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Cooperative Interference Management for

Over-the-Air Computation Networks

Xiaowen Cao, Guangxu Zhu, Jie Xu, and Kaibin Huang

Abstract

Recently, over-the-air computation (AirComp) has emerged as an efficient solution for access points

(APs) to aggregate distributed data from many edge devices (e.g., sensors) by exploiting the waveform

superposition property of multiple access (uplink) channels. While prior work focuses on the single-

cell setting where inter-cell interference is absent, this paper considers a multi-cell AirComp network

limited by such interference and investigates the optimal policies for controlling devices’ transmit power

to minimize the mean squared errors (MSEs) in aggregated signals received at different APs. First, we

consider the scenario of centralized multi-cell power control. To quantify the fundamental AirComp

performance tradeoff among different cells, we characterize the Pareto boundary of the multi-cell MSE

region by minimizing the sum MSE subject to a set of constraints on individual MSEs. Though the sum-

MSE minimization problem is non-convex and its direct solution intractable, we show that this problem

can be optimally solved via equivalently solving a sequence of convex second-order cone program

(SOCP) feasibility problems together with a bisection search. This results in an efficient algorithm for

computing the optimal centralized multi-cell power control, which optimally balances the interference-

and-noise-induced errors and the signal misalignment errors unique for AirComp. Next, we consider

the other scenario of distributed power control, e.g., when there lacks a centralized controller. In this

scenario, we introduce a set of interference temperature (IT) constraints, each of which constrains the

maximum total inter-cell interference power between a specific pair of cells. Accordingly, each AP only

needs to individually control the power of its associated devices for single-cell MSE minimization, but

subject to a set of IT constraints on their interference to neighboring cells. By optimizing the IT levels,

the distributed power control is shown to provide an alternative method for characterizing the same multi-

cell MSE Pareto boundary as the centralized counterpart. Building on this result, we further propose
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an efficient algorithm for different APs to cooperate in iteratively updating the IT levels to achieve

a Pareto-optimal MSE tuple, by pairwise information exchange. Last, simulation results demonstrate

that cooperative power control using the proposed algorithms can substantially reduce the sum MSE of

AirComp networks compared with the conventional single-cell approaches.

Index Terms

Over-the-air computation, multi-cell cooperation, power control, interference management, interfer-

ence temperature.

I. INTRODUCTION

One common operation of future Internet-of-Things (IoT) is to aggregate sensing data or

computation results transmitted by many edge devices (e.g., sensors and smart phones). Recently,

over-the-air computation (AirComp) has emerged as a promising solution for such fast wireless

data aggregation (WDA) as required by ultra-low-latency and high-mobility applications [1]–[3].

The core idea of AirComp is to exploit the signal-superposition property of a multiple access

channel (MAC) for “over-the-air aggregation”. This enables an access point (AP) to directly

receive the aggregated version of the simultaneously transmitted data from devices. The sharing

of the whole spectrum by all devices overcomes the issue of long latency faced in massive

access. With proper pre-processing at devices and post-processing at AP, AirComp can go ahead

averaging to compute a class of so-called nomographic functions (e.g., geometric mean and

polynomial functions). As a result, AirComp finds a wide range of applications ranging from

distributed sensing [2], [3] to distributed consensus [4] to distributed machine learning [5]–[9].

The theme of this paper is to design techniques for cooperative interference management to

facilitate the large-scale implementation of AirComp in multi-cell networks.

A. Over-the-Air Computation

The concept of AirComp was first studied from the information-theoretic perspective in [1],

where structured codes are designed to exploit interference arising from simultaneous transmis-

sions for fast functional computation over a MAC. Subsequently, a strong result was proved in

[2] that simple AirComp with uncoded analog transmission is optimal in terms of minimizing

the noise-induced distortion in WDA, which we term AirComp error, if the sensing data sources

are independent and identically Gaussian distributed [2]. Another vein of research on AirComp

focuses on the signal processing perspective [10]–[12]. The optimal scheme for power allocation

that minimizes the AirComp error was studied targeting distributed signal estimation from noisy
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observations [10]. In [11], the authors proposed power allocation schemes under a different

criterion of minimum outage probability where an outage event occurs when the AirComp error

exceeds a certain threshold. One requirement for implementing AirComp is the synchronization

between transmissions by devices. A solution for meeting the requirement was proposed in [12],

in which the AP broadcasts a reference-clock signal to all devices.

Most recent advancements in AirComp have led to its integration with more complex wireless

techniques and systems, and its new application to the area of distributed machine learning.

Multiple-input-multiple-output (MIMO) AirComp was developed to exploit spatial multiplexing

for supporting vector-valued functional computation targeting multi-modal sensing [13], [14].

The channel feedback overhead in MIMO AirComp was then exempted in [15], by solving

a bilinear estimation problem that can recover both the channel information and the desired

functions simultaneously from a set of noisy received aggregated signals. In the fast growing

area of distributed machine learning, AirComp finds a new application in efficiently enabling an

edge server to aggregate distributed learning results transmitted by edge devices [5]–[9].

Power control for AirComp, which is the theme of this work, concerns controlling the transmit

power of energy-constrained edge devices to cope with channel fading and noise that can

potentially result in unacceptable AirComp errors. The simple transmission scheme of channel

inversion is widely adopted in the AirComp literature to overcome fading so that multiuser

signals arriving at an AP are aligned in magnitude, which is required for receiving a desired

functional value of distributed data [5], [7], [13], [14]. However, it is well established that the

channel inversion incurs severe noise amplification when channels are in deep fade, resulting in

large AirComp errors. To address this issue, the corresponding power control needs to be jointly

designed over devices with the objective of minimizing the AirComp error. This differs from

the power control in conventional systems with different objectives of enhancing data rates or

ensuring link reliability, which result in well-known policies such as water filling or channel

truncation (see, e.g., [16]). Based on the metric of mean squared error (MSE), the optimal

power control policies were studied for AirComp under individual power constraints in [8],

[17], [18] and under a sum power constraint in [10], [11], which were found to have different

structures from their counterparts for conventional wireless communication systems. For instance,

to minimize MSE, devices with relatively weak links should transmit with full power but others

should perform channel inversion [17], achieving a balance between the noise-induced errors

and the signal misalignment errors.
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While the prior work assumes a single-cell network, we envision the large-scale deployment

of AirComp in a multi-cell network, to support ubiquitous coverage for next-generation IoT. This

leads to simultaneous AirComp tasks in different cells, each of which is characterized by its

application and corresponding data type (e.g., sensing or learning) as well as aggregation function

(e.g., averaging or geometric mean). The coexistence of different AirComp tasks, however, affects

each other due to the inter-cell interference. This gives rise to the new challenge of managing

such interference by multi-cell cooperation so as to rein in the errors in the coexisting tasks.

B. Cooperative Interference Management

Cooperative interference management for conventional radio access networks is a well-studied

area (see, e.g., [19] and the references therein). A wide range of relevant techniques and

issues have been studied such as beamforming [20], [21], network throughput [22], [23] and

power control [24], [25]. However, the challenges faced by designing cooperative interference

management for AirComp networks differ from those for conventional radio access networks

as they provide different services. A conventional radio access network is designed to support

radio access to users. In contrast, the function of an AirComp network is to perform WDA over

devices that are either sensors or workers. This results in different operations and performance

metrics for the conventional radio access networks and the emerging AirComp networks. In

terms of operations, the former suppresses multiuser interference so as to support multiuser data

streams while the latter aggregates simultaneous data streams to compute a desired function. In

terms of performance metrics, the conventional ones measure rates or reliability (e.g., sum rate

[21], [22] and outage probability [25]) while those for AirComp should measure the accuracy in

the received functional value (e.g., MSE). Cooperative interference management for AirComp

networks remains a largely uncharted area. Recently, an initial study in this area was reported

in [26], where a scheme called simultaneous signal-and-interference alignment is proposed

to maximize the number of interference-free aggregated data streams in a two-cell AirComp

network. In this work, we study the same theme of multi-cell cooperation but from a different

perspective, namely power control.

C. Main Contributions

In this paper, we consider an AirComp network comprising multiple cells. In each cell, one

AP serves as a fusion center to aggregate date from multiple devices in the same cell. The

aggregated signal received at each AP is exposed to inter-cell interference due to simultaneous
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uplink transmissions by devices in the neighboring cells. A novel framework of coordinated

power control for managing such interference to suppress the errors in coexisting AirComp

tasks is presented in the current work. The main contributions of this work are summarized as

follows.

• Multi-cell MSE tradeoffs with centralized coordinated power control: In this scenario,

the transmit power of all devices is subject to centralized control by a centralized network

controller. First, to understand the fundamental MSE performance trade-offs among these

cells, we characterize the Pareto boundary of the AirComp MSE region of simultaneous Air-

Comp tasks in different cells using the so-called MSE-profiling technique. This is equivalent

to minimizing the sum MSE of all APs subject to a set of MSE constraints for individual

cells and individual transmit power constraints at devices, in which the devices’ transmit

powers and APs’ signal scaling factors for noise suppression, called denoising factors, are

jointly optimized. The problem is non-convex due to the coupling between power control

variables and denoising factors. Though the direct solution is intractable, we propose an

alternative approach to obtain its optimal solution by equivalently solving a sequence of

problems, each being a convex second order cone program (SOCP), combined with a simple

bisection search. This leads to an efficient algorithm of computing the optimal policy for

centralized coordinated power control, which optimally balances the suppression of the

interference-and-noise-induced errors and signal misalignment errors.

• Distributed power control with interference-temperature coordination: We consider

another scenario of distributed power control, where the centralized controller is unavailable.

The distributed power control is realized by introducing a set of interference temperature

(IT) constraints, each of which limits the maximum power of total interference from one

cell to the other. Given the IT constraints, the multi-cell power control reduces to single-cell

operations, where each AP only needs to control the power of its associated devices for

single-cell MSE minimization. While power control is distributed, multi-cell cooperation is

realized by optimizing the IT levels. It is shown that by proper IT levels control, the same

MSE Pareto boundary as the centralized counterpart can be achieved. To materialize the

gain promised by such optimality, we further propose an efficient algorithm for different

APs to cooperate in iteratively updating the IT levels for practically achieving a Pareto-

optimal MSE tuple, by only pairwise information exchange. Based on the algorithm, all

cells are ensured to monotonically reduce their individual MSE values from the starting
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Figure 1. A multi-cell AirComp network, where, in each cell, an AP aims at aggregating data from its associated edge devices.

point corresponding to no cooperation, providing incentives for the cells to cooperative.

• Performance evaluation: Simulation results are presented to validate the derived analytical

results. It is shown that both the centralized and distributed implementation of coordinated

power control can substantially improve the AirComp performance, compared with the

conventional design without cooperation.

The remainder of the paper is organized as follows. Section II presents the system model of

the AirComp networks. Sections III and IV present the centralized and distributed power control

for characterizing the Pareto boundary of MSE region, respectively. Finally, Section V presents

the simulation results, followed by the conclusion in Section VI.

Notations: Bold lowercase and uppercase letters refer to column vectors and matrices, respec-

tively. E(·) denotes the expectation operation, and the superscript T represents the transpose

operation. For a complex number a, Re{a} denotes the real part and the superscript † denotes

the conjugate operation. For a vector a, ‖a‖2 denote the Euclidean norm. |A| denotes the

determinant of a squared matrix A.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A. System Model

We consider a multi-cell AirComp network with multiple APs as shown in Fig. 1, where

each AP acting as a fusion center aggregates sensing data (e.g., temperature, humidity) from

edge devices. In each cell, the aggregated signal received at the AP is exposed to the inter-cell

interference caused by uplink transmission of devices in neighboring cells. Let L , {1, 2, · · · , L}
denote the set of L APs, each dealing with a heterogeneous type of interested data, and Kℓ ,

{∑ℓ−1
i=1 Ki + 1, · · · ,∑ℓ−1

i=1 Ki + Kℓ} denote the set of Kℓ ≥ 0 edge devices collecting sensing

readings associated with AP ℓ ∈ L with K0 , 0 and Kℓ ∩ Kj = ∅, ∀ℓ 6= j, ℓ, j ∈ L. Let K
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denote the set of all K devices with K , K1 ∪K2 ∪ · · · ∪KL and K =
∑

ℓ∈L
Kℓ. Specifically, AP

ℓ needs to estimate the average of the type-ℓ data from the Kℓ devices in Kl. Let Xk denote the

sensing reading measured by device k ∈ Kℓ associated with AP ℓ ∈ L, which is assumed to be

independent and identically distributed (i.i.d.) over devices. The desired average of type-ℓ data

at AP ℓ, denoted by f̃ℓ(·), is given by

f̃ℓ =
1

Kℓ

(

∑

k∈Kℓ

Xk

)

, ∀ℓ ∈ L. (1)

To facilitate power control, Xk is normalized as sk , Ψℓ(Xk), ∀k ∈ Kℓ, ℓ ∈ L [17]. The linear

function Ψℓ(·) denotes the normalization operation to ensure that {sk}k∈Kℓ
have zero mean and

unit variance, assuming {Xk}k∈Kℓ
have identical means and variance. Upon receiving the average

of transmitted data {sk}k∈Kℓ
at each AP ℓ ∈ L, i.e.,

fℓ =
1

Kℓ

∑

k∈Kℓ

sk, ∀ℓ ∈ L, (2)

it can simply recover the desired f̃ℓ from fℓ via the de-normalization operation as follows:

f̃ℓ = Ψ−1
ℓ (fℓ), (3)

in which Ψ−1
ℓ (·) represents the inverse function of Ψℓ(·). Therefore, with the one-to-one mapping

between fℓ and f̃ℓ, we refer to fℓ as the target-function value in this paper.

To design adaptive power control, it is sufficient to consider a single realization of channels

and analyze the control policy as a function of the channel states. Let hk and gk,j, ∀k ∈ Kℓ denote

the channel coefficient of the data link between device k ∈ Kℓ and its associated AP ℓ ∈ L,

and that of the interference link between device k ∈ Kℓ and non-associated AP j ∈ L \ {ℓ},

respectively. Let bk denote the transmit coefficient at device k ∈ Kℓ, ℓ ∈ L for transmitting

information to AP ℓ ∈ L. Therefore, the received signal at each AP ℓ is

yℓ =
∑

k∈Kℓ

hkbksk+
∑

j∈L\{ℓ}

∑

i∈Kj

gi,ℓbisi + wℓ, ∀ℓ ∈ L, (4)

where wℓ ∼ CN (0, σ2) models channel noise at the AP ℓ. To invert the data link for signal

alignment at the AP, the transmit coefficient bk is set as bk =
√
pkh

†
k

|hk| , where pk ≥ 0 denotes the

transmit power at device k that is a control variable of our interest. Then (4) reduces to

yℓ =
∑

k∈Kℓ

|hk|
√
pksk+

∑

j∈L\{ℓ}

∑

i∈Kj

g̃i,ℓ
√
pisi + wℓ, ∀ℓ ∈ L, (5)

where g̃i,ℓ ,
gi,ℓh

†
i

|hi| , i ∈ Kj, j ∈ L \ {ℓ}, represents the effective interference channel to AP ℓ.

Following the existing approach (see, e.g. [17]), the signal yℓ is scaled at AP ℓ using a denoising
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factor denoted by ηℓ. The scaled signal is given as

f̂ℓ =
Re{yℓ}
Kℓ

√
ηℓ
. (6)

Furthermore, in practice, each device k ∈ Kℓ is constrained by a maximum power budget P̄k:

pk ≤ P̄k, ∀k ∈ Kℓ, ℓ ∈ L. (7)

B. Performance Metrics

We are interested in minimizing the distortion of the recovered average of the transmitted

data, with respect to (w.r.t.) the ground truth average fℓ, ∀ℓ ∈ L at each AP ℓ. The AirComp

error in cell ℓ is measured by the corresponding instantaneous MSE defined as

M̃SEℓ({pk}k∈K, ηℓ) = E

[

(f̂ℓ − fℓ)
2
]

=
1

K2
ℓ

E





(

Re{yℓ}√
ηℓ

−
∑

k∈Kℓ

sk

)2




=
1

K2
ℓ







∑

k∈Kℓ

(√
pk|hk|√
ηℓ

− 1

)2

+

σ2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2

ηℓ






, (8)

where the expectation is over the distribution of the transmitted signals {sk}k∈K and ĝk,ℓ =

Re{g̃k,ℓ}. For notational convenience, we use MSEℓ({pk}k∈K, ηℓ) = K2
ℓ M̃SEℓ({pk}k∈K, ηℓ) in

the sequel to represent the MSE without the constant term 1
K2

ℓ

in (8). It is observed from (8) that

the “intra-cell interference” is exploited to enable functional computation, while the inter-cell

interference interferes with the operation.

We define the MSE region for AirComp to be the set of MSE-tuples for all L APs that can

be simultaneously achievable for all L APs under a given set of individual maximum power

constraints for the devices, given as

• MSE Region :

M ,
⋃

0≤pk≤P̄k, ∀k∈K,
ηℓ≥0, ∀ℓ∈L

{

(Φ1,Φ2, · · · ,ΦL) : Φℓ ≥ MSEℓ({pk}k∈K, ηℓ), ∀ℓ ∈ L
}

. (9)

We are particularly interested in the operational points on the Pareto boundary (or, equivalently,

the Pareto optimal points) of the MSE region M, which corresponds to the lower-left boundary

of this MSE region. Note that in the Pareto boundary, we can only reduce a particular AP’s

MSE at a cost of increasing the MSE at others, as illustrated in Fig. 2.

III. CENTRALIZED POWER CONTROL VIA MSE-PROFILING

In this section, we focus on the scenario of centralized power control, when there exists a

centralized controller with global channel state information (CSI) to coordinate all APs on the
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Figure 2. Illustration of the Pareto boundary of MSE region based on the optimal coordinated power control.

sum MSE reduction. In such a scenario, we first introduce the so-called MSE-profiling technique

to characterize the Pareto boundary of MSE region. Based on this, an optimal algorithm for joint

power control and denoising factor design is presented to achieve the Pareto boundary.

A. Characterization of Pareto Boundary of MSE Region via MSE Profiling

Inspired by the “rate profile” approach proposed in [27], which is a widely used approach to

characterize the Pareto boundary of rate region in multiuser communication systems, we propose

to characterize the Pareto boundary of the MSE region by using the MSE-profiling technique as

presented in this subsection. Define a particular MSE-profiling vector as β = [β1, β2, · · · , βL].
Then the MSE-tuple on the Pareto boundary of the MSE region can be obtained by solving the

following optimization problem with a specified MSE-profiling vector β:

(P1) : min
{pk}k∈K,{ηℓ}ℓ∈L,ε≥0

ε

s.t. MSEℓ({pk}k∈K, ηℓ) ≤ βℓε, ∀ℓ ∈ L (10)

0 ≤ pk ≤ P̄k, ∀k ∈ K (11)

ηℓ ≥ 0, ∀ℓ ∈ L, (12)

where ε denotes the achievable sum MSE of the L APs, and βℓ represents the target ratio of the

ℓ-th AP’s achievable MSE to the sum MSE achieved by all the L APs, ε. In general, we assume

that βℓ ≥ 0, ∀ℓ ∈ L, and it holds
∑

ℓ∈L
βℓ = 1, in which a smaller βℓ means that AP ℓ has higher

priority in minimizing the MSE, MSEℓ({pk}k∈K, ηℓ). With a given β, we denote the optimal

value of problem (P1) by εopt1. Accordingly, the achieved MSE tuple βεopt1 corresponds to the

Pareto-optimal point, which is exactly the intersection point between a ray in the direction of β

and the Pareto boundary of the MSE region as geometrically illustrated in Fig. 2. Therefore, by
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varying the values of β, solving problem (P1) can yield the complete Pareto boundary for the

MSE region.

B. Algorithm for Centralized Power Control

In this subsection, we present the algorithm to optimally solve problem (P1) with a given β.

Note that problem (P1) is non-convex due to the coupling between power control {pk}k∈K and

denoising factors {ηℓ}ℓ∈L in constraint (10), and thus is hard to solve directly. Thereby, we first

consider the optimization of denoising factors {ηℓ}ℓ∈L with any given {pk}k∈K, and then find

the optimal {pk}k∈K to solve problem (P1) with the optimal {ηℓ}ℓ∈L.

First, with any given {pk}k∈K, problem (P1) can be decoupled into L subproblems each for

optimizing ηℓ to minimize the MSE at one AP ℓ. The ℓ-th subproblem is written as

min
ηℓ≥0

1

βℓ







∑

k∈Kℓ

(√
pk|hk|√
ηℓ

− 1

)2

+

σ2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2

ηℓ






. (13)

Let νℓ = 1/
√
ηℓ, then problem (13) can be transformed to a convex quadratic problem as

min
νℓ≥0

1

βℓ





∑

k∈Kℓ

(
√
pk|hk|νℓ − 1)2 +



σ2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2


 ν2ℓ



 . (14)

By setting the first derivative of the objective function in problem (14) to be zero, we can obtain

the optimal solution ν∗ℓ to problem (14). As a result, the optimal solution to problem (13) is

obtained as η∗ℓ = ( 1
ν∗
ℓ

)2, ∀ℓ ∈ L, given in the following proposition.

Proposition 1. With any given {pk}k∈K, the optimal ηℓ to problem (13) is given by

η∗ℓ =







∑

k∈Kℓ

pk|hk|2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2 + σ2

∑

k∈Kℓ

√
pk|hk|







2

, ∀ℓ ∈ L. (15)

Remark 1 (Interfence-and-Noise-Induced Error Reduction). It is observed from (15) that the op-

timal η∗ℓ is monotonically increasing w.r.t. the noise variance σ2, the received power
∑

k∈Kℓ

pk|hk|2,
and the interference power from other devices associated with other APs

∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2. On

the one hand, as σ2 increases, a large denoising factor η∗ℓ is needed for suppressing the dominant

noise-induced error. On the other hand, as the interference power increases, a relatively larger

η∗ℓ is in need for inter-cell interference suppression to enable reliable multi-cell AirComp.
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Next, we optimize {pk}k∈K and ε by substituting η∗ℓ in (15) into problem (P1). Thus, we have

min
{0≤pk≤P̄k},ε≥0

ε (16)

s.t. Kℓ −

(

∑

k∈Kℓ

√
pk|hk|

)2

(

∑

k∈Kℓ

pk|hk|2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2 + σ2

) ≤ βℓε, ∀ℓ ∈ L.

In the following, we show that problem (16) can be optimally solved by equivalently solving a

sequence of feasibility problems each for a fixed ε. Denoting ψℓ = Kℓ − βℓε, we define a series

of feasibility problems with given ε as

Find {pk} (17)

s.t. ψℓ





∑

k∈Kℓ

pk|hk|2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2 + σ2



 ≤
(

∑

k∈Kℓ

√
pk|hk|

)2

, ∀ℓ ∈ L (18)

0 ≤ pk ≤ P̄k, ∀k ∈ K. (19)

Recall that εopt1 denotes the optimal value achieved by problem (P1). With any given sum-

MSE target ε, if problem (17) is feasible, then we have εopt1 ≤ ε; otherwise, εopt1 > ε holds.

Therefore, we can solve problem (16) by equivalently solving the feasibility problems in (17)

with different ε together with a bisection search over ε.

Therefore, it remains to solve problem (17) with given ε. Notice that ψℓ must be nonnegative,

as the MSE ε is upper bounded by Kℓ. Hence, the constraints in (18) can be re-written as
√

√

√

√

√ψℓ





∑

k∈Kℓ

pk|hk|2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2 + σ2



 ≤
∑

k∈Kℓ

√
pk|hk|, ∀ℓ ∈ L. (20)

By introducing auxiliary variables qk =
√
pk, ∀k ∈ Kℓ, ℓ ∈ L, and letting qℓ ,

[

qKℓ−1+1, · · · , qKℓ

]T
,

hℓ =
[

|hKℓ−1+1|, · · · , |hKℓ
|
]T

, gj,ℓ =
[

|ĝ(Kj−1+1),ℓ|, · · · , |ĝKj ,ℓ|
]

, Hℓ = diag(hℓ)
T , and Gj,ℓ =

diag(gj,ℓ), ∀ℓ ∈ L, j ∈ L \ {ℓ}, we can transform the constraints in (20) or equivalently (18)

into a set of second order cone (SOC) constraints as:
√

ψℓ‖Σℓ‖2 ≤ qT
l hℓ, ∀ℓ ∈ L, (21)

where Σℓ = [qT
1 G1,ℓ, · · · , qT

ℓ Hℓ, · · · , qT
LGL,ℓ, σ]

T . Then, problem (17) is reformulated as the
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following SOCP, which can be solved efficiently by convex optimization tools, e.g., CVX [28].

Find {qk} (22)

s.t. 0 ≤ qk ≤ q̄k, ∀k ∈ K (23)

(21),

where q̄k ,
√

P̄k, ∀k ∈ Kℓ, ℓ ∈ L. Denote {q∗k}k∈K as the optimal solution to problem (22)

with any given sum-MSE target ε, then we have p∗k = (q∗k)
2, ∀k ∈ K as the optimal solution to

problem (17). Based on the solution to problem (17) together with the bisection search over ε,

the optimal εopt1 to problem (16) is thus obtained. With the obtained εopt1, we can accordingly

attain the globally optimal power control {popt1k }k∈K by solving problem (17), as well as the

global optimal denoising factor {ηopt1ℓ }ℓ∈L for problem (P1) based on Proposition 1. In summary,

the algorithm for optimally solving problem (P1) is presented in Algorithm 1.

Algorithm 1 for Optimally Solving Problem (P1)

a) Input: Maximum power budgets {P̄k}k∈K, MSE-profiling vector β.

b) Initialization: Let εlow = 0, εhigh = min
l∈L

Kℓ

βℓ

.

c) Repeat

1) Compute ε =
εlow+εhigh

2
, and then solve problem (17) with given ε and the optimal solution of {pk}k∈K being

{p∗k}k∈K.

2) If problem (17) is feasible, then set εhigh = ε; otherwise, set εlow = ε;

d) Until |εhigh − εlow| converges within a prescribed accuracy.

e) Set εopt1 =
εlow+εhigh

2
and p

opt1

k = p∗k,∀k ∈ Kℓ, ℓ ∈ L.

f) Compute {ηopt1

ℓ } based on (15) in Proposition 1.

g) Output: Obtain the optimal solution {popt1k }k∈K, {η
opt1

ℓ }ℓ∈L, and εopt1 to problem (P1).

IV. DISTRIBUTED POWER CONTROL BASED ON INTERFERENCE TEMPERATURE

The optimal centralized power control algorithm in the previous section requires the full

cooperation among all APs coordinated by a centralized controller, to achieve the Pareto boundary

of the MSE region. In this section, we consider a practical scenario where a centralized controller

is unavailable and study the distributed power control by exploiting the IT technique. It will be

proved that the IT-based distributed power control can actually provide an alternative method

for achieving the same Pareto boundary of the MSE region as the centralized counterpart.

A. Alternative Characterization of Pareto Boundary of MSE Region via IT control

Different from the MSE-profiling-based design, in this subsection, we provide an alternative

problem formulation based on the IT technique to characterize the Pareto Boundary of MSE
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region, which features (distributed) single-cell power control under the constraints of a set of

ITs to limit its interference to the neighboring cells. To this end, we first introduce a set of IT

levels denoted by Γℓ,j , which is the maximum interference power from all devices associated

with AP ℓ to AP j, ∀ℓ ∈ L, j ∈ L \ {ℓ}. For the purpose of illustration, we denote Γ as an

L(L − 1) × 1 vector composed of Γℓ,j’s, and Γℓ as a 2(L − 1) × 1 vector consisting of Γj,ℓ’s

and Γℓ,j’s, ∀j 6= ℓ, j ∈ L, for any given ℓ ∈ L. Accordingly, for each AP ℓ, we replace the

interference term
∑

i∈Kj

pi|ĝi,ℓ|2 in the MSE formula MSEℓ({pk}k∈K, ηℓ) by Γj,ℓ, and impose a set

of IT constraints each for one neighboring AP j, ∀j 6= ℓ. As a result, the MSE minimization is

implemented at each AP ℓ ∈ L individually, which is explicitly expressed as

(P2.1.ℓ) : min
{pk}k∈Kℓ

,ηℓ≥0

∑

k∈Kℓ

(√
pk|hk|√
ηℓ

− 1

)2

+

σ2 +
∑

j∈L\{ℓ}
Γj,ℓ

ηℓ

s.t.
∑

k∈Kℓ

pk|ĝk,j|2 ≤ Γℓ,j, ∀j ∈ L \ {ℓ} (24)

0 ≤ pk ≤ P̄k, ∀k ∈ Kℓ. (25)

For notational convenience, we denote Φℓ(Γℓ) as the optimal value of problem (P2.1.ℓ) with any

given Γℓ, and denote {popt2k }k∈Kℓ
and ηopt2ℓ as the optimal solution to problem (P2.1.ℓ).

Before solving problem (P2.1.ℓ), we show that via the IT control, the single-cell distributed

power control in problem (P2.1.ℓ) leads to a parametric characterization of the Pareto boundary

of MSE region w.r.t. Γ in the following proposition.

Proposition 2 (Pareto Optimality Based on Interference Temperature Control). For any MSE-

tuple (Φ1, · · · ,ΦL) on the Pareto boundary achieved by {p̃k}k∈K and {η̃ℓ}ℓ∈L, there exist a set

of corresponding IT levels Γ, with Γℓ,j =
∑

k∈Kℓ

p̃k|ĝk,j|2, ∀ℓ 6= j, ℓ, j ∈ L, such that Φℓ = Φℓ(Γℓ),

∀ℓ ∈ L, and {p̃k}k∈Kℓ
and η̃ℓ are the optimal solution to problem (P2.1.ℓ) for each cell ℓ ∈ L

with given Γ.

Proof: See Appendix A.

Based on Proposition 2, it follows that by solving problem (P2.1.ℓ) and exhausting Γ, we

can accordingly obtain the complete Pareto boundary of MSE region same as that have been

characterized from problem (P1) via MSE profiling. Notice that in the IT-based method, we

need to determine L(L−1) parameters in Γ in order to find each boundary point, while only K

parameters are needed for the MSE-profiling-based design in the previous section. Nevertheless,

the IT-based design enables distributed power control that is efficient for practical implementation

(as illustrated next), while the MSE-profiling-based design must be realized in a centralized
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manner. Furthermore, in terms of CSI requirement, the IT-based design requires each AP to

have access to only the CSI of channels in its own cell and the related IT constraints, without

requiring the availability of the global CSI of the whole network at a centralized controller.

B. Distributed Power Control under IT Constraints

In this subsection, the single-cell power control problem in (P2.1.ℓ) is solved under the IT

constraints. Note that problem (P2.1.ℓ) is non-convex w.r.t. {pk}k∈Kℓ
and ηℓ, due to the non-

convex term pk
ηℓ

, and thus hard to solve optimally in general. To overcome the difficulty, we define

νℓ = 1/ηℓ as the inverse of denoising factor, and introduce an auxiliary variable Qk =
√
pkνℓ

for each device k ∈ Kℓ, such that problem (P2.1.ℓ) w.r.t. {pk}k∈Kℓ
and ηℓ can be transformed

into the following equivalent problem w.r.t. {Qk}k∈Kℓ
and νℓ:

(P2.2.ℓ) : min
{Qk≥0}k∈Kℓ

,νℓ≥0

∑

k∈Kℓ

(|hk|Qk − 1)2 + νℓ



σ2 +
∑

j∈L\{ℓ}
Γj,ℓ





s.t.
∑

k∈Kℓ

Q2
k|ĝk,j|2 ≤ Γℓ,jνℓ, ∀j ∈ L \ {ℓ} (26)

Q2
k ≤ P̄kνℓ, ∀k ∈ Kℓ. (27)

It can be easily verified that problem (P2.2.ℓ) is jointly convex w.r.t. {Qk}k∈Kℓ
and νℓ, and thus

can be efficiently solved by the standard convex optimization methods such as the interior point

method [29]. Alternatively, for gaining more design insights, we use the Lagrange duality method

[29] to obtain a well-structured optimal solution on power control. We denote {Qopt2
k }k∈Kℓ

and

νopt2ℓ as the optimal solution to problem (P2.2.ℓ). Let λℓ,j ≥ 0 denote the dual variable associated

with the j-th IT constraint in (26) for problem (P2.2.ℓ). Then the partial Lagrangian of problem

(P2.2.ℓ) is given by

Lℓ

(

{Qk}k∈Kℓ
, νℓ, {λℓ,j}j∈L\{ℓ}

)

=
∑

k∈Kℓ



|hk|2+
∑

j∈L\{ℓ}
λℓ,j|ĝk,j|2



Q2
k−2

∑

k∈Kℓ

|hk|Qk+νℓ



σ2 +
∑

j∈L\{ℓ}
(Γj,ℓ −λℓ,jΓℓ,j)



+Kℓ.

Then the dual function of problem (P2.2.ℓ) is given by

gℓ({λℓ,j}j∈L\{ℓ}) = min
{Qk≥0},νℓ≥0

Lℓ

(

{Qk}k∈Kℓ
, νℓ, {λℓ,j}j∈L\{ℓ}

)

(28)

s.t. Q2
k ≤ P̄kνℓ, ∀k ∈ Kℓ. (29)

Proposition 3. In order for the dual function gℓ({λℓ,j}j∈L\{ℓ}) to be lower bounded, it must

hold that σ2 +
∑

j∈L\{ℓ}
(Γj,ℓ − λℓ,jΓℓ,j) ≥ 0.
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Proof: See Appendix B.

The corresponding dual problem of problem (P2.2.ℓ) is thus given by

max
{λℓ,j≥0}

gℓ({λℓ,j}j∈L\{ℓ}) (30)

s.t. σ2 +
∑

j∈L\{ℓ}
(Γj,ℓ − λℓ,jΓℓ,j) ≥ 0. (31)

Since problem (P2.2.ℓ) is convex and satisfies the Slater’s condition [29], strong duality holds

between problem (P2.2.ℓ) and its dual problem (30). As a result, we can solve problem (P2.2.ℓ)

by equivalently solving problem (30). For notational connivence, we denote the optimal solution

to the dual problem (30) as {λopt2ℓ,j }j∈L\{ℓ}, and that to problem (28) as {Q∗
k}k∈Kℓ

and ν∗ℓ with any

given {λℓ,j}. In the following, we first evaluate the dual function gℓ({λℓ,j}j∈L\{ℓ}) with any given

{λℓ,j}j∈L\{ℓ} by solving problem (28), and then obtain the optimal dual variable {λopt2ℓ,j }j∈L\{ℓ}
to maximize gℓ({λℓ,j}j∈L\{ℓ}).

1) Derivation of Dual Function: To obtain the dual function, we need to solve problem (28)

equivalently with any given {λℓ,j}j∈L\{ℓ}.
a) Optimizing {Qk}k∈Kℓ

with Given νℓ: First, with any given inverse denoising factor νℓ, prob-

lem (28) can be decomposed into the following Kℓ subproblems, each for optimizing Qk, k ∈ Kℓ

as

min
0≤Qk≤

√
P̄kνℓ

(|hk|Qk − 1)2 +
∑

j∈L\{ℓ}
λℓ,jQ

2
k|ĝk,j|2. (32)

By taking the first derivative of the objective function in problem (32), the optimal solution Q∗
k

is obtained as

Q∗
k = min







√

P̄kνℓ,
|hk|

|hk|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝk,j|2






. (33)

b) Optimizing νℓ with Obtained Optimal {Q∗
k}k∈Kℓ

: Next, we find the optimal inverse denoising

factor νl to problem (28) by substituting back the optimized {Q∗
k}k∈Kℓ

in (33). Before proceeding

and to facilitate the description, we define Bk as the policy indicator at device k ∈ Kℓ, given by

Bk ,

P̄k

(

|hk|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝk,j|2

)2

|hk|2
, ∀k ∈ Kℓ, (34)

and assume that B1 ≤ · · · ≤ Bk ≤ · · · ≤ BKℓ
without loss of generality. Notice that the value of

Bk determines the adopted power control policy (full power transmission or regularized channel

inversion) at each device k ∈ Kℓ as will be discussed later.
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Substituting Q∗
k’s in (33) into problem (28), we obtain the following optimization problem:

min
νℓ≥0

Fℓ(νℓ) ,
∑

k∈Kℓ

min









|hk|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝk,j|2



 P̄kνℓ,
|hk|2

|hk|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝk,j|2






+Kℓ

−2
∑

k∈Kℓ

min






|hk|
√

P̄kνℓ,
|hk|2

|hk|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝk,j|2






+νℓ



σ2+
∑

j∈L\{ℓ}
(Γj,ℓ−λℓ,jΓℓ,j)



 . (35)

Let ν∗ℓ denote the globally optimal solution to problem (35). To solve problem (35), we first need

to remove the “min” operation in the objective function to simplify the derivation by adopting a

divide-and-conquer approach. In particular, we divide the feasible set of problem (35), namely

{νℓ ≥ 0}, into Kℓ + 1 intervals, each given by

Fℓ,k =

{

νℓ | Bk ≤ 1

νℓ
≤ Bk+1

}

, ∀k ∈ {0} ∪ Kℓ, (36)

where B0 , 0 and BKℓ+1 → ∞ are defined for notational convenience. Then, we have

{νℓ ≥ 0} =
⋃

k∈{0}∪Kℓ

Fℓ,k. (37)

Given (37), solving problem (35) is equivalent to first solving Kℓ + 1 subproblems (each for

one interval Fℓ,k, given as follows, ∀k ∈ {0} ∪Kℓ), and then comparing their optimal values to

obtain the minimum one:

min
νℓ∈Fℓ,k

Fℓ,k(νℓ), (38)

where

Fℓ,k(νl) =





k
∑

i=1



|hi|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝi,j|2



 P̄i + σ2 +
∑

j∈L\{ℓ}
(Γj,ℓ − λℓ,jΓℓ,j)



 νℓ + k

− 2

(

k
∑

i=1

|hi|
√

P̄i

)

√
νℓ +

Kℓ
∑

n=k+1






1− |hn|2

|hn|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝn,j|2






, ∀k ∈ Kℓ \ {Kℓ}, (39)

Fℓ,0(νℓ) =

Kℓ
∑

i=1






1− |hi|2

|hi|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝi,j|2






+ νℓ



σ2 +
∑

j∈L\{ℓ}
(Γj,ℓ − λℓ,jΓℓ,j)



 , (40)

Fℓ,Kℓ
(νℓ)=





Kℓ
∑

i=1



|hi|2+
∑

j∈L\{ℓ}
λℓ,j|ĝi,j|2



P̄i+σ
2+
∑

j∈L\{ℓ}
(Γj,ℓ−λℓ,jΓℓ,j)



νℓ− 2

(

Kℓ
∑

i=1

|hi|
√

P̄i

)

√
νℓ+Kℓ.

(41)

Suppose that ν∗ℓ,k and Fℓ,k(ν
∗
ℓ,k) denote the optimal solution and optimal value to the k-th

subproblem in (38). By comparing the optimal values {Fℓ,k(ν
∗
ℓ,k)}, we can obtain the optimal

solution to problem (35), given in the following proposition.
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Proposition 4. The optimal ν∗ℓ for problem (35) is obtained as

ν∗ℓ = ν∗ℓ,k∗ =













∑k∗

i=1 |hi|
√

P̄i

∑k∗

i=1

(

|hi|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝi,j|2

)

P̄i + σ2 +
∑

j∈L\{ℓ}
(Γj,ℓ − λℓ,jΓℓ,j)













2

, (42)

where k∗ = argmink∈Kℓ
Fℓ,k(ν

∗
ℓ,k).

Proof: Please refer to Appendix C.

With ν∗ℓ at hands, {Q∗
k}k∈Kℓ

is derived accordingly. Therefore, the optimal solution to problem

(28) and also the dual function are obtained.

2) Obtaining Optimal Dual Variables to Maximize Dual Function: Next, it remains to search

{λopt2ℓ,j }j∈L\{ℓ} to maximize gℓ({λℓ,j}j∈L\{ℓ}) for solving dual problem (28). Since the dual

function gℓ({λℓ,j}j∈L\{ℓ}) is concave but non-differentiable in general, one can use subgradient

based methods such as the ellipsoid method [30], to obtain the optimal {λopt2ℓ,j } for dual problem

(30). For the objective function in (28), the subgradient w.r.t. λℓ,j is
∑

k∈Kℓ

Q2
k|ĝk,j|2 − Γℓ,jνℓ,

∀j ∈ L \ {ℓ}.

3) Optimal Solution to Problems (P2.2.ℓ) and (P2.1.ℓ): With obtained {λopt2ℓ,j }j∈L\{ℓ}, we

can obtain the optimal solutions to problem (P2.2.ℓ), i.e., {Qopt2
k }k∈Kl

and νopt2ℓ , according

to (33) and (42), respectively. After obtaining the optimal solution to problem (P2.2.ℓ), the

optimal solutions of {popt2k }k∈Kℓ
and ηopt2ℓ to problem (P2.1.ℓ) can be correspondingly found by

calculating popt2k =
(Qopt2

k
)2

ν
opt2

ℓ

and ηopt2ℓ = 1

ν
opt2

ℓ

, as summarized in Theorem 1, for which the proof

is omitted for brevity.

Theorem 1. The optimal power control solution to problem (P2.1.ℓ) is given by

popt2k =



















P̄k, k ∈ {1, · · · , kopt2},
|hk|2ηopt2ℓ

(

|hk|2+
∑

j∈L\{ℓ}

λ
opt2

ℓ,j
|ĝk,j|2

)2 , k ∈ {kopt2 + 1, · · · , Kℓ}, (43)

where the threshold is given as

ηopt2ℓ =













∑kopt2

i=1

(

|hi|2 +
∑

j∈L\{ℓ}
λopt2ℓ,j |ĝi,j|2

)

P̄i + σ2 +
∑

j∈L\{ℓ}

(

Γj,ℓ − λopt2ℓ,j Γℓ,j

)

∑kopt2

i=1 |hi|
√

P̄i













2

, (44)

with kopt2 = arg min
k∈Kℓ

Fℓ,k(ν
opt2
ℓ,k ).

Remark 2. From Theorem 1, it is observed that the optimal power control at each AP,
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derived from the MSE minimization problem under a set of IT constraints, exhibits a threshold-

based structure. In particular, if the policy indicator of each device k (i.e., a function of the

power budget and channel quality of both the direct and interfering links given as Bk in (34))

exceeds an optimized threshold (i.e., Bk ≥ ηopt2ℓ ), then device k will transmit with regularized

channel inversion, where the regularization can balance the tradeoff between the signal-magnitude

alignment and interference-induced error suppression; otherwise, device k will employ the full

power transmission. Similar observations were also made in [17] studying single-cell AirComp.

However, the policy indicator (also called quality indicator) defined in [17] is determined only

by the power budget and the channel quality of the direct link, while that in the current work

also accounts for the interference to other APs.

C. Efficient Algorithm for Optimizing IT Levels

The optimization of IT levels provides a mechanism for harnessing the cooperation gain on

top of the distributed power control. In this subsection, we present an efficient algorithm for

updating Γ in an iterative manner with only peer-to-peer signaling between APs. In each iteration,

a particular pair of two APs updates their IT levels, which needs to ensure that the achievable

MSE values at both APs are reduced or at least not increased, and the MSE values at other

APs are not affected. To successfully implement such a design, suppose that there is a reliable

backhaul link between each pair of APs, such that all different pairs of APs can communicate

with each other to exchange their mutual IT levels.

Consider the update of the mutual IT levels for a particular pair of APs. Recall that Proposition

2 shows that for any MSE tuple on the Pareto boundary, there must exist a Γ such that the optimal

solution to the corresponding problem (P2.1.ℓ)’s can lead to that MSE tuple. However, for any

given Γ, it is still unsure whether it can achieve a Pareto-optimal MSE tuple of AirComp

networks. Inspiring by the simple rule for updating the IT levels in conventional multi-cell

communication networks (instead of AirComp) [21], in the following proposition we present the

necessary condition on the IT levels in order for the resultant MSE tuple to be Pareto optimal.

Proposition 5. (Necessary Condition for Pareto Optimality) With any given Γ, if the optimal

MSE values Φℓ(Γℓ)’s in problem (P2.1.ℓ) (or equivalently (P2.2.ℓ)) are Pareto optimal, then for

any pair of APs ℓ and j, it must hold that |Dℓ,j| = 0, where Dℓ,j is a 2× 2 matrix defined as

Dℓ,j =





∂Φℓ(Γℓ)
∂Γℓ,j

∂Φℓ(Γℓ)
∂Γj,ℓ

∂Φj(Γj)

∂Γℓ,j

∂Φj(Γj)

∂Γj,ℓ



 . (45)
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Proof: See Appendix D.

Notice that one can obtain each component of Dℓ,j based on the primal and dual optimal

solution to problem (P2.2.ℓ) with any given Γℓ [21]. To be specific, we have

∂Φℓ(Γℓ)

∂Γℓ,j

= −λopt2ℓ,j νoptℓ , (46)

where {λopt2ℓ,j } is the optimal dual variables associated with the constraints in (26) of problem

(P2.2.ℓ) and νoptℓ is the optimal solution to problem (P2.2.ℓ). Furthermore, we have

∂Φℓ(Γℓ)

∂Γj,ℓ

= νoptℓ , (47)

and
∂Φj(Γj)

∂Γℓ,j
and

∂Φj(Γj)

∂Γj,ℓ
can be derived similarly.

Remark 3 (Tightness of IT Constraints). Combining Propositions 2 and 5, it is observed that,

for any particular Γ corresponding to a Pareto-optimal MSE tuple of the AirComp networks, it

must hold that
∑

k∈Kℓ

popt2k |ĝk,j|2 = Γℓ,j , ∀ℓ ∈ L, j ∈ L \ {ℓ}. This says that all the IT constraints

at APs must be tight in order to achieve the Pareto optimality.

Next, we present an efficient rule to update the IT level in a pairwise manner inspired by

Proposition 2 and [21]. Let Γ
′ denote the updated Γ, where all the elements in Γ remain

unchanged except [Γℓ,j,Γj,ℓ]
T that is replaced by

[Γ′
ℓ,j,Γ

′
j,ℓ]

T = [Γℓ,j,Γj,ℓ]
T + δℓ,j · dℓ,j, (48)

where δℓ,j is a sufficiently small step size, and dℓ,j is a vector satisfying Dℓ,jdℓ,j < 0 (component-

wise). For notational conciseness, let Dℓ,j =





a b

c d



, then one feasible dℓ,j is given as [21]

dℓ,j = sign (bc− ad) · [αℓ,jd− b, a− αℓ,jc]
T , (49)

where sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise; and αℓ,j ≥ 0 is a control parameter

determining the ratio between the MSE decrements for APs ℓ and j.

Remark 4. Provided a sufficiently small step size δℓ,j , we can set the control variable αℓ,j ≥ 1

(or αℓ,j ≥ 1) to ensure that a larger (smaller) MSE decrement is achieved by AP ℓ than that for

AP j. Therefore, via adjusting αℓ,j from zero to infinity, we can achieve different points on the

Pareto boundary with lower MSE at both APs ℓ and j than that at the starting point (e.g., under

the design without cooperation).

In summary, the detailed procedure for the distributed IT levels update is described as follows.

Step 1): APs ℓ and j, ℓ 6= j, exchange the current IT levels through the backhaul link;
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Step 2): APs ℓ and j solve problems (P2.2.ℓ) and (P2.2.j) individually to obtain the optimal

{Qk}k∈Kℓ
and νℓ (and accordingly the optimal {pk}k∈Kℓ

and ηℓ), as well as {Qk}k∈Kj
and

νj (and accordingly the optimal {pk}k∈Kj
and ηj), respectively;

Step 3): According to (46) and (47), APs ℓ and j, ℓ 6= j, individually compute the elements

a and b, as well as c and d in Dℓ,j , respectively;

Step 4): The two APs share the computed results with each other to construct Dℓ,j with

(45) and dℓ,j according to (49);

Step 5): Both APs ℓ and j, ℓ 6= j can update their IT levels {Γ′
ℓ,j} according to (48);

The above procedure is repeated among different AP pairs until each element of the matrix

|Dℓ,j|, ∀ℓ 6= j, is less than a sufficiently small threshold D0. In summary, the compete algorithm

for updating the IT levels in a decentralized manner is presented in Algorithm 2.

Algorithm 2 for Updating the IT Levels in a Decentralized Way

a) Initialization: Let Γℓ,j ≥ 0,∀ℓ 6= j, ℓ, j ∈ L.

b) Repeat

For ℓ = 1, 2, · · · , L, and j = 1, 2, · · · , L, j 6= ℓ

1) APs ℓ and j exchange the current IT levels, i.e., Γℓ,j and Γj,ℓ;

2) AP ℓ computes a and b in Dℓ,j with Γℓ according to (46) and (47), respectively;

3) Similarly, AP j computes c and d in Dℓ,j with Γj ;

4) AP ℓ sends the results a and b to AP j for constructing Dℓ,j , and similarly AP j sends its results c and d to

AP ℓ;

5) APs ℓ and j update Γℓ and Γj according to (48);

End For

c) Until |Dℓ,j | is lower than a predetermined threshold D0, i.e.,|Dℓ,j | ≤ D0, ∀ℓ 6= j.

Remark 5 (Incentivized Multi-Cell Cooperation). Essentially, the distributed algorithm reduces

the overall MSE achieved by all APs in a pairwise manner. In other words, in each iteration,

only a selected pair of APs updates their IT levels for their own MSE reduction without affecting

the MSE performance of other APs. In this way, the generated solution can approach the Pareto

boundary of the MSE region with the MSE reduced at all APs as compared to the starting point

(e.g., without cooperation). Thereby this provides incentives for APs (even with self-interests)

to participate in the cooperation for MSE reduction.
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V. SIMULATION RESULTS

In this section, we provide simulation results to show the MSE performance of the multi-

cell AirComp networks. In the simulation, we consider an AirComp network with two cells in

Figs. 3, 4, 5(a), and 6(a), where the APs are located with a distance of 40 meters (m) and the

horizontal coordinates of them are fixed as (0, 0) and (0, 40m), respectively. We also study the

three-cell case in Figs. 5(b) and 6(b), in which the third AP’s horizontal coordinate is fixed as

(20m, 40m). All the devices are randomly located in a circle with its associated AP located at

the center and a radius of 20 m. The direct and interference links follow Rayleigh fading channel

models, specified by hk = θ0 (Θ/Θ0)
−ζ h̄k and gk,j = θ0 (Θ/Θ0)

−ζ ḡk,j , where h̄k’s and ḡk,j’s are

modeled as i.i.d. circularly symmetric complex Gaussian (CSCG) random variables with zero

mean and unit variance, θ0 = −60 dB corresponds to the path loss at the reference distance

of Θ0 = 10 m, Θ denotes the distance from the transmitter to the receiver, and ζ = 3 is the

pathloss exponent. Furthermore, we define the per-device power budget by P , and set P̄k = P

for each device k ∈ Kℓ, ℓ ∈ L, and noise variance σ2 = −120 dBm.

A. Benchmarking Schemes

For performance comparison, we consider the following benchmark schemes without any

cooperation required among APs.

• Full power transmission: The full power transmission is applied for all devices by setting

pk = P̄k, ∀k ∈ K, in problem (P1). This scheme requires the most primitive control requiring

no CSI collection and signaling overhead.

• Power control by ignoring interference: Each AP optimizes the power allocation and de-

noising factor based on its own local CSI without any cooperation with other APs. Thus,

the MSE is minimized independently at each AP ignoring the inter-cell interference. This

leads to the single-cell AirComp power control problem for each cell ℓ ∈ L, presented as

in [17], given as

min
{0≤pk≤P̄k}k∈Kℓ

,ηℓ≥0

∑

k∈Kℓ

(√
pk|hk|√
ηℓ

− 1

)2

+
σ2

ηℓ
. (50)

• Power control with maximum interference: Each AP can access the local CSI and obtain

the estimated interference based on an initial stage with full power transmission at all

devices. However, the actual transmit power from the interference links is unknown. As a

result, each AP minimizes the worst-case MSE by treating the maximum interference power
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Figure 3. Effect of per-device power budget on the MSE performance of multi-cell AirComp networks.

∑

j∈L\{ℓ}

∑

k∈Kj

P̄ k|ĝk,ℓ|2 as noise. This leads to the following problem of the same form as that

in (50), which can thus be similarly solved:

min
{0≤pk≤P̄k}k∈Kℓ

,ηℓ≥0

∑

k∈Kℓ

(√
pk|hk|√
ηℓ

− 1

)2

+

σ2 +
∑

j∈L\{ℓ}

∑

i∈Kj

P̄i|ĝi,ℓ|2

ηℓ
. (51)

B. Performance Evaluation of the Proposed Cooperative Interference Management

We test the MSE performance by varying the per-device power budget in Fig. 3 with L = 2

and K1 = K2 = 20, where power budgets at different devices are set to be uniform. By

setting β1 = β2 = 0.5, the MSE metric is the common MSE between two cells. Firstly, the

proposed optimal centralized power control is observed to considerably outperform the other

three benchmark schemes within the considered regimes. At the low power budget regime (e.g.,

less than 0.1 W), both the power control schemes by ignoring interference and with maximum

interference can achieve close-to-optimal MSE performance, and all of the three schemes with

power control outperform the full-power-transmission scheme. This implies the effectiveness of

power control optimization in suppressing the noise-induced error that is dominant for the MSE

in the low power budget regime. As the power budget increases, the performance gap between

the optimal centralized power control and the power-control-by-ignoring-interference becomes

large, so as that between the power control schemes with maximum interference and by ignoring

interference. This is due to the fact that the cooperative interference management is helpful in

MSE reduction for AirComp networks, especially when the inter-cell interference becomes the

main contributor for the MSE at the high power budget regime. Besides, it is observed that
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Figure 4. Effect of the number of devices in each cell on the MSE performance of multi-cell AirComp networks.

the curves for both the optimal centralized power control and the power-control-with-maximum-

interference schemes become saturated at the high power budget regime, meaning that the MSE

performance is limited by the inter-cell interference and cannot be improved further by simply

increasing the transmit power.

The effect of device population on the MSE performance is illustrated in Fig. 4 with β1 =

β2 = 0.5 and K1 = K2 = K, where the power budgets at all devices are identically set

to be 1 W. Firstly, it is observed that the MSE achieved by all the schemes decreases as K

increases, due to the fact that the AP receivers can aggregate more data for averaging. Secondly,

the performance gain achieved by the optimal power control over the benchmark schemes is

significant throughout the whole regime of K, and especially prominent at the small K regime.

The full-power-transmission scheme is observed to be the worst in MSE reduction among the

others, showing the necessity of power control. Furthermore, it is worth noting that, for all

schemes with power control, the MSE performance is saturated at the large K regime. This is

because that as K increases, the inter-cell interference becomes the bottleneck of MSE reduction.

Figs. 5(a) and 5(b) show the MSE region of AirComp networks with L = 2 and L = 3,

respectively, where we set P = 1 W, Kℓ = 20, ℓ ∈ L, and α1,2 = α1,3 = α2,3 = α. It is observed

that all the benchmark schemes lie within the Pareto boundary that is obtained by the centralized

power control by varying the MSE-profiling vector β. The distributed power control based on IT

is observed to achieve the Pareto boundary. Furthermore, through a comparison between the two

cases in distributed power control with α = 1 and α = 10 under the two-cell AirComp network

shown in Fig. 5(a), it is observed that a larger value of α bias the MSE minimization towards cell
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Figure 5. MSE region of multi-cell AirComp networks.

1 which is consistent with Remark 4. Besides, the power-control-by-ignoring-interference scheme

is observed to outperform the full-power-transmission scheme (closer to Pareto boundary), while

the power-control-by-maximum-interference scheme outperforms the optimal-power-control-by-

ignoring-interference scheme. The former observation reveals the benefit of power control in

minimizing the MSE performance of AirComp, while the later shows the effectiveness of the

interference management. Under the decentralized design, all the cells’ MSE have reduced as

compared to the case without cooperation, which is consistent with Remark 5.
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Figure 6. Convergence analysis of the proposed distributed IT-based power control.

Furthermore, the convergence performance of the pairwise decentralized algorithm in one

channel realization is depicted for the setting of α = 1 and P = 1 W, in Figs. 6(a) and

6(b), corresponding to the two-cell and three-cell cases with each cell including Kℓ = 20

devices, respectively. The MSE values at all APs are monotonically non-increasing over time,
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thus validating Remark 5 again in Section IV-C, and showing the effectiveness of our design in

practical decentralized implementation.

VI. CONCLUSION

In this work, we considered multi-cell AirComp for which the power control was optimized

over multiple cells to regulate the effect of inter-cell interference on AirComp performance.

Firstly, we considered the scenario of centralized multi-cell power control, based on which

we characterized the Pareto boundary of the achievable multi-cell MSE region for AirComp

networks. This is implemented by minimizing the overall MSE of all cells subject to a set of

MSE-profiling constraints, which is solved via solving a sequence of convex SOCP feasibility

problems together with a bisection search. Next, we considered the scenario of distributed power

control without a centralized controller, for which an alternative IT-based method was proposed to

characterize the same MSE Pareto boundary, and enable a decentralized power control algorithm.

In the decentralized design, each AP only needs to minimize its own MSE under a set of IT

constraints, while different cells iteratively update the IT levels based on pairwise information

exchange. Remarkable performance gain in terms of AirComp accuracy was observed in the

comparison with other designs without cooperation.

This work opens up several directions for further investigation on multi-cell AirComp. One

direction is to develop multi-cell MIMO AirComp techniques for enabling coexisting vector-

value function computation over multi-dimension data, where the key challenge lies in the joint

design of multi-cell cooperative beamforming and power control. Another interesting direction

is to explore the cluster-based hierarchical design for large-scale AirComp, which needs to de-

termine the optimal clustering policy for the interference suppression and computation distortion

reduction.

APPENDIX

A. Proof of Proposition 2

Suppose that the given {pk}k∈Kℓ
and ηℓ can achieve the Pareto-optimal MSE tuple, and then

we have the following MSE for each AP ℓ ∈ L:

Φℓ =
∑

k∈Kℓ

(√
pk|hk|√
ηℓ

− 1

)2

+

σ2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2

ηℓ
, ∀ℓ ∈ L. (52)
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With Γj,ℓ =
∑

i∈Kj

pi|ĝi,ℓ|2, ∀ℓ ∈ L, j ∈ L \ {ℓ}, Φℓ in (52) can be rewritten as

Φℓ =
∑

k∈Kℓ

(√
pk|hk|√
ηℓ

− 1

)2

+

σ2 +
∑

j∈L\{ℓ}
Γj,ℓ

ηℓ
, ∀ℓ ∈ L. (53)

Note that (53) is derived similarly as the objective function of problem (P2.1.ℓ) for each AP

ℓ ∈ L. With Γℓ,j =
∑

k∈Kℓ

pk|ĝk,j|2, ∀j ∈ L\ {ℓ}, it is observed that {pk}k∈Kℓ
and ηℓ in (9) satisfy

all the constraints in problem (P2.1.ℓ). Therefore, {pk}k∈Kℓ
and ηℓ must be the feasible solution

for problem (P2.1.ℓ).

Hence, it remains to prove that {pk}k∈Kℓ
and ηℓ are exactly the optimal solution of problem

(P2.1.ℓ) for each AP ℓ, where the achievable MSE accordingly is equal to the optimal value

of problem (P2.1.ℓ), i.e., Φℓ = Φℓ(Γℓ). We prove this result by contradiction. Suppose that the

optimal solution to problem (P2.1.ℓ) in AP ℓ is denoted by {p⋆k}k∈Kℓ
and η⋆ℓ which are unequal

to {pk}k∈Kℓ
and ηℓ. Then, the new MSE achieved at AP ℓ denoted by φℓ is

φℓ =
∑

k∈Kℓ

(

√

p⋆k|hk|
√

η⋆ℓ
− 1

)2

+

σ2 +
∑

j∈L\{ℓ}
Γj,ℓ

η⋆ℓ

=
∑

k∈Kℓ

(

√

p⋆k|hk|
√

η⋆ℓ
− 1

)2

+

σ2 +
∑

j∈L\{ℓ}

∑

i∈Kj

pi|ĝi,ℓ|2

η⋆ℓ
< Φℓ. (54)

As
∑

k∈Kℓ

p⋆k|ĝk,j|2 ≤ Γℓ,j , we further have the achievable MSE at any AP j 6= ℓ as

φj =
∑

k∈Kj

(√
pk|hk|√
ηj

− 1

)2

+

σ2 +
∑

i∈L\{j,ℓ}

∑

k∈Ki

pk|ĝk,j|2 +
∑

k∈Kℓ

p⋆k|ĝk,j|2

ηj

≤
∑

k∈Kj

(√
pk|hk|√
ηj

− 1

)2

+

σ2 +
∑

i∈L\{j}
Γi,j

ηj

=
∑

k∈Kj

(√
pk|hk|√
ηj

− 1

)2

+

σ2 +
∑

i∈L\{j}

∑

k∈Ki

pk|ĝk,j|2

ηj
= Φj . (55)

Note that the MSE-tuple (φ1, · · · , φL) achieved by {{pk}k∈K1
, η1}, · · · , {{p⋆k}k∈Kℓ

, η⋆ℓ} , · · · ,
{{pk}k∈Kℓ

, ηℓ}, satisfies φℓ < Φℓ and φj ≤ Φj , ∀j 6= ℓ, which contradicts the fact that

(Φ1, · · · ,ΦL) is Pareto optimal. Thus the presumption cannot be true, and it holds that {pk}k∈Kℓ

and ηℓ are the optimal solution to problem (P2.1.ℓ) for each AP ℓ, i.e. pk = p⋆k, ∀k ∈ Kℓ

and ηℓ = η⋆ℓ , and the achievable MSE is equal to the optimal value of problem (P2.1.ℓ), i.e.,

Φℓ = Φℓ(Γℓ), ∀ℓ ∈ L.
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B. Proof of Proposition 3

Suppose σ2+
∑

j∈L\{ℓ}
(Γj,ℓ − λℓ,jΓℓ,j) < 0. It thus follows that Lℓ

(

{Qk}k∈Kℓ
, νℓ, {λℓ,j}j∈L\{ℓ}

)

becomes negative infinity when νℓ → +∞. This implies that the dual function gℓ({λℓ,j}j∈L\{ℓ})
is unbounded from below in this case. Hence, it requires that σ2 +

∑

j∈L\{ℓ}
(Γj,ℓ − λℓ,jΓℓ,j) ≥ 0

to guarantee gℓ({λℓ,j}j∈L\{ℓ}) to be bounded from below.

C. Proof of Proposition 4

To proceed with solving problem (35), we alternatively solve each subproblem in (38) and

then compare their optimal values {Fℓ,k(ν
∗
ℓ,k)} in (38). First, we have the following lemma.

Lemma 1. The optimal solution ν∗ℓ,0 to problem (38) when νℓ ∈ Fℓ,0 is thus given by

ν∗ℓ,0 = max

[

γ0,
1

B1

]

. (56)

where γ0 = max
j∈L\{ℓ}

1
Γℓ,j

∑

k∈Kℓ

|hk|2|ĝk,j |2
(

|hk|2+
∑

j∈L\{ℓ}

λℓ,j |ĝk,j|2
)2 .

Proof: See Appendix E.

Combining with IT constraints in (26), it is worth to point out that if γ0 ≥ 1
B1

, then the IT

levels are unreasonably low, or the power budgets are unreasonably high, for which case all

the power constraints become inactive. This case does not make sense in practice and thus is

excluded in the sequence discussion, and we hence assume the case with practical power budgets

and the IT levels satisfying γ0 ≤ 1
B1

.

Furthermore, for any k ∈ K, the function Fk(νℓ) is shown to be a unimodal function that first

deceases in [0, ν̃k] and then increases in [ν̃k,∞), where ν̃k is the stationary point given by

ν̃k =













∑k

i=1 |hi|
√

P̄i

∑k
i=1

(

|hi|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝi,j|2

)

P̄i + σ2 +
∑

j∈L\{ℓ}
(Γj,ℓ − λℓ,jΓℓ,j)













2

.

Thus, the optimal solution ν∗ℓ,k to problem (38) when νℓ ∈ Fk, ∀k ∈ Kℓ is thus given in the

following lemma.

Lemma 2. The optimal solution ν∗ℓ,k to the k-th subproblem in (38) is given by

ν∗ℓ,k = max

(

1

Bk+1
, min

(

ν̃k,
1

Bk

))

= ν̃k. (57)

Proof: Similarly as in [17], it can be shown that 1/Bk ≤ ν̃k ≤ 1/Bk+1. This lemma thus

follows directly.



28

Therefore, with Lemma 2 and by comparing the optimal values {Fℓ,k(ν
∗
ℓ,k)} among all sub-

problems, we can obtain the optimal solution to problem (35). This thus completes the proof.

D. Proof of Proposition 5

Based on Proposition 2, the optimal values of the problems in (P2.1.ℓ) for all APs, {Φℓ(Γℓ)},

achieved by the optimal solution denoted by {pk}k∈Kℓ
and {ηℓ}ℓ∈L, correspond to a Pareto-

optimal MSE-tuple, denoted by (Φ1, · · · ,ΦL), given as

Φℓ(Γℓ) = Φℓ =
∑

k∈Kℓ

(√
pk|hk|√
ηℓ

− 1

)2

+

σ2 +
∑

j∈L\{ℓ}
Γj,ℓ

ηℓ
, ∀ℓ ∈ L. (58)

Then we prove Proposition 5 by contradiction. Suppose that |Dℓ,j| 6= 0. With updated Γ′
ℓ,j and

Γ′
j,ℓ based on the updating rule of Γ

′ in (48), the optimal solutions to problems (P2.2.ℓ) and

(P2.2.j) for cells ℓ and j are changed to be {{p⋆k}k∈Kℓ
, η⋆ℓ} and {{p⋆k}k∈Kj

, η⋆j}, respectively,

while for those to problems (P2.2.i) for cell i 6= ℓ, j, the optimal solutions remain unchanged.

Accordingly, the new achievable MSE for any AP ∀i 6= ℓ, j, is given by

φi =
∑

k∈Ki

(√
pk|hk|√
ηi

− 1

)2

+

σ2 +
∑

ı̄∈L\{ℓ,j,i}

∑

k∈Kı̄

pk|ĝk,i|2 +
∑

k∈Kℓ

p⋆k|ĝk,i|2 +
∑

k∈Kj

p⋆k|ĝk,i|2

ηi

=
∑

k∈Ki

(√
pk|hk|√
ηi

− 1

)2

+

σ2 +
∑

ı̄∈L\{ℓ,j,i}
Γı̄,i +

∑

k∈Kℓ

p⋆k|ĝk,i|2 +
∑

k∈Kj

p⋆k|ĝk,i|2

ηi
≤ Φi, (59)

in which (59) holds due to the fact that
∑

k∈Kℓ

p⋆k|ĝk,i|2 ≤ Γℓ,i and
∑

k∈Kj

p⋆k|ĝk,i|2 ≤ Γj,i. Then based

on
∑

k∈Kj

p⋆k|ĝk,ℓ|2 ≤ Γ′
j,ℓ, we have the updated achievable MSE for AP ℓ as

φℓ =
∑

k∈Kℓ

(

√

p⋆k|hk|
√

η⋆ℓ
− 1

)2

+

σ2 +
∑

n∈L\{ℓ,j}

∑

k∈Kn

pk|ĝk,ℓ|2 +
∑

k∈Kj

p⋆k|ĝk,ℓ|2

η⋆ℓ

=
∑

k∈Kℓ

(

√

p⋆k|hk|
√

η⋆ℓ
− 1

)2

+

σ2 +
∑

n∈L\{ℓ,j}
Γn,ℓ +

∑

k∈Kj

p⋆k|ĝk,ℓ|2

η⋆ℓ
≤ Φℓ(Γ

′
ℓ). (60)

Similarly, it also holds that φj ≤ Φj(Γ
′
j) due to

∑

k∈Kℓ

p⋆k|ĝk,j|2 ≤ Γ′
ℓ,j . Furthermore, based on (48)

and Dℓ,jdℓ,j < 0, it follows that:




φℓ

φj



 ≤





Φℓ(Γ
′
ℓ)

Φj(Γ
′
j)




∼=





Φℓ(Γℓ)

Φj(Γj)



+ δℓ,j ·Dℓ,jdℓ,j <





Φℓ

Φj



 .

Note that the achieved MSE-tuple (φ1, · · · , φL) based on the updated Γ
′, satisfies φℓ < Φℓ,

φj ≤ Φj , and φi ≤ Φi, ∀i 6= ℓ, j, which contradicts the fact that (Φ1, · · · ,ΦL) is Pareto-optimal.

Thus the presumption is not true, and this proof is thus completed.
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E. Proof of Lemma 1

Consider the case with νℓ ∈ Fℓ,0, for which Fℓ,0(νℓ,0) is linear and monotonically increasing

w.r.t. νℓ,0 based on Proposition 3. In this case, we have νℓ,0 ≥ 1
B1

accordingly. Furthermore, with

the IT constraint in (26), there exists a possible solution in which only the IT constraint is tight

instead of the power budget constraints. Thus, we correspondingly have the following potential

constraints:

νℓ,0 ≥
∑

k∈Kℓ

|hk|2|ĝk,j|2
(

|hk|2 +
∑

j∈L\{ℓ}
λℓ,j|ĝk,j|2

)2

Γℓ,j

, ∀j ∈ L \ {ℓ}. (61)

Therefore, it is evident that the optimal solution to problem (38) when νℓ ∈ Fℓ,0 can be given

in Lemma 1. This completes the proof.
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