimation
phase, each UE k synchronously transmits its pilot matrix, i.e.,

XUL
k ,

√
βULPH

k (9)

where the power scaling factor βUL , ρUE
N ensures that XUL

k

complies with the UE transmit power constraint. Then, the
receive signal at BS b is given by

YUL
b ,

∑
k∈K

Hb,kX
UL
k + ZUL

b (10)

=
√
βUL
∑
k∈K

Hb,kP
H
k + ZUL

b ∈ CM×τ (11)

where ZUL
b ∈ CM×τ is the AWGN term at BS b with elements

distributed as CN (0, σ2
b ), and the LS estimate of Hb,k is

obtained as

Ĥb,k ,
1

τ
√
βUL

YUL
b Pk (12)

=
1

τ

∑
k̄∈K

Hb,k̄P
H
k̄ Pk +

1

τ
√
βUL

ZUL-1
b Pk (13)

= Hb,k +
1

τ

∑
k̄∈K\{k}

Hb,k̄P
H
k̄ Pk +

1

τ
√
βUL

ZUL
b Pk (14)
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where (14) holds only if PH
k Pk = τIN (i.e., if there is no

pilot contamination among the columns of Pk).

Remark 1. The expressions of the receive signals in (6)
and (11) imply that the transmit signals from all the UEs
are received synchronously by each BS. Although perfect
synchronization is infeasible, quasi-synchronous operations
can be achieved in practice by setting the duration of the cyclic
prefix to accommodate both the synchronization errors and the
delay spread, as described in [10], [19]. These considerations
also apply to the downlink pilot-aided channel estimation in
Section II-B (see (17)) and to the new uplink signaling resource
introduced in Section V (see (52)).

B. Downlink Pilot-Aided Channel Estimation

Let gk ,
∑
b∈BHH

b,kwb,k ∈ CN×1 be the effective
downlink channel vector between all the BSs and UE k. In
the downlink pilot-aided channel estimation phase, each BS b
synchronously transmits a superposition of the pilot sequences
{pk}k∈K after precoding them with the corresponding precod-
ing vectors {wb,k}k∈K, i.e.,

XDL
b ,

∑
k∈K

wb,kp
H
k ∈ CM×τ . (15)

Then, the receive signal at UE k is given by

YDL
k ,

∑
b∈B

HH
b,kX

DL
b + ZDL

k (16)

=
∑
b∈B

∑
k̄∈K

HH
b,kwb,k̄p

H
k̄ + ZDL

k ∈ CN×τ (17)

where ZDL
k ∈ CN×τ is the AWGN term at UE k with elements

distributed as CN (0, σ2
k), and the LS estimate of gk is obtained

as

ĝk ,
1

τ
YDL
k pk (18)

= gk +
1

τ

∑
b∈B

∑
k̄∈K\{k}

HH
b,kwb,k̄p

H
k̄ pk +

1

τ
ZDL
k pk. (19)

Note that most of the papers on cell-free massive MIMO
mentioned in Section I do not consider downlink channel
estimation as they assume a simplified system model with
single-antenna UEs where there are no transmit/receive strate-
gies to optimize at the latter. On the other hand, in the context
of multi-antenna UEs, the downlink channel estimation phase is
paramount for the optimization of such strategies. Furthermore,
it is shown in [37] that estimating the downlink channels helps
to compensate for the less pronounced channel hardening effect
with respect to cellular massive MIMO, even for single-antenna
UEs.

III. PROBLEM FORMULATION WITH PERFECT CSI

In this paper, we target the weighted sum MSE minimization
problem to optimize the precoding vectors {wb,k}b∈B,k∈K
and the combining vectors {vk}k∈K. This can be used as a
surrogate of the more involved weighted sum rate maximization
problem (or, equivalently, of the iterative weighted sum MSE
minimization problem [38]). In fact, since the total number
of BS antennas in the network BM is much larger than the
number of UEs K, the weighted sum MSE minimization yields
only a minor penalty in terms of sum-rate performance as

compared with the weighted sum rate maximization, while
being much easier to handle and providing an inherent fairness
across the UEs. In this section, we tackle the weighted sum
MSE minimization problem under perfect channel estimation;
the results derived here will be highly useful to describe the
case of realistic pilot-aided CSI acquisition at both the BSs
and the UEs in Sections IV and V.

Let ωk denote the weight assigned to UE k, which is fixed
before the transmission (e.g., by the CPU) to capture the UE’s
priority. Building on (1), let us introduce the MSE at UE k as

MSEk , E
[
|vH
k yk − dk|2

]
(20)

=
∑
k̄∈K

∣∣∣∣∑
b∈B

vH
k HH

b,kwb,k̄

∣∣∣∣2
− 2Re

[∑
b∈B

vH
k HH

b,kwb,k

]
+ σ2

k‖vk‖2 + 1. (21)

The sum MSE, i.e.,
∑
k∈K ωkMSEk, is convex with respect

to either the transmit or the receive strategies, but not jointly
convex with respect to both. This makes the joint optimiza-
tion of the precoding and the combining vectors extremely
challenging, especially under limited signaling between the
BSs and the UEs. Hence, we can achieve a local optimum
of the sum MSE minimization problem by using alternating
optimization, whereby the precoding vectors are optimized for
fixed combining vectors and vice versa in an iterative best-
response fashion (as done, e.g., in [32], [38]).
• Optimization of the combining strategies. The combin-

ing vectors {vk}k∈K are computed locally and indepen-
dently by the UEs such that each UE k minimizes MSEk
in (21). In the centralized precoding design, the combining
vectors are also derived by the CPU in conjunction with the
precoding vectors as part of the alternating optimization
routine (although they are not fed back to the UEs). From
the point of view of UE k, we can rewrite the MSE as

MSEk = vH
k (Ψk + σ2

kIN )vk − 2Re[vH
k gk] + 1 (22)

where we have defined

Ψk ,
∑
k̄∈K

(∑
b∈B

HH
b,kwb,k̄

)(∑
b∈B

wH
b,k̄Hb,k

)
. (23)

The combining vector vk that minimizes (22) is the well-
known MMSE receiver, which may be written as

vk = (Ψk + σ2
kIN )−1gk. (24)

Observe that vk can be computed locally by UE k as in
(24) if Ψk in (23) and the effective downlink channel gk
are known by UE k.
• Optimization of the precoding strategies. The precoding

vectors {wb,k}b∈B,k∈K are computed as the solutions of
the weighted sum MSE minimization problem with per-BS
power constraints. To this end, we introduce the follow-
ing preliminary definitions: hk , [hT

1,k, . . . ,h
T
B,k]T ∈

CBM×1, H , [h1, . . . ,hK ] ∈ CBM×K , W ,
[w1, . . . ,wK ] ∈ CBM×K , Ω , Diag

(
[ω1, . . . , ωK ]

)
∈

RK×K , and Φ ,
∑
k∈K ωkhkh

H
k ∈ CBM×BM , where

the latter may be rewritten as
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Φ ,

Φ11 . . . Φ1B

...
. . .

...
ΦH

1B . . . ΦBB

 (25)

with Φbb̄ ,
∑
k∈K ωkhb,kh

H
b̄,k
∈ CM×M . Finally, the

weighted sum MSE can be expressed as∑
k∈K

ωkMSEk = tr(WHΦW)− 2Re
[
tr(ΩHHW)

]
+
∑
k∈K

ωk(σ2
k‖vk‖2 + 1). (26)

In the following, we first describe the centralized precoding
design in Section III-A and then focus on the distributed
precoding design via backhaul signaling in Section III-B.

A. Centralized Precoding Design
In the centralized precoding design, the aggregated precoding

vectors are computed by the CPU and the BS-specific precoding
vectors are fed back to the corresponding BSs via backhaul
signaling. Here, the alternating optimization of the precoding
and the combining vectors takes place transparently at the
CPU. Hence, for fixed combining vectors, the CPU solves the
weighted sum MSE minimization problem

min
{wk}k∈K

tr(WHΦW)− 2Re
[
tr(ΩHHW)

]
s.t.

∑
k∈K

‖Ebwk‖2 ≤ ρBS, ∀b ∈ B (27)

where Eb ∈ RM×BM is a selection matrix such that Ebwk =
wb,k. For each UE k, the first-order optimality condition of
(27) reads as

∇wk

(∑
k̄∈K

ωk̄MSEk̄ +
∑
b∈B

λb

(∑
k̄∈K

‖Ebwk̄‖2 − ρBS

))
= 0

(28)

where {λb}b∈B are the (coupled) dual variables related with
the per-BS power constraints, which can be optimized, e.g.,
using the ellipsoid method. Finally, (28) yields the centralized
precoding solution

wk = ωk

(
Φ +

∑
b∈B

λbE
H
b Eb

)−1

hk (29)

= ωk

Φ11 + λ1IM . . . Φ1B

...
. . .

...
ΦH

1B . . . ΦBB + λBIM


−1 h1,k

...
hB,k

 .
(30)

The centralized precoding design is carried out as follows.
First, each BS b acquires the channel matrices {Hb,k}k∈K and
forwards them to the CPU via backhaul signaling. Then, the
CPU computes the aggregated precoding vectors {wk}k∈K
as in (29) together with the combining vectors {vk}k∈K as
in (24) by means of alternating optimization. Subsequently, it
feeds back the BS-specific precoding vectors {wb,k}k∈K to
each BS b via backhaul signaling. Lastly, each UE k acquires
Ψk in (23) and the effective downlink channel gk, based on
which it computes its combining vector vk as in (24).
B. Distributed Precoding Design via Backhaul Signaling

In the distributed precoding design, the BS-specific precoding
vectors are computed locally by the BSs. Here, the alternating

optimization of the precoding and the combining vectors takes
place by means of iterative bi-directional training between the
BSs and the UEs (see [32], [33], [39], [40]). Hence, for fixed
combining vectors, the BSs jointly solve the weighted sum
MSE minimization problem

min
{wb,k}b∈B,k∈K

tr(WHΦW)− 2Re
[
tr(ΩHHW)

]
s.t.

∑
k∈K

‖wb,k‖2 ≤ ρBS, ∀b ∈ B. (31)

For each BS b and for each UE k, the first-order optimality
condition of (31) reads as

∇wb,k

(∑
k̄∈K

ωk̄MSEk̄ +
∑
b̄∈B

λb̄

(∑
k̄∈K

‖wb̄,k̄‖2 − ρBS

))
= 0

(32)
where λb has the same meaning as in (28) and can be optimized
via bisection methods. Finally, (32) yields the distributed
precoding solution3

wb,k = (Φbb + λbIM )−1(ωkhb,k − ξb,k) (33)

where we have defined

ξb,k ,
∑

b̄∈B\{b}

Φbb̄wb̄,k. (34)

Recall that the computation of {wb,k}k∈K by BS b requires the
optimization of the dual variable λb via bisection methods.4

Building on the parallel optimization framework proposed
in [41], the distributed precoding design can be implemented
in an iterative best-response fashion [32]. Focusing on UE k,
at each iteration i, each BS b locally computes wb,k as in (33)
in parallel with the other BSs for a fixed ξb,k (and, thus, for
fixed {wb̄,k}b̄∈B\{b}); then, each BS b updates its precoding
vector as

w
(i)
b,k = (1− α)w

(i−1)
b,k + αwb,k (35)

with α ∈ (0, 1]. In this context, the update in (35) is
necessary to limit the variation of the precoding vectors between
consecutive iterations, where the step size α must be chosen
to strike the proper balance between convergence speed and
accuracy. We refer to [32], [41] for more details on the choice
of α and on the convergence properties.

Remark 2. The vector ξb,k in (34) contains implicit informa-
tion about the channel correlation between BS b and the other
BSs and about the precoding vectors adopted by the latter for
UE k. The knowledge of such cross-term information at each
BS b is required to iteratively adjust the distributed precoding
solution so that it converges to its centralized counterpart
described in Section III-A. In this regard, omitting ξb,k from
(33) yields the highly suboptimal local MMSE precoding. Note
that, while the effective uplink channels {hb,k}k∈K (which
are also used to compute Φbb) can be acquired locally by
each BS b via uplink training, the acquisition of {ξb,k}k∈K
calls for extensive CSI exchange among the BSs via backhaul
signaling [32]. In Section V, we propose a practical scheme to

3The equivalence between the centralized and the distributed precoding
solutions in (29) and (33), respectively, is shown in Appendix I for the simple
case of B = 2 BSs, which can be extended to any value of B by recursively
applying the Schur complement.

4Observe that
∑

k∈K ‖Φ
−1
bb (ωkhb,k − ξb,k)‖ ≤ ρBS implies λb = 0.
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implement the distributed precoding design that relies solely
on OTA signaling.

Remark 3. The computational complexity associated with the
distributed precoding design after i iterations is O(iδBM3),
with δ being the number of bisection steps per iteration;
here, the term M3 follows from the (M ×M)-dimensional
matrix inversion in (33). On the other hand, the computational
complexity associated with the centralized precoding design
described in Section III-A is O(δB3M3), where the term
B3M3 follows from the (BM × BM)-dimensional matrix
inversion in (29). Hence, despite its iterative nature, the
distributed precoding design brings a substantial computational
complexity reduction as the total number of BS antennas in the
network BM is usually very large in cell-free massive MIMO
contexts.

The distributed precoding design via backhaul signaling
is carried out as follows. First, for fixed combining vectors
{vk}k∈K, each BS b acquires the effective uplink channels
{hb,k}k∈K and, by means of backhaul signaling, the vectors
{ξb,k}k∈K. Then, it computes its precoding vectors {wb,k}k∈K
locally as in (33) and updates them as in (35). Subsequently,
each UE k acquires Ψk in (23) and the effective downlink
channel gk, based on which it computes its combining vector
vk locally as in (24). This process is iterated until a predefined
termination criterion is satisfied.

IV. PROBLEM FORMULATION WITH IMPERFECT CSI

In this section, we consider the centralized and the distributed
precoding designs described in Sections III-A and III-B under
realistic pilot-aided CSI acquisition at both the BSs and
the UEs (see Sections II-A and II-B). Here, the precoding
vectors {wb,k}b∈B,k∈K and the combining vectors {vk}k∈K
are computed as the solutions of an estimated weighted sum
MSE minimization problem with per-BS power constraints.
For notational simplicity, and without loss of generality, we
assume {ωk = 1}k∈K.

A. Centralized Precoding Design

In the centralized precoding design, the CPU computes the
combining vectors and the aggregate precoding vectors for
each UE k as

vk =

(∑
k̄∈K

(∑
b∈B

ĤH
b,kwb,k̄

)(∑
b∈B

wH
b,k̄Ĥb,k

)
+ σ2

kIN

)−1

×
∑
b∈B

ĤH
b,kwb,k, (36)

wk =

(∑
k̄∈K

Ĥk̄vk̄v
H
k̄ ĤH

k̄ +
∑
b∈B

λbE
H
b Eb

)−1

Ĥkvk (37)

respectively, as part of the alternating optimization routine.
Here, (36) and (37) are obtained from minimizing the sum
MSE after replacing the channels {Hb,k}b∈B with the estimated
channels {Ĥb,k}b∈B (obtained as in (13)) in (21), and are equal
to (24) and (29), respectively, for perfect channel estimation.
The implementation of the centralized precoding design is
formalized in Algorithm 1, which is guaranteed to converge
to a local optimum of the estimated sum MSE minimization
problem (the same holds for Algorithm 3). Note that such

Algorithm 1 (Centralized)

Data: Pilot matrices {Pk}k∈K and pilot sequences {pk}k∈K
(pk can be the first column of Pk).

(S.1) UL: Each UE k transmits the pilot matrix Pk (see
XUL
k in (9)); each BS b receives YUL

b in (11).
(S.2) Each BS b obtains {Ĥb,k}k∈K as in (13) and forwards

them to the CPU via backhaul signaling.
(S.3) The CPU computes the aggregated precoding vectors

{wk}k∈K as in (37) together with the combining
vectors {vk}k∈K as in (36) by means of alternating
optimization.

(S.4) The CPU feeds back the BS-specific precoding vectors
{wb,k}k∈K to each BS b via backhaul signaling.

(S.5) DL: Each BS b transmits a superposition of the pilot
sequences {pk}k∈K after precoding them with the
corresponding precoding vectors {wb,k}k∈K (see XDL

b

in (15)); each UE k receives YDL
k in (17).

(S.6) Each UE k computes its combining vector vk as in
(41).

scheme is highly susceptible to imperfect channel estimation as
it hinges on a single pilot-aided CSI acquisition (see Remark 5).
Moreover, the amount of backhaul signaling for CSI exchange
in step S.2 of Algorithm 1 scales with the number of BSs and
UEs.

B. Distributed Precoding Design via Backhaul Signaling

In the distributed precoding design, after the downlink pilot-
aided channel estimation phase, each UE k obtains

1

τ
YDL
k (YDL

k )H = Ψk +
1

τ

∑
k̄,j∈K
k̄ 6=j

(∑
b∈B

HH
b,kwb,k̄

)

×
(∑
b∈B

wH
b,jHb,k

)
(pH
k̄ pj) + NDL

k (38)

with YDL
k and Ψk defined in (17) and (23), respectively, and

NDL
k ,

1

τ

(∑
b∈B

∑
k̄∈K

(
HH
b,kwb,k̄p

H
k̄ (ZDL

k )H

+ ZDL
k pk̄w

H
b,k̄Hb,k

)
+ ZDL

k (ZDL
k )H

)
. (39)

Here, perfect channel estimation would imply that:
i) The pilot contamination in the second term of (38) is

eliminated;
ii) As τ →∞, we have that NDL

k → σ2
kIN .

Hence, UE k can use (38) as an estimate of Ψk + σ2
kIN and,

consequently, it can obtain an estimate of MSEk in (22) as

MSEk '
1

τ
vH
k YDL

k (YDL
k )Hvk −

2

τ
Re[vH

k YDL
k pk] + 1. (40)

Finally, each UE k can compute its combining vector vk locally
as

vk =
(
YDL
k (YDL

k )H
)−1

YDL
k pk (41)

which is equal to (24) for perfect channel estimation.
On the other hand, for the computation of the precoding vec-

tors, let us define YUL-1 , [(YUL-1
1 )T, . . . , (YUL-1

K )T]T ∈ CBM×τ
and P , [p1, . . . ,pK ] ∈ Cτ×K . The following steps describe
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∑
k∈K

MSEk '
1

τβUL-1
tr

(
WH

(
YUL-1(YUL-1)H − τ

∑
b∈B

σ2
bE

H
b Eb

)
W

)
− 2

τ
√
βUL-1

Re
[
tr
(
PH(YUL-1)HW

)]
+
∑
k∈K

σ2
k‖vk‖2 +K

(44)

how the cross-term information can be expressed in terms
of the receive signals at the BSs in the uplink pilot-aided
channel estimation phase. For each BS pair b and b̄, we have
the following relation:

1

τβUL-1
YUL-1
b (YUL-1

b̄ )H = Φbb̄ +
1

τ

∑
k,k̄∈K
k 6=k̄

hb,kh
H
b̄,k̄(pH

k pk̄) + NUL-1
bb̄

(42)
with YUL-1

b defined in (6) and

NUL-1
bb̄ ,

1

τ

(
1√
βUL-1

∑
k∈K

(
hb,kp

H
k (ZUL-1

b̄ )H + ZUL-1
b pkh

H
b̄,k

)
+

1

βUL-1
ZUL-1
b (ZUL-1

b̄ )H

)
. (43)

Note that YUL-1
b is not available at BS b̄ 6= b. Here, perfect

channel estimation would imply that:

i) The pilot contamination in the second term of (42) is
eliminated;

ii) As τ →∞, we have that NUL-1
bb̄
→ 0 if b̄ 6= b and NUL-1

bb →
σ2
b

βUL-1 IM .

Hence, (42) can be intended as an estimate of Φbb̄ if b̄ 6= b or of
Φbb +

σ2
b

βUL-1 IM if b̄ = b and, consequently, 1
τβUL-1 Y

UL-1(YUL-1)H

can be intended as an estimate of Φ + 1
βUL-1

∑
b∈B σ

2
bE

H
b Eb.

This can be exploited to write the estimated sum MSE as in (44)
at the top of the page, where the term − 1

βUL-1

∑
b∈B σ

2
bE

H
b Eb

removes the noise bias from the estimation of Φ. For fixed
combining vectors, the BSs jointly solve the estimated sum
MSE minimization problem

min
{wb,k}b∈B,k∈K

tr

(
WH

(
YUL-1(YUL-1)H − τ

∑
b∈B

σ2
bE

H
b Eb

)
W

)
−2
√
βUL-1Re

[
tr
(
PH(YUL-1)HW

)]
s.t.

∑
k∈K

‖wb,k‖2 ≤ ρBS, ∀b ∈ B.

(45)
Finally, for each BS b and for each UE k, the first-order
optimality condition of (45) yields the distributed precoding
solution

wb,k =
(
YUL-1
b (YUL-1

b )H + τ(βUL-1λb − σ2
b )IM

)−1
YUL-1
b

×
(√

βUL-1pk −
∑

b̄∈B\{b}

(YUL-1
b̄ )Hwb̄,k

)
(46)

which is equal to (33) for perfect channel estimation, and where
the term −τσ2

b IM in the inverse matrix removes the noise bias
from the estimation of τβUL-1Φbb (the same holds for (49), (55),
and (56)). To compute wb,k as in (46), BS b needs to acquire
the term (YUL-1

b̄
)Hwb̄,k ∈ Cτ×1 from each BS b̄ ∈ B \ {b}

via backhaul signaling, as described in [32]. The iterative
implementation of the distributed precoding design via backhaul
signaling is formalized in Algorithm 2, whose convergence to a
local optimum of the estimated sum MSE minimization problem

Algorithm 2 (Distributed–backhaul)

Data: Pilot sequences {pk}k∈K.
Initialization: Each BS b initializes its precoding vectors

{w(0)
b,k}k∈K; set i = 0.

Until a predefined termination criterion is satisfied, do:
(S.0) i← i+ 1.
(S.1) DL: Each BS b transmits a superposition of the pilot

sequences {pk}k∈K after precoding them with the
corresponding precoding vectors {wb,k}k∈K (see XDL

b

in (15)); each UE k receives YDL
k in (17).

(S.2) Each UE k computes its combining vector vk as in
(41).

(S.3) UL-1: Each UE k transmits its pilot sequence pk after
precoding it with its combining vector vk (see XUL-1

k

in (4)); each BS b receives YUL-1
b in (6).

(S.4) For each UE k, each BS b acquires{
(YUL-1

b̄
)Hwb̄,k

}
b̄∈B\{b} from the other BSs via

backhaul signaling.
(S.5) For each UE k, each BS b computes its precoding

vectors {wb,k}k∈K as in (46) and updates them as in
(35).

End

is guaranteed by the proper choice of the step size α in (35)
(the same holds for Algorithm 4). Here, suitable termination
criteria can be, for instance, i = imax, where imax is the
maximum number of iterations (fixed to comply with some
latency constraints or adapted to the duration of the scheduling
block), |R(i)−R(i−1)| ≤ ε, or ‖W(i)−W(i−1)‖2F ≤ ε. These
observations also apply to Algorithms 3 and 4 in the following.

Remark 4. The amount of backhaul signaling for CSI
exchange in step S.4 of Algorithm 2 scales not only with
the pilot length τ and the number of bi-directional training
iterations, but also with the number of BSs B and the number of
UEs K since the cross terms are specific for each BS-UE pair.
This becomes burdensome in cell-free massive MIMO contexts
due to the large number of BSs and UEs involved in the joint
processing. In addition, the CSI exchange among the BSs via
backhaul signaling does not occur instantaneously.5 Therefore,
each BS must rely on outdated CSI from the other BSs, which
can significantly degrade the performance of the distributed
precoding design (as demonstrated in [32]). In Section V, we
propose a practical scheme that allows each BS to acquire
the missing cross-term information via OTA signaling, which
entirely eliminates the need for backhaul signaling for CSI
exchange among the BSs.

Remark 5. As detailed in [32], using (42) as a surrogate of Φbb

provides improved robustness against pilot contamination with

5Without loss of generality, one can express the delay introduced by the
backhaul into the CSI exchange in terms of number of bi-directional training
iterations. In our numerical results in Section VI, we assume that such delay
amounts to one bi-directional training iteration.
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wk =
√
βUL-1

(
YUL-1(YUL-1)H + τ

∑
b∈B

(βUL-1λb − σ2
b )EH

b Eb

)−1

YUL-1pk (48)

=
√
βUL-1

YUL-1
1 (YUL-1

1 )H + τ(βUL-1λ1 − σ2
1)IM . . . YUL-1

1 (YUL-1
B )H

...
. . .

...
YUL-1
B (YUL-1

1 )H . . . YUL-1
B (YUL-1

B )H + τ(βUL-1λB − σ2
B)IM


−1 YUL-1

1
...

YUL-1
B

pk (49)

respect to estimating each UE channel explicitly. Consequently,
the distributed precoding design is less sensitive to pilot
contamination than the centralized precoding design described
in Section IV-A. Even in absence of pilot contamination, due
to its iterative nature that involves several pilot-aided CSI
acquisitions, the distributed precoding design is more robust
to noisy channel estimation than its centralized counterpart
(which hinges on a single pilot-aided CSI acquisition). In
this regard, it is straightforward to observe that the precoding
vector update at iteration i, i.e., w

(i)
b,k defined in (35), can

be expressed as a weighted average of i precoding vectors
computed as in (46) based on as many channel estimations
with independent AWGN realizations. Hence, the update in
(35) produces a beneficial averaging of the channel estimation
noise that reflects positively on the sum-rate performance. The
robustness of the distributed precoding design against both
pilot contamination and channel estimation noise is highlighted
in our numerical results in Section VI.

For comparative purposes, in the next section, we present
a centralized precoding design with iterative bi-directional
training between the BSs (which communicate with the
CPU via backhaul signaling) and the UEs. Similarly to the
distributed precoding design, this scheme involves pilot-aided
CSI acquisitions at each bi-directional training iteration and
thus overcomes the main drawback of the centralized precoding
design described in Section IV-A.

C. Centralized Precoding Design with Iterative Bi-Directional
Training

In the centralized precoding design with iterative bi-
directional training, the aggregated precoding vectors are
computed by the CPU and the BS-specific precoding vectors
are fed back to the corresponding BSs via backhaul signaling.
Unlike the centralized precoding design in Algorithm 1, which
hinges on a single pilot-aided CSI acquisition, the alternating
optimization of the precoding and the combining vectors takes
place by means of iterative bi-directional training between
the CPU and the UEs through the BSs (as in the distributed
precoding design in Algorithm 2). Hence, for fixed combining
vectors, the CPU solves the estimated sum MSE minimization
problem

min
{wk}k∈K

tr

(
WH

(
YUL-1(YUL-1)H − τ

∑
b∈B

σ2
bE

H
b Eb

)
W

)
−2
√
βUL-1Re

[
tr
(
PH(YUL-1)HW

)]
s.t.

∑
k∈K

‖Ebwk‖2 ≤ ρBS, ∀b ∈ B.

(47)
For each UE k, the first-order optimality condition of (47)
yields the centralized precoding solution in (48)–(49) at the

Algorithm 3 (Centralized–iterative)

Data: Pilot sequences {pk}k∈K.
Initialization: The CPU initializes the aggregated precoding

vectors {w(0)
k }k∈K; set i = 0.

Until a predefined termination criterion is satisfied, do:
(S.0) i← i+ 1.
(S.1) The CPU feeds back the BS-specific precoding vectors

{wb,k}k∈K to each BS b via backhaul signaling.
(S.2) DL: Each BS b transmits a superposition of the pilot

sequences {pk}k∈K after precoding them with the
corresponding precoding vectors {wb,k}k∈K (see XDL

b

in (15)); each UE k receives YDL
k in (17).

(S.3) Each UE k computes its combining vector vk as in
(41).

(S.4) UL-1: Each UE k transmits its pilot sequence pk after
precoding it with its combining vector vk (see XUL-1

k

in (4)); each BS b receives YUL-1
b in (6).

(S.5) Each BS b forwards YUL-1
b to the CPU via backhaul

signaling.
(S.6) The CPU computes the precoding vectors {wk}k∈K

as in (48).
End

top of the page,6 which is equal to (29) for perfect channel
estimation. The implementation of the centralized precoding
design with iterative bi-directional training is formalized in
Algorithm 3. This scheme is used for comparative purposes in
our numerical results in Section VI; however, the high compu-
tational complexity resulting from the centralized precoding
design combined with the cumbersome backhaul signaling
between the BSs and the CPU make its implementation highly
impractical.

V. DISTRIBUTED PRECODING DESIGN VIA OTA SIGNALING

In this section, we propose a novel OTA signaling scheme
that entirely eliminates the need for backhaul signaling for CSI
exchange among the BSs and, hence, overcomes the practical
limitations of the distributed precoding design described in
Section IV-B. To this end, we introduce a new uplink signaling
resource together with a new CSI combining mechanism that
complement the existing uplink and downlink signaling de-
scribed in Sections II-A and II-B, respectively. This allows each
BS to acquire the missing cross-term information necessary
for the distributed precoding design over the air rather than
via extensive backhaul signaling among the BSs.

After the uplink and the downlink pilot-aided channel
estimation phases, each BS b obtains an estimate of ξb,k in (34)

6The equivalence between the centralized and the distributed precoding
solutions in (48) and (46), respectively, can be shown in the same way as in
the case with perfect CSI (see Section III).
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1

τ

(
1√
βUL-2

YUL-2
b pk −

1

βUL-1

(
YUL-1
b (YUL-1

b )H − τσ2
b IM

)
wb,k

)
= ξb,k +

1

τ

( ∑
k̄∈K\{k}

∑
b̄∈B

Φbb̄wb̄,k̄p
H
k̄ pk −

∑
k̄,j∈K
k̄ 6=j

hb,k̄h
H
b,jwb,kp

H
k̄ pj

)
+ nUL-2

b,k +

(
σ2
b

βUL-1
IM −NUL-1

bb

)
wb,k (55)

wb,k =
(
YUL-1
b (YUL-1

b )H + τ(βUL-1λb − σ2
b )IM

)−1
(

YUL-1
b

(√
βUL-1pk + (YUL-1

b )Hwb,k

)
− βUL-1

√
βUL-2

YUL-2
b pk − τσ2

bwb,k

)
(56)

as described next. Upon computing its combining vector, each
UE k synchronously retransmits YDL

k in (17) after multiplying
it by the rank-1 matrix vkv

H
k , i.e.,

XUL-2
k ,

√
βUL-2vkv

H
k YDL

k ∈ CN×τ (50)

where the power scaling factor βUL-2 (equal for all the UEs)
ensures that XUL-2

k complies with the UE transmit power
constraint (see Section V-B for more details on the choice
of βUL-2). More specifically, each UE k uses its combining
vector vk to combine YDL

k and then transmits the combined
signal vH

k YDL
k using again vk as precoder, which does not

increase the computational complexity at the UE. Then, the
receive signal at BS b is given by

YUL-2
b ,

∑
k∈K

Hb,kX
UL-2
k + ZUL-2

b (51)

=
√
βUL-2

∑
k∈K

hb,kv
H
k

(∑
b̄∈B

∑
k̄∈K

HH
b̄,kwb̄,k̄p

H
k̄ + ZDL

k

)
+ ZUL-2

b ∈ CM×τ (52)

where ZUL-2
b ∈ CM×τ is the AWGN term at BS b with elements

distributed as CN (0, σ2
b ). At this stage, it is easy to observe that

YUL-2
b in (52) contains useful information about the channel

correlation between BS b and the other BSs and about the
precoding vectors adopted by the latter (which is necessary for
the local computation of the precoding vectors). By means of
this new uplink signaling resource, each BS b obtains

1

τ
√
βUL-2

YUL-2
b pk =

∑
b̄∈B

Φbb̄wb̄,k

+
1

τ

∑
k̄∈K\{k}

∑
b̄∈B

Φbb̄wb̄,k̄p
H
k̄ pk + nUL-2

b,k (53)

where we have defined

nUL-2
b,k ,

1

τ

(∑
k̄∈K

hb,k̄v
H
k̄ ZDL

k̄ +
1√
βUL-2

ZUL-2
b

)
pk. (54)

Here, perfect channel estimation would imply that:

i) The pilot contamination in the second term of (53) is
eliminated;

ii) As τ →∞, the noise term nUL-2
b,k in (54) is eliminated.

Therefore, BS b can use (53) as an estimate of
∑
b̄∈BΦbb̄wb̄,k.

Then, each BS b can obtain an estimate of ξb,k in (34) by
suitably combining the uplink signaling resources YUL-1

b and
YUL-2
b as in (55) at the top of the page (recall that, as τ →∞,

we have that NUL-1
bb →

σ2
b

βUL-1 IM ). In practice, the missing cross-
term information is obtained by removing the local estimate
of Φbbwb,k, where the precoding vector is from the previous
iteration, from (53). Finally, for each BS b and for each UE k,

Algorithm 4 (Distributed–OTA)

Data: Pilot sequences {pk}k∈K.
Initialization: Each BS b initializes its precoding vectors

{w(0)
b,k}k∈K; set i = 0.

Until a predefined termination criterion is satisfied, do:
(S.0) i← i+ 1.
(S.1) DL: Each BS b transmits a superposition of the pilot

sequences {pk}k∈K after precoding them with the
corresponding precoding vectors {wb,k}k∈K (see XDL

b

in (15)); each UE k receives YDL
k in (17).

(S.2) Each UE k computes its combining vector vk as in
(41).

(S.3) UL-1: Each UE k transmits its pilot sequence pk after
precoding it with its combining vector vk (see XUL-1

k

in (4)); each BS b receives YUL-1
b in (6).

(S.4) UL-2: Each UE k transmits YDL
k after precoding it

with the rank-1 matrix vkv
H
k (see XUL-2

k in (50)); each
BS b receives YUL-2

b in (52).
(S.5) For each UE k, each BS b computes its precoding

vectors {wb,k}k∈K as in (46) and updates them as in
(35).

End

the distributed precoding solution via OTA signaling is obtained
as in (56) at the top of the page, which is equal to (33) for
perfect channel estimation. The iterative implementation of the
distributed precoding design via OTA signaling is formalized
in Algorithm 4 (see also Figure 1). It is worth noting that the
downlink pilot-aided channel estimation phase assumes a new
importance in the context of this scheme: in fact, in addition to
enabling the optimization of the combining vectors at the UEs,
it has a crucial role in allowing the BSs to obtain the missing
cross-term information over the air. In our recent work [42],
the proposed OTA signaling mechanism has been adapted for
the uplink scenario to enable distributed joint receiver design.
Lastly, in presence of hybrid analog-digital precoding, the
proposed distributed precoding design via OTA signaling can
be used to jointly optimize the digital beamformers, whereas
the analog beamformers would need to be computed locally at
each BS.

Remark 6. In the distributed precoding design via OTA
signaling, the CSI exchange among the BSs via backhaul
signaling is entirely replaced by the new uplink signaling
resource UL-2 (see step S.4 of Algorithm 4), with clear
advantages in terms of scalability and flexibility. Remarkably,
the proposed OTA signaling mechanism allows each BS b
to recover the cross-term information for all the UEs from

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TWC.2020.3031807

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Oulu University. Downloaded on October 29,2020 at 08:19:08 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3031807, IEEE
Transactions on Wireless Communications

10

DL UL-1 UL-2 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7

DL DL UL-1 UL-2 · · ·

5G 3GPP NR frame (10 subframes)

Subframe (8 slots)

Slot (14 OFDM symbols)

Training
phase

Data transmission phase

Downlink
training
minislot

Uplink
training
minislot

1

(a) (b)
Figure 1: (a) Schematic illustration of the proposed OTA signaling scheme; (b) example of how it can be integrated into the flexible 5G
3GPP NR frame/slot structure (right).

the same receive signal YUL-2
b (i.e., by correlating the latter

with the UE-specific pilot sequence as in (53)) rather than by
exchanging cross terms specific for each BS-UE pair. Hence,
the amount of OTA signaling does not scale with the number
of BSs B or the number of UEs K (unlike the backhaul
signaling associated with Algorithm 2), and depends only on
the pilot length τ and on the number of bi-directional training
iterations. A further advantage of eliminating the CSI exchange
via backhaul signaling is that more backhaul resources can
be dedicated to the UE-specific data sharing, which, in turn,
enables more BSs to cooperate in the joint transmission [8].
This is crucial for the practical implementation of cell-free
massive MIMO, where the number of cooperating BSs can be
very large and even extend to the whole network. In addition,
the delays introduced by the backhaul in the exchange of the
cross-term information are eliminated. These practical benefits
come at the cost of extra uplink signaling overhead per bi-
directional training iteration with respect to Algorithm 2 (where
only DL and UL-1 are present). However, we note that the
impact of the extra signaling overhead (and the corresponding
performance loss) becomes negligible for sufficiently large
scheduling blocks [33], as detailed in Section V-A and as
shown in our numerical results in Section VI.

In the following, we discuss two relevant implementation
aspects of the proposed distributed precoding design via OTA
signaling, namely: i) how the OTA signaling can be integrated
into the 5G 3GPP NR frame/slot structure (in Section V-A); and
ii) how the uplink training can be implemented in compliance
with the transmit power constraint of the UEs (in Section V-B).

A. Implementing the OTA Signaling in 5G 3GPP NR

The distributed precoding design schemes described in this
paper heavily rely on iterative bi-directional training between
the BSs and the UEs to carry out the alternating optimization of
the precoding and combining strategies. More specifically, each
bi-directional training iteration of the distributed precoding
design via backhaul signaling described in Section III-B
involves one uplink signaling resource and one downlink
signaling resource (i.e., DL and UL-1 in steps S.1 and S.3,
respectively, of Algorithm 2). On the other hand, the proposed
distributed precoding design via OTA signaling introduces
an additional uplink signaling resource at each bi-directional
training iteration (i.e., UL-2 in step S.4 of Algorithm 4). This

allows each BS to acquire the missing cross-term information
necessary for the distributed precoding design without any
backhaul signaling for CSI exchange among the BSs. Building
on [33], the proposed OTA signaling (consisting of DL, UL-
1, and UL-2) can be easily integrated into the flexible 5G
3GPP NR frame/slot structure [34] as described next; we refer
to [32], [39], [40] for more references on iterative bi-directional
training.

In the 5G 3GPP NR frame, each of the 10 subframes
consists of 8 slots spanning 14 orthogonal frequency division
multiplexing (OFDM) symbols and can be conveniently divided
into training phase and data transmission phase [33]. In
this regard, the 5G 3GPP NR standard defines the minislot
structure with duration of minimum 2 OFDM symbols, which
can be flexibly constructed to accommodate either uplink or
downlink training. Hence, each training minislot can contain
two downlink signaling resources (i.e., DL twice) or two uplink
signaling resources (i.e., UL-1 twice, UL-2 twice, or UL-1
and UL-2).7 In the example in Figure 1, the training phase
of Algorithm 4 takes place during the first slot, whereas the
remaining 7 slots are dedicated to the data transmission. Here,
the training slot is constructed as a sequence of downlink
and uplink minislots, with each uplink minislot including
UL-1 and UL-2; by doing so, one training slot can contain
up to 3 bi-directional training iterations, which have a total
duration of 12 OFDM symbols.8 In general, the amount of
OTA signaling and its placement within the 5G 3GPP NR
frame can be adjusted based on rate and latency requirements.
For example, for enhanced mobile broadband services, one can
allow an extended training phase consisting of multiple slots
to accommodate a large number of iterations followed by a
long data transmission phase. On the other hand, if the latency
is the primary requirement, it is more desirable to alternate
short training phases (e.g., of only one slot) and brief data
transmission phases.

Now, let us briefly compare Algorithms 4 and 2 in terms of
signaling overhead. We begin by considering that, under the
5G 3GPP NR frame/slot structure, each bi-directional training

7To fit each (uplink or downlink) signaling resource into one OFDM symbol,
the pilot length τ must be less than the number of available subcarriers.

8The switching time between uplink and downlink signaling should be also
taken into account. In this example, the 2 remaining OFDM symbols can be
conveniently used to separate downlink and uplink training minislots.
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iteration of the distributed precoding design via backhaul
signaling contains one uplink training minislot including UL-1
twice. If each bi-directional training iteration of Algorithm 4
contains one uplink training minislot including UL-1 and UL-2
(as in the example in Figure 1), then there is no extra signaling
overhead as compared with Algorithm 2; however, a small
performance loss is expected since, in the latter, the uplink
pilot-aided channel estimation is more accurate. On the other
hand, if each bi-directional training iteration of Algorithm 4
contains two uplink training minislots including UL-1 twice
and UL-2 twice, respectively, then there is a 50% increase in
the signaling overhead with respect to Algorithm 2 with no
loss in estimation accuracy.
B. UE Transmit Power Scaling

During the uplink training, each UE k uses its combining
vector vk as precoder in UL-1 and UL-2 (see (4) and (50),
respectively). However, the power of vk computed as in (41)
can be quite significant as it is roughly inversely proportional
to the received signal power during the downlink pilot-aided
channel estimation. Hence, the power scaling factors βUL-1 and
βUL-2 (equal for all the UEs) in (4) and (50), respectively, must
be chosen to ensure that the uplink training complies with
the UE transmit power constraint. In fact, without proper
UE transmit power scaling, XUL-1

k and XUL-2
k in (4) and (50),

respectively, will most likely exceed the maximum transmit
power ρUE, unless UE k is located in close proximity of a
BS. Finally, upon receiving YUL-1

b and YUL-2
b in (6) and (52),

respectively, each BS b scales back the receive signals to obtain
the desired CSI, which results in an amplification of the AWGN
terms in (8) and (54), respectively.

The power scaling factors βUL-1 and βUL-2 can be determined
by the BSs or the CPU and transmitted to the UEs via suitable
feedback channels. Note that adopting the same power scaling
factors for all the UEs is crucial to keep the interdependencies
among the UE channels intact, although this may result in
some UEs transmitting with power much lower than ρUE during
the uplink training. More specifically, the power scaling factors
can be obtained based on statistical information such as the
average received signal power of the UEs across the network
(which in turn depends on the number, the placement, and the
transmit power of the BSs), as done in our numerical results
in Section VI.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results to compare the
performance of the proposed distributed precoding design via
OTA signaling in Algorithm 4 (Distributed–OTA) with: i) the
local MMSE precoding (Local MMSE), ii) the centralized pre-
coding design in Algorithm 1 (Centralized), iii) the centralized
precoding design with iterative bi-directional training in Algo-
rithm 3 (Centralized–iterative), and iv) the distributed precoding
design via backhaul signaling in Algorithm 2 (Distributed–
backhaul). For the latter, we assume that the backhaul signaling
introduces a delay of only one bi-directional training iteration
in the CSI exchange among the BSs; furthermore, we assume
perfect backhaul links and, thus, no quantization errors in
the backhaul signaling (the impact of this factor is evaluated
in [32]). Note that both assumptions are quite optimistic and
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Figure 2: Average sum rate versus number of bi-directional training
iterations with orthogonal pilots.

favor the Distributed–backhaul over the proposed Distributed–
OTA.

The simulation setup consists of B = 25 BSs equipped with
M = 4 antennas (unless otherwise stated) placed on a square
grid with inter-site distance of 100 m and height of 10 m. The
BSs serve K = 16 UEs (unless otherwise stated) equipped
with N = 2 antennas, which are randomly dropped in the
same area. As in [1], [42], the channel model includes i.i.d.
Rayleigh fading and power-law pathloss with each channel
generated as vec(Hb,k) ∼ CN (0, δb,kIMN ), where δb,k [dB] ,
−30.5−36.7 log10(rb,k) and where rb,k is the distance between
BS b and UE k. The transmit powers at the BSs and the UEs are
fixed to ρBS = 30 dBm and ρUE = 20 dBm, respectively, whereas
the AWGN powers at the BSs and at the UEs are fixed to {σ2

b =
−95 dBm}b∈B and {σ2

k = −95 dBm}k∈K, respectively (unless
otherwise stated). As performance metric, we evaluate the
average sum rate E[R] obtained via Monte Carlo simulations
of the sum rate in (3) with 103 independent UE drops. As
discussed in Section II, this average sum rate represents an
upper bound on the system performance, which is achievable
if perfect global CSI is available at all the BSs and which
becomes increasingly tight as the duration of the coherence
block increases [36]. Observe that replacing this upper bound
with any ergodic achievable rate expression (such as the one
given in [36, Lem. 3] would have the same impact on all
the algorithms and, therefore, the relative performance gaps
between the different precoding schemes would not be affected.

We begin by considering the case of orthogonal pilots.
Figure 2 illustrates the average sum rate (without considering
the signaling overhead) versus the number of bi-directional
training iterations; here, the centralized and the distributed
precoding designs with perfect CSI are also included for
comparative purposes. The proposed Distributed–OTA achieves
a performance increase with respect to the Local MMSE of
about 55% after just 5 iterations and of about 90% after
convergence. Furthermore, it reaches the performance of the
Centralized within 14 iterations. As discussed in Remark 5,
under imperfect CSI, the distributed precoding designs can
outperform the Centralized, which relies on a single pilot-
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Figure 3: Average effective sum rate versus number of bi-directional
training iterations with orthogonal pilots and scheduling blocks of
different duration (where T = ∞ corresponds to the case of no
signaling overhead).

aided CSI acquisition: under the assumption of orthogonal
pilots, this performance gain arises from the noise averaging
associated with the bi-directional training. In this regard, we
observe that the gap between the Centralized (perfect CSI) and
the Centralized is substantially larger than in the distributed
schemes based on bi-directional training, which confirms the
advantage brought by the distributed precoding design under
imperfect CSI. Let us now compare the proposed Distributed–
OTA with the Distributed–backhaul. The performance loss
of the former with respect to the latter stems from the OTA
acquisition of the cross-term information, which combines
three noisy signaling resources (namely, DL, UL-1, and UL-2).
However, during the first few iterations, the Distributed–OTA
converges faster than the Distributed–backhaul, which suffers
from the delayed backhaul update. In this regard, the average
sum rate achieved by the two schemes after 5 iterations is nearly
the same. Above all, eliminating the need for backhaul signaling
for CSI exchange brings huge practical benefits that justify
this slight performance degradation; otherwise, this gap can be
also bridged by means of power-boosted uplink signaling. As
expected, the Centralized–iterative produces the best average
sum rate under imperfect CSI; however, we remark that this
scheme is highly impractical due to the burdensome backhaul
signaling between the BSs and the CPU. Figure ?? shows the
cumulative distribution function (CDF) of the per-UE rates. It is
easy to observe that the distributed precoding design treats the
UEs more fairly as compared with the Centralized. In particular,
each UE is served with a rate higher than 10 bps/Hz with
probability 0.98 for the Distributed–OTA and with probability
0.6 for the Centralized.

Now, let us evaluate the impact of the signaling overhead.
Under the 5G 3GPP NR frame/slot structure, we consider
scheduling blocks with duration of T frames (where each
frame has duration of 1120 OFDM symbols), during which
the channels remain fixed. The whole training phase occurs at
the beginning of the scheduling block and each bi-directional
training iteration occupies 14

3 ' 4.67 OFDM symbols (as
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Figure 4: Average sum rate versus number of UEs with orthogonal
pilots: (a) after convergence; (b) after 5 bi-directional training
iterations.

detailed in Section V-A). Hence, the effective sum rate resulting
from taking into account the signaling overhead after i bi-
directional training iterations is given by

R
(i)
eff ,

(
1− 4.67i

1120T

)
R(i) (57)

with R(i) being the sum rate after i iterations (obtained as
in (3)). Figure 3 plots the average effective sum rate of the
proposed Distributed–OTA versus the number of bi-directional
training iterations. The performance loss due to the signaling
overhead is very modest for T = 5 frames, and the Centralized
can be still outperformed for T = 3 frames. On the other
hand, for T = 1 frames, i = 19 is the optimal number of bi-
directional training iterations after which the average effective
sum rate starts decreasing. It is worth noting that the number of
bi-directional training iterations (and, thus, the overall signaling
overhead) would be greatly reduced in case of time-correlated
channels with semi-persistent UE scheduling. In fact, assuming
that the UE scheduling remains essentially unchanged between
scheduling blocks, the precoding and combining vectors need
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Figure 6: Average sum rate versus AWGN powers at the BSs and at
the UEs.

not be computed from scratch in each scheduling block and
a brand new training phase is required only when the UE
scheduling changes; we refer to [32], [33] for more details.

Figure 4 illustrates the average sum rate versus the number
of UEs K. First of all, in Figure 4(a), we observe that the
performance gain brought by cooperative precoding design
over the Local MMSE increases significantly with the spatial
load. Besides, the proposed Distributed–OTA after convergence
outperforms the Centralized for any value of K. On the
other hand, in Figure 4(b), the performance gap between the
Distributed–OTA and the Distributed–backhaul after 5 iterations
is remarkably small. In this regard, the average sum rate
obtained with the Distributed–OTA is about 90% higher than
that obtained with the Local MMSE. Figure 5 depicts the
average sum rate versus the number of BS antennas M .
As M increases, each BS has more degrees of freedom to
tackle the interference locally and, hence, the performance
gain brought by cooperative precoding design over the Local
MMSE remains approximately constant. However, note that
cell-free massive MIMO generally assumes a low-to-moderate
number of antennas at the BSs [11], for which cooperative
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Figure 7: Average sum rate versus pilot length with non-orthogonal
random pilots.

precoding design is highly beneficial. It is worth remarking
that, in Figures 4 and 5, the amount of signaling scales with
the number of UEs K and the number of BSs B, respectively,
for all the schemes except for the proposed Distributed–OTA,
as the latter does not involve any CSI exchange via backhaul
signaling. Figure 6 plots the average sum rate versus the AWGN
powers at the BSs and at the UEs, which are the same for the
channel estimation phase and for the data transmission phase.
The performance of the Local MMSE is roughly constant
over the whole range and is comparable to that of the other
more complex schemes only for very low signal-to-noise ratio
(SNR). On the other hand, the average sum rate obtained with
both centralized and distributed precoding design increases
considerably with the SNR. Remarkably, the Distributed–OTA
outperforms the Centralized for AWGN powers as low as
−110 dBm, below which the latter benefits from the very
accurate channel estimation.

Lastly, we consider a pilot-contaminated scenario by assum-
ing non-orthogonal random pilots. Figure 7 plots the average
sum rate versus the pilot length τ ; here, we still impose
{PH

k Pk = τIN}k∈K for the Centralized, i.e., the antenna-
specific pilots within each UE k are orthogonal. First of all,
the Centralized is extremely sensitive to the pilot contamination
in (13) as it relies on a single pilot-aided CSI acquisition: for
this reason, it performs very poorly (even worse than the Local
MMSE). On the other hand, in the distributed schemes, the
precoding and combining vectors are directly estimated at
each bi-directional training iteration, as detailed in Remark 5
(see also [32]). This provides greatly improved robustness
against pilot contamination and the ideal performance can be
approached by increasing the pilot length. Note that the use of
non-orthogonal random pilots does not require any centralized
coordination and may be practical in large networks even if
the pilot length allows to obtain orthogonal pilots for all the
UEs.

VII. CONCLUSIONS

In this paper, we proposed the first distributed framework for
cooperative precoding design in cell-free massive MIMO (and,
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[
Φ11 + λ1IM Φ12

ΦH
12 Φ22 + λ2IM

]−1[
h1,k

h2,k

]
=

[(
Φ11 + λ1IM −Φ12(Φ22 + λ2IM )−1ΦH

12

)−1(
h1,k −Φ12(Φ22 + λ2IM )−1h2,k

)(
Φ22 + λ2IM −Φ21(Φ11 + λ1IM )−1ΦH

21

)−1(
h2,k −Φ21(Φ11 + λ1IM )−1h1,k

)]
(58)

more generally, in JT-CoMP) systems that entirely eliminates
the need for backhaul signaling for CSI exchange. To do
so, we presented a novel OTA signaling mechanism that
allows each BS to obtain the same cross-term information
that is traditionally exchanged among the BSs via backhaul
signaling. This was achieved by introducing a new uplink
signaling resource and a new CSI combining mechanism
that complement the existing uplink and downlink pilot-aided
channel estimations. Remarkably, the amount of OTA signaling
does not grow with the number of BSs or UEs, which makes
our distributed precoding design scalable to any network setup.
In addition, the proposed OTA signaling does not introduce
any delay in the CSI exchange among the BSs and can be
easily integrated into the flexible 5G 3GPP NR frame/slot
structure. Note that, although this paper targeted the weighted
sum MSE minimization problem, the proposed OTA signaling
mechanism can be applied to any network optimization utility.
Our numerical results showed fast convergence and significant
performance gains over non-cooperative precoding design; the
proposed scheme can also outperform the centralized precoding
design due to its robustness against both pilot contamination
and noisy channel estimation. In conclusion, by eliminating the
need for backhaul signaling for CSI exchange, our contribution
aims at facilitating the practical implementation of cell-free
massive MIMO and JT-CoMP in future 5G and beyond-5G
systems.

APPENDIX I
EQUIVALENCE BETWEEN THE CENTRALIZED AND THE

DISTRIBUTED PRECODING SOLUTIONS

Assuming the simple case of B = 2 BSs, we can rewrite
(33) for b = 1 as

w1,k = (Φ11 + λ1IM )−1(ωkh1,k −Φ12w2,k) (59)

= ωk
(
Φ11 + λ1IM −Φ12(Φ22 + λ2IM )−1ΦH

12

)−1

×
(
h1,kΦ12(Φ22 + λ2IM )−1h2,k

)
(60)

The equivalence wk = [wT
1,k,w

T
2,k]T,∀k ∈ K, given in (58)

at the top of the page, follows from applying the Schur
complement to the inverse matrix on the left-hand side of
(58).
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