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Abstract— Massive multiple-input multiple-output (MIMO)
systems require downlink channel state information (CSI) at the
base station (BS) to achieve spatial diversity and multiplexing
gains. In a frequency division duplex (FDD) multiuser massive
MIMO network, each user needs to compress and feedback
its downlink CSI to the BS. The CSI overhead scales with
the number of antennas, users and subcarriers, and becomes a
major bottleneck for the overall spectral efficiency. In this paper,
we propose a deep learning (DL)-based CSI compression scheme,
called DeepCMC, composed of convolutional layers followed by
quantization and entropy coding blocks. In comparison with
previous DL-based CSI reduction structures, DeepCMC proposes
a novel fully-convolutional neural network (NN) architecture,
with residual layers at the decoder, and incorporates quantization
and entropy coding blocks into its design. DeepCMC is trained
to minimize a weighted rate-distortion cost, which enables a
trade-off between the CSI quality and its feedback overhead.
Simulation results demonstrate that DeepCMC outperforms the
state of the art CSI compression schemes in terms of the recon-
struction quality of CSI for the same compression rate. We also
propose a distributed version of DeepCMC for a multi-user
MIMO scenario to encode and reconstruct the CSI from multiple
users in a distributed manner. Distributed DeepCMC not only
utilizes the inherent CSI structures of a single MIMO user
for compression, but also benefits from the correlations among
the channel matrices of nearby users to further improve the
performance in comparison with DeepCMC. We also propose a
reduced-complexity training method for distributed DeepCMC,
allowing to scale it to multiple users, and suggest a cluster-based
distributed DeepCMC approach for practical implementation.

Index Terms— Multiple-input multiple-output (MIMO),
wireless communication, machine learning.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) sys-
tems are considered as the main enabler of 5G and

future wireless networks thanks to their ability to serve a large
number of users simultaneously, achieving impressive levels
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of energy and spectral efficiency. The base station (BS) in
a massive MIMO setting relies on the downlink channel state
information (CSI) to fully benefit from the available degrees of
freedom and achieve the promised performance gains [2], [3].
In time division duplex (TDD) mode of operation, massive
MIMO systems can exploit the uplink CSI for downlink
transmission, thanks to channel reciprocity. On the other hand,
frequency division duplex (FDD) operation is more desirable
due to the better coverage it provides; however, channel
reciprocity does not hold in FDD; and hence, downlink CSI
is estimated at the user and fed back to the BS.

The resulting feedback overhead becomes excessive due
to the massive number of antennas and users being served,
and has motivated various CSI reduction techniques based on
vector quantization [4] and compressed sensing (CS) [5], [6].
In vector quantized CSI feedback, the overhead scales lin-
early with system dimensions, which becomes restrictive in
many practical massive MIMO scenarios. On the other hand,
CS-based approaches rely on sparsity of the CSI data in
a certain transform domain, which may not represent the
channel structure accurately for many practical MIMO scenar-
ios. CS-based approaches are also iterative, which introduces
additional delay.

Following the recent resurgence of machine learning, and
more specifically deep learning (DL) techniques for physical
layer communications [7], [8], DL-based MIMO CSI esti-
mation, compression and feedback techniques have recently
been proposed [9]–[12]. The DL-based CSI compression
scheme, CSINet [13], showed significant improvement over
previous works that utilized compressive sensing and spar-
sifying transforms. Following CSINet, several subsequent
schemes were proposed which use autoencoder architectures
to reduce the MIMO CSI feedback overhead by learning
low-dimensional features of the channel gain matrix from
training data [13]–[23]. In [15], the authors improve CSINet
by utilizing a recurrent neural network to utilize temporal
correlations in time-varying channels. Utilizing bi-directional
channel reciprocity, the authors in [16] use the uplink CSI as
an additional input to further improve the results utilizing the
correlation between downlink and uplink channels.

Aforementioned CSI reduction techniques focus on dimen-
sionality reduction by direct application of the autoencoder
architecture. These works are based on the assumption that
reducing the dimension of the CSI matrix to be fed back
to the BS would result in reduced feedback overhead. How-
ever, in general, the reduced dimension CSI matrix does
not result in the most efficient representation, and it can be
further compressed by efficient quantization and compression
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techniques. Design of efficient compression techniques and
the impact of such compression on the CSI reconstruction
accuracy has not been considered in [13], [14], [16]. The
authors in [22] use uniform quantization on the reduced CSI
values. However, the distribution of the output of the encoder
neural network is not uniform, and uniform quantization
produces values that are not equally probable, and can be
further compressed. Considering this, the authors in [20] use
non-uniform μ-law quantization to get more evenly distributed
quantized symbols. More recently, DL-based architectures are
proposed in [24] and [23] to learn a non-uniform quantizer.

In this paper, we propose a DL-based CSI compression
scheme, called DeepCMC, composed of a novel fully con-
volutional autoencoder structure, employing residual layers at
the decoder for more accurate reconstruction, in conjunction
with quantization and entropy coding blocks, which allow
us to approach the fundamental limits of compression more
closely. More specifically, this is the first work on MIMO
CSI compression that uses an estimate of the probability
distribution of the quantized autoencoder output to efficiently
compress it by a context-adaptive arithmetic entropy coder
at rates closely approaching its entropy. Following our initial
work, arithmetic entropy coding is also adopted by [23] for
CSI compression. Here, we also propose a novel distributed
DeepCMC architecture to encode the CSI from multiple users
in a distributed manner, which are decoded jointly at the BS.
Our goal is to exploit the correlations among the CSI matrices
of nearby users to further reduce the required communication
overhead. Note that a major benefit of a massive MIMO
BS is its ability to simultaneously serve a large number of
users in its coverage area. This means that users/devices will
be located within close physical proximity of each other;
and hence, exploiting common structures and correlations
among their channel matrices, to better compress their CSI
can significantly improve the overall spectral efficiency by
reducing the resources dedicated to CSI feedback.

In comparison with the previous DL-based CSI compression
techniques, the main contributions of the proposed DeepCMC
architecture and its distributed version can be summarized as
follows:

i) Existing DL-based architectures for CSI compression
all include a fully connected layer, which means that they
can only be utilized for a specified input size, e.g., for a
given number of OFDM sub-carriers. This would mean that a
different NN needs to be trained for every different resource
allocation setting, and users need to store NN coefficients for
all these networks, limiting the practical implementation of
these solutions. Instead, the proposed DeepCMC architecture
is fully convolutional, and has no densely connected layers,
which makes it flexible for a wider range of MIMO scenarios.
Our simulations show that the convolutional kernels of Deep-
CMC, once trained, work sufficiently well for a large range
of sub-carriers and antennas.

ii) Many of the existing DL-based architectures for CSI
compression focus on dimensionality reduction by direct appli-
cation of the autoencoder architecture and do not consider
further compression of the CSI at a bit level [13], [14], [16].
DeepCMC includes quantization and entropy coding blocks
within its architecture to directly convert the channel gain

matrix into bits for subsequent communication. In contrast to
previous works that minimize the reconstruction mean square
error (MSE) of the reconstructed CSI matrix, DeepCMC min-
imizes a weighted rate-distortion cost that takes into account
both the compression rate (in terms of bits per CSI value)
and the reconstruction MSE, which significantly improves the
performance and enables a rate-distortion trade-off. Although
uniform and non-unifrom μ-law quantization are considered
in [22] and [20], respectively, the quantization process is still
blind to the specific distribution of the reduced CSI values.
However, our proposed DeepCMC scheme learns the local
probability distributions of the quantizer output and uses it in
conjunction with context-adaptive arithmetic entropy coding
to efficiently compress the quantizer output at rates closely
approaching its entropy. We provide an ablation study to
evaluate the improvements due to our proposed convolutional
feature encoder/decoder architecture and the use of entropy
coder for compression, separately.

iii) We propose distributed DeepCMC for a multi-user mas-
sive MIMO scenario such that different users compress their
CSI in a distributed manner while the BS jointly reconstructs
the CSI of multiple users from the received feedback mes-
sages. This is motivated by the information theoretic results on
distributed lossy compression of correlated sources [25], and
is based on the fact that the CSI of nearby users are correlated
as they share common multi-path components from scatterers
located far away from them. Hence, distributed DeepCMC
not only utilizes the inherent structures of a single MIMO
channel for compression, but also benefits from the channel
correlations among nearby MIMO users to further improve
the performance. Moreover, to address practical implemen-
tation issues regarding scaling of DeepCMC to the multiple
user case, we propose a reduced-complexity training scheme
without sacrificing the compression efficiency much. Finally,
we propose a cluster-based distributed DeepCMC approach for
practical implementation.

In parallel with our work, Guo et. al. also considered the dis-
tributed CSI compression problem in [26], where they jointly
reconstruct the CSI from two users at the BS. Their approach
is different from ours as they compress the magnitude and
phase of the CSI separately and use a separate decoder module
at the BS to reconstruct the CSI information shared by the
two users. Instead, our proposed distributed DeepCMC archi-
tecture uses summation-based information fusion branches at
different locations of the joint feature decoder to add the
available side-information from all the users together. These
summation-based fusion branches exploit the nature of the
channel gains, which comprise of the summation of multi-path
signal components.

This paper is organized as follows. In Section II, we present
the system model. In Sections III and IV we present our pro-
posed DeepCMC scheme for massive MIMO CSI compression
and its distributed version, respectively. Section V provides the
simulation results and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a massive MIMO setting, in which a BS
with Nt antennas serves K single-antenna users utilizing
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Fig. 1. The encoder/decoder architecture for the proposed CSI feedback compression scheme, DeepCMC.

orthogonal frequency division multiplexing (OFDM) over Nc

subcarriers. We denote by Hk ∈ CNc×Nt the downlink
channel matrix for user k, and by vk ∈ C

Nt×1 the precoding
vector used for downlink transmission to user k. The received
signal at user k is given by

yk = Hkvkxk + Hk
∑
i�=k

vixi + zk, (1)

where xk ∈ C are the data-bearing symbols, and zk ∈ CNc×1

is the additive noise vector, for k ∈ [K] � {1, . . . , K}.
In order to design the precoding vectors vk for efficient
transmission, the BS requires estimates of the downlink CSI
matrices, Hk. In an FDD system, each user estimates its down-
link CSI matrix through pilot-based training, and transmits the
estimated CSI back to the BS. Hence, the overhead for CSI
feedback from the users grows with K×Nc×Nt, and becomes
prohibitive for wideband massive MIMO systems when K ,
Nc and Nt are large.

To cope with this challenge, the users need to effi-
ciently compress their channel matrices Hk. Let Hk =
[hk

1 ,hk
2 , . . . ,hk

Nc
]T , where hk

n ∈ CNt is the channel gain vec-
tor of user k over subcarrier n, n ∈ [Nc]. Assume that the BS
is equipped with a uniform linear array (ULA) with response
vector a(φ) = [1, e−j 2πd

λ sin φ, · · · , e−j 2πd
λ (Nt−1) sin φ]T ,

where φ is the angle of departure (AoD), and d and λ denote
the distance between adjacent antennas and carrier wavelength,
respectively. The channel gain vectors are a summation of
multipath components as

hk
n =

√
Nt

Lk

Lk∑
l=1

αk
l e−j2πτk

l fs
n

Nc a(φk), (2)

where Lk is the number of downlink multipath components
for user k with τk

l and αk
l denoting the corresponding delay

and propagation gain for the components, respectively, and
fs is the sampling rate. According to (2), the CSI values for
nearby sub-channels, antennas and users are correlated due

to similar propagation paths, gains, delays and AoDs. This
correlation can be exploited to compress the CSI and reduce
the feedback overhead.

Designing practically efficient codes for lossy compression
is challenging even for memoryless sources with explicitly
defined distribution models. Here, we take an alternative
data-driven approach and propose a deep NN architecture,
called DeepCMC, which learns the compression scheme when
trained over large datasets of channel matrices. DeepCMC
uses CNN layers and entropy coding blocks to learn the CSI
compression scheme that can best leverage the underlying
correlations.

For the general case of K users, we have a multi-terminal
lossy source coding problem [25], where our goal is to
compress correlated CSI matrices from different users in a
distributed manner and at an acceptable distortion and com-
plexity. As opposed to the single user setting, this problem
is elusive even in the ideal information theoretic setting. The
general solution is known only for jointly Gaussian source
distributions under squared error distortion [25], [27], or for
discrete memoryless sources under log-loss as the distortion
measure [28]. Here, we propose a NN architecture, called
distributed DeepCMC, and train it over a large dataset of
channel matrices to achieve a distributed CSI compression
scheme in a data-driven manner without explicit knowledge of
the underlying distributions. Distributed DeepCMC leverages
the correlations among the CSI of multiple users to further
improve the rate-distortion performance in comparison with
separate DeepCMC architectures for each user.

III. DEEPCMC

In this section, we present our proposed NN architecture,
DeepCMC, for encoding and subsequent reconstruction of
downlink CSI for a single massive MIMO user. This will be
extended to the multiple-user MIMO scenario in Section IV.

The overview of our proposed model architecture for Deep-
CMC is shown in Fig. 1, where the two channel inputs

Authorized licensed use limited to: University of Surrey. Downloaded on March 08,2023 at 12:29:55 UTC from IEEE Xplore.  Restrictions apply. 



2624 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 4, APRIL 2021

represent the real and imaginary parts of the channel matrix.
The user compresses its CSI into a variable length bit stream.
The encoder comprises a CNN-based feature encoder, a uni-
form element-wise scalar quantizer, and an entropy encoder.
The feature encoder extracts key features from the CSI matrix
to obtain a lower dimensional representation, which is subse-
quently converted into a discrete-valued vector by applying
scalar quantization. While previous works simply send the
32-bit scalar quantized version of the feature vector as the CSI
feedback [13], [14], [16], we have observed that the autoen-
coder structure does not produce uniformly distributed feature
values, and hence, can be further compressed.

To further reduce the required feedback, we employ an
entropy encoder; in particular, we use the context-adaptive
binary arithmetic coding (CABAC) technique [29], which
outputs a variable-length bit stream. Upon receiving this
CSI-bearing bit stream, the BS first processes it by an entropy
decoder to reproduce the lower-dimensional representation of
the CSI feedback which is then used by our proposed feature
decoder to reconstruct the channel gain matrix. We present
each component of our proposed model in more details below.

A. Feature Encoder and Decoder

Fig. 1 depicts the our proposed CNN architecture for
the feature encoder and decoder in DeepCMC, where
“Conv|256|9× 9| ↓ 4|BN|PReLU" represents a convolutional
layer with 256 kernels, each of size 9× 9 followed by down-
sampling by a factor of 4, batch normalization and parametric
rectified linear unit (PReLU) activation. The feature encoder
consists of three convolutional layers, the first of which uses
kernels of size 9 × 9, and the other two use kernels of size
5 × 5. The “SAME” padding technique is used, such that the
input and output of each convolutional layer have the same
size (the number of channels vary). Let M = ff−en(H,Θen),
where ff−en denotes the feature encoder at the user, and Θen

denotes its parameter vector. M consists of 256 feature maps
of size Nt

16 × Nc

16 . Note that this fully convolutional architecture
allows us to use the same encoder network for any number
of transmit antennas and subcarriers, while the feature vector
dimension depends on the input size, which allows us to scale
the CSI feedback volume with the channel dimension.

The feature decoder at the BS performs the corresponding
inverse operations, consisting of convolutional and upsampling
layers. At the BS, the output of the entropy decoder is fed into
the feature decoder to reconstruct the channel gain matrix.
Similarly to the feature encoder, the decoder includes three
layers of convolutions (with the same kernel sizes as the
encoder) and upsampling (inverse of the downsampling oper-
ation at the encoder). The decoder architecture also includes
two residual blocks with shortcut connections that skip several
layers with + denoting element-wise addition in Fig. 1. This
structure eases the training of the network by preventing
vanishing gradient along the stacked non-linear layers [30].
To enable this, the input and output of a residual block
must have the same size. Each residual block comprises two
convolutional layers (normalized using the batch norm) and

uses PReLU as the activation function. Inspired by [31],
we also use an identical shortcut connecting the input and
output of the residual blocks, which improves the performance
as revealed by the experiments. Let Ĥ = ff−de(M̂,Θde)
denote the output of the joint decoder, parameterized by
Θde, and M̂ denote the estimate of M provided by the
entropy decoder. Ĥ denotes the reconstructed CSI matrix
at the BS.

B. Quantization and Entropy Coding

A major contribution of our proposed model in comparison
with the existing DNN architectures for CSI compression in
the literature [13], [14], [16] is the inclusion of the entropy
coding block, which encodes quantized CSI data into bits at
rates closely approaching its entropy. Note that, as the deriv-
ative of the quantization function is zero almost everywhere,
it does not allow simple optimization with gradient descent.
As a common practice in training NNs in the presence of a
quantizer [32], [33], we replace the quantization and entropy
coding blocks with independent identically distributed (iid)
noise during training, but include them in the test phase.
During training, we obtain an estimate of the quantizer output
entropy in terms of the model parameters. We use this estimate
as the average bit rate at the quantizer output, and add it as
a term to our cost function to minimize the bit rate. We later
observe in simulations that the average bit rate in the test phase
closely approaches the estimated entropy, which is expected
as CABAC is an efficient lossless entropy coder.

Quantization is performed by a uniform scalar quantizer
denoted by fq. We set the quantization bin size to one,
and quantize each element of M to the closest integer.
We denote the quantized output as M = fq(M). The entropy
encoder converts the quantized values in M into bit streams
using CABAC [29] based on the input probability distribution
learned during training, denoted by P . More specifically,
P is the probability mass function of M given by P (n) =∫ n+0.5

n−0.5
pM(x)dx, n ∈ Z where pM(x) denotes the probability

density function of M. Let s = fe−en(M, P ) denote the bit
stream obtained after entropy coding. Note that, as CABAC
is an efficient lossless compression technique, the average bit
rate at CABAC output is expected to closely follow the entropy
of the quantized values M given by −E[log2 P ], where E[·]
denotes the expectation operator. Hence, during training we
minimize this entropy term as an estimate of the average
number of bits required to compress the CSI.

The estimate of M, denoted by M̂, is recovered at the BS
by decoding the received codeword s using the corresponding
entropy decoder as M̂ = fe−de(s, P ). Note that as CABAC
is a lossless compression scheme we have, M̂ = M.

Finally, M̂ is fed into the feature decoder to reconstruct the
CSI matrix. Note that the scalar uniform quantizer followed
by arithmetic entropy coding (CABAC) in our DeepCMC
architecture acts as an adaptive variable bit-depth quantizer
that optimally encodes the input at rates closely approaching
its entropy. This alleviates the need to design more complex
non-uniform quantizer blocks that optimize the quantizer
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thresholds according to the input distribution as proposed
in [23], [24].

C. Optimization

As the derivative of the quantization function is zero almost
everywhere, it does not allow simple optimization with gra-
dient descent. Similarly to [32], [33], we replace the uniform
scalar quantizer with independent and identically distributed
(i.i.d.) uniform noise, i.e., U [0, 1], during training. Hence,
denoting the quantization noise vector by ΔM with i.i.d.
elements from U [0, 1], we approximate the quantized feature
matrix by M̃ = M + ΔM. With this simple replacement,
the probability density function of M̃ is a continuous relax-
ation of the probability mass function of M, where p

�M
(n) =

P (n), n ∈ Z; and hence, we use the differential entropy of
M̃ as an approximation of the entropy of M in the cost
function.

We denote by p
�M

(x,Θp) the probability density function of
M̃ specified by the set of parameters Θp, which is estimated
through training similarly to [33]. Similarly to [33], we model
the cumulative distribution function of M̃ as a composition
of K functions {fk}K

k=1, each of which is modeled by a NN
as fk(x) = σk(Hkx + bk), where Hk and bk are trainable
parameters and σk denotes the non-linearity. We refer the
reader to [31, Section 6.1] for more details on the choice
of σk’s. Hence, p

�M
(x,Θp) = f ′

K×f ′
K−1×. . .×f ′

1, where Θp

denotes the set of trainable parameters {Hk, bk}K
k=1. Having

optimized these parameters during training, we obtain P (n) =
p
�M

(n), n ∈ Z which is then used by CABAC during inference
to encode the quantized values into bits and decode the bits
back to values.

Our loss function is given by (3), shown at the bottom of
the page, where

MSE

(
Ĥ,H

)
=

1
NcNt

‖H− Ĥ‖2
2,

and the expectation is over the training set of channel matrices
and the quantization noise. During training, the entropy of
the quantizer outputs, estimated by the trainable probability
model, is jointly minimized with the reconstruction MSE
by optimizing the parameters for both the probability model
and the autoencoder. By utilizing the entropy block with the
optimized probability model, the actual bit rate of the encoder
output closely approximates this entropy. More precisely,
the first part of the loss function in (3) represents the entropy
of the feedback data, or equivalently the size of the feedback
in bits that must be transmitted, while the second part is the
weighted MSE of the reconstructed channel gain matrices.
Hence, training Θen,Θde and Θp values, which parameterize
the feature encoder, the feature decoder, and the probability

models, respectively, minimizes the feedback overhead and the
reconstruction loss, simultaneously.

The λ value governs the trade-off between the compression
rate and the reconstruction loss. A larger λ leads to a better
reconstruction but a higher feedback overhead, and vice versa.
In order to recover the trade-off between the compression rate
and the reconstruction loss, we train DeepCMC with different
λ values. For a small λ value, the network tries to reduce the
feedback rate, while as λ increases, it tries to keep the MSE
under control while slightly increasing the rate. After training,
each λ value specifies a set of parameters Θen,Θde,Θp.
By selecting the λ value according to user’s requirements
in terms of CSI quality and the available feedback capacity,
we can obtain the encoder and decoder parameters with the
best performance under these constraints. This would require
the user and the BS to have a list of encoder/decoder para-
meters to be used for different rate-MSE quality trade-offs,
and the user to send the λ value together with the encoded
bitstream s to the BS, so that the BS employs the matching
decoder parameters.

We emphasize here that the feature encoder and decoder
networks are fully convolutional, and do not include any fully
connected layers. Moreover the implemented entropy code
can operate on inputs of any size. Therefore, the DeepCMC
architecture can be trained on, or used for any channel matrix
whose height and width are multiples of 16, since the feature
encoder has a total downsampling rate of 16 (or, of any
size, which can be made a multiple of 16 by padding). This
is another advantage of DeepCMC with respect to existing
NN-based CSI compression techniques, which are all trained
for a particular input size.

IV. DISTRIBUTED DEEPCMC

In a multi-user FDD massive MIMO scenario with K users,
each user needs to compress and feedback its downlink CSI
to the BS, separately. However, if the users are located close
to each other, we expect their CSI matrices to be correlated as
they share some common multipath components. Even though
the compression is carried out separately at the users, they
can benefit from the correlation among their CSI matrices to
achieve a better trade-off between the compression rate and
the reconstruction MSE if the BS jointly reconstructs the CSI
of multiple users from the received feedback messages. This
is motivated by the information theoretic results on distributed
lossy compression of correlated sources [25]. To this end,
we propose a distributed DeepCMC NN architecture in which
a joint feature decoder is used to simultaneously reconstruct
the CSI matrix for several users at the BS.

Fig. 2 provides the overall block diagram of the proposed
distributed DeepCMC architecture. According to this figure,
a K user distributed DeepCMC architecture consists of K

L(Θen,Θde,Θp)=EH,ΔM

(
− 1

NcNt
log p

�M
(ff−en(H,Θen)+ΔM,Θp)+λMSE

(
ff−de

(
ff−en(H,Θen)+ΔM,Θde

)
,H
))

,

(3)
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Fig. 2. The encoder/decoder architecture of DeepCMC for multiple-user scenario.

separate encoder branches each consisting of a feature encoder,
quantization and entropy encoder blocks to compress the
downlink CSI from users to K bitstreams. The feature encoder,
quantization and entropy encoder block architectures are the
same as described for the single user DeepCMC architecture.
At the joint decoder, the bitstreams go through K separate
entropy decoders with the same architecture as described in
the previous section. The output of the entropy decoders are
input to the joint feature decoder.

A. Multi-User Information Fusion

To design the joint feature decoder block, consider down-
link CSI matrices of two nearby users denoted by H1 =
[h1

1,h
1
2, . . . ,h

1
Nc

]T and H2 = [h2
1,h

2
2, . . . ,h

2
Nc

]T . According
to (2), h1

n and h2
n can be written as the summation of multipath

components. Note that, if the two users are located close to
each other, the components impinging from scatterers located
far away from them appear with similar angle of arrival, gain,
and delay values in their CSI matrices. Hence, h1

n and h2
n share

similar components coming from far scatters. This motivated
us to use a summation-based joint feature decoder as depicted
in Fig. 3, for K = 2. The input from each entropy decoder
is processed in separate branches for each user. The structure
of these separate branches is the same as in the single user
DeepCMC except for the summation-based information fusion
branches between the two users. These branches combine side
information on the shared CSI components, from one user with
the other, by element-wise summation of the corresponding
feature values (with appropriate combining kernels). The NN
learns the optimal combining kernels through training. Note
that in Fig. 3 two sets of combining branches are depicted;
however, more combining connections could be used between
the two branches. The number of connections and their
positions affect the reconstruction performance of the joint
feature decoder. We tried different architectures with more/less
information fusion branches in different positions between

the two users but found the current architecture as depicted
in Fig. 3 to be most effective balancing the performance
with complexity. Finally, note that the architecture presented
in Fig. 3 for the joint feature decoder can be easily generalized
to any number of users.

B. Multi-User Training Schemes

We propose two training schemes for distributed Deep-
CMC. In the first scheme, we train the whole network from
scratch. However, we observed that there is a strong similarity
between the kernels trained for the individual branches in the
distributed scheme and the ones trained for the single user
case. Hence, in our alternative training scheme, we initial-
ize the network parameters (including those of the feature
encoders, the entropy encoders/decoders, and the individual
branches in the joint feature decoder) with those optimized
for the single-user case, and then fine-tune all network para-
meters (including the parameters mentioned above and the
combination kernels) for a few more training steps to get the
network parameters for the distributed case. We later observe
that the fine-tuning approach significantly reduces the training
complexity at negligible performance loss; and hence, can be
used to improve scalability of our distributed scheme for a
larger number of users.

C. Multi-User Loss Function

Our loss function for the distributed DeepCMC is given
as (4), shown at the bottom of the next page, in which the
superscript k specifies the corresponding user and Xi:j denotes
the sequence Xi,Xi+1, . . . , Xj . In particular, fk

f−en(·,Θk
en)

denotes the feature encoder at user k, parameterized by Θk
en,

ΔMk is the quantization noise vector with i.i.d. elements from
U [0, 1] that is added to the feature encoder output to replace
the quantization operation during training, and pk

�M
(·,Θk

p)
denotes the probability density function parameterized by Θk

p .
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Fig. 3. Joint feature decoder architecture.

The joint feature decoder is denoted by ff−jde

(·,Θde

)
, para-

meterized by Θde. Note that the joint feature decoder uses
all the outputs from K entropy decoders, and outputs the
CSI reconstruction of all the K users, where ff−jde

(·,Θde

)
[k]

denotes the reconstruction of user k’s channel matrix at the
BS. The expectation is taken over the training set of channel
matrices and the quantization noise vectors. By minimizing
this loss function, the sum entropy of the feedback data from
all the K users (total overhead), and the weighted MSE of
the reconstructed channel gain matrices are jointly minimized.
Similarly to the single user case, λk governs the trade-off
between the feedback rate and the reconstruction quality
for user K . A larger λk results in a better reconstruction
of channel matrix for user k but at an increased feedback
overhead. Note that non-identical values of λ1, · · · , λK allows
heterogeneous CSI reconstruction qualities across users. Also
note that the same loss function is utilized for both of our
training schemes.

V. SIMULATIONS

We use the COST 2100 channel model [34] to generate
sample channel matrices for training and testing. We consider

an indoor picocellular scenario at 5.3 GHz and and outdoor
rural scenario at 330 MHz band. The BS is equipped with
a ULA of dipole antennas at half the wavelength spacing
which is positioned at the center of a 20m × 20m and
400m×400m square area for the indoor and outdoor scenarios,
respectively.

Note that we have presented the results for both indoor
and outdoor scenarios in subsection V.A, but as the simula-
tions revealed very similar results and conclusions for both
scenarios, we have only provided the simulation results for
the indoor scenario in the subsequent subsections to avoid
tedious discussions of similar results. We train our models on
datasets of 80000 and test on 20000 CSI realizations generated
by the COST 2100 model. Each CSI realization considers a
random scattering environment following the default settings
in [34]. We use the tensorflow compression library at [35] for
DeepCMC implementation.

We first present the performance of a single-user DeepCMC
architecture in different scenarios in Subsection V.A, and
then provide performance results for distributed DeepCMC
in Subsection V.B. We use the normalized MSE (NMSE)
and cosine correlation (ρ) as the performance measures.

L(Θ1:K
en ,Θde,Θ1:K

p ) = EH1:K ,ΔM1:K

(
− 1

NcNt

K∑
k=1

log pk
�M

(fk
f−en(H

k,Θk
en) + ΔMk,Θk

p)

+
K∑

k=1

λkMSE

(
ff−jde

(
f1
f−en(H

1,Θ1
en) + ΔM1, . . . , fK

f−en(H
K ,ΘK

en) + ΔMK ,Θde

)[
k
]
,Hk

))
,

(4)

Authorized licensed use limited to: University of Surrey. Downloaded on March 08,2023 at 12:29:55 UTC from IEEE Xplore.  Restrictions apply. 



2628 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 4, APRIL 2021

Fig. 4. Bit rate-NMSE trade-off of DeepCMC vs. CSINet, Nc = 256, Nt = 32.

TABLE I

PERFORMANCE COMPARISON BETWEEN DEEPCMC AND CSINET FOR A

SINGLE-USER IN THE INDOOR SCENARIO (USER RANDOMLY PLACED

IN A 20m×20m SQUARE, AND Nc = 256, Nt = 32)

These measures are defined as follows:

NMSE � E

{
‖H− Ĥ‖2

2

‖H‖2
2

}
, (5)

and

ρ � E

{
1

Nc

Nc∑
n=1

|ĥH
n hn|

‖ĥn‖‖hn‖

}
. (6)

A. DeepCMC for a Single User

1) Bit Rate-NMSE Trade-Off: We first compare the per-
formance of our DeepCMC scheme with CSINet for the
single-user scenario. We assume the user is placed uniformly
at random within a 20m × 20m and 400m × 400m square
area for the indoor and outdoor scenarios, respectively. In both
scenarios, the BS is positioned at the center of the square
area considered and we have Nc = 256 and Nt = 32.
Tables I and II provide the corresponding results for the
indoor and outdoor scenarios, respectively. In these tables,
we train our DeepCMC architecture with different λ values,

TABLE II

PERFORMANCE COMPARISON BETWEEN DEEPCMC AND CSINET FOR

A SINGLE-USER IN THE OUTDOOR SCENARIO (USER RANDOMLY

PLACED IN A 20m×20m SQUARE, AND Nc = 256, Nt = 32)

which governs the trade-off between the compression rate
and the reconstruction quality. We evaluate both the average
entropy of the quantized outputs of the feature encoder and the
average number of actual bits to transmit back to the BS. The
actual number of bits includes the length of the bit stream
generated by the entropy encoder plus 16 additional bits to
transmit the value of lambda to the BS. Hence, the actual
bit rate will reduce if the BS and the user agree on a fixed λ
value throughout their operation. Both the average entropy and
the number of bits are normalized by NcNt, the CSI matrix
dimension, to represent the average bit rate per CSI value.
According to the results in Tables I and II, the actual bit rate
closely approximates the estimated entropy of the quantized
feature encoder outputs. On the other hand, CSINet provides
a feature vector of a fixed length m. We have considered both
32-bit and 16-bit floating point quantization for this vector.
The resulting bit rate for CSINet is then given by m×32

NcNt
and

m×16
NcNt

for the 32-bit and 16-bit CSINet, respectively.
The bit rate-NMSE trade-offs achieved by DeepCMC and

CSINet are plotted in Figures 4a and 4b for the indoor and
outdoor scenarios, respectively. As it can be observed from
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Table I and Fig. 4a for the indoor scenario, DeepCMC provides
significant improvement in the quality of the reconstructed
CSI at the BS with respect to CSINet at both bit rate values.
Note that the 16-bit CSINet performs slightly better than the
32-bit version. This is because 16-bit quantization decreases
the required bit rate by a factor of two while slightly degrading
the NMSE. However, we observed in simulations that further
reducing the quantization precision to 8-bits or below degrades
the rate-NMSE trade-off. For the indoor scenario, the NMSE
values achieved by DeepCMC are around 3 to 5 dB lower
than those achieved by the 16-bit CSINet for the range of
compression rates considered in Fig. 4a. For example, for a
target value of NMSE=-7dB, DeepCMC provides more than
4 times reduction in the number of bits that must be fed
back from the user to the BS. Similar improvements are
observed for the outdoor scenario as well. Finally, we observe
from the rate-distortion curves that the NMSE values for
DeepCMC drop quite rapidly with bit rate, while CSINet
shows a smoother reduction slope. This implies that DeepCMC
better exploits the limited number of bits to capture the most
essential information in the CSI data.

These improvements are due not only to our improved
feature extraction architecture, but also to the incorporation
of the quantization and entropy coding blocks in the Deep-
CMC architecture, which enable efficient compression of the
quantizer output at rates very close to its entropy. The entropy
coder can efficiently convert the quantizer output to bits by
utilizing its probability distribution estimated during training.
Our experiments also reveal that adding the shortcut connec-
tions across two residual blocks at the decoder and choosing
PReLU (in comparison with ReLU and Leaky ReLU) as the
activation function improves the performance of DeepCMC.

2) Stationary Users: For a user fixed at a certain position
from the BS, we can use COST2100 to generate a dataset
for that specific position and train our DeepCMC network
with it. This could be the case where a wireless user is
stationary (e.g., desktop PC, smart home appliances, etc. in the
indoor scattering scenario) and will significantly improve the
performance as there is less information in the CSI matrix
of a stationary user to compress. Note that although the user
is stationary in this scenario, the scattering environment is
randomly generated for each realization in the dataset, and
hence, the NN still experiences random realizations of the CSI
during training and testing. These random realizations differ
in the number of multi-path components, their corresponding
gains, delays, AoA/AoDs, etc.

To study the performance in this scenario, we train and
test both DeepCMC and 16-bit CSINet for a user fixed at
(5m, 5m). Table III provides the corresponding results for
Nc = 256 and Nt = 32 in the indoor scenario. The perfor-
mance gap between DeepCMC and CSINet is even larger for
a fixed user. DeepCMC achieves almost perfect reconstruction
with an NMSE of −40 dB and ρ approximately equal to 1 at
a bit rate lower than 0.15 bits per channel dimension for a
fixed user.

3) User Position Uncertainty: For the general scenario
where the users may move, we train DeepCMC with dataset
entries generated for users randomly placed in a training area.

TABLE III

PERFORMANCE OF DEEPCMC AND CSINET FOR A SINGLE-USER IN
THE INDOOR SCENARIO (USER IS PLACED AT A FIXED

LOCATION (5m,5m), AND Nc = 256, Nt = 32)

TABLE IV

PERFORMANCE OF DEEPCMC (TRAINED WITH λ = 105) IN THE

INDOOR SCENARIO FOR USERS LOCATED AT DIFFERENT
DISTANCES TO THE BS, Nc = 256, Nt = 32

We have so far considered a 20m × 20m square training
area with the BS positioned at the center at (10m, 10m).
We here study the performance of our DeepCMC network
trained for the 20m × 20m square area for users placed on
circles at different distances, in particular, 2.5m, 5m, 7.5m,
10m around the BS. We summarized the performance of
DeepCMC, trained with λ = 105, with regards to the distance
between the user and the BS in Table IV. The last row shows
the performance when the user is randomly located within
the square. Although the reconstruction performance degrades
as the user moves further away from the BS, it still remains
acceptable (NMSE < −3 dBs) as long as the user stays within
the training area. The NMSE for DeepCMC is smaller when
the user is closer to the BS at a slightly larger bit rate.

4) Performance in Wideband MIMO Systems: In practical
MIMO scenarios, the bandwidth and consequently number
of subcarriers Nc may change from system to system or
over time due to time-varying resource allocation. Hence,
it is desirable for any CSI feedback scheme to maintain an
acceptable performance as the number of subcarriers changes,
so that the users will not need to store different NN parameters
trained for different bandwidths. Unlike the previous works,
which include dense layers in their NN architectures, Deep-
CMC, being fully convolutional, is applicable to scenarios with
different Nc values.

We design experiments to evaluate the performance of
DeepCMC when trained on Nc = 256 but tested on Nc =
128, 160, 192, 224, 256, 512, 1024. Note that in this experi-
ment the carrier spacing is kept fixed at Δf = 2MHz,
and hence, different Nc values represent systems working
over different bandwidths. We summarize the performance
of DeepCMC, trained with λ = 105, in Table V. We also
present the bit rate-NMSE trade-off in Fig. 5, which is
obtained by testing the DeepCMC (trained with different λ
values) with different values of Nc. According to Table V and
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TABLE V

PERFORMANCE OF DEEPCMC (TRAINED WITH λ = 105 AND

Nc = 256) FOR DIFFERENT NUMBER OF SUBCARRIERS
IN THE INDOOR SCENARIO WITH Nt = 32

Fig. 5. Bit rate-NMSE trade-off for different number of subcarriers during
the test phase for a DeepCMC network trained with Nc = 256, Nt = 32 in
the indoor scenario.

Fig. 5, the DeepCMC convolution kernels once trained for
Nc = 256, work sufficiently well both on smaller and larger
values of Nc in a wide range of three octaves

(
1024
128 = 8

)
.

This is very desirable as it makes our proposed DeepCMC
architecture applicable to wideband massive MIMO systems.
Also according to Fig. 5, CSI matrices for wideband MIMO
scenarios seem to be more compressible as larger Nc values
result in lower bit rate and better NMSE.

Note that, although a DeepCMC network trained on a
dataset with Nc = 256 provides very good rate-distortion
curves for Nc = 128 and 1024 according to Fig. 5, we are
interested to compare its performance with networks trained
specifically on Nc = 256 and Nc = 1024. The corresponding
comparison results are provided in Fig. 6. According to this
figure, although networks trained and tested on the same Nc

values provide better performance, the performance gap is
small if Nc is different for train and test. This shows that
utilizing DeepCMC, the UE can use the kernels optimized for
a specific Nc value to compress the CSI for a wider range of
bandwidths with negligible performance loss.

5) Variation in the Number of Antennas: Next, we study
the flexibility of DeepCMC when the number of antennas
at the test phase is different from the one in the training
phase. To this end, we generate datasets for Nt = 16, 64, 128
(in the same ULA setting and keeping the same spacing
between antennas), and test the kernels trained for Nt =
32 (at λ = 105) on these datasets. Table VI reports these
simulation results. According to Table VI, the kernels trained
for Nt = 32 perform sufficiently well for the range of Nt

values considered, which shows the flexibility of the proposed

TABLE VI

PERFORMANCE OF DEEPCMC (TRAINED WITH λ = 105 AND

Nt = 32) FOR DIFFERENT NUMBER OF ANTENNAS
IN THE INDOOR SCENARIO WITH Nc = 256

Fig. 6. DeepCMC performance when the number of subcarriers Nc,
is different during the training and test phases in the indoor scenaio with
Nt = 32.

DeepCMC architecture to variations in the number of antennas
during the test phase. This is thanks to the fact that, unlike
CSINet, the DeepCMC architecture is fully convolutional and
avoids dense layers. Larger CSI matrices (larger Nt values)
are also slightly better compressible.

6) Ablation Study: Finally, we would like to analyze the
performance gain in the DeepCMC architecture resulting
from our proposed CNN architecture and the entropy coder,
separately. In Fig. 7, we report the NMSE values resulting
from our feature encoder and decoder architecture without
the entropy coding block and assuming 32-bit quantized (float
32 data type) feature values, together with 32-bit quantized
CSINet results. To obtain different bit-rate values for Deep-
CMC without the entropy coder, we change the number of
convolution kernels in the last layer of the feature encoder in
the range 2, 4, 8, 10, and the downsample factors in the feature
encoder architecture to 4, 4, 2 (accordingly, the corresponding
upsample factors in the feature decoder are changed to 2,4,
and 4). We see that a significant part of the improvement (in
comparison with CSINet) is due to our proposed CNN-based
feature encoder/decoder architecture, while the entropy coding
block further reduces the NMSE. Note that a similar result
holds if we compare the 16-bit quantized DeepCMC feature
encoder/decoder with 16-bit CSINet.

B. Distributed DeepCMC for Two Nearby Users

In this subsection, we present the results for the distributed
implementation of DeepCMC for several users.
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Fig. 7. Ablation results for Nc = 256 and Nt = 32 in the indoor scenario.

1) Effects of the Training Scheme: We consider two users
placed 60cm apart in an indoor scenario with Nc = 256 and
Nt = 32. The users are placed at locations (5m, 5m) and
(4.4m, 5m), while the BS is fixed at the center (10m, 10m).
As a baseline, we also consider the NMSE obtained by
encoding and decoding the CSI of the two users using two
independent DeepCMC networks trained seprately for each of
the users. This approach does not benefit from the common
structure and correlations shared by the users. Instead, in the
proposed distributed DeepCMC scheme, the users encode
their CSIs separately, but these CSIs are decoded jointly
at the BS. For easier comparison, we plot in Fig. 8 the
average rate and NMSEs of the two users. In this figure,
Scheme 1 represents training the whole network from scratch
(for 300000 steps), while Scheme 2 corresponds to initializ-
ing the network parameters to those trained for single-user
DeepCMC, and fine-tuning only for 30000 more steps.

According to this figure, there is a negligible performance
loss by the proposed low-complexity training Scheme 2.
We highlight that to generate the results in this figure,
Scheme 1 has been trained for 300000 steps while Scheme 2 is
trained for only 30000 steps. Hence, our proposed fine-tuning
approach significantly reduces the training complexity and
time without sacrificing the performance much. This allows
us to scale distributed DeepCMC to a large number of users.
In the rest of this section, we only present results for dis-
tributed DeepCMC trained with the proposed low-complexity
fine-tuning approach.

2) Effects of Inter-User Distance: Next, we study the impact
of the distance between the users on the performance of
distributed DeepCMC. To represent typical inter-device dis-
tances in the indoor scenario in a 20m×20m room, we place
the users around the BS at 30cm, 60cm, and 90cm apart from
each other, respectively. More specifically, we place one of the
users at (5m, 5m) while the other one is placed at (4.7m, 5m),
(4.4m, 5m) and at (4.1m, 5m), respectively. We use the
COST2100 model to simultaneously generate CSI datasets
for the two users with Nt = 32 and Nc = 256. We train
with 80000 CSI realizations, and test over 20000 independent

Fig. 8. Average NMSE vs. average bit rate achieved by single-user DeepCMC
and distributed DeepCMC for the proposed training schemes (indoor scenario
with two users located 60cm apart and Nt = 32, Nc = 256).

Fig. 9. Average NMSE vs. average bit rate for single-user and distributed
DeepCMC in the indoor scenario, where the distance between two users is
30, 60 and 90 cm (Nt = 32, Nc = 256).

realizations. Other simulation parameters are the same as in
Subsection V-A.

Fig. 9 compares the average bit rate-NMSE curves achieved
by distributed DeepCMC in these three cases as well as
the average bit rate-NMSE curve achieved by single-user
DeepCMC. We observe that distributed DeepCMC always
outperforms the single-user DeepCMC, showing that the users
benefit from the information transmitted by each other despite
distributed encoding. The performance improvement by dis-
tributed DeepCMC becomes more significant in the low bit
rate region. As expected, the improvement also increases as
the users get closer to each other. This is expected as the
CSI matrices for closer users have more common multipath
components. For d > 100cm, we observed no meaningful
improvement by distributed DeepCMC with respect to the
single-user performance. According to Fig. 9, for a target
reconstruction NMSE of ∼ −31dB, the average rate required
for each user by DeepCMC is 0.0938 bits per channel dimen-
sion, which can be reduced to 0.0461, 0.0708, and 0.0772 by
distributed DeepCMC for users located 30, 60 and 90cm
apart, respectively. These correspond to 50.85%, 24.52%, and
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Fig. 10. Average NMSE vs. average bit rate for distributed DeepCMC
with different number of users located equidistantly on a circle with radius
R = 30cm (indoor scenario with Nt = 32 and Nc = 256).

17.70% reduction in the bit rate required for CSI feedback
per user, respectively. We note that these results are obtained
by the simplified training scheme 2; and hence, they can be
improved slightly at the expense of an increase in training
complexity using scheme 1.

Finally, note that the joint distribution of the two users’ CSI
matrices depends not only on the distance between the users,
but also on the whole topology of the user and BS locations.
Hence, although the distributed DeepCMC architecture is
capable of learning and exploiting the joint distribution of
the channels of any two users’ in the coverage area of the
BS, the NN trained for a specific user location configuration
is not readily applicable to another scenario even if the
distance between the users is retained. On the other hand,
our proposed complexity-reduced training scheme 2, allows
efficiently training a new NN for different configurations.

C. Distributed DeepCMC for More Users

In this subsection we study the performance of distributed
DeepCMC with more than two users. In particular, we consider
1, 2, 3, and 5 users located equidistantly on a circle of radius
R = 30cm centered at (5m, 5m) in the indoor scenario (Nt =
32, Nc = 256). We expect the rate-NMSE curve to improve
as we jointly decode the feedback from more users, due not
only to the increased side information, but also to the reduced
distance between the users. The resulting rate-NMSE curves
are provided in Fig. 10, which reveal that the improvement
becomes less significant beyond three users.

Considering the results in Subsections V.B.2 and V.B.3,
we propose a cluster-based distributed DeepCMC approach
for efficient CSI feedback in practical FDD MIMO-OFDM
systems. Note that the rate-NMMSE improvement by dis-
tributedDeepCMC depends on the number of users decoded
jointly, their relative distances and the general system and
environment-specific characteristics (e.g., carrier frequency,
room geometry, BS location, number of subcarriers/antennas,
etc.). For the indoor scenario considered, we have observed
in Fig. 9 that the improvement by distributed DeepCMC is

more significant for users placed at distance d < 100cm.
On the other hand according to Fig. 10, the amount of
improvement by jointly decoding additional users above
3 becomes less significant. Hence, we propose clustering the
users into groups of two or three based on their location
data (e.g., GPS data), such that the users in each cluster are
within 1m vicinity of each other (if such clusters exist). The
BS jointly reconstructs the CSI from users in the same cluster
using distributed DeepCMC. With clustering, the overall com-
plexity becomes affordable while benefiting from the most
significant amount of improvement by joint decoding. The
BS can default to using single user DeepCMC for all users
separately. During operation of the MIMO system, whenever
small clusters form (due to movements of the users or new
users joining the network), the BS can switch to distributed
DeepCMC to improve the overall rate-NMSE performance.

VI. CONCLUSION

In this paper, we proposed a convolutional DL archi-
tecture, called DeepCMC, for efficient compression of CSI
matrices to reduce the significant CSI feedback overhead in
massive MIMO systems. DeepCMC is composed of fully
convolutional layers followed by quantization and entropy
coding blocks, and outperforms state of the art DL-based CSI
compression techniques, providing drastic improvements in
CSI reconstruction quality at even extremely low feedback
rates. We also proposed a distributed version of DeepCMC
for a multi-user MIMO scenario such that different users
compress their CSI matrices in a distributed manner, which
are reconstructed jointly at the BS. Distributed DeepCMC
not only utilizes the inherent CSI structures of a single
MIMO user for compression, but also benefits the channel
correlations among nearby MIMO users to further improve
the performance in comparison with DeepCMC. We showed
that distributed deepCMC can provide further reduction in the
feedback overhead, particularly for nearby users, and proposed
a low-complexity training method for distributed DeepCMC
that significantly reduces the training complexity and time with
only minimal performance loss.
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