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Based on Optimal Channel Puncturing
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Abstract

Channel puncturing transforms a multiple-input multiple-output (MIMO) channel into a sparse

lower-triangular form using the so-called WL decomposition scheme in order to reduce tree-based

detection complexity. We propose computationally efficient soft-output detectors based on two forms

of channel puncturing: augmented and two-sided. The augmented WL detector (AWLD) employs a

punctured channel derived by triangularizing the true channel in augmented form, followed by left-

sided Gaussian elimination. The two-sided WL detector (dubbed WLZ) employs right-sided reduction

and left-sided elimination to puncture the channel. We prove that augmented channel puncturing is

optimal in maximizing the lower-bound on the achievable information rate (AIR) based on a new

mismatched detection model. We show that the AWLD decomposes into an MMSE prefilter and channel

gain compensation stages, followed by a regular WL detector (WLD) that computes least-squares soft-

decision estimates. Similarly, WLZ decomposes into a pre-processing reduction step followed by WLD.

AWLD attains the same performance as the existing AIR-based partial marginalization (PM) detector,

but with less computational complexity. We empirically show that WLZ attains the best complexity-

performance tradeoff among tree-based detectors.

Index Terms
MIMO detectors, MMSE, achievable information rate, partial marginalization, channel puncturing

I. INTRODUCTION

Modern communication systems rely on multiple-input multiple-output (MIMO) antenna con-

figurations with large dimensions to support the aggressive targets set on spectral efficiencies.

However, achieving the ideal performance promised by MIMO technology requires detectors
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whose complexity grows exponentially in MIMO dimensions. To support low-latency commu-

nications while providing high throughput rates, computationally efficient designs of MIMO

detectors that do not incur substantial performance loss are essential.

MIMO detection is a classical problem in communications, and the literature is rich with

schemes that provide various performance-complexity tradeoffs in the design space (e.g., [2],

[3]). The benchmark for performance in the sense of generating ‘good’ soft decisions on the

transmitted bits is maximum likelihood (ML) detection, which provides optimal performance

but with exponential complexity. Alternatively, the benchmarks for low-complexity detection are

the zero-forcing (ZF) and minimum mean-square error (MMSE) schemes, which decouple the

transmit layers through linear filtering to generate log-likelihood ratios (LLRs) for each symbol

bit in parallel, or sequentially with decision feedback.

Tree-search based detectors such as sphere decoding [4], list decoding [5], and other variants

map the detection problem into a search problem for the closest signal vector. They find the

closest vector in N -dimensional signal space to the received vector by forming a search-tree

and recursively enumerating symbols across all layers from the parent down to the leaves. Such

schemes suffer from non-deterministic search-time complexity (see [6]–[8]). To simplify the

search process, fixed-complexity schemes such as [9]–[11] limit the search steps to a set of

survivor paths. While these schemes are efficient in finding the ML path, they do not necessarily

find all the best competing paths that are needed to generate soft decisions for each symbol bit.

An alternative concept is partial marginalization (PM) [12], [13], which exhaustively enumer-

ates only over a small subset of ν carefully chosen parent layers out of N , and approximately

marginalizes over the other N−ν child layers using ZF with decision-feedback (ZF-DF) estimates.

While the bit LLRs for parent symbols are easy to compute, computing bit LLRs for child

symbols is complicated by three facts: 1) for each bit hypothesis of the child symbols, a separate

ZF-DF process is needed, which is compute-intensive for large N ; 2) the LLRs are prone to error

propagation for large N due to decision feedback; 3) the quality of the LLRs is very sensitive to

the choice of the ν parent layers. In [14], the closely related layered orthogonal lattice detector

(LORD) scheme mitigates the first drawback by operating with ν= 1 and computing bit LLRs

for the parent symbol only; N independent searches using N trees are performed to compute

the bit LLRs for all symbols by choosing a new symbol as a parent in each tree.
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To overcome the second drawback, the so-called WL detection (WLD) 1 scheme [15] first

applies a (non-unitary) filtering matrix W to transform the channel into sparse lower-triangular

form L. It then enumerates across one parent layer and detects symbols in all other child layers

in parallel via least-squares (LS) estimates without decision feedback. The channel matrix is

“punctured” to have a special structure that breaks the connections among child nodes, while

retaining connections only to the parents. Essentially, all child nodes become leaves, and hence,

marginalization is exact in the LS sense. An immediate consequence is that the LS estimates

of the counter hypotheses of each leaf symbol bit can be easily derived from the LS estimate

itself [16]. A closely related concept is the achievable information rate (AIR)-PM detector [17],

[18], which derives a “shortened” channel similar to the WLD’s punctured structure using

information-theoretic optimizations. Other optimal linear detectors are presented in [19].

In this paper, we show that the concepts of channel puncturing of [15] and AIR-PM-based

channel shortening of [18] are related. After introducing the system model and reviewing tree-

based detection in Sec. II, we present a matrix characterization of one-sided and two-sided

channel puncturing based on Gaussian elimination and lattice reduction in Sec. III. In Sec. IV,

we present the WLD detection model and derive a lower bound on the achievable rate of the

WLD detector, as well as a bound on the quality of its hard decision estimate, and show that these

bounds approach capacity and the hard ML decision as the puncturing order increases. In Sec. V,

we propose a new augmented WLD (AWLD) detection scheme, in which an augmented channel,

rather than the true channel, is punctured. We derive a lower bound on the AIR of the AWLD

detector and characterize its gap to capacity. In Sec. VI, we propose an alternate mismatched

detection model compared to [17], and use it to derive optimal punctured channels that maximize

the AIR. We prove that the AWLD detector is optimal under this model, and is in fact equivalent

to the AIR-PM detector of [18]. The AWLD detector decomposes into an MMSE prefilter and

channel gain compensation stages, followed by a WLD detector. Hence, AIR-optimal channel

puncturing can be achieved using simple QL decomposition followed by Gaussian elimination.

In Secs. VII-VIII, we present computationally efficient matrix decomposition, puncturing, and

MIMO detection algorithms based on the proposed schemes. Empirical simulation results are

presented in Sec. IX. Finally, Sec. X concludes the paper. The supplementary material includes

1The WL decomposition is defined to be a decomposition of the matrix H as WH=L, where W is a (non-unitary) filtering
matrix and L is a sparse lower-triangular matrix. A detector that applies WL decomposition to the channel matrix H and detects
symbols based on L is called a WL detector.
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proofs, pseudo-codes of all proposed algorithms, and enlarged figures.

Notation: i=
√
−1; Z,R, C,G=Z+iZ are the sets of integers, reals, complex numbers, and

Gaussian integers; a=[ak] column vector with elements ak; A=[akj] matrix with elements akj;

[A]k=[ak1, · · · , akk]; [A]k̄=[ak1, · · · , ak,k−1]; [A]1̄ =∅; 0M×N =M×N zero matrix; IN =N×N

identity matrix; ek=kth column of I; E[·]=expectation; CN (m,C) denotes circularly-symmetric

complex Gaussian distribution with mean m and covariance matrix C; (·)T = transpose; (·)† =

Hermitian transpose; R{·} , I{·} = real, imaginary part; diag(·) = matrix diagonal; det (·) =

determinant; ||·||=L2 norm; ||·||F = Frobenius norm; A1/2 = matrix square-root; A�B denotes

(A−B) positive semidefinite; ∼= denotes equality up to an additive constant.

II. SYSTEM MODEL AND LAYERED DETECTION

Let H∈CM×N model a MIMO communication channel with N transmit antennas and M≥N

receive antennas. The transmit signal x = [xn] ∈ XN×1 is composed of N symbols xn drawn

from constellation X with average energy E[xnx
†
n] =Es and size |X |=Q. Each symbol xn is

mapped from B=log2 Q bits xn,b∈{±1} as xn=(xn,b)
B

b=1. Assuming H is perfectly known only

at the receiver, the receive signal y∈CM×1 is modeled using the input-output relation

y = Hx + n, (1)

where the noise term n ∼ CN (0M×1, N0IM) and N0 is the noise variance. The conditional

probability p(y|x) and metric µ(y|x) according to (1) are

p(y|x) = 1
(πN0)M

exp (µ(y|x)), (2)

µ(y|x) = − 1
N0
||y−Hx||2 (3)

= − 1
N0

(y†y−2R{y†Hx}+x†H
†
Hx) (4)

∼= 2R{y†Hx}−x†H
†
Hx. (5)

Using the observation y and assuming no prior information on x (i.e., P (xn,b=+1)=P (xn,b=

−1)= 1
2
), the ML detector generates the LLR of the bth bit xn,b of the nth symbol xn in x as

L(xn,b|y) = ln

∑
x:xn,b=+1 exp (µ(y|x))∑
x:xn,b=−1 exp (µ(y|x))

. (6)

To avoid computing sums of exponentials in (6), the ML detector with Max-Log approximation

(MLM) recursively applies the Jacobian approximation ln(ec + ed) ≈ max(c, d) [20] to the

exponentials in (6), and approximates L(xn,b|y) by Λ(xn,b|y) as

Λ(xn,b|y) = max
x:xn,b=+1

µ(y|x)− max
x:xn,b=−1

µ(y|x). (7)
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In the absence of any structure on H or any further simplifying assumptions, computing the

sums in (6) or the max terms in (7) have exponential complexities in N .

A. Tree-based Layered Detection

Detecting symbols and generating bit LLRs can be done efficiently on a tree. By triangularizing

H and associating symbols with edges and partial Euclidean distances with nodes, symbols can

be detected by searching the tree for a path from the root to a leaf with minimal weight.

Let H = QL denote the thin QL decomposition (QLD) [21] of H, where Q ∈ CM×N has

orthonormal columns (Q†Q=I) and L∈CN×N is a square lower-triangular matrix with real and

positive diagonal elements. We write y−Hx in terms of Q,L as y−Hx=Q(Q†y−Lx)+(I−QQ†)y.

Since Q ⊥ (I−QQ†), i.e., Q†(I−QQ†) = 0, the squared-distance in (3) can be expanded as

||y−Hx||2 = ||Q(Q†y−Lx)||2 +||(I−QQ†)y||2. Since Q†Q= I, then Q does not scale Euclidean

distances. Also the term ||(I−QQ†)y||2 is independent of x and hence is irrelevant for detection.

Thus, it suffices to work with the quantity ||ỹ−Lx||2 rather than ||y−Hx||2 in (3), with ỹ=Q†y.

With proper layer ordering and partial marginalization, the tree can be searched by enumerating

only over a subset of ν parent layers, rather than all the layers. Let x1 = [x1, · · · , xν ]T and

x2 = [xν+1, · · · , xN ]T denote the parent and child symbol vectors, respectively. Let ỹ1, ỹ2 be

similarly defined from ỹ. Define the variables wk and zk as

wk = ỹk −
min{k,ν}∑
j=1

lkjxj, zk = wk −
k−1∑
j=ν+1

lkjxj, (8)

for k= 1, · · · , N . Note that wk depends only on x1, while zk depends on both x1 and x2. The

weight of a parent node (1≤k≤ν) and a child node (ν+1≤k≤N ) are given by

e1(wk) = − 1
N0
|wk|2 , 1 ≤ k ≤ ν, (9)

e2(zk, xk) = − 1
N0
|zk − lkkxk|2 , ν + 1 ≤ k ≤ N. (10)

The weight of a path associated with symbols x=[x1; x2] is

µ(ỹ|x) =
ν∑
k=1

e1(wk) +
N∑

k=ν+1

e2(zk, xk) , µ1(ỹ1|x1) + µ2(ỹ2|x1,x2). (11)

Maximizing µ(ỹ|x) over all x such that xn,b is s=±1, for b=1, · · · , B, n=1, · · · , N , can be

expressed using (11) as

max
x:xn,b=s

1≤n≤ν

µ(ỹ|x) = max
x1:

xn,b=s

{
µ1(ỹ1|x1) + max

x2

µ2(ỹ2|x1,x2)
}
, (12)

max
x:xn,b=s

ν+1≤n≤N

µ(ỹ|x) = max
x1

{
µ1(ỹ1|x1) + max

x2:
xn,b=s

µ2(ỹ2|x1,x2)
}
. (13)
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The inner max operations in (12)-(13) can be approximated by successively solving using ZF-

DF for symbols in x2 having x1 as parents. Let bzeX and bzeX (s)
b

denote slicing to the closest

symbol to z in X and X (s)

b , {xn ∈ X : xn,b = s}, respectively. When the hypothesis is for a

parent symbol bit (1≤n≤ν), ZF-DF on child symbols proceeds as follows:

k=ν+1, · · · , N : ẑk=wk−
k−1∑
j=ν+1

lkjx̂j, x̂k=bẑk/lkkeX .

Set x̂2 =[x̂ν+1, · · · , x̂N ]T to be the child symbol vector estimate. On the other hand, for a child

symbol bit hypothesis (ν+1≤n≤N ), ZF-DF on child symbols k=ν+1, · · · , N proceeds as:

k<n : ẑk=wk−
k−1∑
j=ν+1

lkjx̂j, x̂k=bẑk/lkkeX ;

k=n : ẑk=wk−
k−1∑
j=ν+1

lkjx̂j, x̂
(s)

k;b,bẑk/lkkeX (s)
b

;

k>n : ẑk=wk−
k−1∑
j=ν+1:
j 6=n

lkjx̂j−lknx̂
(s)

n;b, x̂k=bẑk/lkkeX .

Let x̂(s)

2n;b = [xν+1, · · · , x̂(s)

n;b, · · · , xN ]T be the resulting child symbol vector estimate. Therefore,

the inner max operations in (12)-(13) are approximated as

max
x2

µ2(ỹ2|x1,x2) ≥
N∑

k=ν+1

max
xk

e2(ẑk, xk) =
N∑

k=ν+1

e2(ẑk, x̂k) , µ̂2(ỹ2|x1, x̂2), (14)

max
x2:

xn,b=s

µ2(ỹ2|x1,x2) ≥
N∑

k=ν+1:
k 6=n

max
xk

e2(ẑk, xk)+max
xn:

xn,b=s

e2(ẑn, xn)

=
N∑

k=ν+1:
k 6=n

e2(ẑk, x̂k)+e2(ẑn, x̂
(s)

n;b) = µ̂2(ỹ2|x1, x̂
(s)

2n;b), (15)

and (12)-(13) are approximated as

max
x:xn,b=s

1≤n≤ν

µ(ỹ|x) ≥ max
x1:

xn,b=s

{
µ1(ỹ1|x1) + µ̂2(ỹ2|x1, x̂2)

}
, (16)

max
x:xn,b=s

ν+1≤n≤N

µ(ỹ|x) ≥ max
x1

{
µ1(ỹ1|x1) + µ̂2(ỹ2|x1, x̂

(s)

2n;b)
}
. (17)

The above maxima are not optimal because of the ZF-DF operations on the child layers

in (14)-(15). However, if the lkj terms are 0 for k=ν+2, · · · , N and j=ν+1, · · · , k−1 in the zk

summation in (8), then zk =wk, e(zk, xk)= −1
N0
|wk−lkkxk|

2
, and the maximizations in (14)-(15)

become exact in this case:
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max
x2

N∑
k=ν+1

e2(wk, xk)=
N∑

k=ν+1

max
xk

e2(wk, xk)=
N∑

k=ν+1

e2(wk, x̂k),

max
x2:

xn,b=s

N∑
k=ν+1

e2(wk, xk)=
N∑

k=ν+1:
k 6=n

max
xk

e2(wk, xk)+max
xn:

xn,b=s

e2(wn, xn) =
N∑

k=ν+1:
k 6=n

e2(wk, x̂k)+e2(wn, x̂
(s)

n;b).

In addition, all intermediate complex products involving the zeroed entries lkj are not needed.

B. Single-Tree and Multi-Tree Approaches

Soft-output detection is essentially a multi-point search problem for the ML point and all

its counter-ML hypotheses. Tree-search algorithms used to generate bit LLRs for channels

partitioned into parent and child symbol layers follow either a single-tree or a multi-tree approach

to find these points. For single-tree, a pre-processing step chooses ν ordered layers as parents

and N−ν ordered layers as children; one tree is used to solve for both parent and child bit

LLRs. For multi-tree, N/ν trees are used to solve only for parent bit LLRs, such that a different

combination of layers is chosen as parents for each tree.

Both approaches use enumeration over the parent layers, and marginalization over the child

layers. Marginalization complicates LLR generation of child bits for single-tree because it has to

be repeated for every child bit hypothesis and for every candidate parent symbol vector. Also, the

quality of the LLRs under the single-tree approach is very sensitive to the choice of parent layers

and overall ordering of layers. On the other hand, in the multi-tree approach the distinct layer

orderings of each tree constitute an added diversity that can be leveraged to globally optimize

the closest points locally searched by each tree and their metrics across all the trees.

III. CHANNEL PUNCTURING

Motivated by the observation from the last section to improve the efficiency and reduce the

computational complexity of the detection process by nulling entries below the main diagonal of

L, we next investigate possible puncturing schemes that are applicable to integer LS problems.

Consider the lower-triangular matrix shown in Fig. 1. To null all entries below the diagonal

and to the right of the νth column of L=[lkj] (lkj←0 for ν+1<k≤N and ν<j<k) for some

ν, 1≤ ν≤ N−1, we partition L conformally as

LN×N =

 Pν×ν 0ν×(N−ν)

R(N−ν)×ν S(N−ν)×(N−ν)

, (18)

where P∈Cν×ν and S∈C(N−ν)×(N−ν) are complex square lower-triangular matrices of sizes ν

and N−ν, respectively, having real diagonal elements, and R∈C(N−ν)×ν is a complex rectangular
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P

R S








Wp

ν = 2

Fig. 1. Puncturing an 8×8 matrix L into Lp using Wp for ν = 2.

matrix. The target of puncturing is to diagonalize S. Hence, without loss of generality, we focus

on techniques to diagonalize S that do not alter Euclidean distances of the form ||y−Lx||2.

Henceforth, L is assumed to be non-singular.

Using two-sided unitary transformations Wp and Z of size N , it is well-known that S or all

of L can be reduced to diagonal form D= WpLZ via an SVD-like decomposition [21]. The left

transformation Wp must be unitary in order to preserve L2-norms and not alter noise statistics:

||Wpx||2 = x†W
†
pWpx = ||x||2 ⇒W

†
pWp = I, (19)

E[Wpnn†W
†
p] = N0WpW

†
p = N0I ⇒WpW

†
p = I. (20)

The right transformation Z must preserve the (Gaussian) integer nature of the unknown x; that

is, if for some y∈CN

z?=argmin
z∈ZXN

||y − Lz||2, then Z−1z?=argmin
x∈XN

||y − LZx||2 ∈ XN . (21)

Hence Z has to be unimodular, i.e., an integer matrix in GN×N with integer inverse having

|det Z| = 1. Also, Z must be lower-triangular in order to induce a parent-child tree structure

using forward substitution, and hence cannot be unitary (Z† is upper triangular, while Z−1 is

lower triangular; hence they cannot be equal). However, if Z is not unitary, Wp being unitary

and applied from the left cannot alone null an element below the main diagonal of S without

creating a non-zero entry in its upper-triangular counterpart, hence altering the lower-triangular

structure of S. Therefore, both Wp and Z cannot be unitary, and (19)-(20) cannot be satisfied.

A. One-Sided Puncturing Transformations

The matrix L in (18) can be punctured into Lp∈CN×N using a left puncturing matrix Wp∈

CN×N only (Z=I) as follows:
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1
1

1
1

1

z
 
 
 
 
 
 
 
  

1
1

1
1

1

w
 
 
 
 
 
 
 
  

L ZWp

=0

Lp

Fig. 2. Puncturing entry l32 of L using two-sided transformations.

Wp = Dpdiag(L)

I 0

0 S−1

, (22)

Lp = WpL = Dpdiag(L)

I 0

0 S−1

P 0

R S

 = Dpdiag(L)

 P 0

S−1R I

, (23)

where Dp ∈ RN×N is a (normalizing) diagonal matrix. Since Wp is not unitary, both condi-

tions (19)-(20) are not met. We can relax (20) by choosing Dp so that Wp satisfies diag(WpW
†
p)=

IN instead. Hence

Dp = diag(L)
−1

I 0

0 Ω

, Wp =

I 0

0 Ω S−1

, Lp =

 P 0

ΩS−1R Ω

, (24)

where

Ω = diag(S
−1

S
−†

)
−1/2

. (25)

Note that Wp is a non-singular lower-triangular matrix with ν ones and N−ν positive real

numbers on the diagonal. Also, since Ω normalizes S−1 so that diag(WpW
†
p)=IN , then ||Wp||F =

√
N and the remaining N−ν eigenvalues λ of Wp (i.e., diagonal elements of Ω S−1) satisfy

0<λ≤1. It follows that
√
N≥σmax≥λmax =1 and 0<σmin≤λmin≤1, where σmax (σmin) and

λmax (λmin) are the maximum (minimum) singular values and eigenvalues of Wp, respectively.

B. Two-Sided Puncturing Transformations

Note that the lower-triangular matrix S−1 in the left non-unitary transformation Wp in (22) is

equivalent to a Gaussian elimination matrix. Using an integer Gauss reduction matrix Z as a right

transformation can help approximate (19) better by first reducing the lower-triangular entries of

L in S using integer multiples of the diagonal elements and then completely eliminating the

remainder using Wp from the left. The reduction step by Z from the right to reduce lkj by an

integer multiple of lkk into l̃kj , followed by an elimination step by Wp from the left to null l̃kj

using lkk are expressed as (see Fig. 2)

reduction Zkj : ζkj =
⌊ lkj
lkk

⌉
, l̃kj = lkj−ζkjlkk, (26)

elimination Wp kj : ωkj =
l̃kj
lkk
, lkj = l̃kj−ωkjlkk, (27)
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for k=ν+2, · · · , N and j=ν+1, · · · , k−1, where bze=bR{z}e+ibI{z}e and bae=ba+ 1/2c

for a∈R. In particular, since |a−ba
b
+ 1

2
cb|≤ |b|

2
for a, b∈R, then (26) results in∣∣ l̃kj

lkk

∣∣ =
∣∣(lkj − ⌊ lkjlkk ⌉lkk)/lkk∣∣ ≤ ∣∣12 + i1

2

∣∣ = 1√
2
. (28)

In matrix form, operations (26)-(27) become

Zkj =IN − ζkjekeT
j ∈ GN×N , k 6= j, ζkj ∈ G, (29)

Wp kj =IN − ωkjekeT
j ∈ CN×N , k 6= j, ωkj ∈ C. (30)

Note that Z−1
kj =IN+ζkjeke

T
j ∈GN×N . The matrices Z and Wp are formed from the products of

the (N−ν−1)(N−ν)/2 matrices in (29) and (30), respectively. Wp is then normalized using a

diagonal matrix Dp to satisfy diag(WpW
†
p)=IN :

Z=
N∏

k=ν+2

k−1∏
j=ν+1

Zkj, Wp = Dp

N∏
k=ν+2

k−1∏
j=ν+1

Wp kj. (31)

Lemma 1 ([22]): If T=[tkj]∈CN×N is a nonsingular lower-triangular matrix, then

||T−1||2,F ≤ 1
(ρ+2)δ

√
(ρ+ 1)2N + 2N(ρ+ 2)− 1, (32)

where ρ=maxk<j |tkj|/|tkk| and δ=mink |tkk|.

Proof: See [22].

We use Lemma 1 to show that the norm of S−1 (and hence Wp in (24)) tends to decrease by

applying Z. Let Z̆ be the principal submatrix obtained by deleting the first ν rows and columns of

Z, and let S̆=SZ̆. The reduction step in (26) ensures that the magnitudes of the lower-diagonal

elements of S̆ are ≤ lkk√
2
, while not altering the diagonal elements. The quantity ||S̆−1−diag(S̆−1)||F

measures the ‘weight’ of the lower-triangular portion of S̆−1. Applying (32) for T= S̆, we obtain

||S̆−1−diag(S̆
−1

)||2F ≤
(ρ+1)2(N−ν)−ρ(ρ+2)(N−ν)−1

(ρ+2)2δ2
, (33)

with ρ = 1/
√

2 and δ = mink>ν lkk. As ρ decreases, this upper bound decreases, and hence

S̆−1 becomes more diagonal. Therefore, with Ω̆= diag(S̆−1S̆−†)−1/2, Ω̆S̆−1 becomes closer to the

identity, and when used in lieu of ΩS−1 in (24) makes Wp closer to IN .

To reduce ρ below 1/
√

2, the reduction step in (26) can be changed by scaling the ratio lkj/lkk

by a power-of-2 so that
ζkj =2−c

⌊
2c

lkj
lkk

⌉
, (34)

for some integer c≥0. In this case, (28) becomes∣∣ l̃kj
lkk

∣∣= ∣∣(lkj−⌊ lkj
lkk/2c

⌉
lkk
2c

)
/lkk
∣∣≤ ∣∣ 1

2c+1 + i
2c+1

∣∣= 1
2c
√

2
, (35)
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which gives ρ=1/2c+1/2. Since 2cζkj is an integer, it follows that 2cZkj∈GN×N and the integer

condition (21) still holds.

Note that (26) is similar to the first lattice reduction condition of [23]–[25]. However, the

Lovász condition [23]
l2kk + |lk+1,k|2 ≥ γ · l2k+1,k+1,

1
4
< γ < 1, (36)

cannot be enforced for k = ν+1, · · · , N−1 because it requires permuting the columns of L,

which destroys the lower-triangular structure of Z.

IV. WLD MIMO DETECTION

In this section, we develop the detection model of the WLD detector and characterize its AIR

using single-sided puncturing. The analysis for two-sided puncturing is similar.

Starting with ||Q†y−Lx||2 and applying Wp in (24), the equivalent metric to (3) computed by

the WLD detector is

− 1
N0
||Q†

y−Lx||2 Wp−−−→ µp(y|x)=− 1
N0
||Wp(Q

†
y−Lx)||2.

By expanding µp(y|x) and dropping the irrelevant term − 1
N0
||WpQ

†y||2, we obtain

µp(y|x)=− 1
N0
||yp−Lpx||2 ∼= 2R{y†Fpx}−x†Gpx, (37)

where yp =WpQ
†y, Lp =WpL,

Fp = 1
N0

QW
†
pLp, and Gp = 1

N0
L
†
pLp = H

†
Fp. (38)

The corresponding detection model becomes

pp(y|x) = exp (2R{y†Fpx}−x†Gpx), (39)

instead of the true conditional probability in (2). Based on (39), the achievable information rate

of the WLD detector is lower-bounded by [26]

IWLD

LB = EY,X[ln(pp(y|x))]− EY[ln(pp(y))] , (40)

where the expectations are taken over the true channel statistics, and pp(y) =
∫
pp(y|x)p(x) dx

with p(x) being the prior distribution of x.

Theorem 1: Assuming Gaussian inputs x ∼ CN(0, EsIN), and let β = Es
N0

be the SNR, the

lower-bound on the AIR in (40) attained by the WLD detector is given by

IWLD

LB =ln det(I+βL
†
pLp)−Tr((I−WpW

†
p)(I+βLpL

†
p)
−1

). (41)

Proof: Following the approach in [17], we first compute the probability pp(y)=
∫
pp(y|x)p(x) dx

for pp(y|x) in (39) and p(x)= 1
πNENs

exp (−‖x‖
2

Es
). We then compute the expectations in (40) over

the true channel statistics as
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EY,X[ln(pp(y|x))] = 2EsR{Tr(F
†
pH)}−EsTr(Gp) = EsTr(Gp),

−EY[ln(pp(y))] = N lnEs + ln det(Gp+ 1
Es

I)− Tr(F
†
p[EsHH

†
+N0I]Fp[Gp+ 1

Es
I]
−1

).

Substituting for Fp = 1
N0

QW†
pLp and Gp = 1

N0
L†pLp, and applying the matrix inversion lemma [27],

followed by some standard simplification steps, the result follows.

For ν=1, the sorted singular values {σk}Nk=1 of Lp satisfy an interlacing property with respect

to the diagonal elements of Ω in (24). Let ω1<ω2< · · ·<ωN−ν be the sorted diagonal elements

of Ω, and let v be the first column of Lp, then [28]

0<σ1<ω1< · · ·<σN−1<ωN−1<σN<ωN−1+||v||. (42)
Property (42) can be used to bound IWLD

LB in Theorem 1 for ν = 1 since ln det(I+βL†pLp) =∑N
k=1 ln(1+βσ2

k), Tr((I+βLpL
†
p)
−1) =

∑N
k=11/(1+βσ2

k), and Tr(WpW
†
p) =N . The details are

omitted due to lack of space.

Note that for ν =N−1, we have Wp = I and Lp = L, and hence IWLD
LB = ln det

(
I+βL†L

)
,

which is the capacity of the channel. In fact, as ν increases from 1, the metrics computed by

the WLD detector approach the hard-decision ML metrics as shown by the following lemma.

Lemma 2: If xML = argminx∈XN||ỹ−Lx|| and xWLD = argminx∈XN||Wp(ỹ−Lx)|| where H =

QL and ỹ=Q†y, then
||ỹ−LxML|| ≤ ||ỹ−LxWLD|| ≤ κ(Wp)||ỹ−LxML||, (43)

||Wp(ỹ−LxWLD)|| ≤ σmax(Wp)||ỹ−LxML||, (44)

where κ(Wp)=σmax(Wp)/σmin(Wp) is the condition number of Wp, and σmax(Wp), σmin(Wp)

are the largest and smallest singular values of Wp, respectively.

Proof: The first inequality in (43) follows from the definition of the ML solution. For the

second, we have
||ỹ−LxWLD|| = ||W

−1

p Wp(ỹ−LxWLD)|| ≤ σmax(W
−1

p )||Wp(ỹ−LxWLD)||

≤ σmax(W
−1

p )||Wp(ỹ−LxML)|| (45)

≤ σmax(W
−1

p )σmax(Wp)||ỹ−LxML||,

from which (43) follows. Note that both (44) and (45) follow because ||Wp(ỹ−LxWLD)|| ≤

||Wp(ỹ−Lx)|| for any x.

Note that the layer orders within the ν parent layers and within the N−ν child layers are

irrelevant. What matters is which layers are selected to form the parent set. This is formalized

using the following lemma.

Lemma 3: Let J1 and J2 be permutation matrices of sizes ν and N−ν, respectively. If the

columns of H are permuted by J =
[

J1 0
0 J2

]
, then the distance metric computed by the WLD
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detector in (37) does not change, i.e.,

||Wp(Q
†
y−Lx)||2 = ||W̃p(Q̃

†
y−L̃J

−1
x)||2, (46)

where H=QL, Wp (W̃p) is the puncturing matrix of L (L̃), and HJ=Q̃L̃.

Proof: Let x=[x1; x2], Q=[Q1 Q2], Q̃=[Q̃1 Q̃2], L=[ P
R S ], and L̃=

[
P̃
R̃ S̃

]
be partitioned

corresponding to ν parent layers and N−ν child layers. Then Wp =
[

I 0
0 ΩS−1

]
and W̃p =

[
I 0

0 Ω̃S̃
−1

]
,

where Ω= diag(S−1S−†)−1/2 and Ω̃= diag(S̃−1S̃−†)−1/2. The partitions of L̃ are related to those of

L since QLJ = Q̃L̃. Furthermore, Ω̃ = J†2ΩJ2 since Q†
2Q̃2Q̃

†
2Q2 = I. Substituting back in both

squared-norms in (46), and performing simplifications, it follows that both sides are equal to

||Q†
1y−Px1||2+||Ω(S−1Q†

2y−S−1Rx1−x2)||2.

Corollary 1: Let J be any permutation matrix, HJ = Q̃L̃, and W̃p the puncturing matrix of

L̃. Then, the number of distinct solutions of xWLD =argminx||W̃p(Q̃
†y−L̃J−1x)|| for all possible

values of J depends only on the number of parent layer combinations, and is at most
(
N
ν

)
.

Finally, the bound IWLD
LB for Gaussian inputs can be used as a criterion for parent layer selection,

but the complexity of possible combinations grows as
(
N
ν

)
. Alternatively, a less sensitive approach

to parent layer selection is to do multiple detection rounds, each time choosing ν new layers as

parents and generating bit LLRs for these parent symbols only.

V. AUGMENTED WLD (AWLD) MIMO DETECTION

The lower bound on the AIR in (41) attained by the WLD is not optimal. Motivated by the

result for the optimal receiver filter derived in [17] in the context of channel shortening for ISI

channels, which involves an MMSE filter compensated by receiver tree processing, we introduce

in this section an alternate form of puncturing using augmented channels. Instead of basing the

detection metric in (3) on H, we form the augmented vector ya = 1√
N0

[y; 0N×1] and matrix

Ha =

 1√
N0

HM×N

1√
Es

IN

 (size (M+N)×N ), (47)

in a manner analogous to the square-root MMSE of [29], and reformulate µ(y|x) in (3) using

Ha,ya rather than H,y as

µ(y|x) = 1
Es
||x||2+ 2R

 1√
N0

[y† 0]

 1√
N0

H

1√
Es

IN

x
− x†( 1

N0
H
†
H + 1

Es
)x− 1

N0
||y||2

= 1
Es
||x||2 + 2R{y†aHax} − x†H

†
aHax− ||ya||2

= 1
Es
||x||2 − ||ya −Hax||2. (48)

We next expand the squared-distance in (48) in terms of the projection matrix PHa =Ha(H
†
aHa)−1H†

a

onto the column space of Ha and its orthogonal complement P⊥Ha
=IM+N−Ha(H

†
aHa)−1H†

a as
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||ya−Hax||2 = ||PHa(ya−Hax)||2 + ||P⊥Ha
ya||2. (49)

Let QaLa be the thin QL decomposition of Ha partitioned as

Ha =

 1√
N0

H

1√
Es

IN

 = QaLa =

Qa1

Qa2

La =

Qa1La

Qa2La

, (50)

where Qa is an (M+N)×N matrix with orthonormal columns (i.e., Q†
aQa =IN but not unitary

since QaQ
†
a 6=IM+N ), La is N×N lower-triangular, and Qa1,Qa2 are respectively the upper M×N

and lower N×N block matrices of Qa. Note that neither the rows nor the columns of Qa1 and

Qa2 are orthonormal. From the partitions in (50), it follows that

H =
√
N0Qa1La, (51)

1√
Es

IN = Qa2La = LaQa2. (52)

However, (51) is not the QL decomposition of H. (52) implies that Qa2 is a lower-triangular

matrix proportional to the inverse of La, i.e, L−1

a =
√
EsQa2. Then, from (50) we have

1
N0

H
†
H+ 1

Es
IN = H

†
aHa = L

†
aLa,

from which it follows that

||ya−Hax||2 = ||La(My−x)||2 + ||(I−QaQ
†
a)ya||2, (53)

where M is the standard N×M MMSE filter matrix,

M = H
†
[HH

†
+αIM ]

−1
= [H

†
H+αIN ]

−1
H
† (54)

= 1
N0

(H
†
aHa)

−1H
†

= 1
N0

(L
†
aLa)

−1H
† (55)

=
√
βQa2Q

†
a1, (56)

with α= 1
β

= N0

Es
. Substituting (53) back in (48), we obtain

µ(y|x)= 1
Es
||x||2−||La(My−x)||2 − ||(I−QaQ

†
a)ya||2. (57)

Note that in (57), the term ||x||2 appears explicitly, while tree processing is solely based on La

in ||La(My−x)||2. We therefore puncture La using an appropriate puncturing matrix Wap similar

to puncturing L in (23) using Wp. For a given puncturing order ν, we conformally partition La

similar to (18) and obtain the partition blocks Pa of size ν×ν, Ra of size (N−ν)×ν, and Sa of

size (N−ν)×(N−ν). The resulting punctured augmented matrix, denoted as Lap, is given by

Lap = WapLa = Wap

Pa 0

Ra Sa

 =

 Pa 0

ΩaS
−1

a Ra Ωa

, (58)

where
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M

H, β

MMSE filter

Lap

Ha

Gain compensation

arg max 1
Es
||x||2−||yap−Lapx||2

Lap

WLD detector

y My yap x̂

Fig. 3. Block diagram of the AWLD detector, where yap=LapMy.

Wap = Dapdiag(La)

Iν 0

0 S−1

a

 =

Iν 0

0 ΩaS
−1

a

, (59)

Dap =diag(La)
−1

Iν 0

0 Ωa

, (60)

Ωa = diag(S
−1

a S
−†
a )
−1/2

, (61)

and Dap in (60) is chosen so that diag(WapW
†
ap)=IN .

Next, applying Wap to filter La(My−x) in (57) as

||La(My−x)||2 Wap−−−→ ||Wap(LaMy−Lax)||2, (62)

and dropping the irrelevant term ||(I−QaQ
†
a)ya||2 in (57), the metric computed by the augmented

WLD (AWLD) detector corresponding to (57) takes the form

µap(y|x) = 1
Es
||x||2−||WapLa(My−x)||2 = 1

Es
||x||2−||yap−Lapx||2 (63)

∼= 2R{y†Fapx} − x†Gapx + 1
Es

x†x, (64)
where yap = WapLaMy = LapMy,

Fap = M
†
Gap, and Gap = L

†
apLap. (65)

The corresponding AWLD detection model (Fig. 3) becomes

pap(y|x) = exp (2R{y†Fapx} − x†Gapx + 1
Es

x†x). (66)

Theorem 2: Under the same assumptions as Theorem 1, the AIR of the augmented WLD

detector based on (66), with Gap,Fap as given in (65), is lower-bounded by

IAWLD

LB = N lnEs + ln det(L
†
apLap). (67)

Proof: The lower bound on the AIR of the AWLD detector based on (66) is defined as

IAWLD

LB = EY,X[ln(pap(y|x))]− EY[ln(pap(y))] , (68)
where pap(y) is given by

pap(y) =

∫
x∈CN

pap(y|x)p(x) dx, (69)

assuming x∼ CN (0, EsIN). The main difference compared to the proof of Theorem 1 is the

effect of the term 1
Es

x†x in (66) when evaluating (69) under Gaussian densities, which annihilates

the effect of the prior density p(x) to give

pap(y)= 1
πNENs

∫
exp (2R{y†Fapx}−x†Gapx) dx. (70)
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With standard manipulations, the expectations in (68) become

EY,X[ln(pap(y|x))] = N−EsTr(Gap)+2EsR{Tr(F
†
apH)},

−EY[ln(pap(y))] = N lnEs+ln det (Gap)− Tr(F
†
ap[EsHH

†
+N0I]FapG

−1

ap ).

Substituting (65) for Gap and Fap, and applying (54) for M, then F†ap[EsHH†+N0I]FapG
−1

ap =

EsF
†
apH=EsGapMH. Also, it is easy to show that

MH=[H
†
H+αIN ]−1H

†
H = I−α[αIN+H

†
H]−1, (71)

which implies that MH is Hermitian. Hence, Tr(GapMH)=Tr(Gap[I−α(αI+H†H)−1]) is real.

Adding the two expectations above results in

IAWLD

LB = N lnEs+ln det(Gap)−Tr(Gap[ 1
Es

I+ 1
N0

H
†
H]−1)+N

= N lnEs+ln det(Gap)−Tr(Gap(L
†
aLa)

−1)+N

= N lnEs+ln det(Gap)−Tr(W
†
apWap)+N,

from which (67) follows since Tr(W†
apWap)=N .

With the punctured structure of the channel matrix Lap as given in (58), the gap of IAWLD
LB to

AWGN capacity can be determined using the following corollary.

Corollary 2: The gap of the AIR of the AWLD detector to AWGN capacity is

CAWGN−IAWLD

LB =
N−ν∑
k=1

ln
(
s2

akk||[S−1
a ]k̄||

2
+ 1
)
, (72)

where sakk is the kth diagonal element of Sa in (58), and [S−1

a ]k̄ is the row vector consisting of

the first k−1 elements in row k of S−1

a in (59), excluding the diagonal element.

Proof: Applying (58)-(61) in (67), the ln det term splits and the CAWGN =ln det(Es

N0
H†H+IN)

term emerges.

Similar to the WLD case, the gap to capacity vanishes for ν = N − 1. Also, the metrics

computed by the AWLD detector approach the hard-decision ML metrics as ν increases from 1.

Lemma 4: Let µ(x) = 1
Es
||x||2− ||La(My−x)||2, xML = arg maxx µ(x), ω(x) = 1

Es
||x||2−

||WapLa(My−x)||2, and xAWLD =arg maxx ω(x). Then,

κ2µ(xML)− η(κ2 − 1) ≤ µ(xAWLD) ≤ µ(xML) (73)

ω(xAWLD) ≥ η(1− σmax(Wap)) + σmax(Wap)µ(xML), (74)

where κ=σmax(Wap)/σmin(Wap), and σmax(Wap), σmin(Wap) are the largest and smallest singular

values of Wap, respectively, η= NEmax

Es
, and Emax =maxx∈X |x|2.

Proof: The proof is similar to Lemma 2, and uses the fact that ω(xAWLD) ≥ ω(xML). As

κ→1, µ(xAWLD)→µ(xML).

As illustrated in Fig. 3, the AWLD detector includes the WLD detector as a sub-block; the

processing steps of MMSE filtering and gain are done prior to WLD detection. Also, it is worth
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noting that computing the augmented channel requires simple processing comparable to QL

decomposition. In particular, matrix inversion is not needed to compute M in (55) because the

inverse of La is available from (52). In addition, using the modular approach of [30], an efficient

hardware architecture for an AWLD MIMO detector can be constructed from optimized 2×2

MIMO detector cores. Extensions to include soft-input information, imperfect channel estimation

effects, and correlated channels are directly applicable based on [18]. Finally, a scheme similar

to [31] can be used for analyzing the diversity gain.

VI. AIR-OPTIMALITY OF THE AWLD DETECTOR

Instead of working with Euclidean-distance based metrics as in (3), the authors in [17] propose

replacing N0, H, H†H in (4) with mismatched parameters Nr,Fr,Gr that are subject to AIR

optimization. Hence, instead of the true metric in (5) and true probability in (2), the mismatched

model of [17] is

µr(y|x) = 2R{y†Frx} − x†Grx, (75)

pr(y|x) = exp (2R{y†Frx} − x†Grx), (76)

where Nr is absorbed into Fr and Gr. It is shown in [17] that detectors limited to the Euclidean-

based model in (5), where Gr admits a Cholesky factorization proportional to H†H, are not

optimal from a mutual information perspective because the resulting optimal matrix Gr to use

in (76) may not be positive semidefinite, and hence no such factorization exists. The optimal Fr

and Gr are derived by maximizing the lower bound on the AIR in two steps, assuming Gr is

Hermitian (and hence has real eigenvalues). First, an explicit expression for Fr is derived, having

the form Fopt

r = (HH†+αI)−1H(Gr +I); this is the MMSE filter compensated by the receiver

tree processing through Gr +I (rather than Gr). Next, the corresponding AIR bound with Fopt

r

substituted, depends on Gr through the factor (Gr+I). An assumption on the matrix Gr is imposed

to have all its eigenvalues strictly larger than −1, so that Gr+I becomes positive semidefinite and

hence admits a Cholesky factorization of the form L†rLr. Accordingly, the AIR bound depends

solely on the lower-triangular matrix Lr. By maximizing this bound, the optimal Lr is derived,

having a shortened (punctured) structure analogous to that of the WLD scheme [15].

In this work, we propose the following modified model

µm(y|x) = 2R{y†Fx} − x†Gx + 1
Es

x†x, (77)

and pm(y|x)=exp(µm(y|x)), where tree processing is split into an explicit term 1
Es

x†x separate

from x†Gx for which G is subject to optimization. The reason is that the optimal F in this
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case, as will be shown, takes the form Fopt = [HH† + αI]−1HG, and the resulting AIR lower

bound depends on G directly and not through the term G + I, as is the case with [17]. Hence,

the assumption on G to have all its eigenvalues strictly larger than −1 is dropped. We directly

require that G be positive semidefinite having a Cholesky factorization J†J, where J has the

desired punctured lower-triangular form. Under such formulation, we show that the optimal F

and G coincide exactly with those of the AWLD detector in (65).
Theorem 3: Under the same assumptions as Theorem 1, the optimal F and G that maximize

ILB =EY,X[ln(pm(y|x))]−EY[ln(pm(y))], such that G is positive semidefinite with factor matrices

having a punctured structure of order ν, are

F
opt

= M
†
G

opt and G
opt

= J
opt†

J
opt
, (78)

where M is the standard N×M MMSE filter matrix in (54), and Jopt is the punctured augmented

WLD matrix Lap given in (58). Accordingly, the lower bound attained by the AWLD detector

in (67) is optimal.
Proof: Let I opt

LB =maxF,G:G�0 ILB and (Fopt,Gopt)=argmaxF,G:G�0 ILB. The expectations in

the ILB expression with pm(y|x)=exp(µm(y|x)) and pm(y)=
∫
pm(y|x)p(x) dx are

EY,X[ln(pm(y|x))] = N − EsTr(G) + 2EsR{Tr(F
†
H)},

−EY[ln(pm(y))] = N lnEs + ln det(G)− Tr(F
†
[EsHH

†
+N0I]FG

−1
).

To determine F that maximizes ILB, we set the derivative of the terms in the sum of the two

expectations involving F to 0,
∂

∂F
(2EsR{Tr(F

†
H)}−Tr(F

†
[EsHH

†
+N0I]FG

−1
)) = 0,

from which it follows, after some tedious steps, that

F
opt

=[HH
†
+ αI]

−1
HG = M

†
G, α = N0

Es
.

Substituting Fopt back in ILB, and noting that Fopt†H=G(MH) is the product of two Hermitian

matrices and hence has real trace, we obtain, after further simplifications

Ĩ
opt

LB =N lnEs + ln det(G)− EsTr((I−MH)G) +N. (79)

Using (71), it follows that Es(I−MH) = Esα[αIN + H†H]−1 =(H†
aHa)

−1, where Ha is defined

in (47). Then
Ĩ

opt

LB =N lnEs + ln det(J
†
J)− Tr((L

†
aLa)

−1
J
†
J) +N, (80)

where Ha = QaLa is the QL decomposition of Ha, and G=J†J such that J is a punctured lower

triangular matrix of order ν. We next determine J that maximizes Ĩ opt

LB :

J
opt

= argmax
J

Ĩ
opt

LB . (81)
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Assume J and La are conformally partitioned as

J =

J1

J2 J3

 and La =

Pa

Ra Sa

, (82)

where J1,Pa are ν×ν lower triangular, J3 is (N−ν)×(N−ν) real diagonal, Sa is (N−ν)×(N−ν)

lower triangular, and J2,Ra are (N−ν)×ν matrices. Note that J3 is constrained to be a diagonal

matrix, not just lower-triangular2. Then the trace Tr((L†aLa)
−1J†J)=Tr((JL−1

a )(JL−1

a )†)= ||JL−1

a ||
2

F

in (80) can be computed using JL−1

a as follows:

JL
−1

a =

J1

J2 J3

 P−1

a

−S−1

a RaP
−1

a S−1

a


||JL

−1

a ||
2

F = ||J1P
−1

a ||
2

F+||(J2−J3S
−1

a Ra)P
−1

a ||
2

F+||J3S
−1

a ||
2

F.

Since the ln det(J†J) term in (80) involves the diagonal terms of J1 and J3 only, then Ĩ opt

LB can

be optimized for J2 and (J1,J3) independently.

Starting with J2, we set ∂
∂J2
Ĩ opt

LB = ∂
∂J2

Tr((L†aLa)
−1J†J)=0, to obtain Jopt

2 =J3S
−1

a Ra. Substituting

back in (80), we get

Ĩ
opt

LB =N lnEs + ln det(J†1J1) + ln det(J†3J3) +N − ||J1P
−1

a ||
2

F − ||J3S
−1

a ||
2

F. (83)

Moving to J3, we set ∂
∂J3
Ĩ opt

LB = 0. Noting that J3 is real and diagonal, we obtain 2J−1

3 −

2J3diag(S−1

a S−†a ) = 0, from which it follows that Jopt

3 = diag(S−1

a S−†a )−1/2 = Ωa. Substituting back

in (83), we get

Ĩ
opt

LB = N lnEs + ln det(Ω
2

a)− ||ΩaS
−1

a ||
2

F +N + ln det(J†1J1)− Tr((J1P
−1

a )(J1P
−1

a )
†
). (84)

Finally, using Lemma 5 below, the optimal J1 that maximizes Ĩ opt

LB with Pa being lower triangular

is Jopt

1 =Pa. The resulting Jopt, with Jopt

1 ,Jopt

2 ,Jopt

3 in place, is

J
opt

=

 Pa

ΩaS
−1

a Ra Ωa

, (85)

which coincides with Lap as given in (58). The optimal lower bound I opt

LB attained in (84) is

I
opt

LB =N lnEs+ln det(Ω
2

a)−||ΩaS
−1

a ||
2

F+N+ln det(P
†
aPa)−ν = N lnEs+ln det(J

opt†
J

opt
), (86)

since ||ΩaS
−1

a ||
2

F =N−ν, which equals IAWLD
LB in (67).

Lemma 5: Let U and V be two non-singular square matrices in CN×N . Let f(U,V) =

ln det(UU†)−Tr((UV)(UV)†) be a real-valued function of complex-valued matrices. Then the

optimal U that maximizes f for a given V is

U
opt

= argmax
U

f(U,V) = V
−1
,

2Hence Lemma (5) is not directly applicable to derive the optimal J that minimizes (80) at this point.
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and f(Uopt,V) = −
∑N

k=1 ln ṽ2
kk−N , where ṽkk is the kth diagonal element of the Cholesky

factor of VV†.

Proof: See Supplement 1.

Discussion: We conclude that punctured augmented channel matrices processed by the AWLD

detector are optimal in maximizing the lower bound on the achievable information rate. Their

structure matches exactly that of the AIR-PM detector, but most importantly, they can be

computed using simple QL decomposition followed by Gaussian elimination, resulting in a

significant complexity reduction compared to [18].

VII. EFFICIENT MATRIX DECOMPOSITION ALGORITHMS

A. Matrix-Inverse-Free Puncturing via Gaussian Elimination

Directly inverting S in (24) can be avoided if we apply Gaussian elimination to null the

elements below the main diagonal of S=[skj] in (18). Let

Ej =IN−ν − τje
T

j ∈ C(N−ν)×(N−ν), (87)

be a Gauss transformation [21], where ej is the jth column of IN−ν , and τj is the Gauss vector

τ
T

j =[0, · · · , 0︸ ︷︷ ︸
j

, τj+1, · · · , τN−ν], τi=
skj
sjj
, k=j+1:N−ν.

Then the operation EjS nulls all the entries below the jth diagonal element in S. Applying this

operation repeatedly for j=1, · · · , N−ν−1 would null all entries in S below the main diagonal.

Grouping these row operations into

E = EN−ν−1 · · ·E2E1 =
N−ν−1∏
j=1

Ej, (88)

results in ES=diag(S), or S−1 =diag(S)−1E (note that E is non-unitary). Setting

ΩE = diag(E E
†
)
−1/2

, (89)
gives the required product ΩS−1 in (24) inverse-free as

ΩS
−1

= ΩEE. (90)

B. Eliminating Square-Roots via QDL Decomposition

In forming the QL decomposition H = QL, the jth column qj of Q = [qkj] is obtained by

subtracting from the jth column hj of H the orthogonal projection of all other columns of H

(denoted as Hj̄) onto hj, i.e., qj =hj−(H†
j̄hj)Hj̄. The jth diagonal element ljj of L is set to the

norm of qj, ljj = ||qj||. Finally, qj is normalized as qj =qj/||qj||.

The square-root operation required to compute ||qj|| =
√∑N

k=1 |qkj|
2 can be eliminated by

working with squared-norms djj = ||qj||
2 instead, and storing them in a diagonal normalizer matrix

D=[djj]∈CN×N , apart from the factors Q,L. The modified ‘QDL’ decomposition becomes
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H = QL = (QD
−1/2

)D(D
−1/2

L) = Q̃DL̃, (91)

where Q̃=QD−1/2∈CM×N is an unnormalized matrix with orthogonal columns Q̃†Q̃=D−1 6=IN ,

D=diag(L)2, and L̃=D−1/2L∈CN×N is an unnormalized unit lower-triangular matrix. Observe

now that the column vectors q̃j of Q̃ and the diagonal entries l̃jj of L̃ both do not involve

square-roots also because q̃j =qj/||qj||
2 and l̃jj = ||qj||/||qj||=1.

The pseudo-codes of the standard (unnormalized) QL algorithm and QDL algorithm are shown

in Algs. 1 and 2, respectively. The codes are optimized to produce ỹ=Q†y and ỹ̃=Q̃†y indirectly

as well by augmenting y to H and performing modified Gram-Schmidt operations on [y H].

C. Combined Inverse-Free and Square-Root-Free WLD

The puncturing matrix Wp and the punctured lower-triangular matrix Lp can now be expressed

in terms of the QDL factors of H=Q̃DL̃ as follows. Starting with

Q̃=QD
−1/2
, D=diag(L)

2
, L̃=D

−1/2
L, (92)

and forming the conformal partitions as in (18),

L=

P 0

R S

, D
1/2

=

D1/2

1 0

0 D1/2

2

, L̃=

P̃ 0

R̃ S̃

, (93)

we have P̃=D−1/2

1 P with diag(P̃)= I, R̃=D−1/2

2 R, and S̃=D−1/2

2 S with diag(S̃)= I. However,

the true Wp, Ω, and Lp,

Wp =

I 0

0 ΩS−1

, Ω=diag(S
−1

S
−†

)
−1/2
, Lp =

 P 0

ΩS−1R Ω

,
in (24)-(25) require the inverse of S, when only the submatrix S̃ is computed in (93) via the

QDL scheme. In addition, Ω involves square-root operations. We first expand Lp as follows

Lp = WpL = WpD
1/2

L̃ =

I 0

0 Ω S−1

D1/2

1 0

0 D1/2

2

P̃ 0

R̃ S̃

.
Substituting S−1 = S̃−1D−1/2

2 , we obtain

W̃p = WpD
−1/2

=

D−1/2

1 0

0 Ω S̃−1D−1

2

 (94)

Lp = WpL = W̃pDL̃ =

 D1/2

1 P̃ 0

Ω S̃−1R̃ Ω

. (95)

Similarly, we can express Ω in terms of S̃ as follows

Ω = diag(S̃
−1

D
−1

2 S̃
−†

)
−1/2

. (96)
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We next eliminate computing the inverse S̃−1 in the above equations. Using Gaussian elimination,

we apply a sequence of Gauss transformations Ẽ to invert S̃ similar to (87). Since S̃ has unit

diagonal, we obtain Ẽ S̃=diag(S̃)=IN−ν , from which it follows that the inverse of S̃ is simply

S̃
−1

= Ẽ. (97)

Substituting Ẽ for S̃−1 in the equations of W̃p (94), Ω (96), and Lp (95), we get:

W̃p =

D−1/2

1 0

0 ΩẼD−1

2

, Ω = diag(Ẽ D
−1

2 Ẽ
†
)
−1/2

, Lp =

D1/2

1 P̃ 0

Ω ẼR̃ Ω

. (98)

Note now that the above equations do not involve matrix inversion (D1,D2 are diagonal matrices).

Moving to the square-roots in (98), we show that these operations also are not needed by the

detector when computing squared-distances. Since WpQ
†=W̃pDQ̃† and WpL=W̃pDL̃, then

||Wp(Q
†
y−Lx)||2 = ||W̃pD(Q̃

†
y−L̃x)||2 = (Q̃

†
y−L̃x)

†
D
†
W̃

†
pW̃pD(Q̃

†
y−L̃x). (99)

The quantities Q̃†, L̃ are square-root free, and so is the product

D
†
W̃

†
pW̃pD =

I 0

0 Ẽ†Ω2Ẽ

, (100)

since Ω2 and Ẽ do not involve square-roots.

The pseudo-code of the optimized WDL decomposition algorithm is shown in Alg. 4. It first

performs QDL decomposition on H, followed by Gaussian elimination. The code is further

optimized to eliminate computing the matrix products W̃pDQ̃†y and W̃pDL̃ = Lp in (99)

explicitly. The QDL procedure first generates ỹ̃ = Q̃†y as a byproduct to computing L̃, D,

and Q̃. Next, starting with W̃=Q̃, the Gaussian elimination loop then immediately applies the

same operations to null the entries in L̃ on ỹ̃, as well as on the corresponding columns of W̃,

and updates their resulting squared-norms in D. The generated W̃† equals D−1/2W̃pDQ̃†, and

the required outputs are formed as W̃†H= L̃p and W̃†y= ỹp with an extra scaling factor D−1/2.

Note that W̃† operates on H directly, rather than on DL̃ like W̃p in (95) to form Lp =W̃pDL̃.

The output quantities L̃p, ỹp,D,W̃ from the algorithm are then used to compute the metrics

in (99) and (37) as follows

||Wp(Q
†
y−Lx)||2 = ||WpQ

†
(y−Hx)||2 = ||D1/2

W̃
†
(y−Hx)||2

= ||D1/2
(ỹp−L̃px)||2 =(ỹp−L̃px)

†
D(ỹp−L̃px),

µp(y|x) = − 1
N0

(ỹp−L̃px)
†
D(ỹp−L̃px). (101)

For reference, an optimized version of the standard (unnormalized) WL algorithm of [32] is

listed in Alg. 3. The outputs Lp,yp,W from this algorithm compute (99) as follows
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||Wp(Q
†
y−Lx)||2 = ||WpQ

†
(y−Hx)||2 = ||W(y−Hx)||2.

D. Eliminating Explicit Computation of MMSE Filter Matrix

For the AWLD detector, the MMSE filter matrix M in (54) is needed to compute the metrics

in (63)-(64). This M is to be pre-multiplied with WapLa =Lap and applied to y in (63), or pre-

multiplied with L†apLap and then applied to y in (64). In either case, working with the quantity

WapLaM suffices. However, (56) shows that M can be obtained from the QL decomposition of

Ha in (47) as
√
βQa2Q

†
a1 without explicitly inverting Ha. But LaQa2 = 1√

Es
IN from (52), so that

WapLaMy actually reduces to 1√
N0

WapQ
†
a1y. The product 1√

N0
Q†

a1y can be obtained indirectly

from the QL decomposition procedure (Alg. 1) when applied to Ha and ya = 1√
N0

[y; 0N×1]

as Q†
aya = 1√

N0
[Q†

a1 Q†
a2][

y
0 ] = 1√

N0
Q†

a1y, in addition to generating La. Finally, applying Wap to

puncture La can be done using Gaussian elimination as before, with the elimination operations

simultaneously applied to ỹa = 1√
N0

Q†
a1y to generate the product yap = 1√

N0
WapQ

†
a1y. Therefore,

the WL algorithm in Alg. 3, when applied to Ha and ya, produces the necessary quantities to

compute the metrics in (62)-(63), without any matrix inversion, as

||La(My−x)||2 = || 1√
N0

Q
†
a1y−Lax||2 = ||ỹa−Lax||2 (102)

µap(y|x)= 1
Es
||x||2−||WapLa(My−x)||2 (103)

= 1
Es
||x||2−||Wap(ỹa−Lax)||2 (104)

= 1
Es
||x||2−||yap−Lapx||2. (105)

Similarly, the WDL procedure in Alg. 4 generates these quantities without any square-root

operations (assuming
√
Es,
√
N0 are available at the input to form Ha,ya). The output quantities

from the algorithm, now labeled as L̃ap,D, ỹap,W̃, are used to compute the above metrics as

||Wap(
Q
†
a1y√
N0
−Lax)||2 = ||D1/2

W̃
†
( y√

N0
−Hx)||2 = ||D1/2

(ỹap−L̃apx)||2

= (ỹap−L̃apx)†D(ỹap−L̃apx), (106)

µap(y|x)= 1
Es
||x||2−||Wap( 1√

N0
Q
†
a1y−Lax)||2 = 1

Es
||x||2−(ỹap−L̃apx)†D(ỹap−L̃apx). (107)

E. Combined Two-Sided QLZ and WLZ Decompositions

The reduction and elimination operations for two-sided decompositions of Sec. III-B can be

combined efficiently as shown in Alg. 6. The code starts with QL decomposition, and then

performs right reduction followed immediately by left elimination operations, analogous to (26)-

(27). The matrix Z and its inverse are updated with every right operation, the matrix W and

output vector yp are updated with every left operation, while Lp is updated after each of these

operations. For reference, Alg. 5 shows the code for QLZ decomposition with right reduction but

without elimination. Note again that the generated W is related to Wp in (31) as W†=WpQ
†.
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Table TI in the supplement summarizes all algorithms presented in this section, and highlights

their main features.

VIII. (A)WLD-BASED MIMO DETECTION ALGORITHMS

In this section, we present computationally-efficient soft-output MIMO detection algorithms

based on the AWLD, WLD, and WLZ puncturing schemes, and compare them with the LORD

algorithm [14]. Supplement Table TII summarizes all the algorithms discussed and their features

in terms of decomposition and puncturing schemes, metric used for LLR computation, marginal-

ization on child layers, single-tree versus multi-tree, as well as local versus global metric update.

The pseudo-codes of all algorithms are available in the supplement.

In general, MLM bit LLRs are computed using (7) as Max-Log approximations of the exact

ML LLRs in (6), with the true metric µ(y|x)=µ(ỹ|x)=− 1
N0
||ỹ−Lx||2 as defined in (3). For an

arbitrary L partitioned into ν parent layers and N−ν child layers, the exact maximizations in (7)

are expressed as in (12)-(13), and approximated using ZF-DF on child symbols using (16)-(17).

For a punctured L, alternative metrics µp(ỹ|x) and µap(ỹ|x) to µ(ỹ|x) are derived in (101)

and (107) under the optimized WLD and AWLD models. When µp(ỹ|x) and µap(ỹ|x) are used

in (7) instead of µ(ỹ|x), and with L being punctured, then all child symbols become leaves,

decision feedback disappears, and the ZF-DF approximations in (14)-(15) turn into exact LS

estimates as required to satisfy (12)-(13).

A. AWDL MIMO Detection Algorithm
An augmented channel is first formed as in (47), and then punctured using Alg. 4 for a given

ν, to yield L̃ap, ỹap,D, with the following structure: L̃ap =
[

P̃ 0
R̃ I

]
, ỹap =[ỹ1; ỹ2], and D=

[
D1 0
0 D2

]
.

With x=[x1; x2], the bit LLRs are computed as

Λap(xn,b|y)= max
x:xn,b=+1

µap(y|x)− max
x:xn,b=−1

µap(y|x),

µap(y|x)= 1
Es
||x||2−(ỹap−L̃apx)†D(ỹap−L̃apx) , µ1(ỹ1|x1) + µ2(ỹ2|x1,x2),

where µ1(ỹ1|x1)= 1
Es
||x1||2−||ỹ1−P̃x1||2D1

and µ2(ỹ2|x1,x2)= 1
Es
||x2||2−||ỹ2−R̃x1−x2||2D2

. Next, for

any x1, the leaf symbols x2 that maximize µ2 are obtained through LS by setting the derivative

of µ2 with respect x2 to 0. We obtain 1
Es

x†2+(ỹ2−R̃x1−x2)
†D2 =0, from which it follows that
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max
x:xn,b=s

µap(ỹ|x)= max
x1:xn,b=s

{
µ1(ỹ1|x1)+max

x2

µ2(ỹ2|x1,x2)
}

= max
x1:xn,b=s

{µ1(ỹ1|x1)+µ̂2(ỹ2|x1, x̂2)} , (108)

x̂2 =
⌊
(D2− 1

Es
IN−ν)

−1
D2(ỹ2−R̃x1)

⌉
XN−ν ,

max
x:xn,b=s

µap(ỹ|x)=max
x1

{
µ1(ỹ1|x1)+ max

x2:xn,b=s
µ2(ỹ2|x1,x2)

}
=max

x1

{
µ1(ỹ1|x1)+µ̂2(ỹ2|x1, x̂

(s)

2n;b)
}
, (109)

x̂
(s)

2n;b,
⌊
(D2− 1

Es
IN−ν)

−1
D2(ỹ2−R̃x1)

⌉
A(s)
n,b

,

for s=±1, where A(s)

n,b={[xν+1, · · · , xn, · · · , xN ]T∈XN−ν : xn,b=s}.

The pseudo-code of the multi-tree version of the AWDL algorithm is shown in Alg. 9. It

performs multiple runs, each time grouping a new set of ν layers as parents to generate bit

LLRs using (108) only. The multi-tree WLD algorithm that implements (108) but using the

metric µp in (101) is shown in Alg. 7. For reference, the pseudo-code of the multi-tree LORD

algorithm that implements (16) with the true metric (3) is shown in Alg. 11. Because its channel

L is full lower-triangular, LORD applies ZF-DF rather than LS to estimate the child symbols,

resulting in a significant increase in computational complexity compared to WLD/AWDL. Note

that for all three algorithms, the multiple runs are independent and the metrics computed are

used to update just the tracked maxima of the parent layer bits only, and are not globally shared

to update the maxima for other bits.

The search space of |X |ν parent symbol vectors of the AWDL algorithm can be reduced to

ν · |X | by enumerating only over the root and applying ZF-DF on the other ν−1 parents. Using

Lemma 3, for a given choice of ν layers as parents and N−ν layers as leaves, the metric of a

given symbol vector does not change if the parent layers are permuted and the leaf layers are

permuted. Hence, doing ν runs over the parent layers, each time with a different layer as root,

would improve the estimates by updating the maxima being tracked for the bits on all ν parents

in each run, and not just those bits of the current root symbol. For the case ν = 2, the search

on layer 2 can be limited to a small window of η symbols around the ZF solution. Empirical

simulations demonstrate that η=4 is sufficient to achieve the accuracy of enumerating all |X |2

parent symbol vectors. The pseudo-code of the windowed-AWDL algorithm is shown in Alg. 10.

Finally, the LORD algorithm can be similarly optimized to update the tracked maxima for

each bit hypothesis on all layers in each run as shown on Alg. 12. This is possible in this

case because Euclidean distances do not change under column permutation of H: ||y−Hx||=

||y−HJJTx||= ||ỹ−LJTx|| for any permutation J, where HJ=QL and ỹ=Q†y.
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B. WLZ-Based MIMO Detection Algorithm

While the metrics of the WLD and AWDL algorithms are not preserved under arbitrary

layer permutation as they are for LORD, they are approximately preserved under 2-sided WLZ

decomposition (Section III-B, Alg. 6). The pseudo-code of the multi-tree version of the WLZ

algorithm shown in Alg. 8 implements (108) similar to the WLD detection algorithm of Alg. 7,

but with µp in (101) being based on the 2-sided WLZ rather than the 1-sided WL decomposition.

IX. SIMULATION RESULTS

A library of MIMO detection algorithms have been implemented and characterized for both

algorithmic performance and computational complexity. Fast-fading Rayleigh complex MIMO

channels are assumed. In Fig. 4a, we compare the achievable rates of the proposed WLZ and

AWLD detectors against the AIR-PM detector [18], as well as the ZF, MMSE, and WLD [15] for

8×8 MIMO channels, assuming Gaussian inputs and with parent layers selected so as to maximize

IWLD
LB in (41). The AWLD and WLD are simulated for both ν=1 and ν=2 configurations, while

WLZ is simulated for ν and c= 1, 2. WLZ attains the closest rate to capacity with reduction

parameter c=2, followed by AWLD/AIR-PM (which attain the same rate), followed by WLD.

This is because as ρ= 1/2c+1/2 decreases by increasing c, then from Lemma 1 and (33), Wp

gets closer to I and Lp approaches the true unpunctured L. Hence from Theorem 1, the lower

bound on the achievable rate IWLD
LB approaches the capacity of the channel.

On the other hand, Fig. 4b plots the AIR of AWLD and WLD with ν = 1 for finite con-

stellations. The AWLD achieves higher rates than WLD, especially for 64QAM. Parent layers

are selected to maximize IWLD
LB in (41) if Gaussian inputs were used. For the AWLD scheme at

very low SNR regimes, it attains higher rates for low-order constellations compared to denser

constellations. For SNRs beyond ∼ 10 dB, the trend gets reversed, with the AWLD scheme

attaining higher rates for denser constellations. Similarly for the WLD scheme. However, the

SNRs for which denser constellations start to outperform low-order constellations are much

higher than those of the AWLD case; the rate for which 16QAM becomes better than that for

QPSK is roughly 20 dB for the WLD case, while for the AWLD case, it is roughly 6 dB. The

same applies between 64QAM and 16QAM, but at an impractically very high SNR value (range

not shown in the figure). The reason is that the WLD scheme is not optimal, and misses the ML

decision for denser constellations at low SNRs more often compared to the AWLD scheme.

In Figs. 5-6, we compare the frame error rate (FER) of the proposed WLZ and AWLD

detectors against the Max-Log ML (MLM) sphere decoder with optimized pruning [6], ZF, K-
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(a) Gaussian inputs
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(b) Finite QAM constellations

Fig. 4. Comparison of AIRs for 8×8 MIMO channels with (a) Gaussian inputs, and (b) finite QAM constellations.

best [10], LORD [14], WLD [15], and AIR-PM [18] detectors for various MIMO dimensions,

QAM constellations, and puncturing orders. Max-log approximations for exponential sums are

used. An LTE rate-1/2 punctured turbo code of length 1024 is used, and 8 turbo decoder iterations

are performed. For K-best, sorted-QRD [33] is used, and the K best competing paths are retained.

Counter hypotheses are formed relative to the best survivor path. Counter hypotheses of all leaf

bits are updated using the optimization in [6]. Un-updated LLR values are replaced with the

minimum LLR in the corresponding symbol.

For LORD, both ν=1, 2 are simulated using the multi-tree approach; N/ν rounds of ν-layer

parent selections, QLDs, and ZF-DF steps on the N−ν child layers are performed. LORD-Lν1

and LORD-Lν2 perform local (within-tree) metric updates only (Alg. 11), while LORD-Gν1 and

LORD-Gν2 perform global (across all trees) metric updates (Alg. 12). For ν = 2, consecutive

layer pairing is done.

For WLD, WLD-Lν1 and WLD-Lν2 perform local metric updates only (Alg. 7). WLD-

Xν2η1 enumerates on parent 1, does ZF on parent 2, and ZF-DF on child nodes. WLD-Xν2η4

enumerates on parent 1, then enumerates over a window of 4 symbols around the ZF solution (ZF-

W) on parent 2, and does ZF-DF on child nodes. Both WLD-X algorithms update metrics across

tree pairs. Similarly for AWLD; AWLD-Lν1 and AWLD-Lν2 apply Alg. 9 using augmented

channel puncturing with local metric updates, while AWLD-Xν1η1 and AWLD-Xν2η4 are

similar to their WLD counter parts but apply augmented puncturing (Alg. 10).

For AIR-PM, the single-tree approach is used. AIRr-Sν1 randomly selects a parent and
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(c) 8×8, 64QAM, ν=1
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(d) 8×8, 64QAM, ν=2
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(e) 12×12, 64QAM, ν=1
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(f) 12×12, 64QAM, ν=2

Fig. 5. Comparisons of FERs vs. SNR for various QAM constellations, puncturing orders, and MIMO dimensions 4, 8, and, 12.
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(a) 16×16, 16QAM, ν=1
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(b) 16×16, 16QAM, ν=2
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(c) 16×16, 64QAM, ν=1
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(d) 16×16, 64QAM, ν=2
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(e) 32×32, 16QAM, ν=1
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(f) 32×32, 16QAM, ν=2

Fig. 6. Comparisons of FERs vs. SNR for various QAM constellations, puncturing orders, and MIMO dimensions 16 and 32
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orders the other child layers, while AIRo-Sν1 does optimal layer ordering to maximize the

AIR assuming Gaussian inputs. AIRr-Sν2 uses two parents with random layer ordering.

For WLZ, 2-sided puncturing and reduction are applied using Alg. 8. WLZ-Lν1c2 does local

metric updates with one parent and c = 2. Similarly, WLZ-Gν1c2 and WLZ-Gν1c3 perform

global metric updates with c=2, 3, respectively.

Several observations can be made: 1) Multi-tree approaches are superior to single-tree ap-

proaches, and are less sensitive to layer ordering. 2) Global metric updates across trees signifi-

cantly improves performance compared to local within-tree only updates. 3) For trees with more

than one parent, there is no need to enumerate across all |X |ν parent combinations. Running

ν trees instead, each time enumerating on one parent and doing ZF-W only on parent 2 is as

good. 4) Augmented-WLD based algorithms consistently perform better than their WLD counter

parts. 5) Two-sided WLZ based algorithms perform better than AWLD and WLD, and almost

match the performance of LORD with global metric updates (LORD has dense L, while WLZ

has punctured L). 6) Puncturing remains very effective even for large MIMO dimensions.

Figure 7 plots the LLR distributions of bits 1 and 3 of one symbol in a 4×4, 16QAM MIMO

system at SNR=20 dB. As shown, AWLD and WLZ track the optimal LLRs very closely.

The complexity of various algorithms is benchmarked and compared in Fig. 8 for an 8×8

MIMO system and 64QAM. The figure plots the SNR required to achieve a target FER of

0.1% versus normalized complexity. All algorithms (matrix decomposition, filtering, MMSE,

MIMO detection) are first implemented using fixed-point arithmetic, and then profiled in terms

of memory storage requirements and kernel mathematical operations. These operations include

(both for real and complex quantities, where applicable): multiplication, division, multiply-

accumulate, squaring, addition/subtraction, inversion, (inverse) square-root, slicing, look-up table

(LUT) operations, comparison operations, vector norm and norm-square, multiplexing, sorting,

and permutation. The gate-count complexity of these operations is evaluated by mapping them

to a library of pre-characterized logic gates that includes basic adders/subtractors, multipliers,

squarers, dividers, multiplexers, memory elements, comparators, slicers, and (inverse) square-

rooters. As a result, each operation is characterized with a gate complexity value.

Parallel architectures for all algorithms are developed, and their gate-count complexity is

plotted in Fig. 8. For the MLM algorithm, a serial depth-first tree traversal architecture is

developed, and its complexity is reported as gate-count per tree node, multiplied by the number

of nodes visited. Since the latter is non-deterministic, the value reported is averaged over 1000
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Fig. 7. Distribution of LLRs for bits 1 and 3 of one symbol: 4×4 complex MIMO channel, 16QAM, SNR=20dB.
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Fig. 8. SNR to meet a target FER of 0.1% versus complexity.

detection trials. For the K-best algorithm, a K-wide parallel architecture is developed.

As expected, the ZF and MLM algorithms lie at opposite extremes in the performance-

complexity space. The proposed WLZ algorithm offers the best performance-complexity tradeoff

among all algorithms. It matches the performance of LORD at roughly 20x less complexity. The

savings are primarily due to the eliminated complex multiplications in L as a result of the

puncturing and reduction operations.
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X. CONCLUSIONS

Channel puncturing in augmented and two-sided forms has been investigated in this work as an

effective means to reduce computational complexity of tree-based soft-output MIMO detectors.

It has been shown that punctured augmented channel matrices processed by the AWLD detector

are optimal in maximizing the lower bound on the achievable information rate. Their structure

matches exactly that of AIR-PM, but most importantly, they can be derived using simple QL

decomposition followed by Gaussian elimination. When used in multi-tree mode with local

metric updates, AWLD beats LORD both performance-wise and complexity-wise. However,

LORD, when optimized to operate with global across-tree metric updates, attains a significant

performance gain that AWLD cannot match because its puncturing matrix is non-unitary, and

hence Euclidean-distance based metrics are not preserved under column permutations in multiple

trees. This shortcoming is mitigated by employing two-sided puncturing based on right-sided

integer reduction and left-sided elimination. The resulting puncturing matrices processed by WLZ

are almost unitary, and hence the global across-tree metric update property of LORD is retained.

The result is that the proposed WLZ scheme offers the best performance-complexity tradeoff

among tree-based detectors. Finally, extensions to include soft-input information, imperfect

channel estimation effects, and correlated channels are directly applicable based on [18].
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SUPPLEMENT S1

PROOF OF LEMMA 5

First, we can assume without any loss of generality that both U and V are lower-triangular

matrices with real and positive diagonal entries. Otherwise, let U = QuLu be the QL decom-

position of U and VV† = LvL
†
v be the Cholesky factorization of VV†, where Lu and Lv are

lower-triangular matrices with real and positive diagonal entries. Then

f(U,V)=ln det(UU
†
)−Tr((UV)(UV)†)

=ln det(QuLuL
†
uQ
†
u)−Tr((QuLu)(LvL

†
v)(L

†
uQ
†
u))

=ln det(LuL
†
u)−Tr((LuLv)(LuLv)

†)

=f(Lu,Lv).

Henceforth, we assume that both U=[ukj] and V=[vkj] are lower-triangular matrices with real

and positive diagonal entries. Let ũk = [uk1 uk2 · · · uk,k−1] denote the row vector consisting of

the first k − 1 elements of the kth row of U, and uk = [ũk ukk]. Let Uk denote the leading

principal matrix of U of order k, and let Ũk=Uk−1. The vectors ṽk, vk, and matrices Vk, Ṽk

are similarly defined for V. Let g(U), ln det(UU†) and h(U,V),Tr((UV)(UV)†).

To determine Uopt, we compute ∂
∂U
f(U,V) and set it to 0. We start by computing the trace

Tr((UV)(UV)†) first,

h =
N∑
k=1

[
ũk ukk

]Ṽk

ṽk vkk

Ṽ†k ṽ†k

vkk

 ũ†k

ukk


=

N∑
k=1

{
ũkṼkṼ

†
kũ
†
k+2ukkR

{̃
vkṼ

†
kũ
†
k

}
+u2

kk(v
2
kk+ṽkṽ

†
k)
}

The problem then boils down to determining the unknowns ũk and ukk that satisfy the required

derivative condition. Since ln det(UU†) =
∑N

k=1 lnu2
kk involves the diagonal elements ukk only,

we can start by determining ũk by setting the derivative of the trace term only ∂h
∂ũk

to 0. We

obtain

ṼkṼ
†
kũ
†
k + ukkṼkṽ

†
k = 0,
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and hence

ũopt
k = −ukkṽkṼ−1

k .

We next determine ukk. Substituting back in the trace equation, we get

h|ũk=ũopt
k

=
N∑
k=1

u2
kkv

2
kk.

Now taking derivative with respect to ukk, including the ln det term, we have

∂f

∂ukk
=

∂

∂ukk

{
ln(u2

kk)−u2
kkv

2
kk

}
= 2

ukk
−2ukkv

2
kk=0,

implying that uopt
kk = 1

vkk
. Therefore,

uopt
k = [ũopt

k uopt
kk ] = [−v−1

kk ṽkṼ
−1
k v−1

kk ].

Next note that if we multiply uopt
k by Vk for any k we obtain

uopt
k Vk=

[
−v−1

kk ṽkṼ
−1
k v−1

kk

]Ṽk

ṽk vkk

=
[
01×(k−1) 1

]
,

which implies that UoptV = I. Hence the optimal U is the inverse of V, Uopt = V−1, and

f(Uopt,V)=−
∑N

k=1 ln v2
kk −N .



SUPPLEMENT TABLE TI
SUMMARY OF DECOMPOSITION AND PUNCTURING ALGORITHMS

Algorithm Scheme Functionality Properties
Alg. 1 QL Decompose H as H = QL; generate ỹ = Q†y Q†Q=I; L lower-triangular, L(k, k) ∈ R+

Alg. 2 QDL Decompose H as H = Q̃DL̃; generate ỹ̃ = Q̃†y
Square-root free QL decomposition
Q̃†Q̃ = D−1; L̃ unit lower-triangular

Alg. 3 WL Puncture H using W as W†H=Lp; generate yp =W†y

One-sided puncturing algorithm
W non-unitary but diag(W†W)=I

Lp punctured lower-triangular, Lp(k, k) ∈ R+

Alg. 4 WDL Puncture H using W̃ as W̃†H= L̃p; generate ỹp =W̃†y

One-sided square-root free puncturing algorithm
W̃ non-unitary but diag(W̃†W̃)=D−1

L̃p punctured unit lower-triangular

Alg. 5 QLZy Decompose H as H = QLZ−1; generate ỹ = Q†y

QL decomposition with right reduction
Q†Q=I; L lower-triangular, L(k, k) ∈ R+

Z unimodular with det Z = 1

Alg. 6 WLZ Puncture H using W,Z as W†HZ=Lp; generate yp =W†y

Two-sided puncturing algorithm
W non-unitary but diag(W†W)=I

Lp punctured lower-triangular, Lp(k, k) ∈ R+

Z unimodular with det Z = 1



SUPPLEMENT S2

QL DECOMPOSITION ALGORITHM

Alg. 1 Optimized thin QL decomposition algorithm
. Decompose H as H = QL and generate ỹ = Q†y
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. Q : M×N matrix with orthonormal columns; Q†Q = IN
. L : N×N lower-triangular matrix s.t. L(k, k) ∈ R+

. ỹ : N×1 such that ỹ = Q†y
function [Q,L, ỹ]=QLy(H,y)

Q← [y H] . augment y to H
L← 0N×(N+1)

for k=N+1:−1:2 do . index of current column
L(k−1, k)←

√
Q(:, k)†Q(:, k) . diagonal element

Q(:, k)←Q(:, k)/L(k−1, k) . normalize
for j=k−1:−1:1 do . all other cols to its left

L(k−1, j)←Q(:, k)†Q(:, j)
Q(:, j)←Q(:, j)−L(k−1, j)Q(:, k)

end for
end for
Q←Q(:, 2:N+1) . last N cols of augmented Q
ỹ←L(:, 1) . first col of augmented L
L←L(:, 2:N+1) . last N cols of augmented L

end function



SUPPLEMENT S3

QDL DECOMPOSITION ALGORITHM

Alg. 2 Optimized QDL decomposition algorithm
. Decompose H as H = Q̃DL̃ and generate ỹ̃ = Q̃†y.
. If [Q,L, ỹ]=QLy(H,y), then
. Q̃ = QD−1/2, L̃ = D−1/2L, ỹ̃ = D−1/2ỹ.
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. Q̃ : M×N matrix with orthogonal columns s.t. Q̃†Q̃ = D−1

. D : N×N diagonal matrix with real positive entries such that

. D = diag(L)2

. L̃ : N×N unit lower-triangular matrix; L̃(k, k) = 1

. ỹ̃ : N×1 such that ỹ̃ = Q̃†y = D−1/2Q†y = D−1/2ỹ
function [Q̃,D, L̃, ỹ̃]=QDLy(H,y)

Q̃← [y H] . augment y to H
D← 0N×N . normalizer diagonal matrix
L̃← [0N×1 IN ] . normalized augmented matrix
for k=N+1:−1:2 do . index of current col

D(k−1, k−1)← ||Q̃(:, k)||2 . diagonal element
for j=k−1:−1:1 do . all other cols to its left

L̃(k−1, j)←Q̃(:, k)†Q̃(:, j)/D(k−1, k−1)
Q̃(:, j)←Q̃(:, j)−L̃(k−1, j)Q̃(:, k)

end for
Q̃(:, k)←Q̃(:, k)/D(k−1, k−1)

end for
Q̃←Q̃(:, 2:N+1) . last N cols of augmented Q̃
ỹ̃← L̃(:, 1) . first col of augmented L̃
L̃← L̃(:, 2:N+1) . last N cols of augmented L̃

end function



SUPPLEMENT S4

WL DECOMPOSITION ALGORITHM

Alg. 3 Optimized WL decomposition algorithm
. Generate W s.t. W†H=Lp, W†y=yp, diag(W†W)=IN
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. ν : puncturing order
. Lp : N×N punctured lower-triangular matrix; Lp(k, k) ∈ R+

. yp : N×1 such that yp = W†y

. W : M×N puncturing matrix such that diag(W†W) = IN

. —————————————————————————————-

. Note: W† punctures H; in manuscript, Wp punctures L.

. The two schemes are related as follows:

. W†(y−Hx)=WpQ
†(y−Hx)=Wp(ỹ−Lx)

. W†=WpQ
†, Wp =W†Q

. Also, W†QQ†=W† even though QQ† 6=I for M>N . This is because the rows of Q† and the cols of (QQ†−I)
are orthogonal so that Q†(QQ†−I)=0. Hence any matrix right-multiplied by Q† would have rows orthogonal
to (QQ†−I). Thus W†QQ†−W†=W†(QQ†−I)=WpQ

†(QQ†−I)=0.
. —————————————————————————————-
function [Lp,yp,W]=WL(H,y, ν)

[Q,L, ỹ]← QLy(H,y) .QL dec.; here ỹ=Q†y,Q†Q=IN
W← Q, Lp ← [ỹ L] .Augment ỹ to L
for k=ν+2:N do .Gaussian elimination

for j=ν+1:k−1 do . col index to puncture
α←Lp(k, j+1)/Lp(j, j+1)
W(:, k)←W(:, k)−α†W(:, j)
Lp(k, 1:j+1)←Lp(k, 1:j+1)−αLp(j, 1:j+1)

end for
Lp(k, 1:k+1)←Lp(k, 1:k+1)/||W(:, k)||
W(:, k)←W(:, k)/||W(:, k)||

end for
yp←Lp(:, 1) . first col of augmented Lp

Lp←Lp(:, 2:N+1) . last N cols of augmented Lp

end function .Wp =W†Q



SUPPLEMENT S5

WDL DECOMPOSITION ALGORITHM

Alg. 4 Square-root-free WDL decomposition algorithm
. Square-root free version of WL() in Alg. 3
. Generate D and W̃ such that W̃†H= L̃p, W̃†y= ỹp, and
. diag(W̃†W̃)=D−1.
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. ν : puncturing order
. L̃p : N×N punctured unit lower-triangular matrix; L̃p(k, k)=1
. ỹp : N×1 such that ỹp = W̃†y
. D : N×N diagonal matrix with real positive entries such that
. D = diag(Lp)

2

. W̃ : M×N puncturing matrix such that diag(W̃†W̃)=D−1

. —————————————————————————————-

. Note: W̃† punctures H to form L̃p =W̃†H. In manuscript, W̃p punctures DL̃=D1/2L to form Lp =W̃pDL̃.
These quantities are related as follows:
. If [Q̃,D, L̃, ỹ̃]=QDLy(H,y), then:
. Q̃ = QD−1/2, L̃ = D−1/2L, ỹ̃ = D−1/2ỹ
. If [Lp,yp,W]=WL(H,y, ν), then:
. Lp =W†H, yp =W†y
. W̃=WD−1/2, L̃p =D−1/2Lp, D=diag(Lp)

2, ỹp =D−1/2yp

. W†=WpQ
†=W̃pDQ̃†, W̃†=D−1/2W̃pDQ̃†

. —————————————————————————————-
function [L̃p, ỹp,D,W̃]=WDL(H,y, ν)

[Q̃,D, L̃, ỹ̃]← QDLy(H,y) .QDL dec.; here ỹ̃=Q̃†y
W̃← Q̃ . copy in case Q̃ is needed
L̃p ← [ỹ̃ L̃] .Augment ỹ̃ to L̃
for k=ν+2:N do .Gaussian elimination

for j=ν+1:k−1 do . col index to puncture
α← L̃p(k, j+1)
W̃(:, k)←W̃(:, k)−α†W̃(:, j)
L̃p(k, 1:j+1)← L̃p(k, 1:j+1)−αL̃p(j, 1:j+1)

end for
D(k, k)←1/||W̃(:, k)||2

end for
ỹp← L̃p(:, 1) . first col of augmented L̃p

L̃p← L̃p(:, 2:N+1) . last N cols of augmented L̃p

end function



SUPPLEMENT S6

QLZ DECOMPOSITION ALGORITHM

Alg. 5 QLZ decomposition algorithm with right reduction
. Decompose H as HZ = QL or H = QLZ−1

. H : Complex M×N matrix, M≥N

. y : Complex M×1 column vector

. c : reduction control parameter

. Q : M×N matrix with orthonormal columns; Q†Q = IN

. L: N×N lower-triangular matrix satisfying reduction conditions

. 1) |R{L(k, j)}| ≤ 2−(c+1/2)L(k, k) for all j, k : j < k

. 2) |I{L(k, j)}| ≤ 2−(c+1/2)L(k, k) for all j, k : j < k

. Note: L(k, k) ∈ R+

. ỹ = Q†y

. Z : N×N unimodular matrix with detZ = 1

. Z−1 : inverse of Z; N×N unimodular matrix with detZ−1 = 1
function [Q,L, ỹ,Z,Z−1]=QLZy(H,y, c)

Z← IN , Z−1 ← IN .Gauss matrix and its inverse
[Q,L, ỹ]← QLy(H,y) .QL-decompose
for k=2:N do . row index

for j=1:k−1 do . col index
ζ ← 2−c

⌊
2c L(k,j)L(k,k)

⌉
.Reduction factor

if ζ 6= 0 then
L(k :N, j)← L(k :N, j)−ζ · L(k :N, k)
Z(k :N, j)← Z(k :N, j)−ζ · Z(k :N, k)
Z−1(k, 1:j)← Z−1(k, 1:j)+ζ · Z−1(j, 1:j)

end if
end for

end for
end function



SUPPLEMENT S7

OPTIMIZED TWO-SIDED WLZ DECOMPOSITION ALGORITHM

Alg. 6 Two-sided WLZ decomposition algorithm
. Generate W,Z such that Lp = W†HZ
. If H=QL, then Lz,LZ satisfies the reduction conditions
. 1) |R{Lz(k, j)}| ≤ 2−(c+1/2)Lz(k, k) for all j, k : ν<j<k
. 2) |I{Lz(k, j)}| ≤ 2−(c+1/2)Lz(k, k) for all j, k : ν<j<k
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. ν : puncturing order
. c : reduction control parameter
. Lp: N×N punctured lower-triangular matrix; Lp(k, k)∈R+

. yp = W†y

. W: M×N matrix such that diag(W†W) = IN

. Z : N×N unimodular matrix with detZ = 1

. Z−1 : inverse of Z; N×N unimodular matrix with detZ−1 = 1

. —————————————————————————————-

. Note: W† punctures H; in manuscript, Wp in (31) punctures L. The two matrices are related as W†=WpQ
†.

. —————————————————————————————-
function [Lp,yp,W,Z,Z−1]=WLZ(H,y, ν, c)

[W,Lp,yp]← QLy(H,y) .QL-decompose; yp =W†y
for k=ν+2:N do .Reduction-elimination loop

for j=ν+1:k−1 do . col index
. Reduction step
ζ ← 2−c

⌊
2c L(k,j)L(k,k)

⌉
.Reduction factor

if ζ 6= 0 then
L(k :N, j)← L(k :N, j)−ζ · L(k :N, k)
Z(k :N, j)← Z(k :N, j)−ζ · Z(k :N, k)
Z−1(k, 1:j)← Z−1(k, 1:j)+ζ · Z−1(j, 1:j)

end if
. Elimination step
ω ← Lp(k, j)/Lp(j, j)
W(:, k)←W(:, k)− ω† ·W(:, j)
Lp(k, 1:j)← Lp(k, 1:j)− ω · Lp(j, 1:j)
yp(k)← yp(k)− ω · yp(j) . update yp

end for
Lp(k, 1:k)← Lp(k, 1:k)/||W(:, k)|| . normalize
yp(k)← yp(k)/||W(:, k)||
W(:, k)←W(:, k)/||W(:, k)||

end for
end function



SUPPLEMENT TABLE TII
SUMMARY OF DETECTION ALGORITHMS

Algorithm Decomp. Scheme Channel Metric Marginalization Tree Metric Update
Alg. 7 1-sided WL

left-punctured µp =− 1
N0
||yp−Lpx||2 LS on leaves

multi-tree: N/ν trees local within tree only
WLdetector ν parents all child nodes are leaves metrics not preserved with col permutations

Alg. 8 2-sided WLZ left-punctured
µpz =− 1

N0
||yp−LpZ

−1x||2 LS on leaves
multi-tree: N/ν trees global across all trees

WLZdetector ν parents right-reduced all child nodes are leaves metrics almost preserved with col
reduction param. c permutations as c increases

Alg. 9 1-sided WDL augmented
µap = 1

Es
||x||2−||ỹap−L̃apx||2D LS on leaves

multi-tree: N/ν trees local within tree only
AWDLdetector ν parents left-punctured all child nodes are leaves metrics not preserved with col permutations

Alg. 10 1-sided WDL augmented
µap = 1

Es
||x||2−||ỹap−L̃apx||2D

enumerate on parent 1 multi-tree: 2×N/2 trees global between parent tree pairs
AWDLXdetector fixed ν=2 parents left-punctured ZF+window on parent 2 2 trees per parent pair metrics not preserved across tree pairs

window size η ZF-DF on leaves all child nodes are leaves
Alg. 11 1-sided QLy

true µ=− 1
N0
||ỹ−Lx||2 ZF-DF on child nodes multi-tree: N/ν trees local within tree only

LORDdetector ν parents
Alg. 12 1-sided QLy

true µ=− 1
N0
||ỹ−Lx||2 ZF-DF on child nodes multi-tree: N/ν trees

global across trees
LORDXdetector ν parents metrics preserved with col permutations



SUPPLEMENT S8

WLD-BASED MIMO DETECTION ALGORITHM

Alg. 7 One-sided WLD MIMO detection algorithm
. Perform soft-output MIMO detection by puncturing H using 1-sided WL() decomposition scheme of Alg. 3.
Process ν parent layers at a time. In each run, layers are permuted so that a new group of ν symbols are
chosen as parent symbols. N/ν independent runs are performed. Metrics of parent layer symbols only are
updated in each run. This is because, for every layer ordering of H, W†

p changes and is not unitary. Hence
Euclidean distance metrics of the form ||W†

p(y−Hx)||= ||yp−Lpx|| are not preserved when the columns of H
are permuted.
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. N0 : noise variance
. X : set of Q modulation constellation symbols; |X |=Q=2q

. ν : puncturing order (assume N is a multiple of ν)

. Λ: qN × 1 bit LLR vector

. Note: Distance computation on line 14 is expressed in this form for brevity. It can be simplified since Lp is
punctured and sparse.

1: function Λ=WLdetector(H,y, N0,X , ν)
2: Q← |X | , q ← log2Q
3: X← all ν×1 vectors in X ν . ν×Qν symbol matrix
4: x← 0N×1 .N×1 column symbol vector
5: µ1, µ0 ← −∞qN×1 . qN×1 metric vec. initialized to −∞
6: for t=1:N/ν do . process ν parent layers at a time
7: π ← [ν(t−1)+1:N, 1:ν(t−1)] . col permutation
8: [Lp,yp,∼]←WL(H(:, π),y, ν) . permuted cols
9: for j=1:Qν do . loop over all ν×1 vectors in X ν

10: x(1 :ν)←X(1 :ν, j) . ν parent layer symbols
11: for i=ν+1:N do .N−ν child layer symbols
12: x(i)←

⌊
yp(i)−Lp(i,1:ν)x(1:ν)

Lp(i,i)

⌉
. slice

13: end for
14: µ←−||yp−Lpx||2 .metric using punctured Lp

15: b← binary(x(1 :ν)) . qν×1 binary representation
16: for k=1:qν do .metrics for qν parent symbol bits
17: if b(k) = 1 then
18: µ1(qν(t−1)+k)←max{µ1(qν(t−1)+k), µ}
19: else
20: µ0(qν(t−1)+k)←max{µ0(qν(t−1)+k), µ}
21: end if
22: end for . k loop
23: end for . j loop
24: end for . t loop
25: Λ←(µ1 − µ0)/N0 . qN× 1 vector of LLRs
26: end function



SUPPLEMENT S9

WLZ-BASED MIMO DETECTION ALGORITHM

Alg. 8 Two-sided WLZ MIMO detection algorithm
. Perform soft-output MIMO detection by puncturing H using 2-sided WLZ() decomposition scheme of Alg. 6.
Process ν parent layers at a time. Each run detects a new group of ν symbols chosen as parent symbols. N/ν
runs are performed. Metrics of all layer symbols are updated in each run. This approximation is possible in
this case because of the right reduction step by Z. For large c, WapW

†
ap ≈ I (i.e., almost unitary), and hence

distance metrics of the form ||W†
ap(ya−Hax)||2 ∝ ||W†

apLa(My−x)||2 are almost preserved when the columns
of H are permuted.
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. N0 : noise variance
. X : set of Q modulation constellation symbols; |X |=Q=2q

. ν : puncturing order (assume N is a multiple of ν)

. c : reduction control parameter

. Λ: qN × 1 bit LLR vector

. Note: Operation LpZ
−1 on line 9 is simply integer addition and scaling operations by powers-of-2. Also,

distance computation on line 15 is expressed in this form for brevity. It can be simplified since Lz is punctured
and sparse.

1: function Λ=WLZdetector(H,y, N0,X , ν, c)
2: Q← |X | , q ← log2Q
3: X← all ν×1 vectors in X ν . ν×Qν symbol matrix
4: x← 0N×1 .N×1 column symbol vector
5: µ1, µ0 ← −∞qN×1 . qN×1 metric vec. initialized to −∞
6: for t=1:N/ν do . process ν parent layers at a time
7: π ← [ν(t−1)+1:N, 1:ν(t−1)] . col permutation
8: [Lp,yp,∼,∼,Z

−1]←WLZ(H(:, π),y, ν, c)
9: Lz ← LpZ

−1 . Integer addition/scaling operations
10: for j=1:Qν do . loop over all ν×1 vectors in X ν

11: x(1 :ν)←X(1 :ν, j) . ν parent layer symbols
12: for i=ν+1:N do .N−ν child layer symbols
13: x(i)←

⌊
yp(i)−Lz(i,1:ν)x(1:ν)

Lz(i,i)

⌉
. slice

14: end for
15: µ←−||yp−Lzx||2 .metric using punctured Lz

16: b← binary(x) . qN×1 binary rep. of all x
17: for k=1:qN do . update metrics for all symbol bits
18: if b(k) = 1 then
19: µ1(k)←max{µ1(k), µ}
20: else
21: µ0(k)←max{µ0(k), µ}
22: end if
23: end for . k loop
24: end for . j loop
25: end for . t loop
26: Λ←(µ1 − µ0)/N0 . qN× 1 vector of LLRs
27: end function
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AWDL MIMO DETECTION ALGORITHMS

Alg. 9 AWDL MIMO detection algorithm
. Perform soft-output MIMO detection by puncturing the augmented matrix Ha using 1-sided square-root-free
WDL() decomposition scheme of Alg. 4. Process ν parent layers at a time. In each run, layers are permuted
so that a new group of ν symbols are chosen as parent symbols. N/ν independent runs are performed. Metrics
of parent layer symbols only are updated in each run. This is because, for every layer ordering of Ha, the
puncturing matrix changes and is not unitary. Hence the required metrics are not preserved when the columns
of H are permuted.
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. N0 : noise variance
. X : set of Q modulation constellation symbols; |X |=Q=2q

. ν : puncturing order (assume N is a multiple of ν)

. Λ: qN × 1 bit LLR vector

. Note: Metric computation on line 16 is expressed in this form for brevity. It can be simplified since L̃ap is
punctured and sparse.

1: function Λ=AWDLdetector(H,y, N0,X , ν)
2: Q← |X | , q ← log2Q
3: Es ← 1

Q

∑
x∈X |x|

2
.Avg. symbol energy

4: X← all ν×1 vectors in X ν . ν×Qν matrix of symbols
5: x← 0N×1 .N×1 column symbol vector
6: µ1, µ0 ← −∞qN×1 . qN×1 metric vec. initialized to −∞

7: Ha←

[
1√
N0

H
1√
Es

IN

]
, ya← 1√

N0

[
y

0N×1

]
. augmented Ha,ya

8: for t=1:N/ν do . process ν parent layers at a time
9: π ← [ν(t−1)+1:N, 1:ν(t−1)] . column permutation

10: [L̃ap, ỹap,D]←WDL(Ha(:, π),ya, ν) . permuted cols
11: for j=1:Qν do . loop over all ν×1 vectors in X ν

12: x(1 :ν)←X(1 :ν, j) . ν parent layer symbols
13: for i=ν+1:N do .N−ν child layer symbols
14: x(i)←

⌊
ỹap(i)−L̃ap(i,1:ν)x(1:ν)

1−1/(EsD(i,i))

⌉
. slice

15: end for
16: µ← 1

Es
‖x‖2−(ỹap−L̃apx)†D(ỹap−L̃apx) .metric

17: b← binary(x(1 :ν)) . qν×1 binary representation
18: for k=1:qν do .metrics for qν parent symbol bits
19: if b(k) = 1 then
20: µ1(qν(t−1)+k)←max{µ1(qν(t−1)+k), µ}
21: else
22: µ0(qν(t−1)+k)←max{µ0(qν(t−1)+k), µ}
23: end if
24: end for . k loop
25: end for . j loop
26: end for . t loop
27: Λ←µ1 − µ0 . qN× 1 vector of LLRs
28: end function



SUPPLEMENT S11

AWDL-BOX MIMO DETECTION ALGORITHMS

Alg. 10 AWDL-BOX MIMO detection algorithm
. Optimized version of AWDLdetector for ν=2. Process 2 parent layers at a time, by enumerating over parent
1 and doing ZF-DF for parent 2. The search for parent 2 is expanded to a window of size η around the ZF
solution. The parents are switched and the process is repeated for a second run. In each pair of runs, a new
pair symbols is chosen as parents. N/2 pairs of runs are performed. Metrics of all symbols are updated in
each pair of runs. This is because metrics are preserved if parent layers are permuted and child layers are
permuted independently, but metrics are not preserved for col arbitrary permutations.
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. N0 : noise variance
. X : set of Q modulation constellation symbols; |X |=Q=2q

. η : window size around ZF solution for parent 2

. Λ: qN × 1 bit LLR vector

. Note: WDL decomposition on line 9 can be optimized for each pair of runs since right-most N−2 cols of
L̃ap do not change.
. Note: Metric computation on line 18 is expressed in this form for brevity. It can be simplified since L̃ap is
punctured and sparse.

1: function Λ=AWDLXdetector(H,y, N0,X , η)
2: Q← |X | , q ← log2Q, Es ← 1

Q

∑
x∈X |x|

2

3: x← 0N×1 .N×1 column symbol vector
4: µ1, µ0 ← −∞qN×1 . qN×1 metric vec. initialized to −∞

5: Ha←

[
1√
N0

H
1√
Es

IN

]
, ya← 1√

N0

[
y

0N×1

]
6: for t=1:N/2 do . process 2 parent layers at a time
7: for p=1:2 do . parent layers order: [1, 2] or [2, 1]
8: π ← [2t−2+p, 2t−p+1, 2t+1:N, 1:2t−2]
9: [L̃ap, ỹap,D]←WDL(Ha(:, π),ya, 2) . ν=2

10: for j=1:Q do . loop over all symbols in X
11: x(1)←X (j) . parent layer symbol
12: z←

⌊
ỹap(2)−L̃ap(2,1)x(1)

1−1/(EsD(2,2))

⌉
. slice layer 2

13: W(z)← η closest symbols in X to z
14: for all ω∈W(z) do . η closest symbols to z
15: x(2)←ω . set as layer 2 symbol
16: for i=3:N do .N−2 child layer symbols
17: x(i)←

⌊
ỹap(i)−L̃ap(i,1:2)x(1:2)

1−1/(EsD(i,i))

⌉
. slice

18: µ← 1
Es
||x||2−||ỹap−L̃apx||2D .metric

19: b←binary(x(1 :2, 1)) . binary repres.
20: for k=1:2q do . parent bits metrics
21: r←(k−1+(p−1)q)%(2q)+1 . index
22: if b(k) = 1 then
23: µ1(2q(t−1)+r)←
24: max{µ1(2q(t−1)+r), µ}
25: else
26: µ0(2q(t−1)+r)←
27: max{µ0(2q(t−1)+r), µ}
28: end if
29: end for . k loop
30: end for . i loop
31: end for .ω loop
32: end for . j loop
33: end for . p loop
34: end for . t loop
35: Λ←µ1 − µ0 . qN× 1 vector of LLRs
36: end function
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LORD MIMO DETECTION ALGORITHM

Alg. 11 LORD MIMO detection algorithm
. LORD soft-output MIMO detection using QLy() decomposition scheme of Alg. 1. Process ν parent layers at
a time. In each run, layers are permuted so that a new group of ν symbols are chosen as parent symbols. N/ν
independent runs are performed. Metrics of parent layer symbols only are updated in each run.
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. N0 : noise variance
. X : set of Q modulation constellation symbols; |X |=Q=2q

. ν : puncturing order (assume N is a multiple of ν)

. Λ: qN × 1 bit LLR vector

. Note: Distance computation on line 14 is expressed in this form for brevity. It can be simplified since L is
lower-triangular.

1: function Λ=LORDdetector(H,y, N0,X , ν)
2: Q← |X | , q ← log2Q
3: X← all ν×1 vectors in X ν . ν×Qν matrix of symbols
4: x← 0N×1 .N×1 column symbol vector
5: µ1, µ0 ← −∞qN×1 . qN×1 metric vec. initialized to −∞
6: for t=1:N/ν do . process ν parent layers at a time
7: π ← [ν(t−1)+1:N, 1:ν(t−1)] . column permutation
8: [∼,L, ỹ]←QLy(H(:, π),y, ν) . permuted cols
9: for j=1:Qν do . loop over all ν×1 vectors in X ν

10: x(1 :ν)←X(1 :ν, j) . ν parent layer symbols
11: for i=ν+1:N do .N−ν child layer symbols
12: x(i)←

⌊
ỹ(i)−L(i,1:ν)x(1:ν)

L(i,i)

⌉
. slice

13: end for
14: µ←−||ỹ−Lx||2 .metric using full L
15: b← binary(x(1 :ν)) . qν×1 binary representation
16: for k=1:qν do .metrics for qν parent symbol bits
17: if b(k) = 1 then
18: µ1(qν(t−1)+k)←max{µ1(qν(t−1)+k), µ}
19: else
20: µ0(qν(t−1)+k)←max{µ0(qν(t−1)+k), µ}
21: end if
22: end for . k loop
23: end for . j loop
24: end for . t loop
25: Λ←(µ1 − µ0)/N0 . qN× 1 vector of LLRs
26: end function
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OPTIMIZED LORD MIMO DETECTION ALGORITHM

Alg. 12 Optimized LORD MIMO detection algorithm
. Optimized version of LORDdetector in Alg. 11 to globally update metrics in each run. Process ν parent
layers at a time. In each run, layers are permuted so that a new group of ν symbols are chosen as parent
symbols. N/ν independent runs are performed. Metrics of all layer symbols are updated in each run. This is
possible because Euclidean distance metrics do not change under column permutation of H.
. H : Complex M×N matrix, M≥N
. y : Complex M×1 column vector
. N0 : noise variance
. X : set of Q modulation constellation symbols; |X |=Q=2q

. ν : puncturing order (assume N is a multiple of ν)

. Λ: qN × 1 bit LLR vector

. Note: Distance computation on line 14 is expressed in this form for brevity. It can be simplified since L is
lower-triangular.

1: function Λ=LORDXdetector(H,y, N0,X , ν)
2: Q← |X | , q ← log2Q
3: X← all ν×1 vectors in X ν . ν×Qν matrix of symbols
4: x← 0N×1 .N×1 column symbol vector
5: µ1, µ0 ← −∞qN×1 . qN×1 metric vec. initialized to −∞
6: for t=1:N/ν do . process ν parent layers at a time
7: π ← [ν(t−1)+1:N, 1:ν(t−1)] . column permutation
8: [∼,L, ỹ]←QLy(H(:, π),y, ν) . permuted cols
9: for j=1:Qν do . loop over all ν×1 vectors in X ν

10: x(1 :ν)←X(1 :ν, j) . ν parent layer symbols
11: for i=ν+1:N do .N−ν child layer symbols
12: x(i)←

⌊
ỹ(i)−L(i,1:ν)x(1:ν)

L(i,i)

⌉
. slice

13: end for
14: µ←−||ỹ−Lx||2 .metric using full L
15: b← binary(x) . qN×1 binary rep. of all x
16: for k=1:qN do . update metrics for all symbol bits
17: if b(k) = 1 then
18: µ1(k)←max{µ1(k), µ}
19: else
20: µ0(k)←max{µ0(k), µ}
21: end if
22: end for . k loop
23: end for . j loop
24: end for . t loop
25: Λ←(µ1 − µ0)/N0 . qN× 1 vector of LLRs
26: end function



8 10 12 14 16 18 20 22 24

SNR [dB]

0

5

10

15

20

25

30

35

40

A
c

h
ie

v
a

b
le

 r
a

te
 [

n
a

ts
/s

/H
z
]

Supplement Figure F9. Comparison of AIRs for 8×8 MIMO channels with Gaussian inputs. For the AWLD, WLD, and WLZ algorithms,
parent layers are optimally selected so as to maximize IWLD

LB in (41).
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Supplement Figure F10. Comparison of AIRs for 8×8 MIMO channels with Gaussian inputs. The AIRs for the AWLD, WLD, and
WLZ algorithms are averaged over all possible parent layer selections.
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Supplement Figure F11. Comparison of AIRs for 8×8 MIMO channels with finite inputs. For the AWLD, WLD, and WLZ algorithms
with QPSK, 16QAM, and 64QAM inputs, parent layers are selected so as to maximize IWLD

LB in (41) if Gaussian inputs were assumed.



0 5 10 15 20 25 30

SNR [dB]

5

10

15

20

25

30

35

40

A
c

h
ie

v
a

b
le

 r
a

te
 [

n
a

ts
/s

/H
z
]

Supplement Figure F12. Comparison of AIRs for 8×8 MIMO channels with finite inputs. The AIRs for the AWLD, WLD, and WLZ
algorithms are averaged over all possible parent layer selections.



14 15 16 17 18 19 20 21 22

SNR per antenna [dB]

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
ra

m
e
 E

rr
o

r 
R

a
te

 (
F

E
R

)

Supplement Figure F13. Frame error-rate of 4×4 complex MIMO channels, 16QAM
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Supplement Figure F14. Frame error-rate of 4×4 complex MIMO channels, 64QAM
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Supplement Figure F15. Frame error-rate of 4×4 complex MIMO channels, 256QAM
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Supplement Figure F16. Frame error-rate of 6×6 complex MIMO channels, 16QAM
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Supplement Figure F17. Frame error-rate of 6×6 complex MIMO channels, 64QAM
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Supplement Figure F18. Frame error-rate of 8×8 complex MIMO channels, 16QAM
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Supplement Figure F19. Frame error-rate of 8×8 complex MIMO channels, 64QAM
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Supplement Figure F20. Frame error-rate of 12×12 complex MIMO channels, 16QAM



22 22.5 23 23.5 24 24.5 25 25.5 26 26.5 27

SNR per antenna [dB]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
ra

m
e
 E

rr
o

r 
R

a
te

 (
F

E
R

)

Supplement Figure F21. Frame error-rate of 12×12 complex MIMO channels, 64QAM
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Supplement Figure F22. Frame error-rate of 16×16 complex MIMO channels, 16QAM
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Supplement Figure F23. Frame error-rate of 16×16 complex MIMO channels, 64QAM
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Supplement Figure F24. Frame error-rate of 32×32 complex MIMO channels, 16QAM



Supplement Figure F25. Distribution of bit LLRs of one symbol: 4×4 complex MIMO channel, 16QAM, SNR=20 dB.
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Supplement Figure F26. SNR to meet target FER of 0.1% versus complexity.
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