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Abstract—In this paper, we consider a mmWave massive
multiple-input multiple-output (MIMO) communication system
with one static base station (BS) serving a fast-moving user, both
equipped with a very large array. The transmitted signal arrives
at the user through multiple paths, each with a different angle-
of-arrival (AoA) and hence Doppler frequency offset (DFO),
thus resulting in a fast time-varying multipath fading MIMO
channel. In order to mitigate the Doppler-induced channel aging
for reduced pilot overhead, we propose a new angular-domain
selective channel tracking and Doppler compensation scheme
at the user side. Specifically, we formulate the joint estimation
of partial angular–domain channel and DFO parameters as a
dynamic compressive sensing (CS) problem. Then we propose a
Doppler-aware-dynamic variational Bayesian inference (DD-VBI)
algorithm to solve this problem efficiently. Finally, we propose a
practical DFO compensation scheme which selects the dominant
paths of the fast time-varying channel for DFO compensation
and thereby converts it into a slow time-varying effective channel.
Compared with the existing methods, the proposed scheme can
enjoy the huge array gain provided by the massive MIMO and
also balance the tradeoff between the CSI signaling overhead and
spatial multiplexing gain. Simulation results verify the advantages
of the proposed scheme over various baseline schemes.

Index Terms—Massive MIMO, Channel Tracking, Doppler
Compensation, High Mobility

I. INTRODUCTION

With the development of the Fifth Generation (5G) wireless

communication systems, high-mobility scenarios such as high-

speed rail and Vehicle-To-everything (V2x) communications

have gained increasingly more interest. Due to the high-

speed relative motion between the transmitter and receiver,

the transmitted signal, propagating through multiple different

paths, arrives at the receiver with different Doppler frequency

offsets (DFOs), thus resulting in a fast time-varying multipath

fading channel. In this case, the link performance such as

achievable data rate will be degraded significantly due to the

Doppler-induced channel aging effect [1]. To overcome this

challenge, several methods have been proposed in previous

works, as elaborated below.

Direct Channel Estimation/Prediction: For line-of-sight

(LOS) channels with a single LOS path, it is relatively easy

to compensate the Doppler effect and resolve the channel

aging issue by estimating the DFO parameter of the LOS path.

However, when there are multiple different paths due to rich

scattering, it is challenging to compensate the Doppler effect

because different paths with different DFOs are mixed together

in the received signal. Nevertheless, some works have pro-

posed to directly estimate the fast time-varying channels in the

time/frequency domain [2], [3]. Existing channel estimators

can be classified into two types. The first type approximates

time-varying channels using a linearly time-varying (LTV)

channel model [4], [5]. For example, a hybrid frequency/time-

domain channel estimation algorithm is proposed in [4] based

on the LTV model and two methods are introduced to mitigate

the Doppler effect. However, this algorithm introduces a pro-

cessing delay of at least one Orthogonal Frequency Division

Multiplexing (OFDM) symbol. The second type of estimators

adopt the basis expansion model (BEM) [6] to convert the

problem of estimating the channel impulse response (CIR)

to that of estimating the basis function weights [7]. For

example, in [7], the channel estimation and Doppler mitigation

are jointly considered by exploiting the correlations in time

and frequency domains, and the basis function coefficients

are estimated via the linear minimum mean squared error

(LMMSE) approach. However, accurate knowledge on the

maximum DFO is required to determine the minimum order

of basis function and the computational burden is also heavy

for multi-antenna systems [8]. Moreover, the BEM inevitably

introduces approximation error to channel estimation due to

the imperfect model assumed.

Orthogonal Time Frequency Space (OTFS) Modulation:

OTFS modulation [9] is an emerging technique which is

able to handle the fast time-varying channels. This method

modulates transmitted symbols in the delay-Doppler domain

instead of time/frequency domain as in traditional modulation

techniques such as OFDM.. The idea is to transform the time-

varying channel into a time-invariant channel in the delay-

Doppler domain. Early works on OTFS modulation focused on

the single-input single-output (SISO) systems [9]. Later, OTFS

is extended to multiple-input multiple-output (MIMO) systems

by transmitting consecutive impulses with proper guard time

between two adjacent ones to distinguish different base station

(BS) antennas [10]. However, the channel estimation method

in [10] cannot be directly applied to massive MIMO system

since a large number of antennas are required to be distin-

guished by transmitting such impulses, which will lead to large

pilot overhead.

Angular-Domain DFO Estimation and Compensation:

Since the different DFOs of multiple paths are resulted from
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their different angles of arrival (AoAs)/angles of departure

(AoDs) at the receiver, they can be separated in the angle

domain via spatial processing. As such, angular-domain DFO

estimation and compensation is another popular approach to

address the Doppler-induced channel aging issue [1], [11]. For

MIMO systems, prior work [12] first pointed out that channel

time-variation can be slowed down through beamforming with

a large number of transmit/receive antennas. Motivated by this,

a small-scale uniform circular antenna-array (UCA) is adopted

in [13], [14] to separate multiple DFOs via array beamforming.

However, the DFO compensation methods in [13], [14] only

apply to scenarios with very sparse channels due to the limited

spatial resolution of small-scale MIMO. Recently, some works

have exploited high-spatial resolution provided by massive

MIMO to address the high-mobility induced challenges [15],

[16], [17], [18], [19]. For example, the authors of [8] propose

to separate the DFOs in angular-domain by beamforming with

a large-scale uniform linear antenna-array (ULA) at the mobile

user side. After estimating and compensating the DFO in

each angle, the resultant quasi time-invariant channel can be

estimated more efficiently. However, the signaling overhead

for the maximum likelihood (ML) based joint estimation of

the massive MIMO channel matrix and DFO parameters is

extremely high. Moreover, only a single data stream is trans-

mitted from the BS to the mobile user via all possible channel

directions, and thus it cannot enjoy the spatial multiplexing

gain as well as the huge array signal-to-noise ratio (SNR) gain

provided by massive MIMO.

The above works have focused on channel estimation. It

is also possible to directly search for the best beamforming

vectors without explicit channel estimation. For example, in

[20], the authors propose an exhaustive search (ES) scheme,

which examines all beam pairs in the codebook and determines

the best pair that maximizes a given performance metric (e.g.,

beamforming gain). To reduce the training overhead of the

ES scheme, the hierarchical search (HS) scheme proposed

in [21] utilizes hierarchical codebooks and has a favorable

performance at low SNRs. However, these codebook-based

beam search methods suffer from the quantization error caused

by the codebook and the channel aging effect.

In this paper, we consider high-mobility mmWave massive

MIMO systems, where both the BS and users are equipped

with massive antenna arrays to facilitate Doppler compensa-

tion, improve the spectrum and energy efficiency, as well as

overcome the large path loss at high frequency band. As such,

combining the mmWave and massive MIMO technologies

has the potential to significantly improve the capacity and

reliability of high-mobility wireless communications. How-

ever, it is very challenging to design an efficient channel

estimation scheme. For example, since both ends have massive

MIMO, the dimension of the channel matrix is huge and

conventional downlink/uplink channel estimation or codebook-

based beam search will lead to large signaling overhead.

Although various pilot overhead reduction methods such as

those based on compressive sensing (CS) have been proposed

for the estimation of slow massive MIMO fading channels

[22][23], they do not consider the Doppler effect and thus

cannot be applied to the high mobility scenario. To overcome

this challenge, we propose a novel angular-domain selective

channel tracking and Doppler compensation scheme, which

exploits the dynamic sparsity of the mmWave massive MIMO

channel as well as precoded training in both downlink and

uplink to significantly reduce the signaling overhead. The main

new contributions of our paper are given as follows.

• Angular-Domain Selective Channel Tracking: We pro-

pose a selective channel tracking scheme to only estimate

partial angular–domain channel parameters at the user

side that are sufficient for Doppler effect compensation

to significantly reduce the pilot overhead. Moreover, we

propose an efficient downlink training vector design at the

BS side to strike a balance between exploitation of most

promising channel directions for array (SNR) gain and

exploration of unknown channel directions. Compared

to the conventional random training vector design, the

proposed design can exploit the massive MIMO array

gain to further enhance the channel tracking performance.

• Angular-Domain Selective Doppler Compensation: We

propose an angular-domain selective DFO compensation

scheme at the user side which selectively converts the

dominant paths of the fast time-varying channel into a

slow time-varying effective channel. Compared to the

non-selective DFO compensation scheme in [18], the

proposed scheme can enjoy the huge array (SNR) gain

provided by the massive MIMO and also balance the

tradeoff between the CSI signaling overhead reduction

and spatial multiplexing gain maximization.

• Channel Tracking Algorithm based on Dynamic VBI:

To further reduce the pilot overhead, the proposed partial

channel tracking design is formulated as a dynamic CS

problem with unknown DFO parameters in the measure-

ment matrix. Then, we adopt a three-layer hierarchical

Markov model to capture the dynamic sparsity of the par-

tial angular–domain channel. The existing methods, such

as Variational Bayesian inference (VBI) [24] and Sparse

Bayesian Learning (SBL) [25], cannot be directly applied

to this three-layer hierarchical prior. To address this

challenge, we propose a Doppler-aware-dynamic Vari-

ational Bayesian inference (DD-VBI) algorithm, which

combines the VBI and message-passing approaches to

achieve superior channel tracking performance.

The rest of this paper is organized as follows. In Section II,

we describe the system model and frame structure. In Section

III, we give a brief introduction of the proposed angular-

domain selective channel tracking and Doppler compensation

scheme. In Sections IV and V, we present the three-layer

hierarchical Markov model for partial angular channel vector

and the proposed DD-VBI algorithm. The simulation results

and conclusions are given in Sections VI and VII.

Notations: For a set of scalars {x1, ..., xN} and an index

set S ⊆ {1, ..., N}, we use [xn]n∈S to denote a column vector

consisting of the elements of {x1, ..., xN} indexed by the set

S. Similarly, for a set of column vectors {x1, ...,xN} with

xn ∈ CM , [xn]n∈S denotes a column vector consisting of the

elements of {x1, ...,xN} indexed by the set S. We use X (:, j)



Notations Meaning

Np Number of downlink training vectors

vt Downlink training vector

M(N) Number of antennas at the BS (user)

Lt Number of propagation paths

αt,q The complex path gain of the q-th path

fd,t The maximum DFO

ξt,q(ϑt,q) The AoD (AoA) of the q-th path

ηt Rotation angle of user’s antenna array

θT,m(θR,m) m-th AoD grid (AoA grid)

βT,t(βR,t) The AoD/AoA off-grid vector

Nb Number of RF chains at the user

Ñ Number of AoA grid

Table I: The key notations used in the paper.

to denote the j-th column of a matrix X. The key notations

are summarized in Table I.

II. SYSTEM MODEL

A. System Architecture and Frame Structure

Consider a time-division duplexing (TDD) mmWave mas-

sive MIMO system with one static BS serving a fast-moving

user1. The BS is equipped with M ≫ 1 antennas. The user

is equipped with N ≫ 1 antennas. The time is divided into

frames, with each frame containing a downlink subframe and

an uplink subframe, as illustrated in Fig. 1. Each subframe

contains a large number of symbol durations.

Figure 1: Illustration of frame strcture.

In the t-th downlink subframe, there are Np uniformly

distributed training vectors, which are set to be the same

vector denoted as vt. For convenience, we use Np to denote

the symbol index set for the Np training vectors. Note that

inserting Np identical training vectors uniformly in the down-

link subframe facilitates the estimation of AoAs and Doppler

parameters at the user, as will be explained later. Based on

the estimated AoAs and Doppler parameters, the user applies

a Doppler compensation matrix to mitigate the Doppler effect

and essentially converts the fast time-varying channel into a

slow time-varying effective channel. In the uplink subframe,

there are two sets of Nu
p training vectors at the beginning

and end of the uplink subframe, respectively. The two sets

of uplink training vectors are used to estimate the slow

time-varying effective channel after Doppler compensation.

Specifically, the uplink transmission (e.g., beamforming and

power allocation) in the t-th uplink subframe is optimized

1For clarity, we focus on a single user system. However, the proposed
selective channel tracking and Doppler compensation scheme can be readily
extended to multi-user systems.

based on the slow time-varying effective channel estimated

at the t-th uplink subframe. On the other hand, by making

use of the channel reciprocity, the downlink transmission

in the t-th downlink subframe is optimized based on the

slow time-varying effective channel estimated at the end of

the (t− 1)-th uplink subframe. Since the effective channel

after Doppler compensation changes slowly compared to the

subframe duration, such a design can effectively overcome the

channel aging issue caused by the Doppler effect.

B. Doppler Multipath Channel Model

For clarity, we focus on the case when both the BS and

mobile user are equipped with a half-wavelength space ULA

and the channel is flat fading. To incorporate the DFO with

conventional mmWave channels, the downlink channel model

for the antenna pair {nt, nr} is given by [23]

hnr ,ntt,i =

Lt
∑

q=1

αt,qe
j[2πfd,ticos(ϑt,q+ηt)+ψnt

(ξt,q)+ψnr (ϑt,q)],

(1)

where t stands for the frame index, i stands for the symbol

index, Lt is the total number of propagation paths, αt,q
is the random complex path gain associated with the q-

th propagation path, fd,t is the maximum DFO of the t-
th frame, ξt,q and ϑt,q are the AoD and AoA of the q-

th path, respectively, and ηt is rotation angle of the user’s

antenna array with respect to the moving direction in the t-

th frame. Here, ψnt
(ξt,q) and ψnr

(ϑt,q) represent the phase

shifts induced at the nt-th transmit antenna and the nr-th

receive antenna, respectively, which depend on the antenna

structure, position, and the direction of the path. Note that in

(1), we have implicitly assumed that the channel parameters

Lt, αt,q, ξt,q, ϑt,q, fd,t, ηt are fixed within each frame but may

change over different frames, which is usually true even for

high-speed users [18]. However, the channel hnr,nt,t,i itself

may change over different symbols at a much faster timescale

due to the fast changing phase term 2πfd,ticos(ϑt,q + ηt)
caused by the Doppler effect.

C. Angular Domain Channel Representation

To obtain the angular domain channel representation, we

introduce a uniform grid of M̃ AoDs and Ñ AoAs over [0, 2π)

{θT,m :

sin(θT,m) =
2

M̃

(

m−
⌊

M̃ − 1

2

⌋)

,m = 0, . . . , M̃ − 1},

{θR,n :

sin(θR,n) =
2

Ñ

(

n−
⌊

Ñ − 1

2

⌋)

, n = 0, . . . , Ñ − 1}.



In practice, the true AoDs/AOAs usually do not lie exactly

on the grid points. In this case, there will be mismatches

between the true AoDs/AOAs and the nearest grid point. To

overcome this issue, we introduce an off-grid basis for the

angular domain channel representation, as in [25]. Specifically,

let θT,mt,q
and θR,nt,q

denote the nearest grid point to ξt,q
and ϑt,q , respectively. We introduce the AoD off-grid vector

βT,t =
[

βT,t,1, βT,t,2, ..., βT,t,M̃

]T

such that

βT,t,m =

{

ξt,q − θT,mt,q
, m = mt,q, q = 1, 2, ..., Lt

0, otherwise
.

Similarly, let βR,t =
[

βR,t,1, βR,t,2, ..., βR,t,Ñ

]T

denote the

AoA off-grid vector, such that

βR,t,n =

{

ϑt,q − θR,nt,q
, n = nt,q, q = 1, 2, ..., Lt

0, otherwise
.

For half-wavelength space ULAs, the array response

vectors at the BS and user side are given by aT (θ) =
1√
M

[

1, e−jπsin(θ), e−j2πsin(θ), . . . , e−j(M−1)πsin(θ)
]T

and

aR(θ) =
1√
N

[

1, e−jπsin(θ), e−j2πsin(θ), . . . , e−j(N−1)πsin(θ)
]T
.

For convenience, define two matrices

AR,i (βR,t, fd,t, ηt) = [ãR,i (βR,t,1, fd,t, ηt), . . . ,

ãR,i (βR,t,Ñ , fd,t, ηt) ]∈CN×Ñ and AT (βT,t) =

[aT (θT,1 + βT,t,1), ...,aT (θT,M̃ + βT,t,M̃ )] ∈ CM×M̃ ,

where ãR,i(βR,t,n, fd,t, ηt) =
aR (θR,n + βR,t,n) × ej2πfd,ticos(θR,n+βR,t,n+ηt).

Furthermore, define X̃t ∈ CÑ×M̃ as the angular domain

channel matrix with the (n,m)-th element given by

x̃t,n,m =

{

αt,q, (n,m) = (nt,q,mt,q), q = 1, 2, ..., Lt

0, otherwise
.

Then, for given AoA off-grid, DFO parameter , rotation angle

pair ϕt =
{

βR,t, fd,t, ηt
}

, and AoD off-grid vector βT,t, Ht,i

can be expressed in a compact form as

Ht,i

(

ϕt,βT,t
)

= AR,i(ϕt)X̃tA
H
T (βT,t), (2)

where t ejψnt
(ξt,q) and ejψnr (ϑt,q) in (1) are implicitly con-

tained in the array response matrices AR,i(ϕt) and AH
T (βT,t).

Note that we can also define the angular domain represen-

tation for more general 2-dimensional (2D) antenna arrays. In

this case, the array response vector aT (θ, φ) (or aR(θ, φ)) can

be expressed as a function of the azimuth angle θ and elevation

angle φ. Please refer to [26] for the details.

III. ANGULAR-DOMAIN SELECTIVE CHANNEL TRACKING

AND DOPPLER COMPENSATION

In this section, we propose an efficient angular-domain

selective channel tracking and Doppler compensation scheme

at the user side. The proposed scheme can exploit both

dynamic sparsity of mmWave massive MIMO channel and

high resolution of AoA at multi-antenna mobile users to accu-

rately estimate the downlink AoAs and maximum DFO. Using

these estimated parameters, a Doppler compensation matrix is

applied at the user to convert the fast time-varying channel into

a slow time-varying effective channel, based on which efficient

downlink/uplink transmissions can be achieved. The proposed

scheme includes four key components, namely the Angular-

Domain Selective Channel Tracking, Selective Doppler Com-

pensation, Slow Time-Varying Effective Channel Estimation,

and Downlink Training Vector Design. Fig. 2 illustrates a top-

level diagram of the proposed scheme and the details of each

component are elaborated below. The frame index t will be

omitted when there is no ambiguity.

Figure 2: A top-level diagram of the proposed scheme.

A. Outline of Angular-Domain Selective Channel Tracking at

the User

This component is used to estimate the downlink AoAs,

rotation angle and maximum DFO based on the Np downlink

training vectors. Thanks to the high-spatial resolution provided

by the large array at the user side, the user can distinguish

DFOs associated with different AOAs from multiple active

paths. However, since both the BS and the user are equipped

with the large array, the parameter space can be very large

if we attempt to estimate the full angular–domain channel

parameters (i.e., the full angular domain channel matrix X̃ ,

rotation angle η and maximum DFO fd). Since the DFO

only occurs at the mobile user side, we propose to only

estimate partial angular–domain channel parameters that are

just sufficient to obtain AoAs, rotation angle and maximum

DFO for Doppler compensation.

Specifically, the product of channel H i and downlink

training vector v can be expressed as:

H iv =

Ñ
∑

n=1

M̃
∑

m=1

x̃n,mãR,i(ϕ)a
H
T (θT,m + βT,m)v,

=

Ñ
∑

n=1

xnãR,i(ϕ) = AR,i(ϕ)x, (3)

where x = [x1, ..., xÑ ]T with xn =
∑M̃

m=1 x̃n,maHT (θT,m + βT,m)v are called partial angular

channel coefficients since x only contain partial information



about the full angular channel X̃ . Specifically, a non-zero

|xn|2 with value larger than the noise floor indicates that

there is an active path to the n-th AoA direction at the user

side. Therefore, we only need to estimate Ñ partial channel

parameters x, the AoA off-grid vector βR, rotation angle

η and maximum DFO fd, which are much less than the

original ÑM̃ full channel parameters, the off-grid vector

, rotation angle and maximum DFO. Note that if the Np
training vectors are different, there will be ÑNp partial

angular channel coefficients, leading to a larger parameter

space to be estimated. Moreover, with uniformly distributed

training vectors, the phase rotation due to the Doppler term

ej2πfdicos(θR,n+βR,t,n+ηt) is larger compared to the case

when the Np training vectors are squeezed in the beginning

of the downlink subframe, leading to a better estimation

performance for the Doppler parameter fd. Therefore, such

a selective channel tracking design based on Np uniformly

distributed and identical training vectors can significantly

reduce the number of downlink training vectors Np required

to achieve accurate estimation of AoAs, rotation angle and

Doppler parameters.

The received baseband pilot signal is given by

yi = Hiv + ni, ∀i ∈ Np (4)

where v ∈ CM is the training vector for downlink channel

tracking, and ni is the additive white Gaussian noise (AWGN)

with each element having zero mean and variance σ2, respec-

tively. The exact choice of v is postponed to Section III-D.

The aggregate received pilot signal (channel measurements)

of all the Np downlink pilot symbols (training vectors) in the

t-th frame can be expressed in a compact form as

y = [H iv + ni]i∈Np
. (5)

Based on the received downlink training vectors, the user

obtains the estimated partial channel parameters x̂, β̂R, η̂ and

f̂d using a selective channel tracking algorithm. The detailed

problem formulation and algorithm design for selective chan-

nel tracking scheme are postponed to Section IV.

B. Angular-Domain Selective Doppler Compensation at the

User

This component is used to convert the fast time-varying

channel into a slow time-varying effective channel after obtain-

ing the estimated partial channel parameters x̂, β̂R, η̂t and f̂d.

We first select a set of Nd most significant AoA directions with

the largest energy, where the energy of the n-th AoA direction

θR,n + βR,n is defined as |x̂n|2. The parameter Nd ≤ N is

used to control the tradeoff between the spatial multiplexing

gain and the effective CSI signaling overhead (i.e., the CSI

signaling overhead required to obtain effective channel Hs
i in

(6)). Let Nd ⊆ {1, ..., N} denote the index set of the selected

Nd most significant AoA directions. Then, in order to mitigate

the Doppler effect and perform per-AoA DFO compensation

for each selected AoA direction, a DFO compensation matrix

Wd
iDi ∈ CN×Nd , which also serves as beamforming matrix,

is applied at the user side. In this way, we can convert the fast

time-varying channel Hi into a slow time-varying effective

channel Hs
i ∈ CNd×M as

Hs
i = DH

i (Wd
i )
HHi, (6)

where Wd
i = [aR(θR,n + βR,n)]n∈Nd

∈ CN×Nd and Di =

Diag

(

[

ej2πf̂dicos(θR,n+βR,n+ηt)
]

n∈Nd

)

∈ CNd×Nd .

In the following, we explain why the Doppler effect can be

alleviated by applying the above DFO compensation matrix

to obtain an effective channel Hs
i . For half-wavelength space

ULA, if there is no estimation error for the partial channel

parameters, we have

Hs
i =

M̃
∑

m=1

[x̃n,m]
n∈Nd

aHT (θT,m+βT,m)+O

(

1√
N

)

, (7)

as N → ∞ [27]. From (7), Hs
i is constant within a frame

if we ignore the small order term O
(

1√
N

)

, i.e., the Doppler

effect can be completely eliminated for sufficiently large N .

This observation is also consistent with the results in [18].

C. Slow Time-Varying Effective Channel Estimation at the BS

The user can simply transmit Nd orthogonal pilots in the

uplink training stage. Then the conventional Least Squares

(LS) based channel estimation method can be used at the BS

to obtain the estimated slow time-varying effective channel

Ĥ
s

i . Based on Ĥ
s

i , the BS can optimize the precoder for both

uplink and downlink transmissions. Note that the optimization

of MIMO precoder is a standard problem and there are many

existing solutions with different performance and complexity

tradeoff. Then, the optimized uplink precoder is fed back to the

user for uplink transmission. Since Nd can be much less than

N , the feedback overhead for the optimized uplink precoder

is acceptable for practice.

D. Training Vector Design at the BS

The training vector vt at the BS is designed according to

the slow time-varying effective channel Ĥ
s

t−1 estimated at

the end of the (t− 1)-th uplink subframe. The basic idea for

training vector design is to strike a balance between exploita-

tion of known channel directions (i.e., transmitting training

signal over the most promising channel directions with large

effective channel energy to achieve beamforming gain) and

exploration of unknown channel directions (i.e., transmitting

training signal over other channel directions to detect unknown

channel directions). Since the effective channel Hs
i changes

slowly, the effective channel Ĥ
s

t−1 estimated at the end of

the (t− 1)-th uplink subframe is expected to provide valuable

information for the most promising channel directions. On the

other hand, the information about the most promising channel

directions extracted from Ĥ
s

t−1 may not be perfect due to the

estimation error and CSI delay. In addition, some new direction

may arise in the next frame. Therefore, the other channel

directions should also be incorporated into the training vector

to facilitate the detection of unknown channel directions.



Specifically, we first project the estimated effective channel

Ĥ
s

t−1 onto an orthogonal basis Bs = [bs1, ...,b
s
M ] ∈ CM×M

to obtain the effective channel energy on each basis vector

(quantized channel direction) as λsm =
∥

∥

∥
Ĥ

s

t−1b
s
m

∥

∥

∥

2

, ∀m. The

basis matrix is chosen such that the projection vector λs =
[λs1, ..., λ

s
M ]

T
is as sparse as possible. For half-wavelength

ULAs, we can simply choose the basis matrix Bs as an M×M
DFT matrix. Then we find the index set of the most promising

channel directions as

M∗ = argminM |M| , s.t.
∑

m∈M
λsm/

M
∑

m=1

λsm ≥ µ, (8)

where µ is a threshold which is chosen to be closed to 1. In

other words, the most promising channel directions contain µ
fraction of the total effective channel energy. Let Ns = |M∗|.
Finally, the training vector is given by

vt =

√
ρ√
Ns

∑

m∈M∗

ejθ
s
mbsm

+

√
1− ρ√
M −Ns

∑

m∈{1,...,M}\M∗

ejθ
s
mbsm. (9)

where the first term in (9) exploites the information about the

most promising Ns channel directions extracted from Ĥ
s

t−1,

ρ is a system parameter which determines the proportion of

transmit power used to exploit the most promising channel

directions, the second term is used to detect the other unknown

channel directions, θsm is randomly generated from [0, 2π].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
the parameter 

5.4

5.6

5.8

6

6.2

A
ch

ie
va

bl
e 

da
ta

 r
at

e 
bp

s/
H

z

DD-VBI

=0.9
=0.5

=0.3

Figure 3: Achievable data rate versus the parameter ρ with

different values of the parameter µ.

In Fig. 3, we illustrate how the achievable data rate is

affected by changing the parameters ρ and µ to achieve

different tradeoffs between the exploration and exploitation.

It can be seen that setting µ = 0.9 and ρ = 0.5 can strike a

good balance between exploitation and exploration.

IV. PROBLEM FORMULATION FOR ANGULAR-DOMAIN

SELECTIVE CHANNEL TRACKING

A. Three-layer Hierarchical Markov Model for Partial Angu-

lar Channel Vector

The dynamic sparsity of the partial angular channel coeffi-

cients xt is captured using a three-layer hierarchical Markov

model, as illustrated in Fig. 4. The first layer of random

variable is the channel support vector st ∈ {0, 1}Ñ , whose

n-th element, denoted by st,n, indicates whether the channel

coefficient xt,n is active (st,n = 1) or not (st,n = 0). The

second layer of random variable is the precision vector γt =
[γt,1, · · · , γt,Ñ ]T , where γt,n represents the precision (inverse

of the variance) of xt,n. The third layer of random variables

are partial angular channel coefficients xt. For convenience,

denote a time series of vectors {xτ}tτ=1 as x1:t (same for γ1:t,

s1:t, fd,1:t,βR,1:t). Then the three-layer hierarchical Markov

prior distribution (joint distribution of x1:t, γ1:t and s1:t ) is

given by

p(x1:t,γ1:t, s1:t) =

t
∏

τ=1

p (sτ |sτ−1) p(γτ |sτ )p(xτ |γτ ),

(10)

where p (s1|s0) , p (s1), the conditional probability

p (xτ |γτ ) has a product form p (xτ |γτ ) =
∏Ñ

n=1 p (xτ,n|γτ,n)
and each is modeled as a Gaussian prior distribution

p (xτ,n|γτ,n) = CN
(

xτ,n; 0, γ
−1
τ,n

)

, (11)

The conditional prior of precision vector γτ is given by

p (γτ |sτ ) =
Ñ
∏

n=1

Γ (γτ,n; aτ , bτ )
sτ,n Γ

(

γτ,n; aτ , bτ
)1−sτ,n

,

(12)

Γ (γ; aγ , bγ) is a Gamma hyperprior. aτ , bτ are the shape and

rate parameters of the channel precision γτ,n conditioned on

sτ,n = 1 and they should be chosen such that aτ
bτ

= E[γτ,n] =

Θ(1), since the variance γ−1
τ,n of xτ,n is Θ(1) when it is

active (sτ,n = 1). aτ , bτ are the shape and rate parameters

, conditioned on the opposite event (i.e., sτ,n = 0). In this

case, the shape and rate parameters aτ , bτ of the precision

γτ,n should be chosen such that aτ
bτ

= E[γτ,n] ≫ 1, since the

variance γ−1
τ,n of xτ,n is close to zero when it is inactive.

Note that the exact channel distribution is usually unknown

in practice. In this case, it is reasonable to choose a prior

distribution such that the derived algorithm can promote spar-

sity with low complexity and achieve robust performance to

different channel distributions. By controlling the parameters

in the Gamma distribution of γτ,n, one can easily promote

sparsity based on the knowledge of channel support sτ , as

explained above. Moreover, Since the Gamma distribution for

γτ,n is the conjugate probability distribution of the Gaussian

distribution for xτ,n, the above hierarchical prior for xτ,n
and γτ,n facilitates low-complexity VBI algorithm design

with closed-form update equations [24]. Finally, the VBI-

type algorithm derived from the such a hierarchical prior is



well known to be insensitive to the true distribution of the

sparse signals [24], [28]. As a result, similar hierarchical

prior distribution has been widely adopted in sparse Bayesian

learning [29].

Due to the slowly changing propagation environment, the

channel supports often change slowly over time, which implies

that sτ,n depends on sτ−1,n, e.g., if sτ−1,n = 1, then there is

a higher probability that sτ,n is also 1. Such dynamic sparsity

of support vectors can be naturally modeled as a temporal

Markov model with an initial prior distribution p(s1) and a

transition probability:

p(sτ |sτ−1) =

Ñ
∏

n=1

p(sτ,n|sτ−1,n), (13)

where the transition probability is given by p(sτ,n =
1|sτ−1,n = 0) = ρ0,1, and p(sτ,n = 0|sτ−1,n = 1) = ρ1,0.

The Markov parameters {ρ1,0, ρ0,1} characterize the degree

of temporal correlation of the channel support. Specifically,

smaller ρ1,0 or ρ0,1 lead to highly correlated supports across

time, which means the propagation environment between the

user and BS is changing slowly. Larger ρ1,0 or ρ0,1 can allow

support to change substantially across time, which means the

propagation environment is changing significantly. Moreover,

the statistic parameters {ρ1,0, ρ0,1} could be automatically

learned based on the EM framework during the recovery

process [30], as detailed in Appendix A. The initial distribution

p(s1,n), ∀n is set to be the steady state distribution of the

Markov chain in (13), i.e.,

λ , p(s1,n) =
ρ0,1

ρ0,1 + ρ1,0
.

This ensures that all elements of sτ,n have the same marginal

distribution p(sτ,n) = λsτ,n(1− λ)1−sτ,n .

In practice, the noise precision κτ = σ−2
τ is usually

unknown and we model it as a Gamma hyperpiror p (κτ ) =
Γ (κτ ; aκ,τ , bκ,τ ), where we set aκ,τ , bκ,τ → 0 as in [25] so

as to obtain a broad hyperprior.

Figure 4: Three-layer hierarchical Markov model for partial

angular channel coefficients.

B. Selective Channel Tracking Formulation

Using the angular domain channel representation, the re-

ceive signal at t-th frame yt ∈ CNNp can be rewritten as a

CS model with an unknown AoA off-grid and DFO parameter

pair ϕt =
{

βR,t, ηt, fd,t
}

in the measurement matrix as

yt = F txt + nt, (14)

where the measurement matrix is given by F t =
[F t,1; ...;F t,Np

]∈CNNp×Ñ , F t,i = AR,i(ϕt), nt =
[nt,i]i∈Np

.

In each frame t, the user needs to estimate the partial

channel parameters xt , the AoA off-grid and DFO parameter

pair ϕt =
{

βR,t, ηt, fd,t
}

, given the observations up to t
frame y1:t in model (14), the estimated AoA off-grid and

DFO parameter pairs ϕ̂1:t−1 =
{

β̂R,1:t−1, η̂1:t−1, f̂d,1:t−1

}

up to (t− 1) frame. In particular, for given ϕt, we are in-

terested in computing minimum mean-squared error (MMSE)

estimates of xt,n, x̂t,n = E
[

xt,n|y1:t; ϕ̂1:t−1,ϕt
]

, where the

expectation is over the marginal posterior:

p(xt,n|y1:t; ϕ̂1:t−1,ϕt)

∝
∫

−xt,n

p(y1:t,vt; ϕ̂1:t−1,ϕt), (15)

where vt = {xt, st,γt, κt}, −xt,n denotes the vector collec-

tions integration over vt except for the element xt,n and ∝
denotes equality after scaling.

On the other hand, the optimal ϕt at the t-th frame is

obtained by ML as follows [25]:

ϕ̂t= argmax
ϕt

ln p(y1:t; ϕ̂1:t−1,ϕt)

= argmax
ϕt

ln

∫

vt

p(y1:t,vt; ϕ̂1:t−1,ϕt)dvt. (16)

Once we obtain the ML estimate of ϕ̂t, and the associated

conditional marginal posterior p(xt,n|y1:t; ϕ̂1:t−1,ϕt), we can

obtain the MMSE estimates of {xt,n}.

One challenge in computing the MMSE estimate is the

calculation of the exact posterior in (15) whose factor graph

has loops. In the next subsection, we propose a Doppler-aware-

dynamic-VBI (DD-VBI) algorithm to approximately calculate

the marginal posteriors p(xt,n|y1:t; ϕ̂1:t−1,ϕt) by combining

the message passing and VBI approaches, and use the in-

exact majorization-minimization (MM) method (which is a

generalization of the EM method) [25] to find an approximate

solution for (16). The proposed DD-VBI algorithm is shown

in the simulations to achieve a good performance.

V. DOPPLER-AWARE-DYNAMIC-VBI ALGORITHM

A. Decomposition and Approximation of Joint Probability

Distribution

This section is to decompose and approximate the joint

probability distribution in (16) such that the joint probability

distribution at the t-th frame only involves the probability

density function (PDF) of the current hidden variables vt, the

current observation yt, and the messages p̂(st|y1:t−1, ϕ̂1:t−1)
passed from the previous frame, based on which a more

efficient algorithm can be designed.



The joint probability distribution in (16) and (15) can be

written as

p(y1:t,vt; ϕ̂1:t−1,ϕt)

∝
∑

st−1

p(st−1|y1:t−1; ϕ̂1:t−1)p(st|st−1)

p(yt|xt, κt;ϕt)p(xt|γt)p(γt|st)p(κt)
≈
∑

st−1

q(st−1|y1:t−1; ϕ̂1:t−1)p(st|st−1)

p(yt|xt, κt;ϕt)p(xt|γt)p(γt|st)p(κt)
=p̂(st|y1:t−1; ϕ̂1:t−1)p(yt|xt, κt;ϕt)
p(xt|γt)p(γt|st)p(κt),

where p̂(st|y1:t−1; ϕ̂1:t−1) =
∑

st−1
q(st−1|y1:t−1; ϕ̂1:t−1)p(st|st−1),

q(st−1|y1:t−1; ϕ̂1:t−1) is a tractable approximation for

the posterior p(st−1|y1:t−1; ϕ̂1:t−1) and p (yt|xt, κt;ϕt) =
CN

(

yt;F txt, κ
−1
t I

)

. Both q(st−1|y1:t−1; ϕ̂1:t−1) and

p̂(st|y1:t−1; ϕ̂1:t−1) can be calculated based on the messages

passed from the previous frame. We will elaborate how

to calculate p̂(st|y1:t−1; ϕ̂1:t−1) later in subsection

V-E. When t = 1, p̂(st|y1:t−1; ϕ̂1:t−1) is reduced to

p̂(st|y1; ϕ̂1) = p(s1).
For simplicity, we define

p̂(y1:t,vt; ϕ̂1:t−1,ϕt)

=p̂(st|y1:t−1; ϕ̂1:t−1)p(yt|xt, κt;ϕt)
p(xt|γt)p(γt|st)p(κt). (17)

In the rest of this section, we will omit ϕ̂1:t−1 in the PDFs

when there is no ambiguity.

B. Outline of the Doppler-Aware-Dynamic-VBI algorithm in

Frame t

The basic idea of the DD-VBI algorithm is that, at ev-

ery frame t, simultaneously approximates the marginal pos-

terior {p(xt,n|y1:t;ϕt)} and maximizes the log-likelihood

ln p(y1:t;ϕt) with respect to ϕt, based on the noisy measure-

ments of the t-th frame and the messages p̂(st|y1:t−1) passed

from the previous frame. In summary, for every frame, the

DD-VBI algorithm performs iterations between the following

two major steps until convergence, as shown in Fig. 5.

• DD-VBI-E Step: Given ϕt at t-th frame and mes-

sages p̂(st|y1:t−1; ϕ̂1:t−1) passed from the previous

frame, calculate the approximate marginal posterior of

p(vt|y1:t;ϕt), denoted as q(vt|y1:t;ϕt), using the sparse

VBI approach, as elaborated in subsection V-D.

• DD-VBI-M Step: Given q(vt|y1:t;ϕt) ≈ p(vt|y1:t;ϕt),
construct a surrogate function for the objective function

ln p(y1:t;ϕt), then maximize the surrogate function with

respect to ϕt as elaborated in subsection V-C.

After convergence, the messages p̂(st+1|y1:t; ϕ̂1:t) are calcu-

lated based on q(st|y1:t;ϕ1:t) and passed to the next frame.

In the following, we first elaborate the M step, which is a

variation of the in-exact MM method in [25]. After that, we

will elaborate how to approximately calculate the posterior

p(vt|y1:t;ϕt) ≈ q(vt|y1:t;ϕt) in the E step, which is required

to construct the surrogate function in the M step.

Figure 5: Iinteraction between the two modules of the DD-VBI

algorithm within a frame.

C. DD-VBI-M Step

It is difficult to directly maximize the log-likelihood func-

tion ln p(y1:t;ϕt), because there is no closed-form expression

due to the multi-dimensional integration over vt as in (16). To

make the problem tractable, in the DD-VBI-M Step, we adopt

an in-exact MM method in [31], [25], which maximizes a

surrogate function of ln p(y1:t;ϕt) with respect to ϕt, to find

an approximate solution of (16). Specifically, let u(ϕt; ϕ̇t)
be the surrogate function constructed at some fixed point ϕ̇t,

which satisfies the following properties:

u(ϕt; ϕ̇t) ≤ ln p(y1:t;ϕt),

u(ϕ̇t; ϕ̇t) = ln p(y1:t; ϕ̇t),

∂u(ϕt; ϕ̇t)

∂ϕt
|ϕt=ϕ̇t

=
∂ ln p(y1:t;ϕt)

∂ϕt
|ϕt=ϕ̇t

. (18)

Inspired by the EM algorithm [31], we use the following

surrogate function:

u(ϕt; ϕ̇t) =

∫

q(vt|y1:t;ϕt) ln
p(y1:t,vt;ϕt)

q(vt|y1:t;ϕt)
dvt, (19)

where q(vt|y1:t;ϕt) is a tractable approximation of

p(vt|y1:t;ϕt). In subsection V-A, we have approximated the

joint probability distribution in (19) using p̂(y1:t,vt;ϕt).
Therefore, the surrogate function can be approximated as

û(ϕt; ϕ̇t) =

∫

q(vt|y1:t;ϕt) ln
p̂(y1:t,vt;ϕt)

q(vt|y1:t;ϕt)
dvt, (20)

When there is no approximation error for the associated PDFs,

i.e., q(vt|y1:t;ϕt) = p(vt|y1:t;ϕt) and p̂(y1:t,vt;ϕt) =
p(y1:t,vt;ϕt), it can be verified that û(ϕt; ϕ̇t) satisfies the

properties in (18).

In the M step of the j-th iteration, we update ϕt as

ϕ
j+1
t = argmax

ϕt

û(ϕt;ϕ
j
t ), (21)

where (·)j stands for the j-th iteration.

In our problem, û(ϕt; ϕ̇t) is a non-convex function and it

is difficult to find its optimal solution. Therefore, we use a

simple gradient update as in [25], i.e.



ϕ
j+1
t = ϕ

j
t + τ j

∂û(ϕt; ϕ̇
j
t )

∂ϕt
, (22)

where τ j is the step sizes determined by the Armijo rule [25].

The approximate posterior q (vt|y1:t;ϕt) has a factorized

form as

q (vt|y1:t;ϕt)

= q (xt|y1:t;ϕt) q (γt|y1:t;ϕt) q (st|y1:t;ϕt) . (23)

Therefore, after the convergence of the DD-VBI, we not

only obtain an approximate stationary solution ϕ̂t of (16),

but also the associated (approximate) marginal conditional

posterior q (xt|y1:t;ϕ1:t) ≈ p(xt|y1:t,ϕt).

D. DD-VBI-E Step

DD-VBI-E Step performs the sparse VBI to approximate

the conditional marginal posteriors p(vt|y1:t;ϕt) based on the

following joint prior distribution:

p̂(y1:t,vt;ϕt)

=p̂(st|y1:t−1)p(yt|xt, κt;ϕt)
p(xt|γt)p(γt|st)p(κt). (24)

The corresponding approximate posterior distributions

q (vt) obtained by the sparse VBI will be given by (30)-(37).

1) Outline of Sparse VBI within a Frame: For convenience,

we use vt,n to denote an individual variable in vt. Let

H = {n|∀vt,n ∈ vt}. Moreover, we use q (vt) as a simplified

notation for q (vt|y1:t;ϕt) when there is no ambiguity. The

approximate conditional marginal posterior q (vt) could be

calculated by minimizing the Kullback-Leibler divergence

(KLD) between p (vt|y1:t;ϕt) and q (vt) subject to a fac-

torized form constraint on q (vt) as

AVBI : q
∗ (vt) = arg min

q(vt)

∫

q (vt) ln
q (vt)

p (vt|y1:t;ϕt)
dvt

(25)

s.t. q (vt) =
∏

n∈H
q (vt,n) , (26)

∫

q (vt,n) dvt,n = 1, ∀n ∈ H. (27)

Problem AVBI is non-convex, we aim at finding a stationary

solution (denoted by q∗ (vt)) of AVBI, as defined below.

Definition 1. [Stationary Solution]q∗ (vt) =
∏

n∈H q
∗ (vt,n)

is called a stationary solution of Problem AVBI if it satisfies

all the constraints in AVBI and ∀n ∈ H,

q∗ (vt,n) =

arg min
q(vt,n)

∫

∏

l 6=n
q∗ (vt,l) q (vt,n) ln

∏

l 6=n q
∗ (vt,l) q (vt,n)

p (vt|y1:t;ϕt)
dvt.

By finding a stationary solution q∗ (vt) of AVBI,

we could obtain the approximate posterior q∗ (vt,n) ≈

p (vt,n|y1:t;ϕt) , ∀n ∈ H.

A stationary solution of AVBI can be obtained via alter-

nately optimizing each individual density q (vt,n) , n ∈ H.

For given q (vt,l) , ∀l 6= n, the optimal q (vt,n) that minimizes

the KLD in AVBI is given by

q (vt,n) ∝ exp
(

〈ln p(y1:t,vt;ϕt)〉∏
l 6=n q(vt,l)

)

, (28)

where 〈f (x)〉q(x) =
∫

f (x) q(x)dx. However, p(y1:t,vt;ϕt)
is intractable. Since p(y1:t,vt;ϕt) ≈ p̂(y1:t,vt;ϕt) in (17),

(28) can be approximated as

q (vt,n) ∝ exp
(

〈ln p̂(y1:t,vt;ϕt)〉∏
l 6=n

q(vt,l)

)

. (29)

Based on (29), the update equations of all variables are given

in the subsequent subsections. The detailed derivation can

be found in Appendix B. Note that the operator 〈·〉
vt,l

is

equivalent to 〈·〉q(vt,l)
and the expectation 〈f (vt,l)〉q(vt,l)

w.r.t. its own approximate posterior is simplified as 〈f (vt,l)〉.

2) Initialization of Sparse VBI: In order to trigger the

alternating optimization (AO) algorithm, we use the following

initializations for the distribution functions q (xt) , q(γt) in

the first iteration of every frame and q (s1) in the first

iteration of first frame. In the rest iterations, we initialize

q (xt),q (st),q(γt) to the (approximate) posterior calculated

in the previous frame.

• Initialize q (s1) = p̂(s1|y1;ϕt) =
∏Ñ

n=1 q (s1,n) with

q (s1,n) = (π̃1,n)
s1.n (1− π̃1,n)

1−s1,n .

• For given p̂(st|y1:t;ϕt) =
∏Ñ

n=1 (π̃t,n)
st.n (1− π̃t,n)

1−st,n , initialize a gamma dis-

tribution for γt: q (γt) =
∏Ñ
n=1 Γ

(

γt,n; ãγ,t,n, b̃γ,t,n

)

,

where ãγ,t,n = π̃t,nat + (1− π̃t,n) at,
b̃γ,t,n = π̃t,nbt + (1− π̃t,n) bt.

• Initialize a Gaussian distribution for xt:

q (xt) = CN (xt;µt,Σt) , where Σt =
(

diag (〈γt〉) + (F t)
H
F t

)−1

, µt = Σt (F t)
H
yt.

3) Update for q (κt): From (29), q (κt) can be derived as

q (κt) = Γ(κt; ãκ,t, b̃κ,t). (30)

where ãκ,t = aκ +NNp, b̃κ,t = bκ +
〈

‖yt − F txt‖2
〉

xt

=

bκ + ‖yt − F tµt‖2 + tr
(

F tΣt (F t)
H
)

.

4) Update for q(xt): q (xt) can be derived as

q (xt) = CN (xt;µt,Σt) . (31)

µt and Σt can be calculated through

Σt =
(

diag (〈γt〉) + 〈κt〉 (F t)
H
F t

)−1

,

= R− υR (F t)
H
(

I+ υF tR (F t)
H
)−1

F tR. (32)

µt = 〈κt〉Σt (F t)
H
yt. (33)



where 〈γt〉 =
ãγ,t,n

b̃γ,t,n
, 〈κt〉 =

ãκ,t

b̃κ,t
, R =

diag

([

b̃γ,t,1

ãγ,t,1
, · · · , b̃γ,t,Ñ

ãγ,t,Ñ

])

, υ = 〈κt〉 = ãκ,t

b̃κ,t
.

5) Update for q (γt): q (γt) can be derived as

q (γt) =
Ñ
∏

n=1

Γ
(

γt,n; ãγ,t,n, b̃γ,t,n

)

, (34)

where ãγ,t,n, b̃γ,t,n are given by:

ãγ,t,n = 〈st,n〉 at + 〈1− st,n〉 at + 1, (35)

b̃γ,t,n = 〈st,n〉 bt + 〈1− st,n〉 bt +
〈

|xt,n|2
〉

. (36)

where 〈st,n〉 = π̃t,n, 〈1− st,n〉 = 1 − π̃t,q,
〈

|xt,n|2
〉

=

|µt,n|2 + Σt,n, µt,n is the n-th element of µt, Σt,n is the

n-th diagonal element of Σt.

6) Update for q (st): q (st) can be derived as

q (st) =

Ñ
∏

n=1

(πt,n)
st.n (1− πt,n)

1−st,n , (37)

where πt,n is given by

πt,n =
1

C

π̃t,nb
at
t

Γ(at)
e(at−1)〈lnγt,n〉−bt〈γt,n〉, (38)

and C is the normalization constant, given

by C =
π̃t,nb

at
t

Γ(at)
e(at−1)〈lnγt,n〉−bt〈γt,n〉 +

(1−π̃t,n)b
at
t

Γ(at)
e(at−1)〈lnγt,n〉−bt〈γt,n〉, 〈ln γt,n〉 =

ψ (ãγ,t,n) − ln
(

b̃γ,t,n

)

, ψ (x) = d
dx

ln (Γ (x)) is the

digamma function, defined as the logarithmic derivative of

the gamma function.

E. Messages p̂(st+1|y1:t; ϕ̂1:t) Passed to the Next Frame

After the convergence of the DD-VBI iterations

in frame t, let f̂d,t and q(st|y1:t, ; ϕ̂1:t) =
∏Ñ
n=1 (πt,n)

st.n (1− πt,n)
1−st,n denote the converged

Doppler parameter and the associated approximate posterior

for st, respectively. Then, the messages p̂(st+1|y1:t; ; ϕ̂1:t) is

calculated as

p̂(st+1|y1:t; ϕ̂1:t)

=
Ñ
∏

n=1

∑

st,n

q (st,n|y1:t, ϕ̂1:t) p(st+1,n|st,n) (39)

=
Ñ
∏

n=1

(π̃t+1,n)
st+1,n (1− π̃t+1,n)

1−st+1,n . (40)

where

π̃t+1,n = (1− πt,n) ρ0,1 + πt,n(1− ρ1,0).

Algorithm 1 Doppler-Aware-Dynamic-VBI algorithm

1: for t = 1, 2, ... do

2: Initialize the distribution functions according to Section

V-D2.

3: while not converge do

4: while not converge do

5: %DD-VBI-E Step:

6: Update q (κt) using (30).

7: Update q(xt) using (31).

8: Update q (γt) using (34).

9: Update q (st) using (37) .

10: end while

11: %DD-VBI-M Step:

12: Construct the surrogate function û in (20) using the

output of DD-VBI-E Step q(vt|y1:t;ϕt).
13: Update ϕt using (21).

14: end while

15: Let f̂d,t denote the converged maximum DFO for frame

t. Calculate p̂(st+1|y1:t; ϕ̂1:t) using (40).

Pass messages p̂(st+1|y1:t; ϕ̂1:t) to frame t+ 1.

16: Estimate xt,n using (33).

17: end for

Finally, the messages p̂(st+1|y1:t; ϕ̂1:t), as the prior to the

channel support, is passed to the next frame.

The overall DD-VBI algorithm is summarized in Algorithm

1. Note that in the t-th frame of DD-VBI, the contribution of

the previous observations y1:t−1 on the estimation of vt and

ϕt is summarized in the messages p̂(st|y1:t−1; ϕ̂1:t−1) passed

from frame t−1. Therefore, in the t-th frame, there is no need

to store all the observations y1:t−1 up to frame t− 1.

Remark 2. In practical mmWave massive MIMO systems, the

number of RF chains can be less than the number of antennas

at both the BS and user sides to reduce the hardware cost

and power consumption. The proposed scheme can be easily

extended to the case with limited RF chains. For example,

suppose there are only Mb < M RF chains at the BS

and Nb < N RF chains at the user. In this case, when

the BS transmits the training vector v = gF ∈ CM for

downlink channel tracking in the i-th symbol duration, the

user employs Ui = WiGi ∈ CN×Nb as a combining matrix

to combine the received signal into Nb baseband channel

measurements, where F ∈ CM×Mb and g ∈ CMb are the

RF training matrix and baseband training vector at the BS,

respectively, and Wi ∈ C
N×Nb and Gi ∈ C

Nb×Nb are

the RF and baseband combining matrix at the mobile user

in the i-th symbol duration, respectively. We can still write

the received pilot signal as a CS model as in (14), but with

F t = [F t,1; ...;F t,Np
]∈CNbNp×Ñ , F t,i = UH

t,iAR,i(ϕt),

nt = [UH
t,int,i]i∈Np

.

F. Complexity and Signaling Overhead Comparison

The computational complexity of the proposed algorithm is

dominated by the update of q(xt). Assuming the arithmetic

with individual elements has complexity O(1), the compu-

tational complexity of matrix inversion in (32) is O(N3
bN

3
p )



Algorithms Complexity order Typical complexity order

proposed O

(

I(NbNp)Ñ2

)

O
(

IL2

DN
)

−O
(

IN3
)

ML O

(

Ñ3

)

O
(

N3
)

ES O
(

L2

DK4

E

)

O
(

L2

DN4
)

HS O
(

SL4

D
K2

H

)

O

(

logKH
(N/LD)L4

D
K2

H

)

Table II: Complexity orders for different schemes.

Algorithms Signaling overhead Typical signaling overhead

proposed O(LD/Nb) + LD 4 + LD

ML N N

HS K2

H
(LD)3 S K2

H
(LD)3 logKH

(N/LD)

ES K2

E
N2

Table III: Signaling overhead for different schemes.

and the total number of multiplications to update q(xt) is

3Ñ + 2NbNpÑ
2 + 2(NbNp)

2Ñ + (NbNp)
2. Supposing the

algorithm executes I iterations, the total complexity order of

the proposed method is O
(

I(NbNp)
2Ñ
)

, considering that Ñ

is usually larger than NbNp. In Table II and III, we assume

the mmWave channel has LD dominant paths and compare the

complexity and signaling overhead of the proposed algorithm

with the following baseline algorithms:

• Baseline 1 (ML) [8]: This is the ML based joint DFO

and channel estimation algorithm proposed in [8].

• Baseline 2 (ES) [20]: This is the codebook based ex-

haustive beam search algorithm in [20]. KE denotes the

number of beamforming vectors of the codebook in ES.

• Baseline 3 (HS) [21]: This is the codebook based hierar-

chical beam search algorithm in [21]. S denotes the total

level of hierarchical codebook. KH denotes the number

of beamforming vectors of each codebook level in HS.

As seen from Table II, the complexity order of the proposed

algorithm is similar to the baselines. For example, NbNp can

range from O (LD) to O (N) to achieve different tradeoff

between performance and complexity, and we usually have

Ñ = O (N), KE = O (N). For a resolution O(2π/N) of the

HS scheme, we usually have S = O
(

logKH
(N/LD)

)

[21]. In

this typical case, the complexity of the proposed scheme and

the baseline schemes are shown in the third column of Table

II. On the other hand, the proposed algorithm has the lowest

signaling overhead for both the general case and the typical

case, as shown in Table III.

VI. SIMULATION RESULTS

In this section, we compare the performance of the proposed

algorithm with the baseline algorithms described in Section

V-F. For the ML baseline, we also consider the case when only

partial channel parameters are estimated as in the proposed

scheme (ML-Partial). For the proposed scheme, we also con-

sider the case when the training vector is generated randomly

(DD-VBI-Random). The channel parameters are based on the

millimeter-wave statistical spatial channel model (mm-SSCM)

as specified in [32], which was developed according to the 28-

and 73-GHz ultrawideband propagation measurements in New

York City. The signal bandwidth is 50MHz and the frame

duration is set as Tb = 0.5ms. The carrier frequency is 28GHz

. The mobile user employs a ULA of M = 128 antennas and

the inter antenna spacing is λ/2, and the BS also employs

a ULA. The user velocity is assumed to be 380km/h, which

translates to fd,t ≈ 10KHz.

In the simulation, we will consider both cases when the

user is equipped with a full set of RF chains and limited

RF chains. For the case with limited RF chains, the number

of RF chains is set to be Nb = 16. The MSE for DFO

estimation and the uplink achievable data rate are adopted as

the performance metrics. The frequency MSE and the channel

MSE is defined as
‖f̂d,t−fd,t‖2

‖fd,t‖2 and
‖x̂t−xt‖2

‖xt‖2 , respectively.

The parameter Nd is chosen to be equal to the number of

dominant AoA directions at the user side (an AoA direction

is called a dominant AoA direction if its energy is no less

than 10% of the most significant AoA direction) and Nd data

streams are transmitted over the Nd dominant AoA directions

in the uplink with equal power allocation. Since the uplink

transmission is only designed based on the dominant AoA

directions which are known at the user, there is no need for

the BS to feed back the slow time-varying effective channel.

A. Doppler Frequency and Channel MSE Performance
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Figure 6: Frequency MSE and channel MSE performance

versus the pilot number. Set SNR= 0 dB. (a) full RF chains

with N = 128. (b) limited RF chains with N = 128, Nb = 16.

The Doppler frequency and channel MSE performance

of different algorithms versus the pilot number, SNR and

number of BS antennas are shown in Fig. 6 and Fig. 7. It

can be seen that the proposed DD-VBI algorithm achieves

large performance gain over all the baseline algorithms, under

both full RF chains and limited RF chains. By using the

proposed training vector design to strike a balance between

exploitation of known channel directions and exploration of



unknown channel directions, the DD-VBI algorithm could

further improve the MSE performance compared to the case

with a random training vector. This demonstrates that the

proposed algorithm can effectively estimate the maximum

DFO by selective channel tracking and efficient training vector

design. Note that as the number of BS antennas increases,

the parameters to be estimated increase significantly and the

spatial resolution and array gain will also increase. Since

the ML-Full method does not exploit the selective channel

estimation method or channel sparsity to reduce the number

of free parameters, its performance may degrade with the

number of BS antennas. However, the performance gain of the

proposed algorithm improves because in this case, the number

of parameters to be estimated does not increase with the

number of BS antennas. This demonstrates that the proposed

algorithm is a powerful method for accurate DFO estimation,

even when both BS and mobile user are equipped with massive

MIMO, and the number of RF chains at the user side is limited.
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Figure 7: Frequency MSE performance versus the number of

BS antennas and SNR. (a) Set SNR= 0 dB. Full RF chains

with N = 128. (b) Set SNR= 0 dB. Limited RF chains with

N = 128, Nb = 16. (c) The number of pilots is fixed as 5.

Full RF chains with N = 128. (d) The number of pilots is

fixed as 5. Limited RF chains with N = 128, Nb = 16.

B. Achievable Data Rate Performance

The achievable data rates of different algorithms versus the

pilot number, SNR and number of BS antennas are shown

in Fig. 8. It can be observed that the performance of all

algorithms increases with the number of pilots, SNR and

number of BS antennas. The proposed DD-VBI algorithm can

achieve large performance gain over various baselines under
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Figure 8: Achievable data rate versus the number of BS

antennas, pilot number and SNR. (a) and (c) Set SNR= 0

dB. Full RF chains with N = 128. (b) and (d) Set SNR=

0 dB. Limited RF chains with N = 128, Nb = 16. (e) The

number of pilots is fixed as 5. Full RF chains with N = 128.

(f) The number of pilots is fixed as 5. Limited RF chains with

N = 128, Nb = 16.

both full RF chains and limited RF chains. Moreover, by

using the proposed training vector design, the proposed DD-

VBI algorithm could further improve the achievable data rate.

This verifies that the proposed selective channel tracking and

Doppler compensation scheme can also enhance the achievable

data rate with low pilot overhead, under different SNRs and

numbers of BS antennas.

C. Complexity versus Realized Gain

In practice, we can control the tradeoff between the com-

plexity and realized gain of the proposed algorithm by adjust-

ing the number of iterations. In Fig. 9, we plot the achievable

rate versus the CPU time. It can be seen that the proposed

algorithm can achieve a better performance than the baseline

algorithms for the same CPU time. Moreover, the performance

gain increases with the CPU time. Therefore, the proposed

algorithm provides a better and more flexible tradeoff between

the performance and computational power.

VII. CONCLUSION

We propose an angular-domain selective channel tracking

and Doppler compensation scheme for high-mobility massive

MIMO systems. Firstly, we propose a selective channel track-

ing scheme and the associated Doppler-aware-dynamic-VBI

algorithm to accurately estimate the DFO and partial angular–

domain channel parameters with reduced pilot overhead. Then,

we propose an angular-domain selective DFO compensation
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Figure 9: The tradeoff between the complexity and realized

gain of the proposed algorithm.

scheme to convert the dominant paths of the fast time-varying

channel into a slow time-varying effective channel, based on

which efficient uplink and downlink transmissions can be

achieved. Simulations verify that the proposed scheme not

only can mitigate the Doppler and channel aging effect with

much less pilots than existing schemes, but also can achieve a

good tradeoff between the CSI signaling overhead and spatial

multiplexing/array gain.

APPENDIX

A. EM Estimation of the Parameters ρ1,0 and ρ0,1

Denote the st as the channel support vector, as defined

in SubSec.IV-A. We apply the EM method in [31] to obtain

an estimate of the parameter ρ1,0 by perform the following

iterations until convergence:

ρi+1
1,0 = argmax

ρ1,0
Ep̂i(s1:t)

{

ln p(s1:t,y1:t; ρ1,0)|ρi1,0
}

, (41)

where ρi1,0 stands for the i-th iteration, Ep̂i(s1:t) {·} de-

notes expectation over the posterior distribution p̂i(s1:t) =
p(s1:t|y1:t, ρ

i
1,0) conditioned on y1:t and ρi1,0. Solving the

problem (41), we can get a closed-form expression for up-

dating the ρ1,0 as

ρi+1
1,0 =

∑t

t̃=2

∑Ñ

n=1Ep̂i(s1:t)

[

st̃,n
]

− Ep̂i(s1:t)

[

st̃−1,nst̃,n
]

∑t

t̃=2

∑Ñ

n=1 Ep̂i(s1:t)

[

st̃−1,n

]

(42)

Since the channel support vector s1:t forms a Markov chain,

the posterior distribution p̂i(s1:t) can be approximately calcu-

lated using the sum-product message passing over the factor

graph of the associated Markov chain with the priors of st̃,n’s

given by the output of the DD-VBI algorithm at each frame t̃
[30]. After the iterations in (42) convergence, we can obtain

the EM estimation of the parameter ρ1,0 in the t-th frame.

The EM estimation of the parameter ρ0,1 can be obtained in

a similar way.

B. Derivation of (30)-(37)

From (29), q (κt) in (30) can be obtained a

ln q (κt) � 〈ln p(yt|xt, κt;ϕt)〉xt
+ ln p (κt)

∝− κt

〈

‖yt − F txt‖2
〉

xt

+NNp lnκt,i + (aκ − 1) lnκt − bκκt

∝ (ãκ − 1) lnκ− b̃κκ.

q (xt) in (31) can be obtained as

ln q (xt) ∝ 〈ln p (yt|xt, κt;ϕt)〉κt
+ 〈ln p(xt|γt)〉γt

∝− 〈κt〉 ‖yt − F txt‖2 − xHt diag (〈γt〉)xt
∝− (xt − µt)

H
(Σt)

−1
(xt − µt) .

q (γt) in (34) can be obtained as

ln q (γt) � 〈ln p(xt|γt)〉xt
+ 〈ln p (γt|st)〉st

�

∑

n

(ãγ,t,n − 1) lnγt,n − b̃γ,t,nγt,n.

q (st) in (37) can be obtained as

� ln q (st) � 〈ln p (γt|st)〉γt
+ ln p̂ (st)

�

∑

n

st

(

ln
batt

Γ(at)
+ (at − 1)

〈

lnγt,n
〉

−bt
〈

γt,n
〉

+ ln π̃t,n
)

+ (1− st)

(

ln
b̄ātt

Γ(āt)
+ (āt − 1)

×
〈

lnγt,n
〉

− b̄t
〈

γt,n
〉

+ ln (1− π̃t,n)
)

� ln

Ñ
∏

n=1

(πt,n)
st.n (1− πt,n)

1−st,n .
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