
ar
X

iv
:1

90
6.

02
87

1v
3

 [
ee

ss
.S

P]
 1

2
N

ov
 2

02
0

1

Graph Embedding based Wireless Link Scheduling

with Few Training Samples
Mengyuan Lee, Graduate Student Member, IEEE, Guanding Yu, Senior Member, IEEE, and Geoffrey Ye Li,

Fellow, IEEE

Abstract—Link scheduling in device-to-device (D2D) networks
is usually formulated as a non-convex combinatorial problem,
which is generally NP-hard and difficult to get the optimal
solution. Traditional methods to solve this problem are mainly
based on mathematical optimization techniques, where accu-
rate channel state information (CSI), usually obtained through
channel estimation and feedback, is needed. To overcome the
high computational complexity of the traditional methods and
eliminate the costly channel estimation stage, machine leaning
(ML) has been introduced recently to address the wireless link
scheduling problems. In this paper, we propose a novel graph
embedding based method for link scheduling in D2D networks.
We first construct a fully-connected directed graph for the D2D
network, where each D2D pair is a node while interference
links among D2D pairs are the edges. Then we compute a
low-dimensional feature vector for each node in the graph.
The graph embedding process is based on the distances of
both communication and interference links, therefore without
requiring the accurate CSI. By utilizing a multi-layer classifier,
a scheduling strategy can be learned in a supervised manner
based on the graph embedding results for each node. We also
propose an unsupervised manner to train the graph embedding
based method to further reinforce the scalability and develop
a K-nearest neighbor graph representation method to reduce
the computational complexity. Extensive simulation demonstrates
that the proposed method is near-optimal compared with the
existing state-of-art methods but is with only hundreds of training
network layouts. It is also competitive in terms of scalability and
generalizability to more complicated scenarios.

Index Terms—Machine learning, device-to-device communica-
tions, graph embedding, link scheduling, combinatorial optimiza-
tion

I. INTRODUCTION

Link scheduling in device-to-device (D2D) networks is

a challenging issue, for which no efficient global optimal

algorithm is available yet, especially for the densely deployed

network with a large number of mutually interfering links. The

goal of link scheduling is to maximize the network utility by

activating only a subset of mutually interfering links at any

given time.

With the help of accurate channel state information (CSI),

wireless link scheduling is usually formulated as a non-convex

combinatorial optimization problem, which is generally NP-

hard and is solved using various mathematical optimization

M. Lee and G. Yu are with the College of Information Science and Elec-
tronic Engineering, Zhejiang University, Hangzhou 310027, China. e-mail:
{mengyuan lee, yuguanding}@zju.edu.cn. (Corresponding author: Guanding

Yu)
G. Y. Li is with the School of ECE, Imperial College London, London,

UK. e-mail: geoffrey.li@imperial.ac.uk.

techniques. Some works aim to develop the global optimal al-

gorithms [1], [2] but with exponential computational complex-

ity in the worst case. To reduce the computational complexity,

sub-optimal algorithms have been developed, including greedy

heuristic search algorithm [3], sequential link selection algo-

rithms [4], [5], iterative fractional programming algorithm [6],

and heuristic greedy coloring algorithm [7]. The mathematical

optimization methods suffer from three shortcomings. First,

the performance of sub-optimal algorithms is hard to control

due to the existence of multiple local optima. Second, the com-

putational complexity for both the optimal and sub-optimal

methods, such as the iterative algorithms, is too high to meet

the real-time requirements. Furthermore, those aforementioned

algorithms require accurate CSI, which is usually obtained

through channel estimation and feedback. However, for the

densely deployed network we consider here, a large number

of channels need to be estimated and the channel estimation

stage will be both time- and resource-consuming, rendering

the difficulty for practical implementation.

To address the above three issues, we turn to machine

learning (ML) techniques for wireless link scheduling. The

success of ML in various related fields, such as computer

vision and natural language processing, has attracted lots of

attention from the wireless communications community re-

cently. ML has already been used in physical layer processing

[8]–[10], [23], [24], power allocation [11]–[14], linear sum

assignment problems [15], spectrum sharing [16]–[18], [25],

and user association [19]. All aforementioned works adopt the

widely-used end-to-end learning paradigm.

Meanwhile, another paradigm is to exploit the specific algo-

rithm structures based on ML to simplify resource allocation,

for example for cloud radio access networks (Cloud-RANs)

[20] and D2D communications [21]. In this case, resource

allocation is still formulated as a mixed integer nonlinear

programming (MINLP) problem and imitation learning is used

to accelerate the branch-and-bound algorithm, a critical step

to solve the MINLP problem.

To avoid CSI requirement in wireless link scheduling,

a new ML-based approach, named “spatial learning”, has

been developed in [22]. The key idea is first learning the

interference pattern of the neighboring transmitters/receivers

in the D2D network by using two kernels, and then learning

the optimal scheduling results over multiple feedback stages

with the help of the deep neural networks (DNNs). The whole

training process is achieved in an unsupervised manner. The

“spatial learning” is competitive to the sate-of-art FPLinQ

algorithm in [6] but needs no accurate CSI. However, the

http://arxiv.org/abs/1906.02871v3

2

developed approach needs hundreds of thousands of training

network layouts, which is difficult to obtain and makes the

training process both memory- and time-consuming.

To reduce the number of required training network layouts

while maintaining the advantage of requiring no accurate CSI,

we propose a new graph embedding based method to deal

with the wireless link scheduling problem in D2D networks.

Graph embedding is a way to convert the graph data into

a low-dimensional space [26]. It generates low-dimensional

feature vectors for the whole graph or a part of the graph.

Our key idea is to represent the D2D network as a graph

and learn the low-dimensional feature vectors for each node

corresponding to a D2D pair. This graph embedding process

learns the interference pattern among different D2D pairs

based on the topology of the graph and requires no CSI

estimation. Furthermore, the link scheduling problem can be

reduced to a binary classification problem since the state of

each D2D pair can only be active or inactive. It can be

further solved by a multi-layer classifier with low-dimensional

feature vectors for each node as input. Parameters of the

graph embedding process and the multi-layer classifier are

jointly learned by using the discriminative training method

in a supervised manner. Extensive simulation demonstrates

that the proposed method can achieve satisfactory performance

compared with the FPLinQ algorithm [6] and the “spatial

learning” method [22] but with only hundreds of training

network layouts, as summarized in Table I. In brief, our main

contributions are as follows.

• We develop a graph embedding based method for link

scheduling in D2D networks. The proposed method re-

quires no accurate CSI and only needs hundreds of

training network layouts to achieve the near optimal per-

formance compared with the existing state-of-art methods

for link scheduling. As far as we know, this paper is

the first attempt to introduce graph embedding method

into wireless networks. Our proposed method can be

generalized to other problems in wireless networks with

appropriate graph representation and feature selection.

• We carefully design the node features and edge features

for the D2D networks by utilizing the distance infor-

mation. We further introduce the uniform quantization

method to discretize the continuous distance feature,

which reduces the feature dimension and is essential

for implementing graph embedding. This quantization

method can also deal with other continuous features in

wireless networks.

• To further improve the performance, we adopt the unsu-

pervised learning manner to reinforce the scalability of

the graph embedding method. Moreover, the K-nearest

neighbor graph representation method is proposed to

reduce the computational complexity of the proposed

method.

The rest of this paper is organized as follows. In Section

II, we introduce the wireless link scheduling problem in D2D

networks and formulate it into a non-convex combinatorial

problem. In Section III, we develop the graph embedding

based method to solve it. In Section IV, we present test results

of the proposed method. The testing results suggest some

shortcomings of the proposed method, which inspire us to

make two further improvements in Section V. Finally, we

conclude this paper in Section VI.

II. WIRELESS LINK SCHEDULING IN D2D NETWORKS

As depicted in Fig. 1(a), we consider a system with L D2D

pairs in a set D = {D1, ..., DL} randomly located in a two-

dimensional square region with edge length darea. For each

D2D pair Dl ∈ D , we denote its transmitter and receiver

as Tl and Rl, respectively. We assume that each D2D pair

Dl ∈ D is within a pairwise distance between dmin and dmax.

We further assume that if Dl is activated, the transmit power of

Dl is fixed and denoted as pl. Note that channel multiplexing

is not required in this scenario. All D2D pairs reuse the full

bandwidth to transmit, which is the same as [6], [22].

D3

T3

R3

D2

T2

h43

R2

h22

h33

D1

T1

R1

h11D4

T4

h44

h42

h24

h41

h14

h12

h13

h32

h34

h31h21

h23

Communication link

Interference link

R4

(a) System model.

D3

D2

D1
D4

h24

h41

h14

h12

h13

h32

h34

h31

h21

h23

h42 h43

(b) Graphical model.

Fig. 1. Graph representation process.

As in Fig. 1(a), denote hll as the channel gain of the

communication link of Dl, and hlk as the channel gain of

the interference link between Tl and Rk. We further introduce

ρ = [ρl] as the indicator vector of the D2D pairs’ state, with

ρl = 1 if Dl is activated and ρl = 0 otherwise. Then the signal-

to-interference-plus-noise ratio (SINR) of Dl can be written

as

SINRl(ρ) =
ρlpl|hll|

2

σ2
N +

∑
k 6=l ρkpk|hkl|2

,

3

TABLE I
COMPARISONS BETWEEN DIFFERENT METHODS FOR WIRELESS LINK SCHEDULING

Method
FPLinQ Algorithm

[6]
Spatial Learning

[22]
Graph Embedding

Based Method

Methodology
Mathematical

optimization technique
ML technique ML technique

Key Idea Fractional programming Kernel method & DNN Graph embedding& DNN

CSI Yes No No

Needed Training
Network Layouts

/ Hundreds of thousands Hundreds

Training Method / Unsupervised Supervised or Unsupervised

Scalability / Strong Good

Generalizability / Strong Good

Complexity O(L2) O(L)
Fully-connected graph: O(L2)

K-nearest neighbor graph: O(L)
Generalizability to

Other Problems
No Limited Good

where σ2
N denotes the power of the additive white Gaussian

noise (AWGN). Accordingly, the data rate of Dl over band-

width B can be written as

Rl(ρ) = B log(1 + SINRl(ρ))

= B log(1 +
ρlpl|hll|

2

σ2
N +

∑
k 6=l ρkpk|hkl|2

).
(1)

From (1), the interference among different D2D pairs will

be severe and the data rate will decrease if too many links are

activated simultaneously. Therefore, we need to select a subset

of links from D to activate and maximize the throughput of the

overall network. If the weighted instantaneous sum rate is used

as the objective function, then the wireless link scheduling

problem can be formulated as

max
ρ

L∑

l=1

ωlRl(ρ), (2)

subject to

ρl ∈ {0, 1}, ∀l, (2a)

where ωl is the weight for the l-th D2D pair and can be

determined according to fairness or priority in advance.

Problem (2) is a combinatorial optimization problem that is

difficult to deal with. Traditional approaches [1]–[7] to address

it are based on various optimization techniques, which require

accurate CSI. Recently, ML techniques have been developed

to deal with this issue. In [22], the kernel method has been

used to learn the interference pattern among different D2D

pairs and perform scheduling with DNNs, which requires no

CSI but needs a large amount of training network layouts.

In this paper, we will treat the whole system as a graph.

By modeling each D2D pair as a latent variable model,

the system is embedded into feature spaces and each D2D

pair is represented by a low-dimensional vector. Then the

wireless link scheduling will be performed based on the graph

embedding results. Our method requires no CSI and can

achieve satisfactory performance with much fewer training

network layouts compared with the method in [22].

III. GRAPH EMBEDDING BASED WIRELESS LINK

SCHEDULING

In this section, we will develop the graph embedding based

method for Problem (2). We will first discuss how to model a

network into a graph. Then we will introduce how to compute

the graph embedding and perform the wireless link scheduling

by multi-layer classifier. Finally, we will propose the training

process. For simplicity, we assume that ωl = 1 for all D2D

pairs in the sequel and will discuss other weight vectors in

Section VI.

A. Graph Representation for Wireless Link Scheduling

We begin by exploring the graph representation method

for the network in Fig. 1(a). A weighted graph G(V,E, α)
is composed of a set of nodes, V , and a set of edges, E.

Edge e(u, v) ∈ E connects two nodes, u, v ∈ V , and has a

corresponding weight, α(u, v). If each edge has a direction,

the graph is referred to as a directed graph.

As for the network in Fig. 1(a), each user can be regarded

as a node while each link can be regarded as an edge.

The weight of each edge could be channel gain, as in Fig.

1(a), or distance between the two nodes of the corresponding

link. However, this graph representation method would induce

several problems. On the one hand, our aim is to decide

whether a D2D pair should be activated. If we regard each user

as a node and learn its’ corresponding embedding result, we

have to combine the embedding results for the transmitter and

receiver of a certain D2D pair to make the scheduling decision.

How to combine two nodes’ embedding results appropriately

is tricky. On the other hand, the impact of the communication

links and the interference links are totally different in the

whole network. However, the graph representation method

mentioned above regards them equivalently as an edge in the

graph and cannot effectively differentiate between them.

To deal with the aforementioned two problems, we propose

to regard each D2D pair as a node and each interference link

as an edge to construct the graphical model for the network

in Fig. 1(a). The node features and edge weights depend on

the channel gains or distances between the two nodes of the

corresponding communication/interference links. Since each

4

edge has a direction, e(1, 2) and e(2, 1) are two different

edges. e(1, 2) represents the interference link from T1 to R2

with the direction from node 1 to 2, while e(2, 1) represents

the interference link from T2 to R1 with the opposite direction.

In this way, the original network can be presented as a fully-

connected weighted directed graph as illustrated in Fig. 1(b).

B. Graph Embedding for Wireless Link Scheduling

After representing the original system into a graph, we will

focus on how to learn graph embedding. Graph embedding is

an effective and efficient way to convert the graph data into a

low-dimensional space [26]. The output of graph embedding

is a low-dimensional vector representing the whole graph

or a part of the graph, such as a node, an edge, or a

substructure. Because our ultimate goal is to decide whether

a D2D pair that is represented as a node should be activated,

i.e., perform binary classification for each node, the output of

graph embedding is the low-dimensional feature vector of each

node, which is used for further classification. In this paper, we

leverage structure2vec in [27], a deep learning architecture

over graphs, to achieve the graph embedding process.

1) Basic Structure2Vec: For a structure2vec architecture,

the output is the p-dimensional feature embedding of each

node. It achieves this goal by performing nonlinear function

mappings iteratively. To be more specific, the structure2vec

architecture first initializes the feature embedding µ
(0)
v = 0

for each node in V . Then the feature embeddings of all nodes

will be updated simultaneously at each iteration by

µ(t+1)
v = Γ(xv, {α(u, v)}u∈N(v), {µ

(t)
u }u∈N(v)), (3)

where xv is the feature of node v, N(v) represents the adjacent

nodes to node v, α(u, v) is the weight of the edge from u to

v, and Γ is a nonlinear function.

In the updating rule in (3), {α(u, v)}u∈N(v) and

{µ
(t)
u }u∈N(v) reflect the information of the incoming edges

and the neighboring nodes of node v, respectively. It is obvious

that the feature embedding of each node depends on the

specific node feature and the graph topology. Moreover, more

update iterations mean that the node features will propagate

to more distant nodes. If T iterations are carried out, feature

embedding of each node µ
(T)
v will contain the information of

its T -hop neighborhoods determined by graph topology.

Compared with the widely-used kernel method for feature

extraction, the structure2vec architecture has the following

advantages. First, it uses nonlinear feature mapping instead

of the kernel matrix that is tricky to design. Second, the

nonlinear function mapping is always small and explicit, which

can avoid keeping a huge kernel matrix and can be learned

with fewer training network layouts. Finally, the nonlinear

function mapping in the structure2vec architecture can be

learned by stochastic gradient descent, making it efficient to

handle extremely large scale datasets.

2) Structure2Vec for Wireless Link Scheduling: Now we

investigate how to leverage the structure2vec architecture for

wireless link scheduling.

i. Nonlinear Feature Mapping and Updating Rule:

To begin with, we choose a specific nonlinear feature

mapping. The structure2vec architecture can run in a mean

field update fashion and is referred to as embedded mean field.

For the embedded mean field, we choose the rectified linear

unit (ReLU), σ(x) = max(0, x), which can be implemented

in the neural network as the nonlinear function mapping.

Therefore, the updating rule in (3) can be rewritten as

µ(t+1)
v = σ(W1xv +W2

∑

u∈N(v)

α(u, v) +W3

∑

u∈N(v)

µ(t)
u), (4)

where W = {W1,W2,W3} is the weight set for different

information. W should be learned with subsequent binary

classification task according to [27]. Its training process will be

introduced in the following subsection. Once W is learned, we

can use the pseudo code in Table II for embedded mean field,

where the number of iterations, T , for the graph embedding

computation is tuned via cross validation. As mentioned above,

T iterations mean that the node features can propagate to its

T -hop neighborhoods. However, the graph for wireless link

scheduling is fully-connected, thus each node computes its

own feature embedding at the first iteration and propagates its

features to other nodes at the second iteration. Therefore, two

iterations are usually sufficient for the fully-connected graph to

propagate node features over the graph, which coincides with

our simulation results in Section IV. Note that the updating

rule in (4) is heuristic and therefore can be further improved

in the future work.

From the updating rule in (4), the feature embedding for

each D2D pair depends on the communication links between

the D2D pair, xv , the interference links to the receiver of the

D2D pair, {α(u, v)}u∈N(v), and the feature embeddings of its

neighboring D2D pairs, {µ
(t)
u }u∈N(v). To be more specific,

xv indicates the communication ability of each D2D pair,

{α(u, v)}u∈N(v) represents the interference that each D2D

pair receives from its neighbors, and {µ
(t)
u }u∈N(v) reflects

the interference that each D2D pair causes to its neighbors.

Therefore, the feature embedding results of each D2D pair

include sufficient information for subsequent link scheduling.

TABLE II
EMBEDDED MEAN FIELD

Algorithm 1 Embedded Mean Field

1: input: W = {W1,W2,W3}

2: initialization µ
(0)
v = 0, for all v ∈ V .

3: for t = 1 to T do

4: for v ∈ V do

5: µ
(t+1)
v = σ(W1xv + W2

∑
u∈N(v) α(u, v) +

W3

∑
u∈N(v) µ

(t)
u).

6: end for

7: end for

8: return {µ
(T)
v }v∈V .

ii. Distance Quantization and One-hot Features:

Another important issue for leveraging the structure2vec

architecture is to select appropriate node features, xv , and edge

5

weights, α(u, v). As mentioned before, xv and α(u, v) could

be the channel gain or distance between the two nodes of

the corresponding communication link as well as interference

link, respectively. However, CSI is difficult to estimate in

practice. Meanwhile, the optimal wireless link scheduling does

not necessarily require the exact CSI and is to a large extent

determined by the relative locations of the transmitters and

receivers according to [22]. Therefore, we adopt the distance

information of each link as the corresponding features.

However, directly using the distance between the two nodes

of each link as the node and edge features cannot perfectly fit

the structure2vec architecture. In the structure2vec architec-

ture, the dimension of the feature embedding, µv, is highly

related to that of the node and edge features. The distance

of each link lies in a particular interval but is continuous, so

the dimension of distance is infinite. Therefore, we propose to

quantify distance to construct discrete features for each node

and edge.

To be more specific, we use q bits to quantify the distance

of each link following the uniform quantization method [28]

and construct one-hot features based on the quantization

results. We first uniformly divide the quantizer ranges into

2q quantization intervals with indices from 1 to 2q. Then

we check the distance of each link. If it lies in the i-th

interval, the one-hot feature of the corresponding node/edge is

a 2q-dimensional vector consisting of 0s in all cells with the

exception of a single 1 in the i-th cell. Note that the quantizer

range of communication links is [dmin, dmax] while that of the

interference links is [0, darea]. In this way, the dimension of

both node and edge features decreases to 2q. It is obvious that

different numbers of quantization bits will lead to different

quantization accuracies and have different influences on the

final scheduling result, as we will discuss later in Section IV.

C. Multi-layer Classifier for Wireless Link Scheduling

After leveraging the structure2vec architecture to compute

the graph embedding of the original D2D network, each node

in the graph is now represented by a p-dimensional vector,

which reflects the communication ability and the interference

pattern of the corresponding D2D pair. As mentioned above,

each node corresponds to a D2D pair and our aim is to

decide whether a D2D pair should be activated. This is a

binary classification problem and a link classifier is needed.

Note that the structure2vec architecture is implemented as a

neural network according to [27]. Given that the parameters

of the graph embedding and the link classifier should be

learned jointly, we use a multi-layer classifier, i.e., a DNN, to

solve the binary classification problem. The input layer of the

classifier consists of p neurons and takes the node embedding

feature, µ
(T)
v , as input. The output layer consists of 2 neurons,

indicating the probability of activation or not, respectively.

D. Training Process

The overall network includes two parts: the graph embed-

ding and the multi-layer classification. Accordingly, the pa-

rameters to be learned also consist of two parts: the embedding

parameters, W = {W1,W2,W3}, of the algorithm in Table

II and the parameters for the classifier, F . In this paper, we

adopt the discriminative training method in [27] to learn these

two parts of parameters jointly.

The key idea of the discriminative training is to learn W

and F jointly for the ultimate task in a supervised manner.

Suppose that we have a training dataset T = {xn, yn}
N
n=1,

where xn is the graphical model for the D2D network

and yn is the corresponding scheduling result, respectively.

The training dataset is generated by running the state-of-art

FPLinQ algorithm proposed in [6] with a maximum iteration

of 1001. To be more specific, yn is a L-dimensional vector

and yn ∈ {0, 1}L, where yn(l) = 1 if Dl is activated, and

yn(l) = 0, otherwise. With the feature embedding procedure

proposed in Table II, each graph xn is represented as a set of

embedding vectors {µn
v}v∈V . Our goal is to learn a classifier,

F , mapping {µn
v}v∈V to yn. We denote znl as the one-hot

representation of yn(l), i.e., znl = (1, 0) if yn(l) = 0, and

znl = (0, 1) if yn(l) = 1. We further denote F (µn
v) as

z̃nl . By adopting cross entropy as the loss function, the joint

optimization for the embedding parameters and the classifier

parameters can be written as

min
W,F

N∑

n=1

L∑

l=1

−znl (0) log z̃
n
l (0)− znl (1) log z̃

n
l (1). (5)

By optimizing the objective function in (5) using any opti-

mization algorithm for the neural networks, W and F can be

learned jointly in an end-to-end paradigm.

IV. PERFORMANCE TEST RESULTS

In this section, we will test the performance of the proposed

graph embedding based method for wireless link scheduling.

We utilize existing open-source code for the structure2vec

architecture2 and all other codes are implemented in python

3.6 except the FPLinQ algorithm that is implemented in

Matlab.3

A. Simulation Setup

We consider a 500 m by 500 m two-dimensional square

area with 50 D2D pairs as depicted in Fig. 1(a). According to

[22], the transmitter of each D2D pair is distributed uniformly

in the area and the corresponding receiver is distributed in a

disk centered by the transmitter with uniform pairwise distance

between 2 m and 65 m. We use the short-range outdoor

model ITU-1411 with a distance-dependent path-loss [29] as

the channel model. Our system parameters are consistent with

those in [22] and are summarized in Table III, where the carrier

frequency and the antenna height are used in ITU-1411 model

to calculate the path-loss.

We use a three-layer neural network as the binary classifier.

Meanwhile, we use 500 network layouts for training and

1Although FPLinQ is sub-optimal, experiment results in [22] suggest that
the scheduling outputs of the FPLinQ algorithm after 100 iterations show
good numerical performance. Therefore, using FPLinQ algorithm to generate
training dataset is acceptable.

2https://github.com/Hanjun-Dai/pytorch structure2vec/tree/master/s2v lib
3The simulation source code is available at https://github.com/mengyuan-

lee/graph embedding link scheduling.

6

TABLE III
SYSTEM PARAMETERS

Parameter Value

Edge length, darea 500 m

D2D distance, dmin, dmax 2 m, 65 m

Noise spectral density -169 dBm/Hz

Bandwidth, B 5 MHz

Carrier frequency 2.4 GHz

Antenna height 1.5 m

Transmit power of activation link, pl 40 dBm

TABLE IV
PERFORMANCE WITH DIFFERENT NUMBERS OF ITERATIONS

Number of
Iterations, T

1 2 3 4 5

Classifier
Accuracy

0.8123 0.8101 0.8140 0.8110 0.8150

Average
Sum Rate

0.9462 0.9521 0.9507 0.9501 0.9532

1,000 network layouts for testing. Note that 500 training

network layouts in the scenario with 50 links actually include

25,000 training data points. We tune the hidden layer size

in {16, 32, 64}, the embedding dimension, p, in {16, 32, 64}
and the number of iterations, T , for the algorithm in Table II

in {1, 2, 3, 4, 5} by hold-out validation and report the average

performance over 1,000 testing network layouts4. Note that the

number of iterations, T , should be set as 2 according to the

analysis in Section III-B. The performance of the proposed

method with different T is summarized in Table IV, where

classifier accuracy and average sum rate are two valuation

metrics for the proposed method. Specifically, classifier ac-

curacy reflects the similarity between the scheduling pattern

output by the proposed method and the FPLinQ algorithm,

and average sum rate is the normalized sum rate achieved

by the proposed method with respect to that achieved by the

FPLinQ algorithm. From Table IV, T ≥ 2 achieves higher

sum rate than T = 1. Furthermore, when T ≥ 2, a larger T

would not always lead to better performance but would bring

about higher complexity. Therefore, we select T = 2 in the

following tests.

We also use batch normalization [30] to avoid vanishing

gradient problem and early stopping [31] to avoid overfitting

on small training dataset. Moreover, we set the hidden layer

size as 64, the embedding dimension as 32, and the quan-

tization bits of features, q = 3 for the test of this section.

Note that, q and p are different. They correspond to the input

and the output dimensions of the graph embedding process,

respectively. Meanwhile, we adopt the adaptive moment esti-

mation (Adam) algorithm as the optimization algorithm [32].

Our neural network parameters are summarized in Table V.

4We have also tried to use 5,000 network layouts for the following tests
as [22]. The testing results are very close to those by using 1,000 testing
network layouts, which suggests that 1,000 testing network layouts can lead
to convincing results.

TABLE V
NEURAL NETWORK PARAMETERS

Parameter Value

Hidden layer size 64

Embedding dimension, p 32

Number of iterations, T 2

Number of training network layouts 500

Number of testing network layouts 1,000

Quantization bits, q 3

B. Convergence Performance

To evaluate the convergence performance of the proposed

method, we plot the classifier accuracy and the average sum

rate for the training process of the scenario with 50 D2D pairs.

The results are shown in Fig. 2.

From Fig. 2, average sum rate and classifier accuracy both

converge after only 30-40 training epochs with 500 training

network layouts. These results suggest that the convergence

speed of the proposed method is fast and the training stage

is not time-consuming, which is preferred in practice. Fur-

thermore, from the figure, higher classifier accuracy mostly

leads to higher average sum rate but with some mismatch, that

is, sometimes higher classifier accuracy may result in lower

average sum rate such as the area circled in Fig. 2. This kind

of mismatch is reasonable but is not preferred in the supervised

training process. Our immediate goal of the training process

is to increase the accuracy even if our ultimate goal is to

maximize the average sum rate. We hope that better training

accuracy can definitely lead to higher average sum rate. We

will deal with this mismatch issue in Section V-A to produce

better results.

0 10 20 30 40 50 60 70 80 90 100
Epoch

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
e
rc

e
n
ta

g
e

Classifier Accuracy

Average Sum Rate

Mismatch Issue

Fig. 2. Convergence performance for the scenarios with 50 D2D pairs using
500 training network layouts.

C. Impact of the Number of Training Network Layouts

We investigate how many training network layouts are

needed to learn a good network. In practice, labeled training

network layouts are sometimes difficult and expensive to

obtain. Therefore, methods requiring a small training dataset

are preferred in practice, especially in wireless communication

7

TABLE VI
PERFORMANCE WITH DIFFERENT NUMBERS OF TRAINING NETWORK

LAYOUTS

Number of
Training
Network
Layouts

200 500 1,000 1,500 2,000

Classifier
Accuracy

0.7975 0.8101 0.8103 0.8044 0.8050

Average
Sum Rate

0.9336 0.9521 0.9498 0.9512 0.9456

systems where a large number of real data is hard to get.

On the other hand, requiring fewer training network layouts

generally implies faster training speed and less memory con-

sumption, which is also preferred in real-time implementation.

We test the performance of the proposed method using

different numbers of training network layouts on the scenario

with 50 D2D pairs. We set the number of quantization bits,

q = 3, and report the average performance on 1,000 testing

network layouts. The results are summarized in Table VI. As

shown in Table VI, the performance of the proposed method

fluctuates with the number of training network layouts. As

we can image, using more training network layouts will not

always lead to better performance and hundreds of training

network layouts are enough.

D. Comparison with Existing Methods for Link Scheduling

We compare it with the FPLinQ algorithm [6], the “spatial

learning” method [22], and several benchmark algorithms used

in [22].

The detailed comparative results are summarized in Table

VII, where we use 500 training network layouts for our

proposed method and 1,000 testing network layouts for all

presented methods. From Table VII, our method can achieve

95.21% of the sum rate produced by FPLinQ algorithm by

using only 500 training network layouts, without explicitly

knowing the CSI. It can outperform the strongest link first

algorithm, the random active algorithm, and the all active

algorithm. Compared with the “spatial learning” method in

[22] that uses 800,000 training network layouts to achieve

98.36% of the sum rate produced by FPLinQ algorithm, we

use far fewer training network layouts but with only 3.15%

loss of sum rate. Compared with the greedy algorithm where

accurate CSI is needed to re-evaluate the sum rate every time

a new link is activated or deactivated, our proposed method is

much more explicit and has only 1.87% loss of sum rate even

without the accurate CSI.

E. Scalability to Scenarios with Different Topologies

We study the scalability of the proposed method to scenarios

with different topologies, especially to more complicated sce-

narios. There are many existing ML methods for wireless com-

munication systems whose performance deteriorates sharply

with the complexity of the problems. In this subsection, we

first test how the proposed method performs when the numbers

of D2D pairs change and then demonstrate its performance on

scenarios with different pairwise distances.

TABLE VII
COMPARISON OF DIFFERENT ALGORITHMS FOR LINK SCHEDULING

Method CSI Average Sum Rate

Graph Embedding
Based Method

No 0.9521

FPLinQ [6] Yes 1.0000

Spatial Learning [22] No 0.9836

Greedy Yes 0.9708

Strongest Link First Yes 0.8203

Random Active No 0.4747

All Active No 0.5418

TABLE VIII
PERFORMANCE ON SCENARIOS WITH DIFFERENT NUMBERS OF D2D

PAIRS

Number of
D2D Pairs

10 30 50 80 100 500

Classifier
Accuracy

0.8792 0.8092 0.8101 0.8203 0.8260 0.8895

Average
Sum Rate

0.9751 0.9608 0.9521 0.9308 0.9226 0.8658

1) Scalability to Scenarios with Different Numbers of D2D

Pairs: The number of D2D pairs is highly related to the

complexity of wireless link scheduling. More D2D pairs would

lead to more complicated interference, which results in the

difficulty for scheduling. We test the performance of the

proposed method on scenarios with different numbers of D2D

pairs. For each scenario, we generate 500 training network

layouts, set the number of quantization bits, q = 3, and report

the average performance on 1,000 testing network layouts. The

results are summarized in Table VIII.

From Table VIII, the average sum rate only decreases by

2.95% when doubling the number of D2D pairs from 50 to

100. Moreover, the average sum rate is still acceptable for the

scenario with 500 links, whose link number is 10 times larger

than the scenario with 50 links. Apparently, our proposed

method performs well for scenarios with different numbers

of D2D pairs with only 500 training network layouts. Note

that the classifier accuracy with 500 D2D pairs is higher than

the others. This may come from the fact that most links should

be deactivated with the scenario with a large number of D2D

pairs. It does not mean a better performance on the average

sum rate either. Furthermore, we apply the hyperparameters

we selected on the scenario with 50 D2D pairs to every case

presented in Table VIII. The results are satisfactory, suggesting

that it is feasible to select hyperparameters based on small

networks and then apply to large networks in practice.

2) Scalability to Scenarios with Different Pairwise Dis-

tances: As mentioned in [22], the pairwise distance has sig-

nificant effect on the achievable rate. Wireless link scheduling

tends to activate short links, therefore the distribution of

pairwise distances has significant influence on the scheduling

performance. We test the performance of the proposed method

on scenarios with different pairwise distances and the results

are summarized in Table IX. We still generate 500 training

network layouts, set the number of quantization bits, q = 3,

and report the average performance on 1,000 testing network

layouts for each scenario.

8

TABLE IX
PERFORMANCE ON SCENARIOS WITH DIFFERENT PAIRWISE DISTANCES

Pairwise Distance
dmin ∼ dmax(m)

2 ∼ 65 10 ∼ 50 30 ∼ 70 all 30

Classifier Accuracy 0.8101 0.7548 0.7321 0.6994

Average Sum Rate 0.9521 0.9225 0.9090 0.8041

TABLE X
PERFORMANCE WITH DIFFERENT NUMBERS OF QUANTIZATION BITS

Number of
Quantization

Bits
2 3 4 5 6

Classifier
Accuracy

0.7765 0.8101 0.8223 0.8113 0.8127

Average
Sum Rate

0.9401 0.9521 0.9522 0.9500 0.9502

From Table IX, the performance of the proposed method

deteriorates with the decrease of the pairwise distribution

interval and it can be explained as follows. The distribution

of pairwise distances directly influences the diversity of node

features. Bigger pairwise distribution interval means larger

diversity in node features. If the pairwise distance is the same

for each D2D pair as in the cases where all the pairwise

distances are 30 m, there are no node features but only

edge features, causing it more difficult to learn wireless link

scheduling. We will solve this issue in Section V-A to improve

the scalability of the proposed method.

F. Impact of the Number of Quantization Bits

In the proposed graph embedding based method, distance

quantization is important and crucial. As mentioned in Section

III-B, the number of quantization bits directly influences the

quantization accuracies and the ultimate scheduling results. In

this subsection, we will test the influence of the number of

quantization bits. We generate 500 training network layouts

and report the average performance on 1,000 testing network

layouts for the scenarios with 50 D2D pairs. The results are

summarized in Table X.

As shown in Table X, both classifier accuracy and average

sum rate first increase at a decreasing rate and then fluctuate

with the increase of the number of quantization bits. The

results suggest that increasing the number of quantization bits

under certain threshold can improve the performance of the

proposed method. However, more quantization bits over the

threshold value will not lead to further improvement. This

result can be explained as follows. The quantization accuracy

certainly increases while increasing the number of quantization

bits. Then the quantized features suffer from less distortion

and include more information for learning optimal scheduling.

Therefore, the performance improves but the model gets

more complicated due to the increase of features’ dimension.

When increasing the number of quantization bits to certain

threshold value, the information included by the quantized

feature is exactly sufficient to learn the optimal scheduling.

Further increase on the number of quantization bits would

TABLE XI
AVERAGE SUM RATE ON SCENARIOS WITH DIFFERENT NUMBERS OF

D2D PAIRS USING DIFFERENT MODES

Number of
D2D Pairs

10 30 50 80 100

Full Training 0.9751 0.9608 0.9521 0.9308 0.9226

Generalization 0.9527 0.9622 0.9521 0.8972 0.8884

lead to information redundancy and cannot further improve

the wireless link scheduling performance.

Inspired from the above observation, we can get some

insights about implementation in practice. There exists a

trade-off between model complexity and performance. Under

certain threshold, using more quantization bits leads to better

performance but more complicated models while fewer quan-

tization bits lead to the opposite results. Therefore, we need to

choose an appropriate number of quantization bits in practice

according to our specific goals instead of simply using as many

quantization bits as possible.

G. Generalizability to Scenarios with Different Topologies

Generalizability is another important property of ML tech-

niques. It is different from the scalability we have discussed

above. Scalability focuses on the performance of our proposed

method on more complicated scenarios. To test the scalability,

a new model needs to be trained for each testing scenario

with the training network layouts whose topologies are the

same as the testing scenario. However, generalizability focuses

on how a trained model performs on unknown scenarios.

To test the generalizability, we do not need to train a new

model for each testing scenario but just applying a trained

model from a certain scenario whose topology can be different

from the testing scenarios. Both of them are important for

ML techniques while good generalizability is generally more

difficult to meet.

Our proposed method can be easily generalized to scenarios

with different topologies only if the number of quantization

bits is fixed. We fix the number of quantization bits, q = 3,

and train the model with 500 samples from the scenario with

50 D2D pairs. We then apply the model on the scenarios with

different numbers of D2D pairs. The results are summarized

in Table XI. In the table, full training means using the model

trained with 500 samples whose topology is the same as testing

network layouts, and generalization means using the model

trained with 500 samples from the scenario with 50 D2D pairs.

As shown in Table XI, there only exist 2.24% and 3.42% loss

of the average sum rates for the scenarios with 10 and 100

D2D pairs, respectively. The results suggest that our proposed

method has a good generalizability to both scenarios with

smaller and larger topologies.

H. Impact of the Shadowing

As mentioned above, all aforementioned testings adopt

the ITU-1411 outdoor channel model where only distance-

dependent path-loss is considered. In this part, we add shad-

owing into the channel model and test the performance of the

9

TABLE XII
PERFORMANCE WITH DIFFERENT SHADOWING STANDARD DEVIATIONS

Shadowing
Standard

Deviation (dB)
0 3 5 8 10

Full Training 0.9488 0.9280 0.8848 0.8155 0.7644

Generalization 0.9446 0.9259 0.8742 0.8145 0.7572

proposed method with different values of shadowing standard

deviation.

We still fix the number of quantization bits, q = 3, and set

the number of D2D pairs as 50. We report the average per-

formance over 1,000 testing network layouts and the average

sum rate results are summarized in Table XII. In the table,

full training means using the model trained with 500 network

layouts whose channels are with the same shadowing as the

testing network layouts, and generalization means using the

model trained with 500 network layouts whose channels are

without shadowing. From the table, the average sum rate of

the proposed method decreases with the increase of shadowing

standard deviation, which is intuitive. However, the average

sum rates achieved by full training and generalization are

very close to each other. The performance gain by using

full training is less than 1% for all presented case. These

results can be explained as follows. On the one hand, our

proposed method only uses the distance information to do

link scheduling. Therefore, shadowing is a stochastic variable

to the proposed method that has not been learned. When the

shadowing standard deviation increases, the performance of

the proposed method will definitely deteriorate. On the other

hand, the training dataset T is composed of {xn, yn}
N
n=1,

where xn is the graphical model for the D2D network and

yn is the corresponding scheduling result from the FPLinQ

algorithm, respectively. When we add shadowing information

to the training network layouts, yn will change but xn will

remain the same. Therefore, the shadowing information is

only indirectly included in the labels of the training dataset. It

may help reinforce the performance but the gain will not be

too much. Therefore, including the shadowing information in

the training network layouts is not helpful. The full training

method has the similar performance to the generalization

method.

The similar performance loss also exists for the “spatial

learning” algorithm in [22], whose performance drops sig-

nificantly when Rayleigh fast fading is added to the testing

channels. This is a universal shortcoming for the link schedul-

ing method without explicit CSI. From the above results, we

may need to include the shadowing information in both xn

and yn to overcome this shortcoming. In this way, the node

and edge features should not only be the distances between

nodes of the corresponding communication/interference links.

Note that, CSIs of the communication links are much easier

to estimate than those of the interference links in practice.

We may include the CSIs of the communication links into the

node features to deal with the performance loss. It is a very

interesting and important issue for future work.

I. Computational Complexity Analysis

In this subsection, we analyze the computational complexity

for the graph embedding based method and compare it with

the FPLinQ algorithm in [6] and the “spatial learning” in [22].

We consider a scenario with L D2D pairs. For the FPLinQ

algorithm, the dominant computation for each iteration is the

matrix multiplication with the L×L channel coefficient matrix.

Assuming that the number of iterations is fixed, the total

computational complexity for it is O(L2). For the kernel based

“spatial learning” in [22], the computational complexity is

O(L) under the scenarios of fixed region size. Our proposed

method includes two steps: computing graph embedding and

performing binary classification. Both steps perform nonlinear

function mapping. Note that there are two loops for the graph

embedding algorithm in Table II. If the number of iterations,

T , is fixed, the computational complexity for graph embed-

ding computation is O(L2). Meanwhile, the computational

complexity for classification is O(L) if the structure of the

multi-layer classifier is fixed. Therefore, the computational

complexity for our proposed method is O(L2).
Based on the aforementioned analysis, our proposed method

has the similar computational complexity with FPLinQ algo-

rithm but does not need explicit CSI that is hard to obtain

in practice. On the other hand, our proposed method is not

competitive in terms of computational complexity compared

to the “spatial learning” in [22], but it needs far fewer training

network layouts to achieve satisfactory performance as shown

in Section IV-D. We will further discuss this problem and

reduce the computational complexity of the proposed method

in Section V-B.

V. DISCUSSION AND FURTHER IMPROVEMENT

Based on the test results and analysis in Section IV, we

come up with the following three important questions:

i) how to choose an appropriate training goal to match the

ultimate goal,

ii) how to strengthen the scalability of the proposed method

to scenarios with different pairwise distances, and

iii) how to reduce the computational complexity of the pro-

posed method.

In this section, we will propose two improvements to address

these issues.

A. Graph Embedding based Wireless Link Scheduling in the

Unsupervised Manner

We focus on the first two problems mentioned above in this

subsection. The simplest method to address the first problem

is to use the sum rate in (2) directly as the loss function

and maximize it in an unsupervised manner. Meanwhile, as

mentioned in [22], unsupervised learning is competitive for

the scenarios with small pairwise distance distribution inter-

vals. It can also avoid using sub-optimal FPLinQ algorithm

to generate training dataset and obtain better performance.

Therefore, we will figure out how to train the graph embedding

based method in the unsupervised manner and then test the

corresponding performance.

10

1) Implementing Graph Embedding based Method in the

Unsupervised Manner: To develop the graph embedding based

method in the unsupervised manner, the graph representation,

graph embedding, and multi-layer classifier are the same as

what we have introduced in Section III while the training

process needs to be modified.

We still make use of the discriminative training method.

Suppose that the training dataset for unsupervised learning is

Tu = {xn}
N
n=1, where xn is the graphical model for the D2D

network and no corresponding scheduling result is included.

By running the feature embedding procedure proposed in Table

II, each graph xn is represented as a set of embedding vectors

{µn
v}v∈V . Our goal is still to learn the classifier, F , and we

denote F (µn
v) as z̃nl . To realize the unsupervised learning,

the new optimization problem for embedding parameters and

classifier parameters can be formulated as

min
W,F

N∑

n=1

(
1

∑L

l=1 B log(1 +
z̃n

l
(1)pl|hll|2

σ2

N
+
∑

k 6=l
z̃n

k
(1)pk|hkl|2

)

−ωloss

L∑

l=1

log z̃nl (0)). (6)

The first part in (6) is the reciprocal of the objective function

in Problem (2). By minimizing this part, we actually maximize

the sum rate. Note that the inverse of the sum rate can be also

used as the loss function [22]. We use the reciprocal of the

sum rate in this paper because negative loss functions are less

often encountered than positive ones in the machine learning

community. The second part of (6) is the penalty term for full

activation case, where ωloss is its weight and can be tuned in

the training process. When the sum rate is large, the gradient

of the loss function in (6) is very small and may get stuck at

some local optima. By observation, all D2D pairs are likely

to be activated at the same time while using the unsupervised

learning method especially for scenarios with the same D2D

pairwise distance. Since there is a lack of node features when

the scenarios contain links of the same distances, the learning

process will be confused to converge to the local optima

where all the links are activated. Therefore, we use the penalty

term in (6) to avoid getting stuck at the full activation local

optimum. The full activation problem less likely happens in

the supervised learning method since the labels in the training

dataset for supervised learning can offer some additional node

features even if all D2D pairs are of the same link distance.

Furthermore, ωloss should be carefully selected. We will first

set it to be 0 and tune it from {0.005, 0.01, 0.02} if there exists

the full activation issue.

We optimize the objective function in (6). In this way, W

and F can be learned together in an unsupervised manner.

2) Performance Test: In this part, we do some tests for the

graph embedding based method in an unsupervised manner.

Specifically, we pay attention to the scalability of the unsu-

pervised learning method. As in Section IV-E, we test how

the unsupervised learning method performs on scenarios with

different numbers of D2D pairs and with different pairwise

distances, respectively. We generate 500 training network

layouts, set the number of quantization bits, q = 3, and report

TABLE XIII
PERFORMANCE WITH DIFFERENT NUMBERS OF D2D PAIRS USING

DIFFERENT TRAINING MANNERS

Number of
D2D Pairs

10 30 50 80 100 500

Supervised
Learning

0.9751 0.9608 0.9521 0.9308 0.9226 0.8658

Unsupervised
Learning

0.9739 0.9628 0.9534 0.9371 0.9281 0.8645

TABLE XIV
PERFORMANCE WITH DIFFERENT PAIRWISE DISTANCES USING

DIFFERENT TRAINING MANNERS

Pairwise Distance
dmin ∼ dmax(m)

2 ∼ 65 10 ∼ 50 30 ∼ 70 all 30

Supervised Learning 0.9521 0.9225 0.9090 0.8041

Unsupervised Learning 0.9534 0.9310 0.9241 0.8747

the average performance on 1,000 testing network layouts

for each scenario. The parameters for wireless system and

graph embedding based network are the same as what are

summarized in Tables III and V. The results are summarized

in Tables XIII and XIV. The ωloss is set to be 0.005 for the

scenarios where all the pairwise distances are 30 m and is set

to be 0 for all other cases presented.

As shown in Table XIII, the average sum rate achieved by

the unsupervised learning method is almost the same as that

achieved by the supervised learning method. The performance

differences are less than 0.7% for all the presented cases.

The results suggest that the unsupervised learning method

is not competitive in terms of the scalability to scenarios

with different numbers of D2D pairs. However, from Table

XIV, it generally achieves higher sum rate than the super-

vised learning method in terms of the scalability to scenarios

with different pairwise distances. Specifically, the performance

gain increases with the decrease of the pairwise distribution

interval. In the scenario where all the pairwise distances are 30

m, the average sum rate increases by 7.06% using the unsu-

pervised learning method. Therefore, implementing the graph

embedding based method in the unsupervised manner is an

effective method to strengthen the scalability of the proposed

method to scenarios with different pairwise distances.

3) Comparison between Supervised and Unsupervised

Learning Method: As mentioned before, the unsupervised

learning method can strengthen the scalability to scenarios

with different pairwise distances of the graph embedding based

method. The intuitive explanations compromise two aspects.

On the one hand, the FPLinQ algorithm’s results are not opti-

mal, which may limit the performance of supervised learning.

On the other hand, different scheduling patterns may lead to

the same sum rate but different classifier accuracies. Therefore,

directly optimizing the sum rate in an unsupervised manner is

preferred rather than optimizing the accuracy based on the

FPLinQ algorithm’s results. However, the convergence speed

of the unsupervised learning method is slow and it takes more

time to train the network. Furthermore, the supervised learning

method can avoid the full activation problem. In a nutshell,

both methods have their own advantages and disadvantages.

11

We need to carefully select appropriate learning method in

practice.

B. K-Nearest Neighbor Graph for Graph Embedding based

Wireless Link Scheduling

In this subsection, we focus on how to reduce the compu-

tational complexity of the proposed method. As mentioned

in Section IV-I, the computational complexity of our pro-

posed method depends on two procedures: the computation of

graph embedding and the classification. Decreasing the com-

putational complexity of the graph embedding computation

process is the key point, which is mainly affected by the

graph structure. Therefore, we propose to use the K-nearest

neighbor graph to replace the fully-connected graph to solve

this problem.

1) K-Nearest Neighbor Graph Representation Method: We

modify the graph representation process proposed in Section

III-A. We construct a K-nearest neighbor graph instead of

the fully-connected graph for the D2D system depicted in

Fig. 1(a), which means we only consider the top K nearest

transmitters to a certain D2D pair’s receiver. The K-nearest

neighbor graph representation method is reasonable since the

interference caused by a transmitter on the considered D2D

pair can be negligible if the transmitter is too far away from

the considered D2D pair’s receiver. In this way, the number

of neighbors for each node is fixed and the computational

complexity for graph embedding computation process in Table

II decreases to O(L). Therefore, the computational complexity

of the proposed method also decreases to O(L), which is the

same as that of the “spatial learning” method in [22].

2) Performance Test: We do some tests for the graph

embedding based method by using the K-nearest neighbor

graph representation method. The parameters for wireless

system and graph embedding network are the same as what are

summarized in Tables III and V, and we adopt the supervised

training method for the following test.

i. Impact of the values of K

We first test the influence of different K values. We set

the number of quantization bits, q = 3, and generate 500

training network layouts and 1,000 testing network layouts on

the scenarios with 50 D2D pairs. The results are summarized

in Table XV. From the table, the classifier accuracy for all

cases fluctuates around 81% and the average sum rate for

all cases fluctuates around 95%. The results suggest that

using K-nearest neighbor graph representation method will not

definitely induce worse performances compared with the fully-

connected graph representation method since the dominant in-

terference information is maintained. Therefore, the K-nearest

neighbor graph representation method is effective to reduce the

computational complexity of the proposed graph embedding

approach without loss of performance.

ii. Scalability Test

In this part, we focus on the scalability of the K-nearest

neighbor graph representation method. First, we test how it

performs on the scenarios with different numbers of D2D pairs

and the results are summarized in Table XVI. We set the num-

ber of quantization bits, q = 3, generate 500 training network

TABLE XV
PERFORMANCE OF K-NEAREST NEIGHBOR GRAPH

REPRESENTATION METHOD WITH DIFFERENT K

Value of
K

10 20 30 40
49

(Fully-connected)

Classifier
Accuracy

0.8138 0.8146 0.8097 0.8099 0.8101

Average
Sum Rate

0.9529 0.9524 0.9484 0.9503 0.9521

TABLE XVI
PERFORMANCE OF DIFFERENT GRAPH REPRESENTATION METHODS ON

SCENARIOS WITH DIFFERENT NUMBERS OF D2D PAIRS

Number of
D2D Pairs

10 30 50 80 100 500

Fully-
Connected

Graph
0.9751 0.9608 0.9521 0.9308 0.9226 0.8658

10-Nearest
Neighbor

Graph
/ 0.9614 0.9529 0.9409 0.9353 0.9113

layouts, and report the average performance on 1,000 testing

network layouts for each presented scenarios. We compare the

performance of the 10-nearest neighbor graph representation

method and the fully-connected graph representation method.

From Table XVI, the average sum rates achieved by both

graph representation methods are very close to each other

for the scenarios with 30 and 50 links. However, the 10-

nearest neighbor graph representation method can achieve a

slightly better performance for the scenarios with more links.

In particular, the average sum rate achieved by the 10-nearest

neighbor graph representation method increases by 4.55% for

the scenario with 500 D2D pairs, as compared to the fully-

connected representation method. The results suggest that

the performance gain achieved by the 10-nearest neighbor

graph representation method increases for scenarios with more

D2D pairs. The process of constructing K-nearest neighbor

graphs discards some negligible information and simplifies

the network to be learned. Therefore, with the same number

of training network layouts, the 10-nearest neighbor graph

representation method performs better than the fully-connected

graph representation method, especially for scenarios with

more D2D pairs.

We also test how the K-nearest neighbor graph represen-

tation method performs on the scenarios with different D2D

pairwise distances, and the results are shown in Table XVII.

We still set the number of quantization bits, q = 3, generate

500 training network layouts, and report the average perfor-

mance on 1,000 testing network layouts for each presented

scenario. We again compare the performance of the 10-nearest

neighbor graph representation method and the fully-connected

graph representation method. As shown in Table XVII, the 10-

nearest neighbor graph representation method performs better

than the fully-connected method in terms of the scalability

to scenarios with different pairwise distances, especially for

the scenario where all the pairwise distances are 30 m. This

result seems not intuitive but is reasonable. As mentioned in

Section IV-E, the distribution of pairwise distances directly

impacts the diversity of node features, and smaller pairwise

12

TABLE XVII
PERFORMANCE OF DIFFERENT GRAPH REPRESENTATION METHODS

ON SCENARIOS WITH DIFFERENT PAIRWISE DISTANCES

Pairwise Distance
dmin ∼ dmax(m)

2 ∼ 65 10 ∼ 50 30 ∼ 70 all 30

Fully-Connected
Graph

0.9521 0.9225 0.9090 0.8041

10-Nearest
Neighbor Graph

0.9529 0.9308 0.9176 0.8718

distribution interval makes it more difficult to learn wireless

link scheduling due to the lack of diversity for each node.

However, the K-nearest neighbor graph representation method

can reinforce the diversity of different nodes because each

node is now connected to different K nodes instead of being

fully connected to all other nodes. In other words, the K-

nearest neighbor graph is asymmetric and its nodes have more

diversity, which makes it perform better on the scenarios with

different D2D pairwise distances.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposes an ML technique to deal with wireless

link scheduling in D2D networks. The key idea is using

graph embedding to extract the interference pattern for each

D2D pair to perform scheduling. By representing the D2D

network as a fully-connected directed graph where each node

corresponds to a specific D2D pair and each edge corresponds

to the interference link, we can compute the low-dimensional

feature vector for each node by graph embedding. Then, a

multi-layer classifier can be used to perform scheduling to

near optimum based on the embedding results of each node.

The proposed method only exploits the relative locations of

D2D pairs and avoids the costly channel estimation process.

Extensive experiment results have demonstrated that the pro-

posed method only needs hundreds of training network layouts

and has satisfactory scalability and generalizability to the

scenarios with different numbers of D2D pairs. However, it

only has limited scalability to scenarios with different pairwise

distances. To further improve the scalability, we have also

proposed to train the graph embedding based method in the

unsupervised manner. Moreover, we have introduced the K-

nearest neighbor graph representation method to enable the

proposed method to run in linear computational complexity,

which is preferred in practical implementation.

However, the current work still represents a preliminary

step towards making use of the graph embedding method for

wireless link scheduling problems. First, we have assumed

that all D2D pairs are of the same weight. While the weights

are not equal for each D2D pair, our proposed method needs

to be modified. However, simply incorporating the weights

as a new feature does not work well as presented in other

existing works [11], [22]. Therefore, attempting to solve

proportional fairness scheduling by making use of the graph

embedding method is an very interesting issue for fine-tuning

our proposal. Meanwhile, the performance of the proposed

method drops significantly when shadowing is introduced to

the testing channels. It is possible to reinforce the proposed

method by using partial CSIs. However, our proposed uniform

quantization method is not suitable for CSI. Therefore, how

to utilize CSIs of the communication links to reinforce the

performance of our proposed method is another important

future direction. Moreover, the updating rule for the graph

embedding process is heuristic. Modifying the update rules

may lead to better performance. Also, the proposed method

is not as scalable and generalizable as the “spatial learning”

method, how to find other effective methods and even adopting

new ML techniques to deal with this issue are very important

future directions.

To put it into nutshell, this paper suggests that graph embed-

ding is potential for optimization tasks in wireless networks,

especially when the optimization results mainly depend on the

topology of the networks. With carefully designed graph rep-

resentation method and selected features, the graph embedding

outputs combined with DNNs and other ML methods, such as

reinforcement learning, can achieve satisfactory performance

compared with the state-of-art methods.

REFERENCES

[1] L. P. Qian and Y. J. Zhang, “S-MAPEL: Monotonic optimization for
non-convex joint power control and scheduling problems,” IEEE Trans.

Wireless Commun., vol. 9, no. 5, pp. 1708–1719, May 2010.

[2] M. Johansson and L. Xiao, “Cross-layer optimization of wireless networks
using nonlinear column generation,” IEEE Trans. Wireless Commun., vol.
5, no. 2, pp. 435–445, Feb. 2006.

[3] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and
A. Jovicic, “FlashLinQ: A synchronous distributed scheduler for peer-
to-peer ad hoc networks,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp.
1215–1228, Aug. 2013.

[4] N. Naderializadeh and A. S. Avestimehr, “ITLinQ: A new approach for
spectrum sharing in device-to-device communication systems,” IEEE J.

Sel. Areas Commun., vol. 32, no. 6, pp. 1139–1151, Jun. 2014.

[5] X. Yi and G. Caire, “Optimality of treating interference as noise: A
combinatorial perspective,” IEEE Trans. Inf. Theory, vol. 62, no. 8, pp.
4654–4673, Aug. 2016.

[6] K. Shen and W. Yu, “FPLinQ: A cooperative spectrum sharing strategy
for device-to-device communications,” in IEEE Int. Symp. Inf. Theory

(ISIT), Jun. 2017, pp. 2323–2327.

[7] B. Zhuang, D. Guo, E. Wei, and M. L. Honig, “Scalable spectrum
allocation and user association in networks with many small cells,” IEEE

Trans. Commun., vol. 65, no. 7, pp. 2931–2942, Jul. 2017.

[8] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based channel es-
timation for beamspace mmwave massive mimo systems,” IEEE Wireless

Commun. Lett., vol. 7, no. 5, pp. 852–855, Oct. 2018.

[9] H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless

Commun. Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.

[10] Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical
layer communications,” IEEE Wireless Commun., vol. 26, no. 2, pp. 93–
99, Apr. 2019.

[11] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for interference
management,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5438–
5453, Oct. 2018.

[12] F. Liang, C. Shen, W. Yu, and F. Wu, “Towards optimal power control
via ensembling deep neural networks,” IEEE Trans. Commun., vol. 68,
no. 3, pp. 1760–1776, Mar. 2020.

[13] W. Lee, M. Kim, and D. H. Cho, “Deep power control: Transmit power
control scheme based on convolutional neural network,” IEEE Commun.

Lett., vol. 22, no. 6, pp. 1276–1279, Jun. 2018.

[14] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE J. Sel. Areas

Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

[15] M. Lee, Y. Xiong, G. Yu, and G. Y. Li, “Deep neural networks for linear
sum assignment problems,” IEEE Wireless Commun. Lett., vol. 7, no. 6,
pp. 962–965, Dec. 2018.

13

[16] H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep reinforcement learning based
resource allocation for V2V communications,” IEEE Trans. Veh. Technol.,
vol. 68, no. 4, pp. 3163–3173, Apr. 2019.

[17] X. Li, J. Fang, W. Cheng, H. Duan, Z. Chen, and H. Li, “Intelligent
power control for spectrum sharing in cognitive radios: A deep rein-
forcement learning approach,” IEEE Access, vol. 6, pp. 25463–25473,
Apr. 2018.

[18] L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks
based on multi-agent reinforcement learning,” IEEE J. Sel. Areas Com-

mun., vol. 37, no. 10, pp. 2282-2292, Oct. 2019.
[19] A. Zappone, L. Sanguinetti, and M. Debbah, “User Association and

Load Balancing for Massive MIMO through Deep Learning”, ” in Proc.

Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, Oct.
2018, pp. 1262–1266.

[20] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “LORM: Learning to
optimize for resource management in wireless networks with few training
samples,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 665–679,
Jan. 2020.

[21] M. Lee, G. Yu, and G. Y. Li, “Learning to branch: Accelerating resource
allocation in wireless networks,” IEEE Trans. Veh. Technol., vol. 69, no.
1, pp. 958–970, Jan. 2020.

[22] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless
scheduling,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1248–1261,
Jun. 2019.

[23] S. Dörner, S. Cammerer, J. Hoydis and S. t. Brink, “Deep learning based
communication over the air,” IEEE J. Sel. Topics in Signal Process., vol.
12, no. 1, pp. 132–143, Feb. 2018.

[24] H. Ye, L. Liang, G. Y. Li and B.-H. F. Juang, “Deep learning based
end-to-end wireless communication systems with conditional GAN as
unknown channel,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp.
3133–3143, May 2020.

[25] L. Liang, H. Ye, G. Yu and G. Y. Li, “Deep-learning-based wireless
resource allocation with application to vehicular networks,” Proc. IEEE,
vol. 108, no. 2, pp. 341–356, Feb. 2020.

[26] H. Y. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications”, IEEE Trans.

Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Feb. 2018.
[27] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent

variable models for structured data,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2702–2711.

[28] A. Grami, Introduction to Digital Communications, 1st ed. New York,
NY, USA: Academic, 2015.

[29] Recommendation ITU-R P.1411-8. International Telecommunication
Union, 2015.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.
[31] L. Prechelt, “Early stopping–But when?” in Neural Networks: Tricks of

the Trade. Springer, 2012, pp. 53–67.
[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), May 2014, pp. 1–6.

http://arxiv.org/abs/1502.03167

	I Introduction
	II Wireless Link Scheduling in D2D Networks
	III Graph Embedding based Wireless Link Scheduling
	III-A Graph Representation for Wireless Link Scheduling
	III-B Graph Embedding for Wireless Link Scheduling
	III-B1 Basic Structure2Vec
	III-B2 Structure2Vec for Wireless Link Scheduling

	III-C Multi-layer Classifier for Wireless Link Scheduling
	III-D Training Process

	IV Performance Test Results
	IV-A Simulation Setup
	IV-B Convergence Performance
	IV-C Impact of the Number of Training Network Layouts
	IV-D Comparison with Existing Methods for Link Scheduling
	IV-E Scalability to Scenarios with Different Topologies
	IV-E1 Scalability to Scenarios with Different Numbers of D2D Pairs
	IV-E2 Scalability to Scenarios with Different Pairwise Distances

	IV-F Impact of the Number of Quantization Bits
	IV-G Generalizability to Scenarios with Different Topologies
	IV-H Impact of the Shadowing
	IV-I Computational Complexity Analysis

	V Discussion and Further Improvement
	V-A Graph Embedding based Wireless Link Scheduling in the Unsupervised Manner
	V-A1 Implementing Graph Embedding based Method in the Unsupervised Manner
	V-A2 Performance Test
	V-A3 Comparison between Supervised and Unsupervised Learning Method

	V-B K-Nearest Neighbor Graph for Graph Embedding based Wireless Link Scheduling
	V-B1 K-Nearest Neighbor Graph Representation Method
	V-B2 Performance Test

	VI Conclusions and Future Directions
	References

