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A 3D Tractable Model for UAV-Enabled Cellular
Networks With Multiple Antennas
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Abstract—This paper aims to propose a three-dimensional (3D)
point process that can be employed to generally deploy unmanned
aerial vehicles (UAVs) in a large-scale 3D cellular network and
to tractably analyze the fundamental network-wide performances
of the network. The proposed 3D point process is devised based
on a 2D marked Poisson point process in which each point and
its random mark uniquely correspond to the projection and the
altitude of each point in the 3D point process, respectively. We
study some of the important statistical properties of the proposed
3D point process and shed light on some crucial insights into them
that facilitate the analyses of a UAV-enabled cellular network
wherein all UAVs equipped with multiple antennas are deployed
by the proposed 3D point process to serve as aerial base stations.
The salient features of the proposed 3D point process lie in its
suitability in practical 3D channel modeling and tractability in
analysis. The downlink coverages of the UAV-enabled cellular
network are found and their closed-form results for some special
cases are also derived. Most importantly, their fundamental limits
achieved by cell-free massive antenna array are characterized
when coordinating all the UAVs to jointly perform non-coherent
downlink transmission. These key findings and observations are
numerically validated in this paper.

Index Terms—Three-dimensional point process, Poisson point
process, unmanned aerial vehicle, cellular network, coverage, cell-
free massive MIMO.

I. INTRODUCTION

IN recent years, the technology of unmanned aerial vehicle
(UAV) has been improved significantly such that UAVs

possess an outstanding capability of agilely moving in three-
dimensional (3D) space, which has attracted increasing atten-
tion from the academia and industry of wireless communi-
cations because such a 3D moving capability is able to re-
markably relieve spatial limitations, which usually lead to the
impairments of wireless channels between two static terminals,
such as path loss, penetration loss, and multi-path fading, etc.
Qualcomm and AT&T, for example, have been planning to
build up a UAV-enabled cellular network with UAVs working
as “aerial base stations” in order to enable large-scale wireless
communications in the upcoming fifth generation (5G) cellular
networks [1]. Moreover, Amazon prime air and Google’s
drone delivery project are two striking examples of using
“cellular-connected” UAV communications where UAVs are
aerial mobile users in a cellular network [2]. Although the
agile and flexible mobility of UAVs benefits point-to-point
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communications between UAVs and other terminals, it may
not really facilitate communications in a wireless network
where many UAVs are arbitrarily deployed and a considerable
amount of co-channel interference is created accordingly. As
such, how to appropriately deploy UAVs in a wireless network
to reap the mobility advantage of UAVs is a prominent
problem pertaining to all the aspects of UAV communications
and networking.

The 3D deploying problem for a UAV-enabled cellular
network with UAVs serving as aerial base stations is involved
in the issue of simultaneous multi-user coverage, and thereby
it is much more complicated and difficult than the 3D de-
ploying problem for a cellular-connected UAV network that
merely needs to tackle the issue of single UAV coverage at a
time. Deploying methods for a UAV-enabled cellular network
should be able to exploit the mobility of UAVs in order to
ameliorate the fundamental coverage limit of the entire cellular
network, yet how to evaluate the deploying methods in a
tractable and network-wide way remains unclear until now.
The key to tackling the problems of deploying and evaluating
a UAV-enabled cellular network lies in the tractability of the
modeling framework of UAV-enabled cellular networks that
certainly depends upon the randomly distributed nature of
UAVs hovering in the sky. On account of this, we propose
a 3D deployment model for a UAV-enabled cellular network,
which is able to not only generally characterize the spatial
random distribution of the UAVs in the network, but also
skillfully pave a tractable way to analyze the performances
of the UAV-enabled cellular network. The 3D deployment
model proposed to deploy a UAV-enabled cellular network is
devised based on a 3D point process, which is essentially a
2D homogeneous marked Poisson point process (PPP) in that
all the projections and the altitudes of the 3D point process
respectively consist of all the points and the marks of the 2D
homogeneous marked PPP. Such a 3D point process is able to
generally and practically characterize the randomly positioning
characteristic of UAVs in a large-scale UAV-enabled cellular
network so that it is very distinct from the existing UAV-
related deployment models in the literature, as reviewed in
the following.

A. Prior Works on Modeling UAV-Enabled Wireless Networks

Many of the prior works on UAV-enabled cellular networks
studied their problems by assuming a fixed number of UAVs
deployed in the sky (typically see [3]–[8]). References [3]–
[5], for example, adopted a single UAV in a wireless network
to analyze the performance metrics of the network, such as
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outage probability, energy efficiency, and throughput, to see
how to position a UAV so that the performance metrics can be
maximized. The problem of how to jointly optimize the flight
radius and speed of a single UAV so as to maximize the energy
efficiency of a UAV was tackled in [6], whereas the problem
of how to use a variable-rate relaying approach to optimizing
outage probability and information rate for a single UAV was
studied in [7]. Reference [8] analyzed the link capacity for
two UAVs with random 3D trajectories and then addressed
the impacts of network densification, imperfect channel state
information, and interference on the link capacity. Although
the modeling and analysis approaches of these prior works
seem suitable for a wireless network with a small number of
UAVs, in general they cannot be straightforwardly employed
in large-scale UAV-enabled wireless networks, which need to
take into account of the interactions between UAVs.

There are indeed some prior works that modeled UAV-
enabled wireless networks in a large-scale sense, e.g., [9]–[15].
However, the majority of them simply assumed that all UAVs
in a network hover at the same fixed altitude. For example,
reference [9] investigated the coverage problem for a finite
network model assuming a number of UAVs are uniformly
distributed at the same fixed altitude in the network. The
coverages based on UAV-centric and user-centric strategies
for multi-UAV-assisted NOMA networks were studied in [10].
Reference [11] proposed a UAV-assisted wireless network for
the malfunction areas and used a user-centric cooperation
scheme to evaluate the coverage and normalized spectral
efficiency of the network. A multi-layer UAV network was
proposed in [12] to analyze and optimize the successful
transmission probability and spectral efficiency of the network,
while the coverage and ergodic rate of a UAV-enabled network
were investigated with a spectrum sharing mechanism in [13].
These prior works all assumed that all UAVs hover at the
same fixed altitude in a network so that their analyses cannot
practically reflect how they are influenced by a real-world
deployment of UAVs with a random altitude.

Some prior works already tried to relax the modeling
assumption of “fixed altitude” when modeling multiple UAVs
in the sky. Reference [16], for example, studied the coverage
probability in a 3D deployment model of UAVs wherein all
UAVs were distributed within a specific range of altitude
that was uniformly divided into a certain number of levels.
Reference [16] considered that UAVs were uniformly dis-
tributed above a 2D plane and positioned at different levels
of altitude. A few prior works also adopted 3D homogeneous
PPPs to model UAV-enabled cellular networks. Reference [17]
exploited the limits of the coverage and volume spectral
efficiency of a mmWave UAV cellular network in which a
UAV’s altitude was modeled as a function of the UAV’s
projection. The coverage and network throughput of a NOMA-
assisted UAV network modeled by a 3D homogeneous PPP
were analyzed in [18], whereas reference [19] considered
spectrum sharing when analyzing the success probability and
total network throughput of a UAV-enabled network modeled
by a 3D PPP. Modeling the distribution of UAVs by 3D PPPs
entails two practical issues. One is that UAVs are low-altitude
platforms and cannot be arbitrarily positioned in infinitely

large 3D space modeled by a 3D PPP. The other is that the
path-loss exponent of any wireless links in a wireless network
modeled by a 3D PPP needs to be greater than three in order
to make analysis bounded, yet such a constraint on the path-
loss exponent is not practically true for most 3D wireless links
with a path-loss exponent smaller than three.

B. Contributions
Although these aforementioned prior works successfully

conducted some analyses for specific problems they are inter-
ested in, in general their outcomes are not easily generalized
to a network-wide scenario in a large-scale UAV-enabled
cellular network in that their generality is subject to their
simplified models and assumptions of deploying UAVs in a
wireless network. Our proposed 3D deployment model for
a UAV-enabled cellular network, as will be shown in the
following sections, inherits the tractability of employing PPPs
to model and analyze a wireless network, offers an additional
degree of freedom in controlling the altitude of a UAV, and
more importantly fits practical 3D path-loss channel models.
Consequently, the analytical results of this paper are more
general and closer to practical results in a UAV-enabled
cellular network. The main contributions of this paper are
summarized as follows.
• A 3D point process is proposed based on a 2D homo-

geneous marked PPP in which each point and its mark
are the terrestrial projection and the random altitude of a
unique point in the 3D point process, respectively. This
3D point process is shown to work for all practical 3D
path-loss channel models between any two points in the
point process.

• In the proposed 3D point process, we consider
angle-projection-independent locating (APIL) and angle-
projection-dependent locating (APDL) scenarios when
positioning all the UAVs in the sky. The APIL scenario
refers to when the elevation angle and the projection of
each UAV are independent, whereas the APDL scenario
refers to the opposite. The proposed 3D point process is
shown to be essentially a 2D homogeneous PPP in the
APIL scenario, yet it is shown to be equivalent to a 2D
non-homogeneous PPP in the APDL scenario.

• The fundamental properties of the proposed 3D point
process are analyzed for the APIL and APDL sce-
narios, which facilitate the derivations and analyses of
the Laplace transforms of the complete and truncated
(incomplete) 3D shot signal processes with considering
line-of-sight (LoS) and non-line-of-sight (NLoS) channel
behaviors.

• The proposed 3D point process is employed to generally
model the random deployment of the UAVs that are
equipped with multiple antennas and serve as aerial base
stations in a large-scale cellular network and the downlink
coverages (probabilities) for the APIL and APDL scenar-
ios are explicitly found and some of them are shown to
reduce to a closed-form expression for special channel
conditions.

• The cell-free downlink coverages for the APIL and APDL
scenarios are explicitly derived when all the UAVs in
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the network can do non-coherent joint transmission. They
represent the fundamental upper limits of the downlink
coverage probabilities that are achievable in the two
scenarios. Their closed-form expressions for some special
channel condition are obtained as well.

Furthermore, we provide numerical results to validate the cor-
rectness of the analytical findings of the downlink coverages
in this paper and show that in general the downlink coverages
are insensitive to the different distributions of the elevation
angle and the altitude of UAVs that have the same mean so
that they can be approximated by the derived expressions using
the mean of the elevation angle of a UAV for APIL and the
mean of the altitude of a UAV for APDL.

C. Paper Organization

The rest of this paper is organized as follows. In Section II,
a 3D point process is proposed and some of its important
statistical properties are studied. We employ the proposed 3D
point process to model a 3D UAV-enabled cellular network
consisting of a tier of UAVs serving as aerial base stations
with multiple antennas and we then analyze the downlink
coverage performances of the UAV-enabled cellular network
in Section III. Section IV provides some numerical results in
order to validate the analytical findings in Section III. Finally,
Section V concludes the important findings in this paper.

II. THE PROPOSED 3D POINT PROCESS AND ITS
STATISTICAL PROPERTIES

Suppose a 2D homogeneous PPP of density λ can be
denoted by the following set on the plane of R2

Φx , {Xi ∈ R2 : i ∈ N+}, (1)

and it is assumed to be a simple point process, that is, none
of the points in Φx can have the same location on the plane
of R2. In accordance with Φx, we propose the following 3D
point process Φu:

Φu ,

{
Ui ∈ R2 × R+ : Ui = (Xi, Hi), Xi ∈ Φx,

Hi = ‖Xi‖ tan(Θi),Θi ∈
[
0,
π

2

]
, i ∈ N+

}
, (2)

where Xi is the projection of point Ui on the plane of R2,
‖Xi‖ is the distance between the origin1 and Xi, and Θi

is the (random) elevation angle from the origin to point Ui.
Hence, the “altitude” of point Ui is Hi that is the distance
from Xi to Ui such that Φu can be viewed as a marked version
of Φx in which each point has a mark as its altitude. Since
‖Yi − Yj‖ denotes the Euclidean distance between points Yi
and Yj for i 6= j, we know ‖Xi‖ = ‖Ui‖ cos(Θi) and thus
‖Ui‖ = ‖Xi‖ sec(Θi). A link between two spatial points is
called a LoS link provided it is not visually blocked from
one point to the other. A low-altitude-platform communication

1Without loss of generality, in this paper we use the origin as a reference
point for the locations of the points in point sets such as Φx and Φu to
express their relevant equations, results, and observations. According to the
Slivnyak theorem [20] [21], the statistical properties of a PPP evaluated at
the origin are the same as those evaluated at any particular point in the PPP.

scenario is considered in this paper and the LoS model of a
3D channel in [22] is adopted so that we have the following
LoS probability of the 3D channel between the origin and a
point Ui ∈ Φu proposed in [22]:

ρ (Θi) ,
1

1 + c2 exp (−c1Θi)
, (3)

where c1 and c2 are environment-related positive constants
(for rural, urban, etc.), and thereby whether or not point Ui is
LoS for the origin is completely determined by its elevation
angle Θi from the origin.

For the 3D point process Φu, we will specifically consider
two positioning scenarios for the points in Φu, i.e., the
angle-projection-independent locating (APIL) and the angle-
projection-dependent locating (APDL) scenarios2. An illus-
tration of using the proposed 3D point process Φu to deploy
UAVs based on these two scenarios is depicted in Fig. 1. In
the figure, the projections of the UAVs on the X−Y (ground)
plane form a 2D homogeneous PPP Φx. In the APIL scenario,
as shown in part (a) of the figure, the elevation angle and the
projection of each point in Φu are independent, that is, Θi and
Xi are independent for all i ∈ N+, and we thus can use Θi

and Xi to completely define the 3D location of UAV Ui. In
contract, part (b) of the figure depicts the APDL scenario in
which the altitude and the projection of a UAV are independent
so that they can also be adopted to completely describe
the 3D location of a UAV. Note that the elevation angle
and the projection of a UAV is no longer independent once
the altitude and the projection of the UAV are independent
because they can be used to find the elevation angle between
them, i.e., Θi = tan−1(Hi/‖Xi‖)for all i ∈ N. In fact, the
APIL scenario corresponds the scenario of employing the 3D
polar coordinate system to describe the locations of UAVs,
whereas the APDL corresponds to the scenario of employing
the Cartesian coordinate system to describe the locations of
UAVs. The main motivation of considering the APDL and
APDL scenarios in this paper is inspired by the fact that they
both have their practical deployment applications. The APIL
scenario properly characterizes the deployment situation that
when each UAV in Φu is positioned at a random ground point
and at a random elevation angle whose distribution can be
observed at the origin. Such a situation usually happens when
there is a ground central controller that adjusts the elevation
angle of a UAV so as to make the wireless channel between
the UAV and a user more likely to be an LoS one. The APDL
scenario appropriately characterizes the situation that when
each UAV in Φu is positioned at a random projection and
at a random altitude whose distribution is known. Such a
situation frequently occurs when each point (UAV) in Φi is
positioned by a ground central controller at a random altitude
in accordance with some specific rule. In the following, we
will analyze some important statistical properties related to
Φu by considering these two scenarios.

2Note that the APDL scenario can also be referred to as the altitude(height)-
projection-independent positioning scenario because the APDL scenario is
essentially defined in a way that the altitude and the projection of a point in
Φu are independent.
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Fig. 1. The proposed 3D point process Φu is used to model the locations of the UAVs in a cellular network and the projections of all the points in Φu
form a 2D homogeneous PPP of density λ on the X − Y plane. The projection of point Ui is denoted by Xi and a typical user located at the origin
associates with UAV U? serving as its aerial base station. Two scenarios of locating the UAVs are considered: (a) The APIL scenario: Θi and ‖Xi‖ are
independent for all i ∈ N+ and Hi = tan(Θi)‖Xi‖ depends on Θi and Xi. (b) The APDL scenario: Hi and ‖Xi‖ are independent for all i ∈ N+ so that
Θi = tan−1(Hi/‖Xi‖) is dependent upon Hi and Xi.

A. Distance-Related Distributions in Φu

Suppose a non-negative RV R? is defined as

R? , max
i:Ui∈Φu

{
WiLi‖Ui‖−α

}
, (4)

where α > 2 is a constant3, Li ∈ {1, `} is a Bernoulli RV
that is equal to one if an LoS link between the origin and
point Ui exists and ` otherwise, and Wi ∈ R+ is a non-
negative weighting RV associating with Ui and independent
of all Li’s and Ui’s. Note that ` ∈ [0, 1] is referred to as
the NLoS channel attenuation factor since it is used to model
the penetration loss of an NLoS link, Wi is independent
of Lj and Uj for all i, j ∈ N+, all Wi’s are assumed to
be independently and identically distributed (i.i.d.), and the
distribution of Li depends on the location of Ui as indicated
by the LoS probability in (3). Throughout this paper, all the
evaluation angles in Φu are assumed to be i.i.d. for the APIL
scenario and all the altitudes in Φu are i.i.d. for the APDL
scenario. We then have the following theorem.

Theorem 1. Suppose the moment of Wi exists (i.e., E[W a
i ] <

∞ for all a > 0) for all i ∈ N+. (i) If the APIL scenario
is considered such that Θi and ‖Xj‖ are independent for
all i, j ∈ N+ and all Θi’s are independently and identically
distributed (i.i.d.), the cumulative density function (CDF) of
R? defined in (4) can be found as

FR?(r) = exp
(
−πλE

[
W

2
α

]
ωr−

2
α

)
, (5)

3If ‖Ui‖−α stands for the path loss between node Ui and the origin, α
is referred to as the path-loss exponent, which will be used in Section III.
Moreover, the channel model adopted in 4 is for wireless channels in the
UHF band. For wireless channels in much higher frequency bands (e.g., the
mmWave band), a much complicated channel model should be adopted to
properly characterize the NLoS effects on the channels, such as the channel
models adopted in [17], [23].

where FZ(·) denotes the CDF of RV Z and ω is defined as

ω , E
{

cos2(Θ)
[
ρ(Θ)

(
1− ` 2

α

)
+ `

2
α

]}
. (6)

(ii) If the APDL scenario is considered such that Θi =
tan−1(Hi/‖Xi‖) and all Hi’s are i.i.d., then FR?(r) can be
derived as

FR?(r) = exp [−πλΩ (r)] , (7)

where Ω(r) is defined as

Ω (r) ,
∫ ∞

0

EH
{[
ρ (Θ)F cW

(
r(z +H2)

α
2

)
+ [1− ρ (Θ)]F cW

(r
`

(z +H2)
α
2

)]}
dz (8)

in which Θ = tan−1(H/
√
z) and F cW (·) denotes the comple-

mentary CDF (CCDF) of RV W .

Proof: See Appendix A.
Note that the expression in (7) is more complicated than
its corresponding closed-form expression in (5) due to the
dependence between the elevation angle Θi and the projection
Xi of point Ui in Φu for all i ∈ N+ and it reduces to (5)
once the dependence does not exist (Namely, Θ in (8) is not
a function of H and z.). Furthermore, in general ω in (6)
is insensitive to the different distributions of Θ that have the
same mean, especially when the mean of Θ is not very large.
This point will be numerically demonstrated in Section IV-A.

The results in (5) and (7) are very general since they are
valid for the general distributions of W and Θ. Accordingly,
they can be employed to find the distributions of some specific
RVs related to set Φu. To demonstrate this, we discuss some
special cases of R? in the following.
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1) Wi = Li = 1: In this case, R? in (4) reduces to
R? = maxUi∈Φu ‖Ui‖−α so that R−

1
α

? = minUi∈Φu ‖Ui‖ is
the shortest distance between the origin and set Φu. Thus,
using FR?(r) in (5) helps find the CCDF of R−

2
α

? as

F c
R

− 2
α

?

(y) = exp

(
− πλE

[
cos2(Θ)

]
y

)
, (9)

which indicates that R−2/α
? ∼ exp(πλE[cos2(Θ)]) is an expo-

nential RV with mean 1/πλE[cos2(Θ)], and it is exactly the
CCDF of the square of the shortest distance between the origin
and a 2D homogeneous PPP of density λE[cos2(Θ)] [20],
[21]. Namely, this observation manifests that the 3D point
process Φu proposed in (2) can be equivalently viewed as
a 2D homogeneous PPP of density λE[cos2(Θ)] as long as
the elevation angle and the projection of each point in Φu
are independent. Moreover, using (7) for this case yields
F c
R

−2/α
?

(y) given by

F c
R

− 2
α

?

(y) = exp
[
−πλΩ

(
y−

α
2

)]
= exp

[
−π
∫ y

0

λFH(
√
z)dz

]
. (10)

For this case, Φu can be viewed as a 2D non-homogeneous
PPP of location-dependent density λFH(

√
z). Thus, we can

conclude that Φu becomes a 2D non-homogeneous PPP when-
ever the elevation angle and the projection of each point in
Φu are not independent (i.e., the APDL scenario). There is
a simple example which demonstrates this scenario, that is,
if all the points in Φu are positioned at the same altitude
of h, we know Θi = tan−1(h/‖Xi‖) so that F c

R−2
?

(y) =

exp(−π
∫ y

0
λ1(h ≤

√
z)dz) and Φu is a non-homogeneous

PPP of density λ1(h ≤
√
z) for this example.

2) Wi = 1: For this case, R? in (4) reduces
to R? = maxi:Ui∈Φu Li‖Ui‖−α and thus R

− 1
α

? =

mini:Ui∈Φu{L
− 1
α

i ‖Ui‖}. Thus, the distribution of R−
1
α

? can re-
flect how the LoS effect impacts the distribution of the shortest
distance between the origin and set Φu. By considering W = 1
in (5), we can obtain F c

R
− 2
α

?

(y) as shown in the following:

F c
R

− 2
α

?

(y) = exp (−πλωy) , (11)

i.e., R−
2
α

? ∼ exp(πλω), which reveals that the following point
set

Φ̃u ,
{
Ũi ∈ R2 × R+ : Ũi = L

− 1
α

i Ui, Li ∈ {1, `}, Ui ∈ Φu

}
(12)

can be viewed as a thinning PPP from Φx with density λω.
When ` = 0, R−

1
α

? is the shortest distance of the LoS link
from the origin to set Φu and F c

R
− 2
α

?

(x) in (11) reduces to

e−πλE[ρ(Θ) cos2(Θ)]y . Therefore, in the APIL scenario the LoS
points in Φu are equivalent to a 2D homogeneous PPP of
density λE[cos2(Θ)ρ(Θ)]. Furthermore, for F c

R
− 2
α

?

(y) in (7)

with W = 1, we can have

F c
R

− 2
α

?

(y) = exp
[
−πλΩ

(
y−

α
2

)]
, (13)

where Ω(y−α/2) is found from (8) for W = 1 and it is given
by

Ω
(
y−

α
2

)
= EH

[(
y`

2
α −H2

)+

+

∫ (y−H2)+

(y`
2
α−H2)+

ρ

(
tan−1

(
H√
z

))
dz

]
, (14)

where (x)+ , max{0, x}. Hence, Φ̃u can be viewed as a 2D
non-homogeneous PPP of density λdΩ(z)

dz since R
− 1
α

? is the
shortest distance from the origin to Φ̃u. More specifically, if
` = 0 and H is equal to a constant h > 0, we further know
Ω(y−

α
2 ) =

∫ (y−h2
)+

0
ρ(tan−1(h/

√
z))dz, which reveals that

the LoS points in Φu can be equivalently viewed as a 2D
non-homogeneous PPP of density λρ(tan−1(h/

√
z)) in the

APDL scenario. Also, (14) implicitly indicates that Ω(y−
α
2 ) is

significantly dependent upon the mean of H , especially when
y`

2
α is small. Namely, in general Ω(y−

α
2 ) in (14) is insensitive

to the different distributions of H that have the same mean.
This point will be illustrated in Section IV-B.
These above observations learned from R? considerably help
us understand some fundamental and intrinsic properties of
Φu and they are very useful for the following analyses.

B. Laplace Transforms of the 3D Shot Signal Processes in Φu

Let the Laplace transform of a non-negative RV Z be de-
fined as LZ(s) , E[exp(−sZ)] for s > 0. In this subsection,
we would like to first study the Laplace transform of the
following RV T0 defined as

T0 ,
∑

i:Ui∈Φu

WiLi‖Ui‖−α, (15)

which is referred to as a (complete) 3D (Poisson) shot signal
process since it is the sum of all the weighted signal measures
in a 3D Poisson field of transmitting points [24]–[26]. Study
the Laplace transform of T0 gives rise to some useful results
that can be employed to the following coverage analyses of a
UAV-enabled cellular network in Section III as the proposed
3D point process Φu is applied to model the locations of UAVs
hovering in the sky. Our findings for LT0(s) are summarized
in the following theorem.

Theorem 2. Suppose the moment and the Laplace transform
of Wi exist for all i ∈ N+. (i) If the APIL scenario is
considered such that Θi and Xj are independent for all
i, j ∈ N+, LT0

(s) can be found as

LT0
(s) = exp

{
−πλs 2

αE
[
W

2
α

]
Γ

(
1− 2

α

)
ω

}
, (16)

where Γ(z) ,
∫∞

0
yz−1e−ydy for z > 0 is the Gamma

function. (ii) On the other hand, if the APDL scenario is
considered such that Θk = tan−1(Hk/‖Xk‖) for all k ∈ N+,
LT0

(s) can be derived as

LT0
(s) = exp

(
−πλ

∫ ∞
0

JW
(
sz−

α
2 , tan−1

(
H√
z

))
dz

)
,

(17)
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where JW (x, Y ) for x, Y > 0 is defined as

JW (x, Y ) ,EY
{
ρ (Y ) [1− LW (x cosα(Y ))]

+ [1− ρ (Y )] [1− LW (x` cosα(Y ))]
}
. (18)

Proof: See Appendix B.
Note that (17) reduces to its closed-form version in (16)
once the dependence between the elevation angle and the
projection of each point in Φu does not exit. We can infer
the distribution of T0 from Theorem 2. Let fT0(·) denote the
probability density function (PDF) of T0 and it can be obtained
by finding the inverse Laplace transform of T0. Namely, by
letting L−1{g(s)}(z) denote the inverse Laplace transform of
function g(s), we can express the PDF of T0 for the result
in (16) as

fT0
(z) = L−1

{
exp

[
−πλs 2

αE
[
W

2
α

]
Γ

(
1− 2

α

)
ω

]}
(z),

(19)

which cannot be further found in closed form if α 6= 4, yet
it can be evaluated by numerical techniques. For α = 4, the
closed-form expression of fT0(z) can be found as [25] [27]

fT0
(z) =

πE[
√
W ]λω

2z
3
2

exp

(
−π

3(E[
√
W ]λω)2

4z

)
, (20)

which is essentially the PDF of a Lévy RV with location
parameter zero and scale parameter π3(E[

√
W ]λω)2/2. Simi-

larly, the PDF of T0 for the result in (17) can also be expressed
as

fT0
(z) =L−1

{
exp

(
− πλ

∫ ∞
0

JW
(
sz−

α
2 , tan−1

(
H√
z

))
dz

)}
(z), (21)

which does not have a closed-form solution and can only be
evaluated by numerical methods.

Next, let us define the Kth-truncated shot signal process in
Φu as follows

TK ,
∞∑

k=K+1

WkLk‖Uk‖−α, (22)

where Uk denotes the kth nearest point in Φu to the origin, Wk

and Lk are non-negative RVs associating with Uk as already
defined in (4). Since TK in (22) does not contain the weighted
signals emitted from the K points in set Φu, it is called the
Kth-truncated shot signal process in Φu and it converges to
T0 as K goes to zero. The Laplace transforms of TK in two
different scenarios are found in the following theorem.

Theorem 3. Suppose the moment and the Laplace transform
of Wk for all k ∈ N+ exist. If the APIL scenario is considered
such that Θi is independent of ‖Xj‖ for all i, j ∈ N+, the

Laplace transform of TK defined in (22) for K > 0 can be
derived as

LTK (s) =EDK
{

exp

(
− πλDKEΘ

[
[1− ρ(Θ)]×

IW
(
s` cosα(Θ)D

−α2
K ,

2

α

)
+ ρ(Θ)×

IW
(
s cosα(Θ)D

−α2
K ,

2

α

)
+

])}
, (23)

where DK ∼ Gamma(K,πλ) is a Gamma RV with shape
parameter K and rate parameter πλ, and IW (u, v) for u, v >
0 is defined as

IW (u, v) ,uv
{

Γ(1− v)E [W v]

−
∫ u−v

0

[
1− LW

(
x−

1
v

)]
dx

}
. (24)

On the contrary, if the APDL scenario is considered such that
Θi = tan−1(Hi/‖Xi‖), LTK (s) is found as

LTK (s) = EDK
{

exp

[
− πλ

∫ ∞
DK

JW
(
s

z
α
2
, tan−1

(
H√
z

))
dz

]}
. (25)

Proof: See Appendix C.
Although the result in (25) is somewhat complicated due

to considering the dependence between the elevation angle
and the project of each point in Φu, it reduces to the result
in (23) once the dependence no longer exists. In general, (23)
cannot be further expressed as a closed-form outcome, yet it
simply reduces to the following expression for a special case
of s = ζ secα(Θ)D

α
2

K for any constant ζ > 0:

LTK
(
ζ secα(Θ)D

α
2

K

)
=

[
1 + E [ρ(Θ)] IW

(
ζ,

2

α

)
+

(1− E [ρ(Θ)])IW
(
ζ`,

2

α

)]−K
,

(26)

and we will find this result quite useful for the analyses in
the following sections. In general, the PDF of TK cannot be
tractably derived by finding the inverse Laplace transforms of
(23) and (25) thanks to their complicated forms. Nevertheless,
we will see that Theorem 3 plays a pivotal role in the following
coverage analyses of a UAV-enabled cellular network.

III. MODELING AND ANALYSIS OF A UAV-ENABLED
CELLULAR NETWORK USING Φu

In this section, we employ the proposed 3D point process
Φu in (2) to model the random locations of UAVs in a
cellular network, as shown in Fig. 1. The salient feature of
using Φu to model the 3D locations of the UAVs, as we
will see, is not only to generally characterize the distribution
of the UAVs hovering in the sky but also to properly and
tractably analyze the performances of a UAV-enabled cellular
network. Our focus in this section is on the study of the
coverage performance of a UAV-enabled cellular network in
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which a tier of UAVs are deployed in the sky that serve as
aerial base stations in the network and the locations of the
UAVs are modeled by Φu, that is, Ui in Φu denotes UAV i
and its location in the network. Note that in this paper our
focus is to study how to generally deploy a large-scale UAV-
enabled cellular network and analyze its performances of a
snapshot in time so that in general the proposed Φu cannot
characterize the continuous-time mobility impacts of the UAVs
on the network performances. Nonetheless, Φu still works for
modeling the positions of all mobile UAVs whose trajectories
are quiet different at any particular time point in that they
can be properly assumed to be independent and thereby well
approximated by Φu.

Suppose there is a typical user located at the origin and
each user in the UAV-enabled cellular network associates with
a UAV that provides it with the (averaged) strongest received
signal power. Namely, the UAV associated with the typical
user is given by

U? , arg max
i:Ui∈Φu

E
[
PLiGi‖Ui‖−α|Ui

]
= arg max

i:Ui∈Φu

PE[G]Li
‖Ui‖α

= arg max
i:Ui∈Φu

Li
‖Ui‖α

, (27)

where P is the transmit power of each UAV, Gi ∼ exp(1)
denotes the fading channel gain between the typical user4 and
Ui, α > 2 denotes the path-loss exponent in this context, and
Li, as already defined in (4), is used to characterize the LoS
and NLoS channel effects in the channel between Ui and the
typical user. The second equality in (27) is due to considering
the independence between Gi and Ui as well as conditioning
on Ui, and the third equality is owing to removing constants
P and E[G] does not affect the result of finding U?.

A. The SINR Model

Let I0 be the aggregated interference power received by the
typical user that does not include the signal power from U?
so that it can be written as

I0 ,
∑

i:Ui∈Φu\U?

PGiLi‖Ui‖−α. (28)

All Gi’s are assumed to be i.i.d. and they are independent of
all Li’s and Ui’s. Note that each UAV is associated with at
least one user so that the “void” UAV phenomenon is not
modeled in I0 [28] [29]. In addition, each UAV allocates
different resource blocks (RBs) to different users associating
with it, i.e., no users associating with the same UAV can share
the same RB.

Each UAV is assumed to be equipped with N antennas
whereas each user is equipped with a single antenna. Accord-
ing to (27) and (28), if each UAV is able to perform transmit

4The fading channel gain Gi is assumed to be an exponential RV with
unit mean and not affected by the N transmit antennas of a UAV because
each UAV broadcasts its user association signaling during the phase of user
association and thereby it cannot do downlink transmit beamforming to any
specific user.

beamforming to its user, the signal-to-interference plus noise
power ratio (SINR) of the typical user can be defined as

γ0 ,
PG?L?‖U?‖−α

I0 + σ0
, (29)

where G? ∼ Gamma(N, 1) is the fading channel gain from
U? to the typical user5, L? ∈ {1, `} has the same distribution
as Li, and σ0 denotes the thermal noise power from the
environment. The downlink coverage (probability) of a user
in the network can thus be defined as

pcov , P [γ0 ≥ β] = P
[
PG?L?‖U?‖−α

I0 + σ0
≥ β

]
, (30)

where β > 0 is the SINR threshold for successful decoding. In
the following, we will analyze pcov by considering whether the
elevation angle and the projection of each UAV are indepen-
dent or not. In the following two sections, we will employ the
model of the UAV-enabled cellular network proposed in this
section to analyze the coverage performances of the network
in the APIL and APDL scenarios.

B. Downlink Coverage Analysis: The APIL Scenario

In this subsection, we would like to study the downlink
coverage pcov in (30) by considering the APIL scenario,
i.e., elevation angle Θi and projection Xi of UAV Ui are
independent for all i ∈ N+. The following proposition, which
is developed by employing Theorem 3 to a first-truncated shot
signal process in the 3D point process Φ̃u defined in (12),
specifies the analytical result of pcov in this scenario.

Proposition 1. If the APIL scenario is considered, the down-
link coverage defined in (30) can be found as

pcov =
dN−1

dtN−1
E
[

tN−1

(N − 1)!
exp

(
− σ0D

α
2
?

tP

− πλωD?IG
(

1

t
,

2

α

))]∣∣∣∣
t= 1

β

, (31)

where D? ∼ exp(πλω) and function IG(u, v) is defined as

IG (u, v) , uv

(
πv

sin(πv)
−
∫ u−v

0

dr

1 + r
1
v

)
. (32)

Proof: See Appendix D.
We adopt an exponential RV D? with mean 1/πλω in (31) to
make pcov show in a neat form so as to clearly see how pcov is
impacted by D? and other network parameters. The physical
meaning of D? is the square of the shortest distance between
the typical user and set Φ̃u, i.e., D? , ‖Ũ?‖2

d
= L

− 2
α

? ‖U?‖2

where Ũ? is the nearest point in Φ̃u to the typical user and d
=

5The fading channel gain G? is assumed to be a Gamma RV with shape
parameter N and rate parameter 1 (i.e., G? ∼ Gamma(N, 1)) because UAV
U? is serving the typical user so that it knows the channel state information
(CSI) of the typical user and is thus able to do downlink transmit beamforming
to the typical user. Hence, the mean of G? is E[G?] = N . All the fading
channel gains in I0 can be shown to be i.i.d. exponential RVs with unit mean
(i.e., Gi ∼ exp(1)) since all the interfering UAVs do not know the CSI from
them to the typical user and are thus unable to do transmit beamforming
to the typical user. For the detailed explanation about how to derive G? ∼
Gamma(N, 1) and Gi ∼ exp(1), please refer to Appendix A in [30] or
Section II-D in [31].
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stands for the equivalence in distribution. In other words, pcov
is highly dependable upon the distribution of elevation angle
Θ and ` for a given density λ because the distribution of D?

is parameterized with λω. To make this point much clear, we
use Jensen’s inequality to find a lower bound on pcov in (31)
as

pcov ≥
1

(N − 1)!

dN−1

dtN−1

{
tN−1 exp

[
−
σ0Γ

(
1 + α

2

)
tP (πλω)

α
2

− IG
(

1

t
,

2

α

)]}∣∣∣∣
t= 1

β

, (33)

which reduces to the following neat inequality for N = 1:

pcov ≥ exp

[
−
βσ0Γ

(
1 + α

2

)
P (πλω)

α
2
− IG

(
β,

2

α

)]
. (34)

The inequalities in (33) and (34) apparently show that in-
creasing λω improves pcov . This is because users are able
to associate with a nearer UAV and receive stronger power
from the UAV when deploying UAVs more densely even
though more interference is generated as well. Also, pcov
improves whenever λω can be maximized by optimizing the
distribution of Θ. We will demonstrate some numerical results
in Section IV to show how pcov varies with different distribu-
tion cases of Θ. However, when the network is interference-
limited (i.e., σ0 = 0), pcov in (31) significantly reduces to the
following expression

pcov =
1

(N − 1)!

dN−1

dtN−1

(
tN−1

1 + IG
(

1
t ,

2
α

)) ∣∣∣∣
t= 1

β

(N=1)
=

1

1 + IG(β, 2
α )
, (35)

and further reduces to a closed-form result as N = 1, which
is not impacted by λω. Thus, we can draw a conclusion
that the downlink coverage tends to be more sensitive to
the distribution of the elevation angle and the density of
the projections of the UAVs as the network tends to be
more “noise-limited” (i.e., noise power dominates the SINR
performance). Moreover, as N goes to infinity, pcov in (31)
increases up to the following limit

pcov,∞ , lim
N→∞

pcov

=L−1

{
E
[

1

s
exp

(
− sσ0D

α
2
?

P
− πλωD?

× IG
(
s,

2

α

))]}(
1

β

)
, (36)

which is the upper limit of the downlink coverage for a user
associating with a single UAV with a massive antenna array.

An effective method to significantly improve the coverage
of users is to make users associate with multiple UAVs so
that the UAVs can do coordinated multi-point (CoMP) joint
transmission. The upper limit of the downlink coverage of a
user associating with multiple UAVs can be achieved when
all the UAVs are coordinated to jointly transmit to the user at
the same time, which is referred as to the cell-free downlink
coverage. Since perfectly coordinating and synchronizing all

the UAVs in a large-scale network to do coherent transmission
is hardly possible in practice, non-coherent joint transmission
is a feasible way for all the UAVs to jointly achieve the cell-
free downlink coverage in that it has lower implementation
complexity and does not require large backhaul capacity if
compared with its coherent counterpart6. When all the UAVs
perform non-coherent CoMP joint transmission to a user, the
cell-free downlink coverage of the user can be defined as [32],
[33]

pcfcov , P

[
P
∑
i:Ui∈Φu

GiLi‖Ui‖−α

σ0
≥ β

]
, (37)

where Gi ∼ Gamma(N, 1) for all i ∈ N+ since all the UAVs
can do transmit beamforming to the user. The explicit result
of pcfcov can be found by using Theorem 2 and it is shown in
the following proposition.

Proposition 2. If all the UAVs are deployed based on the
APIL scenario and coordinated to do non-coherence joint
transmission, the cell-free downlink coverage defined in (37)
is derived as

pcfcov = 1− L−1

{
1

s
exp

[
− πλs

2
αω

(N − 1)!
Γ

(
N +

2

α

)
Γ

(
1− 2

α

)]}(
βσ0

P

)
, (38)

which reduces to the following closed-form result for α = 4:

pcfcov = erf

(
π

3
2λω

2(N − 1)!

√
P

βσ0
Γ

(
N +

1

2

))
, (39)

where erf(z) , 2√
π

∫ z
0
e−t

2

dt is the error function for z > 0.

Proof: See Appendix E.
The cell-free downlink coverage in (37) can be interpreted

as the maximum downlink coverage jointly achieved by all
the UAVs with N antennas. When N goes to infinity, (38)
approaches its upper limit given by

pcfcov,∞ , lim
N→∞

pcfcov

= 1− L−1

{
1

s
exp

[
−πλs 2

αωΓ

(
1− 2

α

)]}(
βσ0

P

)
,

(40)

which reduces to the following closed-form results for α = 4:

pcfcov,∞ = lim
N→∞

pcfcov = erf

(
π

3
2λω

2

√
P

βσ0

)
. (41)

The cell-free downlink coverage in (40) and its closed-form
special case in (41) are the fundamental limit of the downlink
coverage achieved by all the UAVs that are equipped with a
massive antenna array and perform non-coherent joint trans-
mission and this fundamental limit is referred to as the cell-free

6Studying the fundamental limit of the downlink coverage of a UAV-
enabled cellular network is the main purpose in this paper. Accordingly, in the
following analysis we merely analyze how much cell-free downlink coverage
can be achieved when all the UAV adopt non-coherent joint transmission to
serve one user. The cell-free downlink coverage problem of multiple users
served by all the UAVs and its related practical issues are beyond the scope
of this paper and they are left for our future study.



9

massive MIMO coverage of a UAV-enabled cellular network
in the APIL scenario. To the best of our knowledge, they are
firstly derived in this paper. Note that pcfcov is dominated by
λω and P and increasing λω is more efficient to improve
it than increasing P , and thereupon it is also significantly
affected by the distribution of the elevation angle of the UAVs.
Hence, optimizing the distribution of the elevation angle of
each UAV may also considerably improve pcfcov , which will be
numerically demonstrated in Section IV.

C. Downlink Coverage Analysis of a UAV-Enabled Network:
The APDL Scenario

In the subsection, we turn our focus to the downlink
coverage in the APDL scenario where the elevation angle
and the projection of each UAV are dependent. For Θi =
tan−1(Hi/‖Xi‖) for each UAV Ui, the following theorem
summarizes the explicit expression of the downlink coverage
in this scenario.

Proposition 3. If the APDL scenario is considered, the
downlink coverage defined in (30) can be found as

pcov =
dN−1

dtN−1
ED̃?

{
tN−1

(N − 1)!
exp

[
− σ0D̃

α
2
?

Pt
− πλ

× D̃?ĨG
(

1

t
,

2

α
, D̃?

)]}∣∣∣∣
t= 1

β

, (42)

where D̃? is a non-negative RV with the following PDF

fD̃?(y) = πλΩ′
(
y−

α
2

)
e
−πλΩ

(
y−

α
2

)
(43)

with Ω
(
y−

α
2

)
is defined in (14) for the APDL scenario,

Ω′
(
y−

α
2

)
,

dΩ
(
y−

α
2

)
dy , and ĨG(u, v, r) for u, v, r > 0 is

defined as

ĨG(u, v, r) ,
∫ ∞

1

Ω′
(
r

yv

)(
u

y
1
v + u

)
dy. (44)

Proof: See Appendix F.
Note that the physical meaning of D̃? is the square of the short
distance from the typical user to set Φ̃u in (12) in the APDL
scenario and pcov in (42) becomes pcov in (31) as D̃? in (42)
reduces to D? in (31) (i.e., Ω(z) reduces to ωz). Applying the
Jensen inequality on D̃? in (42) gives rise to the following
lower bound on pcov in (42):

pcov ≥
dN−1

dtN−1

{
tN−1

(N − 1)!
exp

[
−
σ0E

[
D̃

α
2
?

]
Pt

− πλ

× E[D̃?]ĨG
(

1

t
,

2

α

)]}∣∣∣∣
t= 1

β

(45)

and for the interference-limited situation it reduces to

pcov ≥
dN−1

dtN−1

{
tN−1

(N − 1)!
exp

[
− πλE

[
D̃?

]
× ĨG

(
1

t
,

2

α

)]}∣∣∣∣
t= 1

β

. (46)

According to the PDF of D̃? in (43), we know E[Ω(D̃
−α2
? )] =

1
πλ so that Ω(E[D̃

−α2
? ]) ≤ 1

πλ or Ω(E[D̃
−α2
? ]) ≥ 1

πλ depending

on the convexity of Ω(·). In other words, λE[D̃
α
2
? ] is still

pertaining to λ and Ω(y−
α
2 ) so that the UAV density impacts

the downlink coverage no matter whether or not the network
is interference-limited, which is quite different from pcov
in (31). Therefore, properly deploying UAVs depending on
the distribution of the altitude H of the UAVs is able to
reduce λΩ(y−

α
2 ) so as to improve the downlink coverage

in the APDL scenario. For example, if each user associates
with its nearest UAV with altitude H

d
= D? ( i.e., Li = 1

and H ∼ exp(πλ) for all i ∈ N+), Ω(y−
α
2 ) = FH(y) =

1 − exp(−πλy) and Ω′(y−
α
2 ) = fH(y) = πλ exp(−πλy)

based on the discussions in Section II-A. Thus, E
[
D̃

α
2
?

]
and

λE[D̃?] decrease as λ increases such that pcov always improves
as more UAVs are deployed in this example. In addition, pcov
in (42) increases to its upper limit as the number of antennas
equipped at each UAV goes to infinity, which can be shown
by using the technique of inverse Laplace transform as used
in (36).

Next, we would like to study how much the downlink
coverage can be achieved when all the UAVs can perform the
aforementioned non-coherent joint transmission in the previ-
ous subsection, i.e., the cell-free downlink coverage defined
in (37) for the APDL scenario. The following proposition
shows its explicit result.

Proposition 4. If all the UAVs are deployed based on the
APDL scenario and coordinated to do non-coherence joint
transmission, the cell-free downlink coverage in (37) can be
derived as

pcfcov = 1−L−1

{
1

s
exp

[
− πλ

∫ ∞
0

JG
(
sz−

α
2 ,

tan−1

(
H√
z

))
dz

]}(
βσ0

P

)
, (47)

where JG(x, Y ) is

JG(x, Y ) =1− EY
{
ρ (Y )

(
1 +

x cosα(Y )

N

)−N
+ [1− ρ(Y )]

(
1 +

x cosα(Y )`

N

)−N }
. (48)

Also, as N →∞, we have

lim
N→∞

JG(x, Y ) = 1−EY
{
ρ(Y )e−x cosα(Y ) + [1− ρ(Y )]

× e−x` cosα(Y )

}
. (49)

Proof: The proof is omitted since it is similar to the proof
of Proposition 2.
Note that the cell-free massive MIMO coverage pcfcov,∞ can
be readily found by substituting (49) into (47) and it is the
fundamental limit of the downlink coverage achieved in a
UAV-enabled cellular networks for the APDL scenario. In
general, the closed form of pcov (47) cannot be derived,
yet it does exist in some special cases. For example, when
the altitudes of the UAVs are controlled such that they are
proportional to their projection distance (i.e., Hi = h0‖Xi‖
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TABLE I
NETWORK PARAMETERS FOR SIMULATION [22]

Transmit Power (mW) P 50
Density of set Φx (points (UAVs)/m2) λx 1.0× 10−7 ∼ 1.0× 10−5 (or see figures)

Number of Antennas N 1, 4, 8, ∞ (or see figures)
Noise Power (dBm) σ0 −92.5
Path-loss Exponent α 2.75

Parameters (c1, c2) in (3) for Suburban (24.5811, 39.5971)
NLoS Channel Attenuation Factor ` 0.25

SINR Threshold (dB) β −10 (or see figures)

Fig. 2. Simulation results of pdlcov for the APIL scenario when N = 4 and the elevation angle of each UAV is a constant θ with respect to the origin (i.e.,
tan(Θ) ∼ Gamma(a, a/ tan(θ)) as a → ∞): (a) The 2D simulation results of pdlcov versus elevation angle θ for λ = 1 × 10−7 (UAV /m2), (b) The 3D
simulation results of pdlcov versus density λ and elevation angel θ.

for some h0 > 0 and all i ∈ N+), α = 4 and ` = 1, pcfcov
in (47) reduces to the following closed-form expression

pcfcov = erf

(
πλ

2

√
P

βσ0

∫ ∞
0

JG
(

1

z2
, tan−1(h0)

)
dz

)
,

(50)

where JG(z−2, tan−1(h0)) = 1 − ρ(tan−1(h0))(1 +
cos4(tan−1(h0))/z2N)−N . Also note that all the analytical
outcomes in this section are valid as long as α is greater
than two, which works for most practical 3D path-loss chan-
nel models. In the following section, we will present some
numerical results to verify the above analytical findings of the
downlink coverage.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will provide some numerical results to
verify the previous analytical results of the downlink coverage.
The numerical results of the APIL scenario will be presented
and discussed first and those of the APDL will be shown
and discussed afterwards. Finally, the numerical results of the
downlink cell-free coverages will be presented. The network
parameters adopted for simulation are shown in Table I and
they are chosen from the real statistical data provided in [22].
Other simulation parameters needed for the APIL and APDL

scenarios will be specified in the following two subsections,
respectively.

A. Simulation Results for the APIL Scenario

In this subsection, we present the simulation results of the
downlink coverage for the APIL scenario. Specifically, we
consider the tangent of the elevation angle of a UAV is a
Gamma RV with shape parameter a and rate parameter b (i.e.,
tan(Θ) ∼ Gamma(a, b)) because using such a Gamma RV
to model tan(Θ) is able to generally characterize different
distributions by setting different values of a and b so that ap-
propriately adjusting a and b can make Θ reasonably distribute
between 0 and π

2 . For example, tan(Θ) becomes deterministic
and equal to tan(θ) such that Θ is equal to constant θ if
b = a/ tan(θ) and a→∞ and it becomes an exponential RV
with rate parameter 1/b if a = 1. Figures 2 and 3 show the
simulation results of the downlink coverage pdlcov when tan(Θ)
is a constant and a Gamma RV, respectively. As we can see,
the simulation results of pdlcov in Figs. 2(a) and 3(a) do not
differ much when θ < 45◦, which reveals that in general pdlcov
is insensitive to the distribution of Θ when the mean of Θ
is not very large. In fact, this phenomenon can be inferred
from (31) in that pdlcov is affected by the distribution of Θ
through ω in (6) that is insensitive to the distribution of Θ
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Fig. 3. Simulation results of pdlcov for the APIL scenario when N = 4 and the elevation angle of each UAV is a Gamma RV with shape parameter a and rate
parameter a/ tan(θ), i.e., tan(Θ) ∼ Gamma(a, a/ tan(θ)): (a) The 2D simulation results of pdlcov versus elevation angle Θ for λ = 1× 10−7 (UAV/m2),
(b) The 3D simulation results of pdlcov versus density λ and mean of elevation angel θ.

Fig. 4. Simulation results of pdlcov for the APDL scenario when N = 4 and the altitude of each UAV is a constant h (i.e., H = h̄): (a) The 2D simulation
results of pdlcov versus altitude h for λ = 1× 10−5 (UAV/m2), (b) The 3D simulation results of pdlcov versus density λ and the mean of altitude h.

when the mean of Θ is not large. Realizing this phenomenon
is quite useful since we can quickly and accurately calculate
pdlcov using the mean of the elevation angle of UAVs in (31)
without knowing the real distribution of Θ, which is in general
not easy to find in practice.

Figures 2(a) and 3(a) validate the correctness and accuracy
of the expression in (31) since the curve of the analytical
result of pdlcov in (31) completely coincides with the curve of
the simulated result of pdlcov . Moreover, there exists an optimal
value of the mean of Θ about 20◦ for λ = 1×10−7 (UAVs/m2),
which maximizes pdlcov . Note that pdlcov decreases as the mean
of Θ increases over 20◦ since the downlink SINR is now
dominated by the interference in this situation even though the

received signal power also increases. The 3D plots in Fig. 2(b)
and Fig. 3(b) further show how pdlcov varies with the mean of
Θ and density λ. Generally speaking, the optimal value of the
mean of Θ that maximizes pdlcov changes with density λ and
pdlcov converges up to a constant as λ goes to infinity, i.e., pdlcov
barely depends on λ as the network is dense and interference-
limited, which is already shown in (35).

B. Simulation Results for the APDL Scenario
In this subsection, we specifically consider two distributions

of the altitude of a UAV: one is deterministic (fixed) altitude
and the other is uniformly distributed altitude. We would like
to validate whether or not the analytical expression of pdlcov
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Fig. 5. Simulation results of pdlcov for the APDL scenario when N = 4 and the altitude of each UAV is a uniformly distributed RV with mean h (i.e.,
H ∼ Uni[h− a, h+ a] for a > 0): (a) The 2D simulation results of pdlcov versus altitude Θ for λ = 1× 10−5 (UAV/m2), (b) The 3D simulation results of
pdlcov versus density λ for H ∼ Uni[h− 5, h+ 5].

    Cell-Free
Coverage Gain

     Cell-Free 
Coverage Gain

(a) (b)

Cell-Free
Downlink
Coverage

Cell-Free
Downlink
Coverage

Fig. 6. Simulation results of cell-free downlink coverage pcfcov for λ = 1 × 10−6 (UAV/m2) and N = 1, 2, 4, 8,∞: (a) The simulation results of pcfcov
versus SINR threshold β for the APIL scenario and the elevation angle of each UAV is a constant equal to θ = 5◦, (b) The simulation results of pcfcov versus
SINR threshold β for the APDL scenario and the altitude of each UAV is a constant equal to h = 40 m.

in (42) is correct and illustrate how pdlcov varies with the two
different distribution cases of the altitude of a UAV. When
N = 4, the simulation results of pdlcov for the distribution
case of fixed altitude and the distribution case of uniformly
distributed altitude are shown in Figs. 4 and 5, respectively.
We see that the simulated results perfectly coincide with the
analytical results of pdlcov obtained from (42) for λ = 1×10−5

(UAVs/m2) in Figs. 4(a) and 5(a) so that the correctness of
the expression in (42) is validated. The simulation results in
Figs. 4(a) and 5(a) are very close so that in general pdlcov is
insensitive to the different distributions of H that have the
same mean and thus pdlcov can still be approximately calculated

by (42) with the mean of H even when the real distribution
H is not known. Moreover, these two subplots both show that
positioning UAVs too high significantly reduces pdlcov thanks to
LoS interference. It is noteworthy that pdlcov degradation caused
by LoS interference becomes apparent as λ is high, which can
be observed from Figs. 4(b) and 5(b), yet pdlcov does not change
much with the mean of H due to low interference when λ is
small.

C. Simulation Results for Cell-Free Downlink Coverage

This subsection validates the analytical outcomes of the
cell-free downlink coverage pcfcov for the APIL and APDL
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scenarios. According to Fig. 6 that shows the numerical results
of pcfcov , we can observe a few interesting and important
phenomena. First, the analytical results of the downlink cell-
free coverages in both of the subplots perfectly coincide
with their corresponding simulated results, which validates the
correctness of the expressions in (38), (40), (42), (47), (48),
and (49). Second, the downlink cell-free coverages for differ-
ent numbers of antennas are almost identical and this reveals
that UAVs do not need to install multiple antennas to improve
their coverage in the cell-free scenario so that UAVs can
become lighter so as to save more power when flying. Third,
the downlink cell-free coverage pcfcov significantly outperforms
the downlink coverage pdlcov , as can be seen in the figure. For
example, pcfcov for the APDL scenario and β = 0 dB is able
to achieve 100%, yet pdlcov for the APDL scenario and β = 0
dB is only about 12%.

V. CONCLUSIONS

In the past decade, using 2D PPPs to model large-scale
cellular networks had given rise to a great success in tractably
analyzing the generic performance metrics of cellular net-
works. Nevertheless, straightforwardly employing a 3D PPP
to deploy UAVs in a cellular network not only poses an
unrealistic constraint on the path-loss exponent of 3D path-
loss channel models, but also ignores a spatial deployment
limitation in a cellular network, that is, in principle UAVs are
low-altitude platforms that cannot be deployed in infinitely
large 3D space modeled by a 3D PPP. Thus, there lack good
3D models with analytical tractability to deploy UAVs serving
as aerial base stations in a large-scale cellular network. To
tackle this issue, this paper proposes a 3D point process whose
projections consist of a 2D homogeneous PPP and altitudes
are the marks of the 2D homogeneous PPP. The fundamental
properties of the proposed 3D point process are studied for
the APIL and APDL scenarios and they pave a tractable way
to analyze the downlink coverage of a UAV-enabled cellular
network modeled by the proposed 3D point process. The
downlink coverages for the APIL and APDL scenarios are
explicitly derived and their closed-form expressions are also
found for a special channel condition. In addition, cell-free
downlink coverages and their upper limits are also derived
when all the UAVs in the network can do non-coherence joint
transmission.

APPENDIX
PROOFS OF THEOREMS AND PROPOSITIONS

A. Proof of Theorem 1

(i) Consider the APIL scenario so that Xi and Θj are
independent for all i, j ∈ N+. Since ‖Ui‖ = ‖Xi‖ sec(Θi),
the CDF of R? defined in (4) can be written as

FR?(r) = P
[

max
i:Ui∈Φu

{
WiLi

[‖Xi‖ sec(Θi)]α

}
≤ r
]

(a)
= E

{ ∏
i:Ui∈Φu

P
[

WiLi
[‖Xi‖ sec(Θi)]α

≤ r
]}

(b)
= exp

(
−2πλ

∫ ∞
0

P
[

WL

[x sec(Θ)]α
≥ r
]
xdx

)
, (A.1)

where (a) follows from the fact that all
WiLi[‖Xi‖ sec(Θi)]

−α’s are independent and (b) is obtained
by first considering the independence between all RVs Wi,
Li, ‖Xi‖, and Θi for all i ∈ N+ and then applying the
probability generation functional (PGFL) of a homogeneous
PPP to Φx

7. According to (3), P[WL[x sec(Θ)]−α ≥ r|Θ]
can be further expressed as

P
[

WL

[x sec(Θ)]α
≥ r
∣∣∣∣Θ] =P

[(
W

r

) 1
α

cos(Θ) ≥ x
∣∣∣∣Θ
]
ρ (Θ)

+ P

[(
`W

r

) 1
α

cos(Θ) ≥ x
∣∣∣∣Θ
]

× [1− ρ (Θ)] .

Therefore, we can have the following:

2

∫ ∞
0

P
[

WL

[x sec(Θ)]α
≥ r
∣∣∣∣Θ]xdx

= ρ(Θ)

∫ ∞
0

P

[(
W

r

) 1
α

cos(Θ) ≥ x
∣∣∣∣Θ
]

dx2 + [1− ρ(Θ)]

×
∫ ∞

0

P

[(
`W

r

) 1
α

cos(Θ) ≥ x
∣∣∣∣Θ
]

dx2

= cos2(Θ)
[
ρ(Θ) + [1− ρ(Θ)]`

2
α

]
E
[
W

2
α

]
r−

2
α

since
∫∞

0
P[Z ≥ z]dz = E[Z] for a non-negative RV Z. This

gives rise to the following result:

2

∫ ∞
0

P
[

WL

[x sec(Θ)]α
≥ r
]
xdx = E

[
W

2
α

]
r−

2
α

× E
{

cos2(Θ)
[
ρ(Θ)

(
1− ` 2

α

)
+ `

2
α

]}
,

and then substituting this identity into (A.1) yields the expres-
sion in (5).

(ii) Consider the APDL scenario and we know Θi =
tan−1(Hi/‖Xi‖) for Hi > 0. Since we know sec2(Θi) = 1+
H2
i /‖Xi‖2 and Θ = tan−1(H/x), P[WL[x sec(Θ)]−α ≥ r]

in (A.1) for a given H can be rewritten as

P
[

WL

xα(1 +H2/x2)
α
2
≥ r
∣∣∣∣H] = P

[
W ≥ r(x2 +H2)

α
2 |H

]
× ρ (Θ) + [1− ρ (Θ)]P

[
W ≥ r

`
(x2 +H2)

α
2 |H

]
= ρ (Θ)

× P [W ≥ rxα secα(Θ)|H] + [1− ρ(Θ)]

× P
[
W ≥ r

`
xα secα(Θ)|H

]
.

Substituting this identity into (A.1) and replacing x2 with z
yield the expression in (7).

7Note that the subscript i in (a) is dropped in (b) for notation simplification
and such a subscript dropping is used throughout this paper whenever there
is no notation ambiguity.
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B. Proof of Theorem 2

First, consider the APIL scenario in which the elevation
angle and projection of point Ui are independent. Since the
projections of all the points in Φu is a 2D homogeneous PPP
of density λ and ‖Ui‖ = ‖Xi‖ sec(Θi), the Laplace transform,
LT0

(s) = E[exp(−sT0)], can be found as follows:

E
[
e−sT0

]
= E

[ ∏
i:Ui∈Φu

exp

(
−sWiLi
‖Ui‖α

)]

= EΦu

{ ∏
i:Xk∈Φx

EWL

[
exp

(
− sWiLi

(‖Xi‖ sec(Θi))α

)]}
(a)
= exp

(
−πλ

∫ ∞
0

{
1− E

[
e−sWL(x sec(Θ))−α

]}
dx2

)
(A.2)

(b)
= exp

(
−πλ

∫ ∞
0

P
[
Y ≤ sWL cosα(Θ)z−

α
2

]
dz

)
= exp

(
−πλ

∫ ∞
0

P

[
z ≤ cos2(Θ)

(
sWL

Y

) 2
α

]
dz

)
,

(A.3)

where (a) is obtained by applying the PGFL of a homogeneous
PPP to Φx and (b) is obtained by first replacing x2 with z and
then rewriting the result in the integral by using Y ∼ exp(1)).
In addition, we can have∫ ∞

0

P

[
z ≤ cos2(Θ)

(
sWL

Y

) 2
α

]
dz = s

2
αE
[
W

2
α

]
E
[
Y −

2
α

]
E
[
cos2(Θ)L

2
α

]
(c)
= s

2
αΓ

(
1− 2

α

)
E
[
W

2
α

]
E
[

cos2(Θ)

×
(
ρ(Θ)

(
1− ` 2

α

)
+ `

2
α

)]
,

where (c) is acquired by using the two facts that E[Y −
2
α ] =

Γ(1 − 2
α ) and E[cos2(Θ)L

2
α |Θ] = cos2(Θ)(ρ(Θ) + [1 −

ρ(Θ)]`
2
α ) for a given Θ. Substituting this result into (A.3)

yields the expression in (16).
Next, consider the APDL scenario so that Θi =

tan−1(Hi/‖Xi‖) for all i ∈ N+. For this scenario, the integral
in (A.3) for a given H can be expressed as

P

[
z ≤ cos2(Θ)

(
sWL

Y

) 2
α
∣∣∣∣H
]

= P
[
Y ≤ sW

z
α
2 secα(Θ)

∣∣∣∣H]
ρ (Θ) + P

[
Y ≤ s`W

z
α
2 secα(Θ)

∣∣∣∣H] [1− ρ(Θ)] = ρ(Θ)

×
[
LW

(
z−

α
2 s` cosα(Θ)

)
− LW

(
z−

α
2 s cosα(Θ)

) ]
+ 1− LW

(
z−

α
2 s` cosα(Θ)

)
. (A.4)

We can get the expression in (17) by substituting (A.4)
into (A.3).

C. Proof of Theorem 3

In Section II-A, we have pointed out that Φu is equivalently
equal to a 2D homogeneous PPP of density λu = λE[cos2(Θ)]
in the APIL scenario. Let UK denote the Kth nearest point in

Φu to the origin and its projection is XK . As such, the CCDF
of ‖UK‖2 can be expressed as follows [20], [21], [29]:

P
[
‖UK‖2 ≥ x

]
=

K−1∑
k=0

(πλux)k

k!
e−πλuu

= P
[
‖XK‖2 sec2(ΘK) ≥ x

]
,

where ΘK is the elevation angle of UK . Thus, the CCDF of
‖UK‖2 reduces to the CCDF of ‖XK‖2 whenever ΘK = 0
for any K. This follows that

P
[
‖XK‖2 ≥ x cos2(ΘK)|ΘK = 0

]
= P

[
‖XK‖2 ≥ x

]
=

K−1∑
k=0

(πλx)k

k!
e−πλx,

which indicates ‖XK‖2 ∼ Gamma(K,πλ). For the APDL
scenario, Φu can be equivalently equal to a 2D non-
homogeneous PPP of density λFH(

√
z), as already shown in

Section II-A. As a result, the CCDF of ‖UK‖2 in this scenario
can be written as

P
[
‖UK‖2 ≥ x

]
=

K−1∑
k=0

[π
∫ x

0
λFH(

√
z)dz]k

eπ
∫ x
0
λFH(

√
z)dzk!

.

Setting H = 0 in the above result shows ‖XK‖2 ∼
Gamma(K,πλ). These above results manifest that the point
ordering in Φu is the same as that in of the projections of Φu
that are a homogeneous PPP of density λx no matter whether
or not the elevation angle and the projection of each point in
Φu are independent.

Now consider the APIL scenario in which Θk and Xk

of Uk ∈ Φu are independent for all k ∈ N+. Since Uk is
the kth nearest point in Φu that is a homogeneous PPP, we
know ‖Ui+K‖2 = ‖UK‖2 + ‖Ui‖2 where ‖UK‖ and ‖Ui‖
are independent [29], LTK (s) can be explicitly expressed as
shown in the following:

LTK (s) = E

{
exp

(
−s

∞∑
i=1

Wi+KLi+K
‖Ui+K‖α

)}

=E

{
exp

(
−s

∞∑
i=1

Wi+KLi+K cosα(Θi+K)

‖XK+i‖α

)}
(a)
=E

{
E

[ ∏
i:Xi∈Φx

exp

(
− sWiLi cosα(Θi)

(‖XK‖2 + ‖Xi‖2)
α
2

)∣∣∣∣‖XK‖

]}
(b)
=E
{

exp

[
− πλ

∫ ∞
0

(
1− E

[
exp

(
− sWL cosα(Θ)

(‖XK‖2 + x)
α
2

)
∣∣∣∣‖XK‖

])
dx

]}
(A.5)

(c)
=E
{

exp

(
− πλDK

∫ ∞
1

{
1− EL,Θ

[
LW

(
sL cosα(Θ)

z
α
2 D

α
2

K

)]
}

dz

)}
, (A.6)

where (a) follows from the fact that all Li’s (Wi’s) are i.i.d.
and XK (Xi) is the projection of UK (Ui), (b) is obtained
by the PGFL of a 2D homogeneous PPP to Φx, and (c) is
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obtained by first replacing ‖XK‖2 + x with ‖XK‖2z in the
integral and replacing ‖XK‖2 with DK . Also, the integral
in (A.6) can be simplified as shown in the following:

∫ ∞
1

{
1− EL,Θ

[
LW

(
sL cosα(Θ)

z
α
2 D

α
2

K

)]}
dz

=EΘ

{
ρ(Θ)

∫ ∞
1

[
1− LW

(
s cosα(Θ)

(zDK)
α
2

)]
dz

+ [1− ρ(Θ)]

∫ ∞
1

[
1− LW

(
s` cosα(Θ)

(zDK)
α
2

)]
dz

}
,

and we can further show∫ ∞
1

[
1− LW

(
xz−

α
2

)]
dz = IW

(
x,

2

α

)
by following the derivation techniques in the proof of Propo-
sition 1 in [28] and using the definition of IW (x, y) in (24).
Thus, we finally get the result in (23) owing to DK ∼
Gamma(K,πλ).

Now consider the APDL scenario such that Θi =
tan−1(Hi/‖Xi‖). From (A.5),we can rewrite the expression
inside the integral with Θ = tan−1(H/

√
‖XK‖2 + x) and

‖XK‖2 + x = DK + x = z as follows:

1− EL
[
LW

(
sL cosα(Θ)

z
α
2

) ∣∣∣∣H] = 1− ρ(Θ)

× LW
(
s cosα(Θ)

z
α
2

)
− [1− ρ(Θ)]LW

(
s` cosα(Θ)

z
α
2

)
= JW

(
s

z
α
2
, tan−1

(
H√
z

))
.

Substituting this above result into (A.6) and then averaging the
whole expression over DK ∼ Gamma(K,πλ) lead to (25).
This completes the proof.

D. Proof of Proposition 1

For the APIL scenario, we can infer the following from
(27):

min
i:Ui∈Φu

{L−
1
α

i ‖Ui‖}
d
= min
i:Ũi∈Φ̃u

‖Ũi‖ , ‖Ũ?‖,

where Φ̃u already defined in (12) is a homogeneous PPP of
density λω as shown in Section II-A and Ũ? is the nearest
point in Φ̃u to the origin. Thus, we know

Ĩ0 =
∑

i:Ũi∈Φ̃u\Ũ?

PGi‖Ũi‖−α
d
= I0.

The CCDF of a non-negative RV Z can be expressed as

F cZ(z) = L−1

{
1

s
LZ−1 (s)

}(
1

z

)
, s > 0. (A.7)

It can be used to express pcov in (30) for Gi ∼ exp(1) as
follows:

pcov =L−1

{
1

s
Lγ−1

0
(s)

}
=L−1

{
E

[
1

s
exp

(
−s (Ĩ0 + σ0)‖U?‖α

PG?L?

)]}(
1

β

)

=L−1

{
E
[

1

s
exp

(
−sσ0‖Ũ?‖α

PG?

)

× LĨ0|‖Ũ?‖

(
s‖Ũ?‖α

PG?

)]}(
1

β

)
, (A.8)

where LĨ0|‖Ũ?‖ (·) is the Laplace transform of Ĩ0 while condi-
tioning on ‖Ũ?‖. Note that Ĩ0 is the first-truncated shot signal
process in Φ̃u since the projection of point Ũ? is the nearest
point among all the projections of the points in Φ̃u, that is, Ĩ0
is equal to TK in (22) for K = 1, Wk = PGk, and Lk = 1.

Since Ĩ0 is the first-truncated shot signal process in Φ̃u,
W = PG, and ‖Ũ?‖2 = D? ∼ exp(πλω), LĨ0|‖Ũ?‖ (·)
in (A.8) can be found by using K = 1 and replacing s with
s‖Ũ?‖α/PG? in (23) as follows

LĨ0|‖Ũ?‖

(
s‖Ũ?‖α

PG?

)
= exp

[
−πλωD?IW

(
s

PG?
,

2

α

)]
= exp

[
−πλωD?IG

(
s

G?
,

2

α

)]
,

where IW (s/PG?, 2/α) for W = PG and G ∼ exp(1) is
equal to IG(s/G?, 2/α) defined in (32). Then substituting this
result into (A.8) yields

pcov =L−1

{
E
[

1

s
exp

(
− sσ0D

α
2
?

PG
− πλωD?

× IG
(
s

G?
,

2

α

))]}(
1

β

)
. (A.9)

Furthermore, we know the following identity for a real-valued
function ψ : R+ → R+:

E
{

1

s
exp

[
−ψ

( s
Z

)]}
=

∫ ∞
0

exp

[
−ψ

(
1

t

)]
fZ(st)dt,

(A.10)

where fZ(z) is the PDF of Z. This follows that

E

[
1

s
exp

(
−sσ0D

α
2
?

PG?
− πλωD?IG

(
s

G?
,

2

α

))]
=

∫ ∞
0

exp

[
−σ0D

α
2
?

Pt
− πλωD?IG

(
1

t
,

2

α

)]
fG?(st)dt

(a)
=

1

(N − 1)!

∫ ∞
0

exp

[
−σ0D

α
2
?

Pt
− πλωD?IG

(
1

t
,

2

α

)]

(st)N−1e−stdt
(b)
=

sN−1

(N − 1)!

∫ ∞
0

exp

[
− σ0D

α
2
?

Pt
− πλω

(A.11)
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×D?IG
(

1

t
,

2

α

)]
tN−1e−stdt = L

{
1

(N − 1)!

dN−1

dtN−1[
tN−1 exp

(
−σ0D

α
2
?

Pt
− πλωD?IG

(
1

t
,

2

α

))]}
(s),

(A.12)

where (a) is obtained due to G? ∼ Gamma(N, 1) and (b)
is obtained by moving sN−1 out of the integral. We then
substitute (A.12) into (A.9) to get pcov as shown in (31).

E. Proof of Proposition 2

By letting S0 ,
∑
i:Ui∈Φu

GiLi‖Ui‖−α and using (A.7),
the cell-free downlink coverage defined in (37) can be rewrit-
ten as

pcfcov = 1− P
[
S0 ≤

βσ0

P

]
= 1− F c

S−1
0

(
P

βσ0

)
= 1− L−1

{
1

s
LS0

(s)

}(
βσ0

P

)
. (A.13)

Note that S0
d
= T0 defined in (15) with Gi = Wi so that S0 is

a Poisson shot signal process in Φu. According to Theorem 2,
LS0

(s) = LI0(s) for W ∼ Gamma(N, 1) can be found as

LS0
(s) = exp

{
−πλs 2

αE
[
W

2
α

]
Γ

(
1− 2

α

)
ω

}
= exp

[
− πλs

2
αω

(N − 1)!
Γ

(
N +

2

α

)
Γ

(
1− 2

α

)]
.

Substituting this into (A.13) leads to (38). For α = 4, (38)
further reduces to (39) since the inverse Laplace transform
can be found in closed form [27].

F. Proof of Proposition 3

Since the APDL scenario is considered, we know Φ̃u is a
2D non-homogeneous PPP of density λdΩ(y

α
2 )

dy with Ω(yα/2)

given in (14), as shown in Section II-A. Moreover, Ĩ0 is the
first-truncated shot signal process in Φ̃u, as pointed out in
Appendix E. We thus are able to express LĨ0|‖Ũ?‖(·) in (A.8)
by using K = 1, W = PG, G ∼ exp(1), L = 1, and replacing
DK with ‖Ũ?‖2 = D̃? in (25) as follows:

LĨ0|‖Ũ?‖

(
s‖Ũ?‖α

PG?

)

= E

exp

−sD̃ α
2
?

G?

∑
i:Ũi∈Φ̃u\Ũ?

Gi

(D̃? + ‖Ũi‖2)
α
2


(a)
= exp

[
−πλ

∫ ∞
D̃?

[
dΩ
(
y−

α
2

)
dy

]
JW

(
sD̃

α
2
?

G?y
α
2
, 0

)
dy

]
(b)
= exp

[
−πλD̃?

∫ ∞
1

(
s

G?y
α
2 + s

)
dΩ

(
D̃?

y
α
2

)]
, (A.14)

where (a) is obtained by applying the result in (25) for Φ̃u and
K = 1 and then assuming Θ̃? = tan−1 H√

yD̃?
is the elevation

angle between the typical user and Ũ?, and (b) is because
JW (·, ·) in (18) for W = G and ` = 1 can be expressed as

JW
(

s

G?y
α
2
, 0

)
= 1− LG

(
s

G?y
α
2

)
=

s

G?y
α
2 + s

.

Substituting (A.14) into (A.8) and following the steps of
deriving (A.12) yield the result in (42).
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