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Abstract—In this paper, we study the three-dimensional (3D)
path planning for a cellular-connected unmanned aerial vehicle
(UAV) to minimize its flying distance from given initial to final
locations, while ensuring a target link quality in terms of the ex-
pected signal-to-interference-plus-noise ratio (SINR) at the UAV
receiver with each of its associated ground base stations (GBSs)
during the flight. To exploit the location-dependent and spatially
varying channel as well as interference over the 3D space, we
propose a new radio map based path planning framework for the
UAV. Specifically, we consider the channel gain map of each GBS
that provides its large-scale channel gains with uniformly sampled
locations on a 3D grid, which are due to static and large-size
obstacles (e.g., buildings) and thus assumed to be time-invariant.
Based on the channel gain maps of GBSs as well as their loading
factors, we then construct an SINR map that depicts the expected
SINR levels over the sampled 3D locations. By leveraging the
obtained SINR map, we proceed to derive the optimal UAV path
by solving an equivalent shortest path problem (SPP) in graph
theory. We further propose a grid quantization approach where
the grid points in the SINR map are more coarsely sampled
by exploiting the spatial channel/interference correlation over
neighboring grids. Then, we solve an approximate SPP over
the reduced-size SINR map (graph) with reduced complexity.
Numerical results show that the proposed solution can effectively
minimize the flying distance/time of the UAV subject to its
communication quality constraint, and a flexible trade-off be-
tween performance and complexity can be achieved by adjusting
the grid quantization ratio in the SINR map. Moreover, the
proposed solution significantly outperforms various benchmark
schemes without fully exploiting the channel/interference spatial
distribution in the network.

Index Terms—UAV communication, cellular network, 3D path
planning, radio map, graph theory.

I. INTRODUCTION

The applications of unmanned aerial vehicles (UAVs)

have become increasingly popular and diversified,

ranging from cargo delivery to aerial video streaming

and virtual/augmented reality [2]. To enable the safe

fly of high-mobility UAVs as well as supporting timely

exchange of mission data between them and their ground

users, it is crucial to establish high-quality air-ground

communications [2]. To this end, a promising technology is

cellular-enabled UAV communication, or cellular-connected

UAV, by leveraging the ground base stations (GBSs) in

the cellular network to serve the UAVs as new users

in the sky [2]–[5]. In contrast to existing technologies
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based on Wi-Fi over the unlicensed spectrum whose

communication range is rather limited, cellular-connected

UAV supports longer-range communication, and is anticipated

to significantly enhance the rate and reliability performance

by leveraging the more advanced cellular technologies [2]–[5].

Compared to traditional cellular communications serving

only the terrestrial users, various new challenges arise in

cellular-enabled UAV communications, among which two

most critical issues are interference mitigation and UAV path

planning [2]. Specifically, at high flying altitude, UAVs usually

possess strong channels dominated by the line-of-sight (LoS)

path with a much larger number of GBSs compared to the

terrestrial users, which leads to enhanced macro-diversity

in cell association but also causes more severe co-channel

interference with terrestrial communications [6]. The strong

aerial-ground interference problem calls for new and efficient

interference mitigation techniques (see, e.g., [7]–[12]). For

instance, considering multi-beam uplink transmission from a

multi-antenna UAV to multiple GBSs, [7] proposed a novel

cooperative interference cancellation technique by leveraging

the backhaul connections among the GBSs, which exploits the

UAV macro-diversity for cooperative processing by the GBSs

for interference mitigation. Moreover, [8] and [9] devised

alternative non-orthogonal multiple access (NOMA) based

schemes where successive interference cancellation is per-

formed at each GBS without the need of information exchange

with the other GBSs.

On the other hand, another appealing feature of the UAV is

its high and flexible mobility in the three-dimensional (3D)

space. This makes the UAV’s trajectory or path1 design a

new means for improving its communication performance

with its associated GBSs via offline/online trajectory or path

optimization/adaptation [2], [13]–[19]. In particular, trajectory

design or path planning for cellular-connected UAV is usually

performed offline prior to the UAV’s flight based on the

mission requirement (e.g., flight time, initial/final locations)

and available channel knowledge with the GBSs at known

locations in the UAV’s fly region. For rural areas without

large obstacles above the GBSs, the GBS-UAV channels can

be modeled as LoS, based on which the UAV trajectory/path

optimization problems subject to various communication con-

straints have been studied in [2], [13]–[16]. Specifically, [2]

first investigated the trajectory optimization problem of a

cellular-connected UAV for minimizing its flying time between

a given pair of locations, subject to a quality-of-connectivity

requirement specified by a signal-to-noise ratio (SNR) target

1Note that the path and the speed along it specify the trajectory of a UAV.
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Fig. 1. Cellular-enabled UAV communication under the general 3D air-ground
channel model.

with the associated GBSs at every time instant during the

flight. By judiciously exploiting the problem structure, both the

optimal solution and a polynomial-time suboptimal solution

that approaches the optimal solution with arbitrarily small

performance gap were proposed. Moreover, for the case with

sparse GBS distribution and/or high SNR target where a

feasible path that guarantees connectivity at all times may

not exist, an outage cost function was proposed in [13] to

minimize “outage durations” over the flight. The proposed

outage cost function is general and consists of the “maximum

outage duration” as a special case, for which the corresponding

UAV trajectory design was also investigated in [14], [15]. [16]

further studied the UAV trajectory design under connectivity

constraint to minimize the propulsion energy during its flight.

Despite the rich design insights drawn from prior works,

there are three major limitations of the existing studies on

trajectory design for cellular-connected UAVs. Firstly, the LoS

air-ground channel model is not accurate for urban/suburban

environments when the UAV’s altitude is not sufficiently high,

where the shadowing and multi-path fading effects become

non-negligible due to signal blockage and reflection/diffraction

by large-size obstacles such as buildings, as illustrated in Fig.

1. In this case, more sophisticated channel models such as Ri-

cian fading [20] and probabilistic LoS [21] models have been

proposed. Based on such statistical channel models, offline

UAV trajectory optimization has been studied in [22]–[25],

and a hybrid offline-online design was recently proposed in

[26]. It is worth noting that such statistical channel based UAV

trajectory designs can only ensure the UAV communication

performance in an average sense, while the actual performance

at each location along its trajectory cannot be guaranteed in

general due to the lack of location-specific channel knowledge.

In this paper, we overcome this limitation via a new radio

map based approach. Generally speaking, radio maps contain

rich information on the spectral activities and/or propagation

channels over space and frequency in a region of interest, by

averaging over the small-scale channel fading and its induced

effects (e.g., power control) [27]. In this paper, we utilize a

specific type of radio maps termed as the “channel gain map”,

which provides the large-scale channel gain between each GBS

and its served UAV at any location in a given 3D region.

Secondly, the prior works [2], [13]–[15], [17] have assumed

that the UAV is assigned with a dedicated resource block (RB)

without any aerial-ground interference. However, in practice,

the UAV’s RB may be reused at other non-associated GBSs

even when they are distant from the UAV’s serving GBS,

which thus causes strong interference to/from the UAV. In

this case, UAV trajectory/path design can be an effective new

method for interference mitigation. For instance, in addition

to flying close to the associated GBSs for enhancing the

communication signal power, the UAV can also move away

from the strongest interfering GBS to reduce the interference

power. Nevertheless, interference power varies dynamically

and spatially in practice and is difficult to be obtained at every

location over the air.2 In this paper, we tackle this difficulty by

leveraging the channel gain maps of GBSs together with the

knowledge of the loading factor of each GBS (i.e., the average

number of terrestrial users it currently serves per RB) to obtain

a 3D estimation of the spatial interference distribution due

to each GBS. Based on this, we construct a new “signal-to-

interference-plus-noise ratio (SINR) map” which depicts the

expected SINR level at any location of the UAV to facilitate

our proposed UAV path planning for interference mitigation,

and further investigate the optimal interference-aware path

design in this paper.

Thirdly, it is worth noting that the existing works [1], [2],

[13]–[16], [18], [19] have considered the two-dimensional

(2D) UAV trajectory design where the UAV flies at a fixed

altitude, which may be practically infeasible (e.g., when the

UAV’s initial and final locations have different altitudes).

Moreover, under the general 3D channel models, varying the

UAV’s altitude may lead to further performance improvement

[23]. This thus motivates us to address the more general 3D

path planning problem for cellular-connected UAV in this

paper, based on 3D radio maps.

In summary, in this paper, we aim to develop a new radio

map based framework for designing interference-aware 3D

path for cellular-connected UAVs, under the general 3D air-

ground channel model, as illustrated in Fig. 1. Our main

contributions are summarized as follows.

• We consider the scenario where a cellular-connected UAV

has a mission of flying between a given pair of initial and

final locations, while communicating with one of the GBSs

during its flight, subjected to the downlink interference from

other non-associated GBSs. To minimize the mission com-

pletion time while guaranteeing satisfactory communication

quality with the cellular network, we study the 3D path

planning of the UAV to minimize its flying distance (or

time duration with a given speed), subject to that the UAV

needs to ensure a target link quality in terms of the expected

SINR with each of its associated GBSs during the flight.

• To this end, we consider two types of radio map, namely,

the “channel gain map” and the newly proposed “SINR

map”. Specifically, the channel gain map for each GBS

characterizes the distribution of its large-scale channel gains

over the 3D space, which can be obtained offline by deploy-

ing dedicated UAVs for channel sensing and measurements

[27]–[29]. Particularly, efficient algorithms based on data

clustering and segmented regression were proposed in [28],

[29] for constructing the air-ground channel gain map from

2It is worth noting that although the interference issue was considered in
[1], a simplified model was adopted by assuming homogeneous (worst-case)
interference at all possible UAV locations, which cannot fully characterize the
spatial interference distribution.
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small amount of measurement samples. To efficiently store

and process radio maps, we assume that the channel gain

maps of GBSs are obtained in practice over a finite set of

uniformly sampled locations on a 3D grid. Moreover, the

SINR map characterizes the expected SINR level for every

sampled 3D location within the UAV’s fly region, which is

constructed by jointly exploiting the channel gain maps and

the loading factors of different GBSs.

• Based on the SINR map, we transform the 3D path planning

problem into an equivalent shortest path problem (SPP)

in graph theory, based on which the optimal solution is

obtained via the Dijkstra algorithm [30]. Moreover, to

reduce the computational complexity for finding the optimal

SPP solution, we propose a grid quantization method to

more coarsely sample the SINR map, by exploiting the

potential spatial correlation in the channel gains/SINR levels

among neighboring grid points in the maps. Then, we solve

approximate SPPs over reduced-size maps/graphs to obtain

suboptimal solutions with lower complexity.

• Last, numerical results are provided that validate the ef-

fectiveness of the proposed algorithms. Moreover, it is

shown that a flexible trade-off between performance and

complexity can be achieved by adjusting the map quanti-

zation ratios. In addition, compared to various benchmark

schemes with imperfect/partial knowledge of the channel

and/or interference spatial distribution in the network, our

proposed radio map based algorithms significantly improve

the UAV performance in terms of communication SINR as

well as flight efficiency.
It is worth noting that radio map (in particular, channel gain

map) has also been considered in prior works on terrestrial

communications [27] and UAV-assisted communications with

the UAV being an aerial relay/base station serving the ground

users (see, e.g., [24], [31]). Compared to these scenarios,

radio map is more suitable for practical implementation in our

considered scenario since the involved channels (i.e., GBS-

UAV channels) are generally more stable due to the higher

altitude of UAVs and GBSs over ground users. Moreover,

compared to the UAV placement/path optimization in UAV-

assisted communications based on the channel gain map [24],

[31], we consider both the channel gain and SINR maps

for UAV path planning as a cellular-connected user, which

leads to very different problem formulations and solutions;

furthermore, the dimension of the radio map in our considered

scenario is generally much smaller due to the fixed GBS

locations, while the radio map in the former scenario needs

to store the channels between every possible pair of UAV and

ground user locations. In addition, there has been a recent

work [32] that applied a similar “aerial coverage map” based

approach for path planning of cellular-connected UAV, which,

however, is limited to 2D path planning without considering

the aerial-ground interference.

The remainder of this paper is organized as follows. Section

II presents the system model and performance metric. Section

III introduces the SINR map construction based on the channel

gain map. Section IV presents the problem formulation for the

SINR-aware 3D path planning. Section V proposes the optimal

solution, while Section VI proposes a suboptimal solution

with reduced complexity. Numerical examples are presented

in Section VII. Finally, Section VIII concludes the paper and

discusses promising directions for future work.

Notations: Vectors and matrices are denoted by boldface

lower-case letters and boldface upper-case letters, respectively.

xT , ‖x‖, and |x| denote the transpose, the Euclidean norm,

and the element-wise absolute value of a vector x, respectively.

For two vectors x and y, x � y denotes that x is element-

wise no larger than y. R
m×n denotes the space of m × n

real matrices. N+ denotes the set of positive integers. [X]i,j,k
denotes the (i, j, k)-th element of a matrix X . E[·] denotes

the statistical expectation. |X | denotes the cardinality of a set

X . For two sets X and Y , X\Y denotes the set of elements in

X that do not belong to Y . O(·) denotes the standard big-O

notation. For a time-dependent function x(t), ẋ(t) denotes its

first-order derivative with respect to time t.

II. SYSTEM MODEL AND PERFORMANCE METRIC

Consider a cellular-connected UAV and M ≥ 1 GBSs that

may potentially be associated with the UAV during its flight.

The UAV has a mission of flying from an initial location

U0 to a final location UF , while communicating with any of

the M GBSs during the flight. We consider a 3D Cartesian

coordinate system, under which we denote u0 = [x0, y0, H0]
T

and uF = [xF , yF , HF ]
T as the coordinates of U0 and UF ,

respectively; gm = [am, bm, HG]
T as the coordinate of each

mth GBS, where all GBSs are assumed to have a common

height HG; and u(t) = [x(t), y(t), H(t)]T , 0 ≤ t ≤ T as

the time-varying coordinate of the UAV, with T denoting the

mission completion time. We assume that the UAV flies at

a constant speed denoted as V meter/second (m/s), thus the

UAV’s trajectory {u(t) : 0 ≤ t ≤ T } is determined solely by

its flying path. For ease of exposition, we focus on downlink

transmission in this paper.

The large-scale channel gain between each GBS and the

UAV constitutes the distance-dependent path loss, the shad-

owing, and the antenna gain, which are generally dependent

on the locations of the GBS and UAV. Moreover, small-scale

fading may also be present in the GBS-UAV channels due to

random/moving scatters on the ground. Without loss of gen-

erality, let hm(u) = h̄m(u)h̃m(u) denote the instantaneous

channel gain between each mth GBS and the UAV at location

u, where h̄m(u) ∈ R denotes the large-scale channel gain

and h̃m(u) ∈ R denotes the small-scale fading gain with

normalized average power, i.e., E[h̃2
m(u)] = 1. Note that the

large-scale channel gain h̄m(u) is mainly determined by the

large and high obstacles (e.g., buildings) that are generally

static, and thus is approximately constant for given UAV

location u with each mth GBS. As such, the large-scale

channel gains over different UAV locations with each GBS

can be measured offline and stored in a channel gain map, for

which the details will be given in Section III.

We assume that the UAV is associated with GBS indexed

by I(u(t)) ∈ M when it is located at u(t) during its

mission, over an assigned RB by its serving GBS, where

M = {1, ...,M}. However, this RB may be reused by other

GBSs for serving their terrestrial users at the same time. For

each time instant t, let αm(t) ∈ {0, 1} denote the occupancy
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state of this RB at the mth GBS, with αm(t) = 1 repre-

senting that this RB is occupied, and αm(t) = 0 otherwise,

m ∈ M\{I(u(t))}. In practice, αm(t) is determined by the

real-time resource allocation of the mth GBS based on its

channels with the associated users, thus varies in a similar

time scale as h̃m(u(t)). Thus, the downlink SINR at the UAV

receiver can be modeled as

γ(u(t)) =
Ph2

I(u(t))(u(t))

P
∑

m′∈M\{I(u(t))} αm′(t)h2
m′(u(t)) + σ2

=
P h̄2

I(u(t))(u(t))h̃
2
I(u(t))(u(t))

P
∑

m′∈M\{I(u(t))} αm′(t)h̄2
m′(u(t))h̃2

m′(u(t)) + σ2
,

0 ≤ t ≤ T, (1)

where P denotes the transmission power of each GBS over

the RB, and σ2 denotes the noise power at the UAV receiver.

In practice, the instantaneous SINR γ(u(t)) varies over

channel coherence time, due to the fast changing h̃m(u(t))
as well as αm(t). To perform offline UAV path planning, we

adopt the expected SINR as the communication performance

metric, which specifies the average quality of GBS-UAV

communications; while the impairments of small-scale fading

and time-varying interference can be dealt with online via

countermeasures such as channel coding, power control, and

dynamic RB allocation. The expected SINR is expressed as

E[γ(u(t))] = E[P h̄2
I(u(t))(u(t))h̃

2
I(u(t))(u(t))]×

E
[

1/
(

P
∑

m′∈M\{I(u(t))}
αm′(t)h̄2

m′(u(t))h̃2
m′(u(t))+σ2

)]

= P h̄2
I(u(t))(u(t))×

E
[

1/
(

P
∑

m′∈M\{I(u(t))}
αm′(t)h̄2

m′(u(t))h̃2
m′(u(t))+σ2

)]

,

0 ≤ t ≤ T. (2)

Note that the expected SINR is determined by the distribu-

tions of two sets of random variables, namely, αm(t)’s and

h̃m(u(t))’s. In practice, αm(t) can be modeled as a Bernoulli

random variable with mean lm, namely, E[αm(t)] = lm, where

lm ∈ [0, 1] denotes the the so-called loading factor for each

mth GBS. Specifically, lm represents the probability of the

RB assigned for the UAV being occupied at the mth GBS,

which can be roughly estimated as the average number of

users served by each GBS over the total number of available

RBs, over a given period of time. As each lm varies slowly in

practice, {lm}Mm=1 can be obtained/updated efficiently in the

network. In contrast, distributions of the small-scale fading

gains h̃m(u(t))’s vary over time and space more rapidly,

which may not be available in practice. Moreover, it is

generally difficult to express the expected SINR in (2) in a

tractable form even if such distributions are known. Therefore,

we approximate the expected SINR by its lower bound given

below

E[γ(u(t))]
(a)

≥
P h̄2

I(u(t))(u(t))

E

[

P
∑

m′∈M\{I(u(t))} αm′(t)h̄2
m′(u(t))h̃2

m′(u(t)) + σ2
]

=
P h̄2

I(u(t))(u(t))

P
∑

m′∈M\{I(u(t))} lm′ h̄2
m′(u(t)) + σ2

, 0 ≤ t ≤ T, (3)

where (a) holds due to the Jensen’s inequality since the

function 1
x

is convex over x for x > 0. To maximize the

(approximate) expected SINR in (3), the associated GBS with

the UAV should be selected as

I(u(t)) = arg max
m∈M

P h̄2
m(u(t))

P
∑

m′∈M\{m} lm′ h̄2
m′(u(t)) + σ2

,

0 ≤ t ≤ T. (4)

Consequently, the expected SINR with the associated GBS is

given by

γ̄(u(t))
∆
= max

m∈M

P h̄2
m(u(t))

P
∑

m′∈M\{m} lm′ h̄2
m′(u(t)) + σ2

,

0 ≤ t ≤ T. (5)

Note that the expected SINR given in (5) is only determined

by the large-scale channel gains and loading factors, thus can

be calculated offline efficiently.

In the next, we first characterize the large-scale chan-

nel gains h̄m(u(t))’s between every UAV location u(t)
and GBS m based on its channel gain map, then con-

struct a so-called SINR map that characterizes the expected

SINR at every UAV location u(t), i.e., γ̄(u(t)) defined in

(5), based on the channel gain maps and the loading fac-

tors {lm}Mm=1. Furthermore, based on the SINR map, we

formulate and solve the UAV 3D path planning problem

under a constraint on the expected SINR.

III. SINR MAP CONSTRUCTION

In this section, we aim to construct the SINR map needed

for the UAV path planning. Specifically, we first introduce

the detailed structure and storage of the channel gain map as

mentioned in Section II. Based on this, we then present the

construction of the SINR map.

A. Channel Gain Map

First, we introduce the channel gain map. The channel gain

map for each mth GBS refers to the spatial distribution of

its large-scale channel gain over the 3D space, i.e., h̄m(u)’s
with UAV at locations u ∈ R

3×1. As the space is infinite and

continuous, it is not feasible to store the entire data {h̄m(u) :
u ∈ R

3×1} for all locations of u, due to the finite storage in

practice.

To achieve efficient storage, the channel gain map of each

mth GBS can be depicted only for a truncated 3D space

consisting of only neighborhood locations with non-negligible

large-scale channel gains above a given threshold, denoted

by ǫ, so as to reduce the map size. Moreover, the space

can be discretized into a 3D grid with a finite granularity

∆D, where ∆D is chosen to be sufficiently small such that

the channel gain is approximately constant within each grid

cell. Thus, the channel gain map of each mth GBS can be

efficiently represented by a 3D matrix of finite size denoted

by H̄m ∈ R
Xm×Ym×Zm , in which each element represents

the large-scale channel gain between the mth GBS and each

corresponding location in the truncated and discretized 3D

space, denoted as Um
D = {um

D(im, jm, km) ∈ R
3×1 : im ∈

Xm, jm ∈ Ym, km ∈ Zm}, with Xm = {1, ..., Xm}, Ym =
{1, ..., Ym}, Zm = {1, ..., Zm}. Specifically, each element in

H̄m is given by
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(a) GBS and obstacle locations (b) Channel gain map for GBS 6 at H = 125 m

Fig. 2. Illustration of the channel gain map.

[H̄m]im,jm,km =h̄m(um
D(im, jm, km)),

im ∈ Xm, jm ∈ Ym, km ∈ Zm. (6)

Note that the size of H̄m as well as Um
D specified by Xm,

Ym, and Zm is determined by the number of discretized 3D

locations that yield large-scale channel gains no smaller than

ǫ; while for simplicity, we assume h̄m(u) = 0 for u that is

outside the locations considered in Um
D . The location of each

(im, jm, km)-th element in Um
D can be further expressed as

um
D (im, jm, km) = um

R + [im − 1, jm − 1, km − 1]
T
∆D,

im ∈ Xm, jm ∈ Ym, km ∈ Zm,
(7)

where um
R ∈ R

3×1 denotes the reference location in Um
D with

the smallest coordinates over all three dimensions.3 Therefore,

based on knowledge of the channel gain map H̄m, we can

obtain the large-scale channel gain between GBS m and any

UAV location over the 3D space. Note that for each GBS,

its channel gain map needs to store only XmYmZm + 4 real

numbers (i.e., the elements in H̄m, um
R , and ∆D). As an

example, for an area with GBS and obstacle locations given

in Fig. 2 (a), where HG = 10 m, Fig. 2 (b) shows the

channel gain map for GBS 6 at altitude H = 125 m, with

ǫ = −65.724 dB (which is chosen such that the average

received power from the GBS is less than the noise power

if h̄m(u) < ǫ) and ∆D = 10 m, while the other parameters

will be given later in Section VII. It can be observed that in

such a dense urban environment, the large-scale channel gain

behaves differently from that under the LoS channel model,

where two different locations with equal distance to the same

GBS may have drastically different gains due to heterogeneous

shadowing effects. In addition, the number of non-zero grid

points in the channel gain map at H = 125 m is no larger

than 3 × 105, thanks to the proposed map truncation and

discretization method.

In the sequel of this paper, we assume that the channel gain

maps for the M GBSs, {H̄m}Mm=1, are perfectly known with

granularity ∆D , which is sufficiently small such that h̄m(u) =
[H̄m]i,j,k holds for any UAV location u in the (i, j, k)-th grid

cell (i.e., u that satisfies |u− um
D(i, j, k)| � ∆D

2 [1, 1, 1]T ).

3For ease of storage, we assume that the locations in each Um

D
form a

regular 3D grid without loss of generality.
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Fig. 3. Flowchart for SINR map construction.

B. SINR Map

Next, we construct the SINR map based on the channel

gain maps {H̄m}Mm=1 and loading factors {lm}Mm=1 of

the M GBSs, to infer the expected SINR defined in (5)

at any UAV location. For UAV path planning with given

initial and final locations, we only need to consider the

SINR map constructed by the channel gain maps for the M
GBSs that overlap with a target region which is sufficiently

large to cover all possible UAV locations during its flight.

Specifically, the UAV’s flying altitude is typically constrained

as H(t) ∈ [Hmin, Hmax], ∀t ∈ [0, T ], where Hmin denotes

the minimum allowable altitude to avoid collisions with the

ground obstacles, and Hmax denotes the maximum allowable

altitude specified by government regulations. Moreover,

the horizontal location of the UAV can be assumed to be

constrained in a square region denoted by UH ⊂ R
2×1

with edge length L, which is chosen to be sufficiently large

to cover all possible UAV horizontal locations during the

flight. Note that L generally increases with the horizontal

distance between U0 and UF . As such, we only need to

consider the UAV’s locations during its flight in a 3D

square cuboid region denoted by U ⊂ R
3×1, with length

L and height HR
∆
= Hmax − Hmin. Considering the same

discretization granularity ∆D as the channel gain maps, the

discretized UAV locations in U form a D × D × Z grid,

where D = L/∆D and Z = HR/∆D. Such a grid can be

represented by UD = {uD(i, j, k) ∈ R
3×1 : i, j ∈ D, k ∈ Z},

with D = {1, ..., D}, Z = {1, ..., Z}, and uD(i, j, k)
denoting the (i, j, k)-th location on the grid, which is given by

uD(i, j, k)=
[

i− 1

2
, j− 1

2
, k− 1

2

]T

∆D, i, j ∈ D, k ∈ Z. (8)

Based on the above, our objective is to construct an SINR
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(a) GBS-UAV associations over U at H = 125 m (b) SINR map over U at H = 125 m

Fig. 4. Illustration of the GBS-UAV associations and the SINR map.

map that characterizes the expected SINR at every UAV

location in UD, which can be represented by a 3D matrix

S̄ ∈ R
D×D×Z . Specifically, each (i, j, k)-th element in S̄ is

given by

[S̄]i,j,k =max
m∈M

P h̄2
m(uD(i, j, k))

σ̃2(uD(i, j, k))− Plmh̄2
m(uD(i, j, k))

,

i, j ∈ D, k ∈ Z, (9)

where σ̃2(uD(i, j, k))
∆
= σ2+P

∑

m′∈M lm′ h̄2
m′(uD(i, j, k)).

Thus, obtaining [S̄]i,j,k requires the extraction of the large-

scale channel gain between uD(i, j, k) and all the M GBSs,

i.e., {h̄m(uD(i, j, k))}Mm=1. According to the channel gain

map storage method in Section III-A, each h̄m(uD(i, j, k))
can be extracted from H̄m based on its parameters um

R and

∆D as

h̄m(uD(i, j, k)) =














[H̄m]im,jm,km ,

if |uD(i, j, k)−um
D(im, jm, km)|� ∆D

2 [1, 1, 1]T ,
im ∈ Xm, jm ∈ Ym, km ∈ Zm

0, otherwise

m ∈ M, i, j ∈ D, k ∈ Z, (10)

where um
D(im, jm, km) is defined by um

R and ∆D in (7).

Particularly, if uD(i, j, k) does not belong to the effective

channel gain map of the mth GBS, its corresponding large-

scale channel gain is set as zero; otherwise, it is set as the

large-scale channel gain of its belonged cell in Um
D . Then,

for each (i, j, k)-th location in UD, we need to first calcu-

late σ̃2(uD(i, j, k)), based on which we can further obtain
Ph̄2

m(uD(i,j,k))

σ̃2(uD(i,j,k))−Plmh̄2
m(uD(i,j,k))

for all m ∈ M, and select the

optimal associated GBS with the maximum expected SINR as

given in (5). The overall complexity of the aforementioned

procedure over all locations in UD can be shown to be

O(D2ZM). In Fig. 3, we provide a flowchart to summarize

the SINR map construction procedure based on the channel

gain maps and GBS loading factors.

For illustration, with an example of U given in Fig. 2 (a),

we illustrate in Fig. 4 (a) the GBS-UAV associations over

U at H = 125 m, for a given set of loading factors which

will be specified in Section VII. It is observed that under the

location-specific channel and interference, the GBS associated

with the UAV at any location is not necessarily the one with

the smallest distance to the UAV, which is in sharp contrast to

the case of LoS channels considered in prior works [2], [13]–

[15]. Moreover, we show in Fig. 4 (b) the SINR map over U
at H = 125 m. It is observed that the SINR map varies more

abruptly than the channel gain map of individual GBSs shown

in Fig. 2 (b), since the SINR is a function of the channel gains

and interference powers over multiple GBSs.

IV. PROBLEM FORMULATION FOR SINR-AWARE 3D PATH

PLANNING

Based on the given SINR map (i.e., S̄ in (9)), we aim to

minimize the UAV’s flying time/distance from U0 to UF by

optimizing its 3D path denoted by {u(t) : ‖u̇(t)‖ = V, 0 ≤
t ≤ T }, subject to a constraint on the expected SINR along

the UAV path, with V denoting the constant speed of the UAV.

Specifically, we consider in this paper a given target on the

expected SINR denoted by γ̄T, which needs to be achieved

throughout the UAV’s flight to meet the minimum link quality

required for its mission (e.g., for receiving the command and

control signal from its associated GBS).4 Based on (3)–(5),

this can be achieved if

γ̄(u(t)) ≥ γ̄T, 0 ≤ t ≤ T. (11)

This optimization problem is thus formulated as

(P0) min
T,{u(t),0≤t≤T}

T (12)

s.t. γ̄(u(t)) ≥ γ̄T, 0 ≤ t ≤ T (13)

u(0) = u0 (14)

u(T ) = uF (15)

‖u̇(t)‖ = V, 0 ≤ t ≤ T. (16)

Note that the above continuous path planning problem

involves an infinite number of optimization variables, which

are generally difficult to handle. Moreover, unlike our prior

work [2] under the LoS channel model with no interference

where the optimal path structure can be shown to simplify

4It is worth noting that besides a given SINR target that needs to be
achieved throughout the flight, various other functions of the SINR may
also be considered in the constraint, e.g., by specifying a threshold on the
maximum continuous flying distance or the total flying distance that the SINR
target is not achieved (see, e.g., [13], [14]). In Section VII, we will briefly
discuss the extension of our algorithm to such new constraints.
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the problem, the expected SINR constraint considered in this

paper is dependent on both the location-specific large-scale

channel gain and interference power, which thus makes (P0)

more challenging to solve.

Nevertheless, we can show that the optimal path solution

to (P0) is piecewise linear, where each waypoint (except the

first and last ones as the initial and final UAV locations,

respectively) lies in the intersection of two adjacent cells that

both satisfy the expected SINR target. This can be proved

following the similar procedure as that for Proposition 3 in [2]

by noting that each cell is a convex polyhedron, thus sharing

similar properties as the convex-shaped GBS coverage area in

[2]. Thus, we omit the proof here for brevity. To relieve the

burden of finding the optimal waypoint locations under this

structure, we consider an approximate path structure composed

of connected line segments, where two end points of each

segment are adjacent grid points from UD with distance no

larger than
√
3∆D, as illustrated in Fig. 5. This is motivated

by the fact that if two adjacent grid points both satisfy the

expected SINR constraint, any point u on the line segment

between them also satisfies this constraint, since the grid

granularity ∆D is chosen to be sufficiently small such that all

points within each cell have the same channel/SINR level, and

all points on the line segment between two adjacent grid points

are guaranteed to lie within the two cells. For convenience, we

assume that the initial and final locations of the UAV, u0 and

uF , are both on the grid UD. Therefore, we formulate the

following discrete path planning problem over the 3D grid:

(P1) min
N,

{in,jn,kn}
N
n=1

N−1
∑

n=1

‖uD(in+1, jn+1, kn+1)−uD(in, jn, kn)‖

(17)

s.t. [S̄]in,jn,kn
≥ γ̄T, n = 1, ..., N (18)

uD(i1, j1, k1) = u0 (19)

‖uD(in+1, jn+1, kn+1)− uD(in, jn, kn)‖
≤

√
3∆D, n = 1, ..., N − 1 (20)

uD(iN , jN , kN ) = uF (21)

in, jn ∈ D, n = 1, ..., N (22)

kn ∈ Z, n = 1, ..., N, (23)

where N denotes the number of grid points that the UAV

traverses over its flight. Note that (P1) is a non-convex com-

binatorial optimization problem due to the integer variables

{in, jn, kn}Nn=1 and N . Thus, it cannot be solved efficiently

via standard optimization methods. In the following, we re-

formulate (P1) based on graph theory, and propose both the

optimal and suboptimal solutions for it.

V. OPTIMAL SOLUTION

In this section, we obtain the optimal solution to (P1) by

recasting it as an equivalent SPP in graph theory [30]. To this

end, a straightforward approach is to consider all the D2Z
grid points in UD in the vertex set of an equivalent graph.

However, this may be inefficient since under the constraints

in (18), only the (i, j, k)-th grid points with [S̄]i,j,k ≥ γ̄T may

potentially constitute a feasible path. Thus, we first consider

the following radio map preprocessing to identify such valid

grid points, which are referred to as the “feasible grid points”.

 !
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Fig. 5. Illustration of 3D grid and path structure for (P1).

A. Radio Map Preprocessing

Specifically, we construct a new “feasible map” denoted

by F ∈ {0, 1}D×D×Z based on S̄, where each (i, j, k)-th
element is given by

[F ]i,j,k =

{

1, if [S̄]i,j,k ≥ γ̄T

0, otherwise,
i, j ∈ D, k ∈ Z. (24)

Note that [F ]i,j,k = 1 indicates that the (i, j, k)-th grid point

is a feasible grid point, and [F ]i,j,k = 0 otherwise. The

complexity for the above preprocessing can be shown to be

O(D2Z).
B. Graph Based Problem Reformulation and Solution

Next, based on the constructed feasible map F , we propose

an equivalent graph based reformulation of (P1). Specifically,

we construct an undirected weighted graph GD = (VD, ED)
[30]. The vertex set of GD is given by

VD = {UD(i, j, k) : [F ]i,j,k = 1, i, j ∈ D, k ∈ Z}, (25)

whereUD(i, j, k) represents the (i, j, k)-th (feasible) grid point

with locationuD(i, j, k). The edge set of GD is given by

ED ={(UD(i, j, k), UD(i′, j′, k′)) :

‖uD(i, j, k)− uD(i′, j′, k′)‖ ≤
√
3∆D}. (26)

Note that an edge exists between two verticesUD(i, j, k) and

UD(i′, j′, k′) if and only if the corresponding two grid points

are adjacent. Moreover, the weight of each edge is given by

WD(UD(i, j, k), UD(i
′, j′, k′))=‖uD(i, j, k)−uD(i′, j′, k′)‖,

(27)
which represents the flying distance between the two corre-

sponding locations.

Prior to solving (P1), we first check its feasibility based

on GD. Specifically, it can be shown that (P1) is feasible if

and only if UD(i1, j1, k1) and UD(iN , jN , kN ) are connected

in GD, where (i1, j1, k1) and (iN , jN , kN ) are given in (19)

and (21), respectively. Such connectivity can be checked via

various existing algorithms such as the breadth-first search

(BFS) [30] with complexity O(|VD| + |ED|) = O(D2Z),
where the worst-case values for |ED| and |VD| can be shown

to be 2(D − 1)(2D − 1)(3Z − 2) +D2(Z − 1) ∝ D2Z and

D2Z , respectively. It can also be shown that constructing the

graph GD requires worst-case complexity of O(D2Z), thus

the overall worst-case complexity for checking the feasibility

of (P1) is O(D2Z). Note that as the SINR target increases,

the feasible map and graph GD will become more sparse, and
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it is more likely for (P1) to be infeasible. If (P1) is verified

to be feasible, with graph GD constructed above, (P1) can

be shown to be equivalent to finding the shortest path from

UD(i1, j1, k1) to UD(iN , jN , kN ) in GD. This problem can be

solved via the Dijkstra algorithm with worst-case complexity

O(|ED| + |VD| log |VD|) = O(D2Z log(D2Z)) using the

Fibonacci heap structure [30]. With the obtained shortest path

denoted by (UD(i⋆1, j
⋆
1 , k

⋆
1), ..., UD(i⋆N⋆ , j⋆N⋆ , k⋆N⋆)), the opti-

mal solution to (P1) is obtained as N⋆ and {i⋆n, j⋆n, k⋆n}N
⋆

n=1.

VI. SUBOPTIMAL SOLUTION VIA GRID QUANTIZATION

Note that the complexity for finding the optimal solution to

(P1) scales up with D and Z , while the values of D = L
∆D

and Z = HR

∆D
can be practically arbitrarily large with given

∆D and increasing the edge length L of the horizontal fly

region of interest, UH, and/or the allowable UAV altitude range

HR. Moreover, it is worth noting that the required memory

for storing all the edge weights in graph GD is dependent

on |ED|, which also increases with D and Z . For example,

with ∆D = 10 m, L = 200 km when U0 and UF are far

apart, and HR = 40 m, we have D = 2 × 104, Z = 4, and

consequently D2Z log(D2Z) ≈ 3.4 × 1010; in addition, we

have |ED| ≈ 1.72×1010 in the worst case, which demands for

approximately 137.6 GB memory for storing GD. In practice,

such high complexity and large memory size are prohibitive or

even unaffordable. To tackle this issue, we propose to reduce

the number of vertices involved in the SPP by applying a

grid quantization method, and considering a new path structure

composed of connected line segments between quantized grid

points, as detailed next.

A. Radio Map Preprocessing

To start with, we present the proposed grid quantization

method. Note that in practice, the allowable UAV altitude

range HR is typically much smaller than the edge length L of

the horizontal fly region of the UAV (as shown in the above

example). Therefore, we propose to perform larger level of

quantization for the horizontal dimensions (i.e., x − y axes

as illustrated in Figs. 4–5) and smaller level of quantization

for the vertical dimension (i.e., z axis as illustrated in Fig. 5).

Specifically, let κxy ∈ N+ and κz ∈ N+ denote the horizontal

quantization ratio and vertical quantization ratio, respectively,

with κxy ≥ 1, κz ≥ 1, and κxy ≥ κz . By applying uniform

quantization over the grid points in UD according to the

given quantization ratios, we obtain D̃2Z̃ points with hori-

zontal granularity ∆D̃xy
and vertical granularity ∆D̃z

, where

D̃ = D/κxy ≤ D, ∆D̃xy
= κxy∆D ≥ ∆D; Z̃ = Z/κz ≤ Z ,

∆D̃z
= κz∆D ≥ ∆D. For ease of exposition, we assume that

D/κxy and Z/κz are both integers, and κxy and κz are both

odd numbers. Let UD̃ = {uD̃(i, j, k) : i, j ∈ D̃, k ∈ Z̃} de-

note the quantized grid, with D̃ = {1, ..., D̃}, Z̃ = {1, ..., Z̃},

and uD̃(i, j, k) denoting the (i, j, k)-th location on the quan-

tized grid, which is given by

uD̃(i, j, k)=

[(

i− 1

2

)

∆D̃xy
,

(

j− 1

2

)

∆D̃xy
,

(

k− 1

2

)

∆D̃z

]T

,

i, j ∈ D̃, k ∈ Z̃. (28)

The proposed grid quantization method is illustrated in Fig.

6 for the case of κxy = 3 and κz = 1. Notice that each
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Fig. 6. Illustration of the proposed grid quantization method and suboptimal
path structure for (P1).

uD̃(i, j, k) lies among κ2
xyκz original grid points indexed by a

“neighboring set” N (i, j, k), whose corresponding cells form

a “quantized cell”, as illustrated in Fig. 6. Specifically, we

have N (i, j, k) = {(p, q, l) : |uD(p, q, l) − uD̃(i, j, k)| �
1
2 [∆D̃xy

,∆D̃xy
,∆D̃z

]T , p, q ∈ D, l ∈ Z}. This is motivated

by the fact that the channels and consequently SINR values

for neighboring grid points in N (i, j, k) are typically highly

correlated, thus they can be “well-represented” by one single

quantized grid point uD̃(i, j, k) at the center.

Next, we consider a feasible path structure where uD̃(i, j, k)
is a “feasible quantized grid point” (which may potentially

constitute a feasible path) if and only if all the neighboring

original grid points in N (i, j, k) are the feasible grid points

defined by (24), such that its connected line segment with

another adjacent feasible quantized grid point at any direction

does not violate the expected SINR constraint. To identify

such points, we construct a new “quantized feasible map”

denoted by F̃ ∈ {0, 1}D̃×D̃×Z̃ , where each (i, j, k)-th element

is given by

[F̃ ]i,j,k =

{

1, if [S̄]p,q,l ≥ γ̄T, ∀(p, q, l) ∈ N (i, j, k)
0, otherwise,

i, j ∈ D̃, k ∈ Z̃. (29)

Note that [F̃ ]i,j,k = 1 indicates that the (i, j, k)-th quantized

grid point is a feasible quantized grid point, and [F̃ ]i,j,k = 0
otherwise. The complexity for the above preprocessing can be

shown to be O(D̃2Z̃κ2
xyκz) = O(D2Z).

B. Reduced-Size Graph and Suboptimal Solution

Based on the quantized feasible map F̃ , we can intro-

duce the corresponding new path structure. Specifically, as-

suming that u0 and uF belong to the (̃i1, j̃1, k̃1)-th and

(̃iN , j̃N , k̃N )-th quantized cells, respectively. We first let the

UAV fly from u0 to uD̃ (̃i1, j̃1, k̃1) at the start, and from

uD̃ (̃iN , j̃N , k̃N ) to uF in the end. Moreover, we assume that

a path exists between two feasible quantized grid points if

and only if they are adjacent, and this path does not pass

through any quantized cell other than the two corresponding

ones. Thus, the UAV can fly from a feasible quantized grid
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point indexed by (i, j, k) to adjacent points in 10 direc-

tions, including 8 on the same horizontal plane with distance

κxy∆D or
√
2κxy∆D , as well as 2 on the adjacent horizontal

planes with distance κz∆D, whose index set is given by

A(i, j, k) = {(i′, j′, k′) : ‖uD̃(i, j, k) − uD̃(i′, j′, k′)‖ ∈
{κxy∆D,

√
2κxy∆D, κz∆D}, i′, j′ ∈ D̃, k′ ∈ Z̃}, as illus-

trated in Fig. 6.5 Under the above structure, we construct an

undirected weighted graph GD̃ = (VD̃, ED̃) with vertex set

VD̃ = {UD̃(i, j, k) : [F̃ ]i,j,k = 1, i, j ∈ D̃, k ∈ Z̃}, (30)

where UD̃(i, j, k) denotes the (i, j, k)-th (feasible) quantized

grid point with location uD̃(i, j, k). Note that |VD̃| is signifi-

cantly smaller than |VD|, with a worst-case value of D̃2Z̃ =
D2Z/(κ2

xyκz) ≤ D2Z . The edge set of GD̃ is then given by

ED̃ = {(UD̃(i, j, k), UD̃(i′, j′, k′)) : (i′, j′, k′) ∈ A(i, j, k)}.
(31)

The weight of each edge is given by

WD̃(UD̃(i, j, k), UD̃(i′, j′, k′)) = ‖uD̃(i, j, k)−uD̃(i′, j′, k′)‖.
(32)

Note that (P1) under the above path structure is equiv-

alent to finding the shortest path from UD̃ (̃i1, j̃1, k̃1) to

UD̃ (̃iN , j̃N , k̃N ) in graph GD̃, which can be solved via the

Dijkstra algorithm with worst-case complexity O(|ED̃| +
|VD̃| log |VD̃|) = O(D̃2Z̃ log(D̃2Z̃)) [30]. By noting that the

construction of graph GD̃ requires the worst-case complexity

of O(D̃2Z̃), the overall worst-case complexity for obtaining

a subptimal solution based on F̃ is O(D̃2Z̃ log(D̃2Z̃)) =

O
(

D2Z
κ2
xyκz

log
(

D2Z
κ2
xyκz

))

. Recall the example discussed at the

beginning of this section, with κxy = 25 and κz = 1, we have

D̃2Z̃ log(D̃2Z̃) ≈ 5.4 × 107 and |ED̃| ≈ 2.75 × 107 in the

worst case. Thus, only 0.22 GB memory is required for storing

the reduced graph GD̃, which is more affordable in practice.

For illustration, an example of the proposed suboptimal path

solution is given in Fig. 7 with κxy = 3 and κz = 1, as

compared to the optimal path solution obtained in Section V.

It can be easily shown that the obtained shortest path in GD̃

always corresponds to a feasible solution to (P1) (as can be

observed from Fig. 7), which is optimal to (P1) with κxy = 1
and κz = 1 (i.e., D̃ = D, Z̃ = Z), and generally suboptimal

for κxy > 1 and/or κz > 1.

Finally, note that the overall complexities for

the proposed optimal solution and suboptimal

5Note that due to the heterogeneous horizontal versus vertical quantization
ratios, only 10 out of the 26 paths between a quantized grid point and its 26

3D neighbors are guaranteed to lie within the two corresponding quantized
cells.

solution are given by O
(

D2Z+D2Z log(D2Z)
)

and

O
(

D2Z+ D2Z
κ2
xyκz

log
(

D2Z
κ2
xyκz

))

, respectively, which

can be well-approximated by O(D2Z log(D2Z)) and

O
(

1
κ2
xyκz

D2Z log(D2Z)
)

, respectively, for the practical case

with D ≫ κxy and Z ≫ κz . Thus, the suboptimal solution

only requires 1/(κ2
xyκz) of the complexity required by the

optimal solution. Note that as κxy and/or κz increases, the

performance of the suboptimal solution generally degrades

as the quantization becomes more coarse, while the required

complexity also decreases. Thus, a flexible performance-

complexity trade-off can be achieved by selecting the

quantization ratios κxy and κz .

VII. NUMERICAL EXAMPLES

In this section, we provide numerical examples to evaluate

the performance of our proposed 3D path planning algorithms

for UAV. We set the minimum and maximum flying altitude

of the UAV as Hmin=90 m and Hmax=130 m, respectively,

which correspond to an allowable UAV altitude range of HR=
Hmax−Hmin = 40 m. The UAV’s initial and final locations

are set as u0 = [5, 5, 95]T m and uF = [625, 625, 125]T m,

respectively. As illustrated in Fig. 2 (a), we consider a square

horizontal area UH with edge length L=630 m, over which

M = 6 GBSs are uniformly randomly distributed, each with

height HG = 10 m under the urban micro (UMi) setup [33];

moreover, 30 obstacles are randomly distributed in UH, each

modeled as a 3D cuboid with equal length and width randomly

generated according to the uniform distribution in [50, 70]
m, and height randomly generated according to the Rayleigh

distribution with mean 30 m [21], which is truncated to be

no larger than the UAV’s minimum flying altitude Hmin=90
m. We consider an overall bandwidth of 10 MHz, over which

there are 50 RBs, each with bandwidth 180 KHz [33]. The

total transmission power at each GBS is set as 41 dBm, thus

that over each RB is P =24.0103 dBm [33]. The noise power

spectrum density is set as −169 dBm/Hz, with a 9 dB noise

figure [33]. We assume that the UAV is equipped with an

isotropic antenna with unit gain. The large-scale channel gain

between each GBS and UAV location is modeled according

to the 3GPP technical report based on the UMi scenario

[33]. Specifically, a GBS-UAV channel is classified as an LoS

channel if there is no obstacle between the GBS and the UAV,

which is modeled by

h̄LoS
m (u) =

GA
m(u)

2
+

1

2
min{h̄FS

m ,−30.9− (22.25

− 0.5 log10 H(u)) log10 dm(u)− 20 log10 fc}, (33)

in dB, with GA
m(u) denoting the GBS antenna radiation power

gain at UAV location u in dB, h̄FS
m denoting the free-space path

loss, dm(u)
∆
= ‖u−gm‖ denoting the 3D GBS-UAV distance,

H(u) denoting the UAV’s altitude at location u, and fc = 2
GHz denoting the carrier frequency; otherwise, it is classified

as an NLoS (non-LoS) channel modeled by

h̄NLoS
m (u) =

GA
m(u)

2
+

1

2
min{h̄LoS

m (u),−32.4− (43.2

− 7.6 log10 H(u)) log10 dm(u)− 20 log10 fc}, (34)
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in dB. Note that we have h̄LoS
m (u) ≥ h̄NLoS

m (u) since the

path loss of NLoS channel is generally larger than its LoS

counterpart, thus resulting in smaller channel gain. For the

purpose of exposition, we first consider in Section VII-A to

Section VII-C the simplified scenario where each GBS has

an isotropic gain, i.e., GA
m(u) = 0 dB. The corresponding

radio maps are illustrated in Fig. 2 and Fig. 4. Then, in

Section VII-D, we consider the GBS antenna model in the

current LTE standard, where each GBS is equipped with a

uniform linear array (ULA) consisting of 8 antenna elements

with half-wavelength spacings, which are electronically tilted

downwards with elevation angle θtilt = −10o. The synthe-

sized antenna gain between each GBS and UAV location,

GA
m(u), is specified in [34]. Unless stated otherwise, we

consider a set of loading factors given by l = [l1, ..., lM ]T =

[0.0318, 0.6561, 0.3223, 0.9679, 0.2598, 0.7672]T
∆
= l̄, each of

which is independently and randomly generated according to

uniform distribution in [0, 1]. The granularity for the channel

gain maps and the SINR map is set as ∆D = 10 m.

A. Performance of Proposed Solution with Different Quanti-

zation Ratios

To start with, we evaluate the efficacy of our proposed

grid quantization method by comparing the performance of

our proposed optimal solution and suboptimal solutions with

different quantization ratios. Specifically, since L is much

larger than HR, we fix the vertical quantization ratio as

κz = 1, and consider a set of different horizontal quantization

ratios given as κxy ∈ {3, 7, 9}. Under this setup, we consider

two expected SINR targets in the downlink, γ̄T = 0 dB or 3
dB, and show in Fig. 8 the proposed optimal and suboptimal

path solutions with the three horizontal quantization ratios. For

the purpose of illustration, we also depict in Fig. 8 the feasible

(original) grid points that satisfy the expected SINR target. For

both expected SINR targets, it is observed that the suboptimal

solutions with different quantization levels κxy as well as the

optimal solution are substantially different. Specifically, as

the horizontal quantization ratio κxy increases, the obtained

suboptimal path becomes less flexible and results in longer

path length, which is due to the more coarse grid/SINR

quantization. Particularly, for the case of γ̄T = 3 dB, the

suboptimal paths tend to go back and forth, in contrast to the

optimal path which is direct and more efficient since it allows

for more flexible turns. Moreover, it is observed that as the

expected SINR target increases from γ̄T = 0 dB to γ̄T = 3
dB, the feasible grid points become more sparse, as a result

of which both the optimal path and suboptimal paths become

more complicated.

Next, we show in Fig. 9 the required flying distance

from U0 to UF with the proposed optimal and suboptimal

solutions versus the expected SINR target γ̄T. Note that the

minimum value of [S̄]i,j,k for all i, j ∈ D and k ∈ Z on

the given map is −2.309 dB; moreover, it is found via the

BFS algorithm that (P1) becomes infeasible if γ̄T > 5.284
dB for this setup. Thus, the range of γ̄T in Fig. 9 is set

as [−2.309, 5.284] dB. It is observed from Fig. 9 that the

optimal solution is feasible for all values of γ̄T, while the

suboptimal solution with κxy = 9 becomes infeasible when
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Fig. 9. Flying distance versus γ̄T for proposed path solutions with different
quantization ratios.

γ̄T > 3 dB, and the suboptimal solutions with κxy = 7 and

κxy = 3 become infeasible when γ̄T > 4 dB. Moreover, the

required flying distance for the suboptimal solution increases

as κxy increases, since the increasingly coarse grid/SINR

quantization yields less flexibility in the path design, which

thus validates the performance-complexity trade-off discussed

in Section VI. On the other hand, it is worth noting that

the performance loss of the suboptimal solutions compared

to the optimal solution is generally small, especially in the

low-to-medium expected SINR target regime. For example,

when γ̄T ≤ 0 dB, all the suboptimal solutions require at

most 6.845% more flying distance than the optimal solution.

Moreover, among all expected SINR target values shown in

Fig. 9, the maximum percentage of additional flying distance

required for the suboptimal solution with κxy = 3 is only

8.821%, yet its required complexity is reduced by 88.89% (i.e.,
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1− 1
κ2
xy

) compared to the optimal solution. This thus validates

the efficacy of our proposed grid quantization method and the

corresponding suboptimal designs, by exploiting the spatial

channel/SINR correlation among neighboring grid points.

B. Effectiveness of Interference-Aware Path Planning

In this subsection, we examine the effectiveness of the pro-

posed interference-aware path planning based on radio maps.

For comparison, we also consider the following benchmark

schemes without (full) interference awareness, where path

planning is performed based on upper or lower bounds of the

loading factors instead of their exact values:

• Benchmark scheme 1 (Path planning assuming worse-

case interference): In this scheme, we perform path plan-

ning by considering the worst-case interference, where the

SINR map is constructed by replacing the exact loading

factor at each mth GBS with its upper bound denoted by

lmax
m . Note that this corresponds to an “overestimate” of the

interference level at every UAV location.

• Benchmark scheme 2 (Path planning assuming no in-

terference): In this scheme, we consider path planning

without the knowledge of interference distribution and thus

assuming zero interference at all locations, where the SINR

map becomes the SNR map with zero loading factor for all

GBSs. Note that this corresponds to an “underestimate” of

the interference level at every UAV location.

In the following, we compare the above two benchmark

schemes with our proposed optimal solution for two different

sets of actual loading factors: l = l̄ and l = 0.4l̄, which

correspond respectively to the loading factor upper bounds

lmax
m = 1, ∀m ∈ M and lmax

m = 0.4, ∀m ∈ M.

First, we show in Fig. 10 the required flying distance for

these solutions versus the expected SINR target γ̄T. It is

observed that as the loading factors decrease from l = l̄ to

l = 0.4l̄, the maximum achievable expected SINR target γ̄T
is increased from 5.284 dB to 9.263 dB, since the reduced

loading factors result in less severe interference at the UAV.

Moreover, it is observed that benchmark scheme 1 becomes

infeasible when γ̄T > −1 dB and γ̄T > 2 dB for the case of

l = l̄ and l = 0.4l̄, respectively, due to its overestimation

of the interference level. On the other hand, for the case

where benchmark scheme 1 is feasible, it requires significantly

increased flying distance compared to the proposed solution

(e.g., 24.45% and 4.64% at γ̄T = −1 dB and γ̄T = 2
dB for l = l̄ and l = 0.4l̄, respectively). On the other

hand, although benchmark scheme 2 requires the minimum

flying distance at all expected SINR targets, which corresponds

to the (quantized) straight flight from U0 to UF , it results

in violations of the expected SINR target during the flight.

Specifically, we show in Fig. 11 the connectivity outage of

the proposed and benchmark schemes, which is defined as the

percentage of flying distance that violates the expected SINR

target. It is observed from Fig. 11 that the connectivity outage

for our proposed solution and benchmark scheme 1 is always

zero; while that for benchmark scheme 2 increases drastically

as the expected SINR target increases. This is because with

more stringent SINR constraint, benchmark scheme 2 by

assuming zero interference tends to result in more failures
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Fig. 10. Flying distance versus γ̄T for the proposed and benchmark scheme
path solutions.

for meeting this constraint over its flight. Furthermore, we

illustrate the proposed path solution and the two benchmark

scheme solutions in Fig. 12 under γ̄T = 2 dB, for both

sets of loading factors. It is observed that under the same

expected SINR target, the feasible grid points become more

sparse as the loading factors increase, since they impose more

stringent constraint on the channel gain between the UAV and

its associated GBS. It is also observed that for the case of

l = l̄, benchmark scheme 1 is infeasible, while benchmark

scheme 2 results in substantial connectivity outage; while for

the case of l = 0.4l̄, benchmark scheme 1 results in larger path

length than the proposed solution. The above results therefore

validate the effectiveness of our proposed interference-aware

path planning solution based on the actual SINR map.

C. Effectiveness of Terrain-Aware Path Planning

Note that a key advantage of the proposed radio map

based path planning approach lies in its ability to capture the

different channel conditions due to different terrain charac-

teristics over the UAV’s fly region (e.g., LoS versus NLoS

channels with the GBSs), thereby providing communication

performance guarantee at every location during its flight.

In this subsection, we evaluate the performance gain of the

proposed terrain-aware path planning via comparison with the

following benchmark schemes without exploiting the hetero-

geneous terrain/channel characteristics:

• Benchmark scheme 3 (LoS channel based path plan-

ning): In this scheme, we construct the channel gain maps

and the SINR map by assuming that the channel between
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Fig. 11. Connectivity outage versus γ̄T for the proposed and benchmark
scheme path solutions.

every UAV location and each GBS follows the LoS model

given in (33). Note that this corresponds to an “overesti-

mate” of both the signal power and the interference power,

since the LoS-based channel gain is generally larger than

the NLoS-based channel gain.

• Benchmark scheme 4 (NLoS channel based path plan-

ning): In this scheme, we construct the channel gain maps

and the SINR map by assuming that the channel between

every UAV location and each GBS follows the NLoS model

given in (34). Note that this corresponds to an “underesti-

mate” of both the signal power and the interference power.

In Fig. 13, we show the flying distance versus the expected

SINR target γ̄T for our proposed optimal solution and the

above two benchmark schemes, under the loading factor set

l = l̄. It is observed that benchmark schemes 3 and 4

(named as terrain-unaware path planning) become infeasible

after the fourth and fifth sample points of the expected SINR

targets, respectively. Moreover, it is observed that when the

two benchmark schemes are feasible, they require significantly

increased flying distance compared to the proposed solution

(termed as terrain-aware path planning).6 This shows that

without accurate knowledge of the terrain-specific channel

conditions, assuming LoS or NLoS channels for all locations

over the UAV’s fly region leads to substantial performance

6Under this setup, no connectivity outage is observed for the benchmark
schemes.

(a) l = l̄

(b) l = 0.4l̄

Fig. 12. Illustration of the proposed and benchmark scheme path solutions
at γ̄T = 2 dB.
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loss due to the inaccurate channel gain maps and SINR map

constructed.

D. Performance of Proposed Solution under Downtilted GBS

Antennas

Finally, we evaluate the performance of our proposed solu-

tion under the downtilted GBS antenna model for the current

4G LTE networks. In Fig. 14 (a) and (b), we show the

GBS-UAV associations and the SINR map at H = 125 m,

respectively. By comparing Fig. 14 with Fig. 4, it is observed

that with downtilted GBS antennas, the SINR map is more

heterogeneous compared to the case with fixed and isotropic
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(a) GBS-UAV associations over U at H = 125 m (b) SINR map over U at H = 125 m

Fig. 14. Illustration of the GBS-UAV associations and the SINR map with downtilted GBS antennas.

antenna gain (e.g., the SINR peaks in Fig. 14 (b) are generally

not close to the GBSs as in Fig. 4 (b)). This is because the UAV

in the sky is served by the weak sidelobes of the downtilted

GBS antennas in general, which makes the channel gain non-

monotonic over the GBS-UAV distance. It is also observed

from Fig. 14 (a) that the GBS associated with each UAV lo-

cation is not the closest one in general. In Fig. 15, we show the

optimal path solution under SINR target γ̄T = −0.2 dB. It can

be observed that the proposed design is still capable of finding

a feasible and shortest path effectively. Moreover, it is worth

pointing out that due to the more heterogeneity of the SINR

map under the downtilted GBS antennas, there may be more

frequent “coverage holes” in the sky that cannot meet the SINR

target, while avoiding them completely may yield substantially

longer flying distance as illustrated in Fig. 15. To address

this issue, we propose a new “outage-tolerant” path planning

solution by modifying the optimal solution in Section V, where

we relax the connectivity constraint by allowing a maximum

flying duration with communication outage denoted by OT

(m) during the flight. To incorporate this outage tolerance,

we assume that the UAV can fly from a feasible grid point

UD(i, j, k) to another feasible grid point UD(i′, j′, k′) through

the path UD(i, j, k)−UD(i
′, j, k)−UD(i

′, j′, k)−UD(i
′, j′, k′)

(i.e., along the x, y, and z axes, sequentially) if the maximum

path length in outage is no greater than OT . This can be done

by constructing the graph GD in Section V with additional

edges between the aforementioned pairs of feasible grid points

whose weights are set as their distances, and then solving the

SPP over the graph. In Fig. 15, we illustrate the proposed

outage-tolerant solution under OT = 50 m and γ̄T = −0.2
dB. It can be observed that the outage-tolerant path is more

efficient than the optimal path without outage due to more

feasible fly zones, with a flying distance of 933.210 m that is

smaller than 945.924 m for the case without outage.

VIII. CONCLUDING REMARKS

This paper investigated the interference-aware 3D path

planning for a cellular-connected UAV to minimize its flying

distance from given initial to final locations, subject to a

communication quality constraint specified by an expected

receive SINR target with its associated GBSs. We presented
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Fig. 15. Illustration of the proposed optimal solution and outage-tolerant
solution (with OT = 50 m) at γ̄T = −0.2 dB.

a new path optimization framework by utilizing radio maps,

which characterize the large-scale channel gains between each

GBS and uniformly sampled locations on a 3D grid as well

as the expected SINR levels over these sampled 3D locations

with optimal GBS association. Based on the SINR map, the

optimal path solution was obtained by solving an equivalent

SPP, and a suboptimal solution with lower complexity was

proposed based on a grid quantization method. Numerical

results validated the efficacy of the proposed optimal and sub-

optimal solutions, and showed their performance-complexity

trade-off. The proposed solutions were also shown to achieve

significantly improved performance in comparison with vari-

ous benchmark schemes with imperfect/partial knowledge of

the interference and/or channel spatial distribution.

There are a number of work directions that are worthy of

further investigation in the future. First, under the proposed 3D

path planning framework based on radio maps, various other

utility functions can be considered in the problem objective or

constraints such as the general outage cost function proposed

in [13], the average communication rate over the UAV’s entire

flight, and the number of handovers between different GBSs

along the UAV’s flight, since frequent handovers will lead to

additional delay in GBS-UAV communications [35], [36]. It
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is also of high practical interest to extend our results to the

more general case with multiple UAVs by considering their

collision avoidance constraints (see, e.g., [37]). Moreover, we

considered downlink communication in this paper for the pur-

pose of exposition, while the interference-aware path planning

under uplink communication constraints is also an interesting

problem to study, which is different from the downlink case

since the interference is caused by the UAV to the non-

associated GBSs in the uplink. Furthermore, it is interesting

to jointly design path planning with advanced interference

mitigation techniques (e.g., dynamic 3D beamforming), which

will lead to more complicated radio maps and thus call for new

and more efficient map modeling/estimation methods. Finally,

it is worthwhile to develop robust path planning solutions

under practically imperfect/partial radio map knowledge.

REFERENCES

[1] S. Zhang and R. Zhang, “Radio map based path planning for cellular-
connected UAV,” in Proc. IEEE Global Commun. Conf. (Globecom),
Dec. 2019.

[2] S. Zhang, Y. Zeng, and R. Zhang, “Cellular-enabled UAV communi-
cation: A connectivity-constrained trajectory optimization perspective,”
IEEE Trans. Commun., vol. 67, no. 3, pp. 2580–2604, Mar. 2019.

[3] B. V. D. Bergh, A. Chiumento, and S. Pollin, “LTE in the sky: Trading
off propagation benefits with interference costs for aerial nodes,” IEEE
Commun. Mag., vol. 54, no. 5, pp. 44–50, May 2016.

[4] X. Lin et al., “The sky is not the limit: LTE for unmanned aerial
vehicles,” IEEE Commun. Mag., vol. 56, no. 4, pp. 204–210, Apr. 2018.

[5] Y. Zeng, J. Lyu, and R. Zhang, “Cellular-connected UAV: Potential, chal-
lenges, and promising technologies,” IEEE Wireless Commun., vol. 26,
no. 1, pp. 120–127, Feb. 2019.

[6] J. Lyu and R. Zhang, “Network-connected UAV: 3D system modeling
and coverage performance analysis,” IEEE IoT J., vol. 6, no. 4, pp.
7048–7060, Aug. 2019.

[7] L. Liu, S. Zhang, and R. Zhang, “Multi-beam UAV communication
in cellular uplink: Cooperative interference cancellation and sum-rate
maximization,” IEEE Trans. Wireless Commun., vol. 18, no. 10, pp.
4679–4691, Oct. 2019.

[8] L. Liu, S. Zhang, and R. Zhang, “Exploiting NOMA for multi-beam
UAV communication in cellular uplink,” in Proc. IEEE Int. Conf.

Commun. (ICC), May 2019.
[9] W. Mei and R. Zhang, “Uplink cooperative NOMA for cellular-

connected UAV,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 3,
pp. 644–656, Jun. 2019.

[10] W. Mei, Q. Wu, and R. Zhang, “Cellular-connected UAV: Uplink
association, power control and interference coordination,” IEEE Trans.
Wireless Commun., vol. 18, no. 11, pp. 5380–5393, Nov. 2019.

[11] Y. Huang, W. Mei, J. Xu, L. Qiu, and R. Zhang, “Cognitive UAV
communication via joint maneuver and power control,” IEEE Trans.

Commun., vol. 67, no. 11, pp. 7872–7888, Nov. 2019.
[12] H. C. Nguyen et al., “How to ensure reliable connectivity for aerial

vehicles over cellular networks,” IEEE Access, vol. 6, pp. 12 304–12 317,
Feb. 2018.

[13] S. Zhang and R. Zhang, “Trajectory optimization for cellular-connected
UAV under outage duration constraint,” J. Commun. Inf. Network., vol. 4,
no. 4, pp. 55–71, Dec. 2019.

[14] S. Zhang and R. Zhang, “Trajectory design for cellular-connected UAV
under outage duration constraint,” in Proc. IEEE Int. Conf. Commun.

(ICC), May 2019.
[15] E. Bulut and I. Guvenc, “Trajectory optimization for cellular-connected

UAVs with disconnectivity constraint,” in Proc. IEEE Int. Conf. Com-

mun. (ICC) Wkshps., May 2018.
[16] B. Khamidehi and E. S. Sousa, “Power-efficient trajectory optimization

for the cellular-connected aerial vehicles,” in Proc. IEEE Int. Symp.
Personal, Indoor, Mobile Radio Commun. (PIMRC), Sep. 2019.

[17] O. Esrafilian, R. Gangula, and D. Gesbert, “3D-map assisted UAV
trajectory design under cellular connectivity constraints,” in Proc. IEEE

Int. Conf. Commun. (ICC), May 2020.
[18] X. Mu, Y. Liu, L. Guo, C. Dong, and J. Lin, “Interference-aware

trajectory design for ground-aerial uplink NOMA cellular networks,”
in Proc. IEEE Global Commun. Conf. (Globecom), Dec. 2019.

[19] U. Challita, W. Saad, and C. Bettstetter, “Interference management
for cellular-connected UAVs: A deep reinforcement learning approach,”
IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2125–2140, Apr.
2019.

[20] M. M. Azari, F. Rosas, K.-C. Chen, and S. Pollin, “Ultra reliable UAV
communication using altitude and cooperation diversity,” IEEE Trans.
Commun., vol. 66, no. 1, pp. 330–344, Jan. 2018.

[21] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude
for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6,
pp. 569–572, Dec. 2014.

[22] L. Liu, S. Zhang, and R. Zhang, “CoMP in the sky: UAV placement and
movement optimization for multi-user communications,” IEEE Trans.

Commun., vol. 67, no. 8, pp. 5645–5658, Aug. 2019.
[23] C. You and R. Zhang, “3D trajectory optimization in Rician fading for

UAV-enabled data harvesting,” IEEE Trans. Wireless Commun., vol. 18,
no. 6, pp. 3192–3207, Jun. 2019.

[24] O. Esrafilian, R. Gangula, and D. Gesbert, “Learning to communicate
in UAV-aided wireless networks: Map-based approaches,” IEEE IoT J.,
vol. 6, no. 2, pp. 1791–1802, Apr. 2018.

[25] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and power
control for multi-UAV assisted wireless networks: A machine learning
approach,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7957–7969,
Aug. 2019.

[26] C. You and R. Zhang, “Hybrid offline-online design for UAV-enabled
data harvesting in probabilistic LoS channel,” IEEE Trans. Wireless

Commun., vol. 19, no. 6, pp. 3753–3768, Jun. 2020.
[27] S. Bi, J. Lyu, Z. Ding, and R. Zhang, “Engineering radio map for

wireless resource management,” IEEE Wireless Commun., vol. 26, no. 2,
pp. 133–141, Apr. 2019.

[28] J. Chen, U. Yatnalli, and D. Gesbert, “Learning radio maps for UAV-
aided wireless networks: A segmented regression approach,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017.

[29] J. Chen, O. Esrafilian, D. Gesbert, and U. Mitra, “Efficient algorithms
for air-to-ground channel reconstruction in UAV-aided communications,”
in Proc. IEEE Global Commun. Conf. (Globecom) Wkshps., Dec. 2017.

[30] D. B. West, Introduction to Graph Theory. Prentice Hall, 2001.
[31] J. Chen and D. Gesbert, “Efficient local map search algorithms for the

placement of flying relays,” IEEE Trans. Wireless Commun., vol. 19,
no. 2, pp. 1305–1319, Feb. 2020.

[32] H. Yang, J. Zhang, S. H. Song, and K. B. Letaief, “Connectivity-aware
UAV path planning with aerial coverage maps,” in Proc. IEEE Wireless
Commun. Network. Conf. (WCNC), Apr. 2019.

[33] 3GPP TR 36.777, “Enhanced LTE support for aerial vehicles (release
15),” V15.0.0.

[34] 3GPP TR 36.873, “Study on 3D channel model for LTE (release 12),”
V12.7.0.

[35] R. Amer, W. Saad, and N. Marchetti, “Mobility in the sky: Performance
and mobility analysis for cellular-connected UAVs,” IEEE Trans. Com-

mun., vol. 68, no. 5, pp. 3229–3246, May 2020.
[36] A. Fakhreddine, C. Bettstetter, S. Hayat, R. Muzaffar, and D. Emini,

“Handover challenges for cellular-connected drones,” in Proc. 5th Wk-

shps. Micro Aerial Veh. Networks, Systems, and Appl., Jun. 2019.
[37] C. Shen, T.-H. Chang, J. Gong, Y. Zeng, and R. Zhang, “Multi-UAV

interference coordination via joint trajectory and power control,” IEEE

Trans. Signal Process., vol. 68, pp. 843–858, Jan. 2020.


	I Introduction
	II System Model and Performance Metric
	III SINR Map Construction
	III-A Channel Gain Map
	III-B SINR Map

	IV Problem Formulation for SINR-Aware 3D Path Planning
	V Optimal Solution
	V-A Radio Map Preprocessing
	V-B Graph Based Problem Reformulation and Solution

	VI Suboptimal Solution via Grid Quantization
	VI-A Radio Map Preprocessing
	VI-B Reduced-Size Graph and Suboptimal Solution

	VII Numerical Examples
	VII-A Performance of Proposed Solution with Different Quantization Ratios
	VII-B Effectiveness of Interference-Aware Path Planning
	VII-C Effectiveness of Terrain-Aware Path Planning
	VII-D Performance of Proposed Solution under Downtilted GBS Antennas

	VIII Concluding Remarks
	References

