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DeepRx: Fully Convolutional Deep Learning

Receiver

Mikko Honkala, Dani Korpi, and Janne M.J. Huttunen

Abstract

Deep learning has solved many problems that are out of reach of heuristic algorithms. It has

also been successfully applied in wireless communications, even though the current radio systems are

well-understood and optimal algorithms exist for many tasks. While some gains have been obtained

by learning individual parts of a receiver, a better approach is to jointly learn the whole receiver. This,

however, often results in a challenging nonlinear problem, for which the optimal solution is infeasible to

implement. To this end, we propose a deep fully convolutional neural network, DeepRx, which executes

the whole receiver pipeline from frequency domain signal stream to uncoded bits in a 5G-compliant

fashion. We facilitate accurate channel estimation by constructing the input of the convolutional neural

network in a very specific manner using both the data and pilot symbols. Also, DeepRx outputs soft bits

that are compatible with the channel coding used in 5G systems. Using 3GPP-defined channel models,

we demonstrate that DeepRx outperforms traditional methods. We also show that the high performance

can likely be attributed to DeepRx learning to utilize the known constellation points of the unknown

data symbols, together with the local symbol distribution, for improved detection accuracy.

Index Terms

Radio receiver, deep learning, convolutional neural networks, 5G, channel estimation, equalization

I. INTRODUCTION

The recent advances in deep learning techniques have resulted in new applications of neural

networks in various fields, including wireless communications [1]–[6]. Machine learning (ML) has

already been shown to be very effective in optimizing the higher layers of the communication stack

[7]–[10]. However, it is indisputable that the foundation of the overall network-level performance

is set by the processing employed in the physical layer. Therefore, in this article, we show that
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there are unrealized gains to be achieved also in the physical layer processing via the use of ML,

with which we can improve the radio performance of the individual devices within the network.

In particular, by treating the radio receiver implementation as one supervised learning problem,

it is possible to consider many of the individual receiver tasks, such as channel estimation and

equalization, jointly. The thesis of this work is that this will result in a higher performance

than optimizing each individual component separately, since the optimization target can closely

mirror the real-world target, meaning that the resulting model is not bound by unrealistic

or inaccurate assumptions. In this article, our approach is to train a deep neural network to

detect the received bits from the received waveform. Namely, we consider the physical layer

processing of a 5G-compliant radio receiver, whose task is to obtain the information bits from

an orthogonal frequency-division multiplexing (OFDM) waveform, modulated in accordance

with 5G numerology [11]. The benefit of this type of an approach is that the receiver’s task

can be represented as a supervised learning problem without requiring any labeling by existing

algorithms or by humans. Indeed, the input data is simply the received waveform in the frequency

domain, while the original transmitted bits are the corresponding labels.

There are already several studies that propose implementing certain parts of the digital receiver

chain using a neural network. For instance, [6] considers a neural network-aided channel estimator,

which is shown to approach the performance of a genie-aided estimator when the number of RX

antennas is large, while the ML-based mmWave channel estimation solution proposed in [12] is

shown to outperform existing compressed sensing-based schemes throughout the signal-to-noise

ratio (SNR) range. In [13] Chang et al. apply convolutional neural networks (CNNs) [14]–[16]

to equalization, achieving a lower error vector magnitude than that of multi-modulus algorithm

or recursive least squares-based approaches. Deep learning-based demapping is analyzed in [17],

where Shental and Hoydis propose a deep neural network approach for efficiently calculating bit

log-likelihood ratios (LLRs) of equalized symbols. The proposed deep learning based demapper

is shown to achieve similar accuracy as the optimal log maximum a-posteriori rule, albeit with

greatly reduced computational cost. In addition, there are some works that propose augmenting

traditional receiver processing flow with deep learning components to improve the performance

[18]–[20], each of them outperforming the traditional receiver benchmark, as long as proper

training is conducted.

The prospect of implementing larger portions of the receiver using a single neural network has

also been considered by some authors. For instance, Ye et al. [21] investigate combined channel
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estimation and signal detection using deep learning. There, the detection is carried out using a

fully-connected neural network that processes the pilots and the data signal. Such a fully learned

receiver is shown to clearly outperform a minimum mean square error (MMSE) based traditional

receiver when there are few channel estimation pilots or when the cyclic prefix is omitted. In

[5], on the other hand, CNNs are applied to implement a receiver that extracts the bit estimates

directly from a time-domain RX signal, achieving excellent performance at low-to-mid SNRs.

At high SNRs, the CNN-based scheme still outperforms a linear least squares-based receiver,

while falling behind an MMSE-based receiver and a genie-aided receiver with perfect channel

knowledge. As the most extreme case, deep learning-based end-to-end solutions, where both

the transmitter and receiver are learned simultaneously from the data without any prespecified

modulation scheme or waveform, have also been widely studied [3], [22]–[24]. Such schemes

have been shown to have potential to outperform traditional heuristic radio links, e.g., by learning

a better constellation shape [24].

Many of these prior works have successfully implemented a neural-network-based radio receiver

and have also demonstrated high performance in comparison to the traditional receiver algorithms.

These findings indicate that developing a data-driven receiver with deep neural network can

indeed increase the performance of the future radio systems. However, we show that by carefully

designing the neural network architecture and its inputs, it is possible to achieve an even higher

increase in performance. Our findings indicate that most gains are obtained by allowing the neural

network to utilize the unknown data symbols and their distribution in enhancing the channel

estimation accuracy.

In contrast to many related works, we also consider standards compliance, in particular with

5G New Radio (NR). In order for the learned receivers to achieve 5G compliance, they must

support, among other things, the various different demodulation reference signal (DMRS) or pilot

configurations included in the NR specifications. In addition, the output of the receiver must be

decoded by a low-density parity-check (LDPC) decoder, which means that the neural network

must be capable of estimating also the uncertainty of each received bit for each modulation

order. Consequently, there is a need for flexible deep learning-based receiver solutions that can

handle all the different reference signal configurations and modulation schemes within a single

implementation while being compliant with the other processing stages.

In this article, we propose a fully convolutional neural network architecture, referred to as

DeepRx, that learns a high-performance OFDM receiver from the data. This is achieved by
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feeding a frequency domain representation of the received signal over the whole transmission

time interval (TTI) to a CNN, and training it to output the LLRs of the transmitted bits (soft bits)

without restricting the individual processing stages in any way. Furthermore, the CNN-based

DeepRx is trained to operate under various different scenarios, parameters and configurations.

Therefore, with the proposed approach, it suffices to implement only the transmitter manually;

the receiver can be learned based on the received waveform and the known transmitted bits. In

this work, training and validation of the proposed architecture is carried out using simulated

uplink (UL) data, generated with Matlab’s 5G toolbox [25]. The performance of the different

receivers is evaluated using the bit error rate (BER) both before and after LDPC decoding.

In particular, the main contributions of this article are as follows:

• We describe a novel deep learning receiver (DeepRx), which outperforms traditional receivers

in terms of radio performance and is among the best reported in literature. The main reasons

for the performance increase are: a) DeepRx is trained to obtain LLRs directly from frequency

domain antenna data, which allows it to carry out all tasks (channel estimation, equalization

and soft demapping) jointly, b) it is allowed to utilize, in addition to pilots, the received data

symbols and their distributions during all the tasks, which is especially helpful under high

Doppler shifts and sparse pilot configurations, c) the utilized training approach allows the

receiver to cope well also with non-Gaussian noise, such as interference from another cell.

• We design the DeepRx network to be 5G-compliant in several aspects and show that it is

possible for a single network to cover large parts of the 5G specification efficiently. The

same network can operate under arbitrary DMRS configurations, modulation orders, and

code rates1. We also demonstrate that the LLRs provided by the DeepRx network can be

processed by a 5G-compliant LDPC decoder, resulting in state of the art performance.

• We provide extensive performance comparisons demonstrating that DeepRx can outper-

form the benchmark receiver algorithms. We also provide example results with carefully

manipulated input signals to gain insight into its behavior and outstanding performance.

The rest of this paper is organized as follows. In Section II, we describe the reference transmitter

and receiver architectures which are used as a basis for generating training and validation data.

We also give a brief overview into traditional receiver architectures that are used as baselines

1It is to be noted that, even though particular attention is paid to 5G compliance, the proposed CNN architecture is compatible

with any communication system employing OFDM waveforms, such as WiFi.
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Fig. 1: Illustration of the link-level simulator used for data collection and benchmarking.

in our study. Then, Section III discusses in detail the proposed DeepRx architecture and the

training procedure. After this, Section IV outlines the simulation-based training and validation

data generation, while Section V shows the validation results with comparisons against baseline

receivers. Finally, Section VI concludes the article.

II. SYSTEM MODEL

For data generation, we consider a 5G-compliant physical uplink shared channel (PUSCH)

simulator, implemented with MATLAB’s 5G Toolbox [25]. The simulator architecture is illustrated

in Fig. 1 and it includes all the physical layer components, starting from the transport block

(TB) information bits, and terminating after the decoding phase. The hybrid automatic repeat

request (HARQ) procedure is omitted from the analysis of this article since the proposed DeepRx

architecture is completely transparent to the processes of the higher layers. Moreover, in this study,

we restrict the number of transmit antennas to one, considering a single-input and multiple-output

(SIMO) system. Extending the work to a multiple-input and multiple-output (MIMO) system is

left as a future work item.

As a starting point, a specified amount of uniformly distributed information bits are randomly

generated. These are then encoded with an LDPC code and fed through the rate matching

processing. The resulting code word is mapped into symbols, and these symbols are distributed

over the available physical resource blocks (PRBs) within the TTI. Demodulation reference

signals (DMRS), or pilots, are also inserted into the specified subcarriers. After this, the data is

turned into an OFDM waveform by feeding the PRBs into an inverse Fourier transform (IFFT),
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resulting in 14 individual OFDM symbols per each TTI. Before transmission, a cyclic prefix

(CP) is added to the beginning of each OFDM symbol to mitigate inter-symbol-interference.

Having obtained the transmit waveform for the whole TTI, it is fed through a channel model.

For the purposes of this work, we utilize ten different channel models specified by 3GPP [26].

They include five different clustered delay line (CDL) and tapped delay line (TDL) channel

models, each with their own delay profile. Out of these ten models, four represent a non-line-of-

sight (NLOS) scenario, while the remaining are line-of-sight (LOS) channel models. The channel

model is chosen randomly for each frame. In addition, the maximum Doppler shift and root mean

square (RMS) delay spread are also randomly chosen for each individual channel realization.

After propagating through the channel, the received waveform is subjected to observation

noise (Gaussian white noise is assumed) and interference. In this article, the SNR is defined over

the whole band, meaning that the SNR upon detection is somewhat higher since some of the

subcarriers are unused.

Some of the studied experiments also include inter-cell-interference. The interference is

represented as another waveform with similar numerology but different random information bits.

Moreover, it is also fed through a different random channel realization and has a random time

offset with respect to the desired signal. The power of the interference with respect to the desired

signal (signal-to-interference ratio, SIR) is randomly chosen.

Having added the noise and interference, the total received waveform is fed to the receiver

for detecting the information bits. The first stage in the receiver is timing offset estimation of

the received waveform, which is done based on the known channel delay plus a random offset

to model practical timing errors. After this, the signal is demodulated, which simply consists

of removing the CP and calculating the fast Fourier transform (FFT) of each individual OFDM

symbol. In this case, each TTI consists of 14 OFDM symbols, as already mentioned above. The

received signal after the FFT can be expressed as

yij = Hijxij + nij, (1)

where i and j denote the OFDM symbol and subcarrier indices, respectively, yij ∈ CNr×1 and

xij ∈ C are the received and transmitted symbols, respectively, Hij ∈ CNr×1 is the channel in

the ith OFDM symbol over the jth subcarrier, nij ∈ CNr×1 is the noise-plus-interference signal,

and Nr is the number of RX antennas. The total number of OFDM symbols is denoted by S
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(which in the context of 5G is fixed at S = 14, as mentioned above), while the total amount of

subcarriers is denoted by F , meaning that i = 0, . . . , S − 1 and j = 0, . . . , F − 1.

The frequency-domain samples of the received 14 OFDM symbols, represented in (1), constitute

the input of the actual receiver processing. In the following section, we explain how they are

traditionally processed using least squares (LS) channel estimation and linear minimum mean

square error (LMMSE) equalization (our baseline), while in Section III we describe how the

processing can be carried out by a deep CNN (DeepRx).

Traditional Receiver Processing

The first step in OFDM receiver processing is to estimate the channel using the known

pilots (DMRS) and assuming frequency-flat fading for the individual subcarriers. More precisely,

using (1), the raw channel estimate is first calculated as (note that the pilots lie on the unit circle

in the complex domain):

Ĥij = yijx
∗
ij, (i, j) ∈ P (2)

where P denotes the set of indices corresponding to pilot locations in the time-frequency grid,

and (·)∗ denotes the complex conjugate. The raw channel estimate is then interpolated to fill the

whole time-frequency grid and thereby provide channel estimates for the data symbols. This will

result in the channel estimate Ĥij ∈ CNr×1 for (i, j) ∈ D, where D denotes the set of indices

of the data symbols and subcarriers. Also the noise(-plus-interference) power σ2
n is estimated

during the channel estimation phase.

Each data symbol is then equalized using the interpolated channel estimate. As mentioned

above, an LMMSE equalizer is used in the considered reference receiver architecture, which

means that the equalizer output for (i, j) ∈ D is given by

x̂ij =
(
ĤH

ij Ĥij + σ̂2
nI
)−1

ĤH
ijyij, (3)

where σ̂2
n is the noise power estimate, I is the identity matrix and (·)H denotes the Hermitian

transpose.

The equalized symbols are next fed to the demapper, which calculates the soft bits or LLRs

based on the symbol estimates x̂ij . The LLRs are defined by

Lijl , log

(
Pr (cl = 0|x̂ij)
Pr (cl = 1|x̂ij)

)
, (4)
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where Pr (cl = b|x̂ij) is the conditional probability that the transmitted bit cl is b ∈ {0, 1} given

the observed symbol x̂ij , and l = 0, . . . , B − 1 where B is the number of bits per symbol.

Assuming that the equalizer removes all the channel effects and only Gaussian white noise

remains, the LLRs can be approximated with good accuracy by

Lijl ≈
1

σ̂2
n

(
min
x∈C1

l

‖x̂ij − x‖22 − min
x∈C0

l

‖x̂ij − x‖22

)
, (5)

where x ∈ Cb
l represent those points in constellation C for which the lth bit is b ∈ {0, 1}, and

σ̂2
n is again the noise power estimate. In the reference implementation the final LLRs are also

scaled by the channel magnitude of the considered subcarrier to reflect the higher uncertainty

due to more severe fading.

III. CONVOLUTIONAL NEURAL NETWORK-BASED RECEIVER

Here we turn the focus to the design rationale of the DeepRx network architecture. DeepRx

operates on the Fourier transformed frequency-domain data (see Fig. 1) collected during a TTI

and its output are the final bit-level LLRs. Inputting the whole TTI at once allows the network

to utilize all the information therein for estimating each of the bits. Moreover, given a non-static

environment and potentially mobile UEs, the frequency-domain channel coefficients are different

for each subcarrier and OFDM symbol. Considering that the physical channels in such cases

are locally strongly correlated in frequency and in time, we employ a fully-convolutional neural

network, where 2D convolutions operate in frequency and time dimensions. The objective of

these 2D CNN filters is to learn such local correlations that are not frequency or time dependent,

and re-use them effectively over the whole TTI.

Another design rationale is that, as the sparse pilot symbols only provide local information of

the channel, we allow the network to utilize the unknown data and its known distribution for

improved estimation of LLRs far away from the actual pilot locations. Therefore, we give the

CNN unrestricted access to all data instead of designing separate blocks or paths for pilot-based

channel estimation and data symbol equalization as in most related works. We assume that the

channel and LLR estimation can be improved if the whole TTI (both the unknown received data

and the known pilots) is inputted to the network in a coherent fashion, since this allows it to

utilize all the data to carry out the assigned task.

While this design principle can also be extended to the case where several signal streams are

spatially multiplexed in MIMO operation, the forthcoming description is written for a SIMO
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case where there is just one signal present. Extending the DeepRx architecture to full MIMO

processing is an important future work item for us.

As shown in Fig. 2, DeepRx operates on a three-dimensional input array consisting of received

data and pilot information, which is constructed as follows.

• The first part of input is the received signal after the FFT, denoted by Y ∈ CS×F×Nr , which

contains both data and received pilot symbols (recall that S is number of symbols in time,

F is number of subcarriers, and Nr is the number of RX antennas).

• The second part is Xp ∈ CS×F which contains the pilot reference symbols positioned so

that they correspond to the pilot positions within the received signal Y in both frequency

and time, the non-pilot positions being filled with zeros (see Fig. 2 for illustration).

• In addition, we pre-compute the raw channel estimate Ĥr = Y �X∗p for the pilot positions,

where � and (·)∗ are the element wise product and complex conjugate, respectively, and

give this as the third part of the input. In the case where there are multiple RX antennas,

the elements of Xp are duplicated along the third dimension when carrying out the raw

channel estimation.

As the first two dimensions of Y, Xp and Ĥr are equal, they can be stacked together along

the third dimension (channel) to form Zc ∈ CS×F×Nc where Nc = 2Nr + 1. Furthermore, we

convert the complex-valued input into real-valued by stacking the real and imaginary parts of the

input as separate channels, resulting in the final input array Z ∈ RS×F×2Nc . Stacking the relevant

data into channels in this manner allows the convolutions to operate on data that is mutually

related. While it is also possible to use a complex-valued network with a complex-valued input,

we have not observed any performance gains in doing so.

Remark: The input Xp includes all required information about the pilot positions, which can

have various different configurations. Via this, our setup facilitates a single network to operate

with multiple pilot configurations, given that they have been presented to the network during

training. We have experimentally verified this by training a single network that successfully

handled all the pilot configurations defined in the 5G standard. It should also be noted that while

it is not strictly necessary to feed the raw-channel estimate Ĥr as input to DeepRx, doing so

allows for a somewhat easier and faster learning process (approximating such operation with a

neural network can require several layers).

For the neural network f : Z → L, where L is the matrix of output LLRs with dimensions

specified below, we employ a batch normalized CNN with residual connections using a preacti-
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vation ResNet [27], as described in Table I. The applied ResNet blocks are described in detail

in Fig. 3. The 2D convolutions operate over the first two dimensions, time and frequency. The

architecture is fully convolutional and therefore the size of its output (S × F ) is determined

directly from the size of the input, and it can even vary for each TTI when using the same

trained neural network. Namely, LLR estimates must be calculated for each symbol in the input

and thus constant resolution (S × F ) is maintained throughout the network without resorting

to max-pooling or striding, which are often used in CNNs to reduce resolution. Also note that

the input size can be larger than what was used in the training, but not smaller than the total

receptive field because the zero-padding for the convolutions might produce unpredictable effects

in the output.

Instead of altering the resolution, we increase the amount of filters in the middle of the network

and apply dilated convolutions to increase the receptive field as is often done, for example, in

semantic segmentation [28]. Using dilation instead of striding enables the network to retain the

detailed information about each input symbol while still allowing it to capture longer dependencies

in time and frequency. The dilations proved to be especially important for the more shallow

architectures. We also observed improved results when using depthwise separable convolutions

[29], [30] instead of normal convolutions. The main results in this paper are computed with a

depth multiplier value of 2 for the depthwise separable convolutions, which simply means that

the number of output channels in the depthwise convolution is doubled in order to increase the

number of parameters and thereby improve the modeling capability of the network. However, it

was observed that using the value of 1 works also well. Section V-C contains a detailed ablation

study related to these and various other architectural choices.

Finally, the prediction of bits is simply modeled as a binary classification problem. The final

output of the DeepRx consists of the bit LLRs L ∈ RS×F×B, where B is the number of bits in

the used constellation (e.g., 4 for 16-QAM). We use the binary sigmoid cross-entropy (CE) loss

between each of the ground truth bits and the output L of the network,

CE(θ) , − 1

#DB
∑

(i,j)∈D

B−1∑
l=0

(
bijl log(b̂ijl) + (1− bijl) log(1− b̂ijl)

)
(6)

where #D is the number of resource elements carrying data and b̂ijl is an estimate for the

probability that the bit bijl is one,

b̂ijl = sigmoid (Lijl) =
1

1 + e−Lijl
. (7)
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TABLE I: The DeepRx CNN ResNet architecture. The ResNet block is described in Fig. 3.

Layer Type Filter (S, F ) Dilation (S, F ) Output Shape

Input 1 Y ∈ C RX Data (S, F , Nr)

Input 2 Xp ∈ C TX Pilot (S, F , 1)

Input 3 Hr ∈ C Raw channel estimate (S, F , Nr)

Input Zc ∈ C Concatenate inputs 1-3 ∈ C (S, F , Nc)

Real input Z ∈ R Concatenate ∈ R (S, F , 2Nc)

Conv In 2D convolution (3,3) (1,1) (S, F , 64)

ResNet Block 1 Depthwise separable conv. (3,3) (1,1) (S, F , 64)

ResNet Block 2 Depthwise separable conv. (3,3) (1,1) (S, F , 64)

ResNet Block 3 Depthwise separable conv. (3,3) (2,3) (S, F , 128)

ResNet Block 4 Depthwise separable conv. (3,3) (2,3) (S, F , 128)

ResNet Block 5 Depthwise separable conv. (3,3) (2,3) (S, F , 256)

ResNet Block 6 Depthwise separable conv. (3,3) (3,6) (S, F , 256)

ResNet Block 7 Depthwise separable conv. (3,3) (2,3) (S, F , 256)

ResNet Block 8 Depthwise separable conv. (3,3) (2,3) (S, F , 128)

ResNet Block 9 Depthwise separable conv. (3,3) (2,3) (S, F , 128)

ResNet Block 10 Depthwise separable conv. (3,3) (1,1) (S, F , 64)

ResNet Block 11 Depthwise separable conv. (3,3) (1,1) (S, F , 64)

Conv Out 2D convolution (1,1) (1,1) (S, F , B)

LLR Output L Output (S, F , B)

Remark: Even though the actual bits are used as the ground truth of outputs in the cross-

entropy loss, we consider the LLRs (L) as the output of the inference network. The LLRs

represent also the model’s uncertainty about the bits and can be fed, for example, to an LDPC

decoder, which then makes the decisions regarding the actual information bits.

The output of DeepRx has been designed so that a single network can be trained to support

multiple quadrature amplitude modulation (QAM) schemes. As shown in Fig. 4a, the QAM

schemes in 5G (QPSK, 16-QAM, 64-QAM, 256-QAM) are related to each other hierarchically

so that it is possible to map four constellation points in the higher-order modulation to a single

constellation point in the lower-order modulation. We take advantage of this relation and define

the output of the model in such a way that same output bits/LLRs correspond to the same part

of the constellation space, regardless of the modulation used. This means that, for an individual

symbol, the first two outputted bits describe the complex quadrant of the symbol (1st-order point),

the next two bits define the quadrant around the 1st-order point (giving the 2nd-order point), etc.
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Fig. 2: Input to the DeepRx is a concatenation of the received unknown data, the known pilot
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Fig. 3: Preactivation ResNet Block between previous layer Al and the next layer Al + 1. Blocks

“Conv2DSeparable” and “Conv2D 1x1” form a depthwise separable convolution introduced in

[29], [30]. BN and ReLU stand for batch normalization and rectified linear unit, respectively.

In practice, this is achieved by setting the number of outputs according to the highest supported

modulation order, in this case choosing 8 outputs to support up to 256-QAM modulation. During
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first two bits (orange box), while the last two bits, b3 and b4, correspond to the finer location

within the quadrant (blue box). (b) Bit masking for supporting multiple QAM modulations in

DeepRx.

training and inference, the outputs are then masked, as depicted in Fig. 4b, such that only the bit

positions actually used in the modulation scheme are considered. During training, the masked-out

bits do not affect the computed loss for that symbol, while during inference the masked-out bits

are simply omitted. With this approach, a single network can learn to support all modulation

orders.

IV. GENERATION OF TRAINING AND VALIDATION DATA

The training and validation data is generated with the link-level simulator implemented with

Matlab’s 5G Toolbox, which is modeling a 5G PUSCH link as described in Section II. The

parameter values used in the simulations are listed in Table II. Each individual data set contains

500 000 TTIs, of which 60% is used for training, and a subset of the remaining 40% is used

for validation. As already mentioned, the HARQ procedure is purposefully omitted from the

simulations since it has implications only for the processing occurring after calculating the LLRs.

This renders the proposed DeepRx architecture transparent to the HARQ process.

The randomization of the parameters is done for each frame (period of 10 TTIs), using the

ranges and distributions indicated in Table II. Also the signal-to-noise ratio (SNR) and signal-to-
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TABLE II: Simulation parameters for training and validation.

Parameter Training Validation Randomization

Carrier frequency 4 GHz None

Channel model CDL-B, CDL-C, CDL-D,

TDL-B, TDL-C, TDL-D

CDL-A, CDL-E, TDL-A,

TDL-E

Uniform

RMS delay spread 10 ns – 300 ns Uniform

Maximum Doppler shift 0 Hz – 500 Hz Uniform

SNR −4 dB – 32 dB Uniform

SIR 0 dB – 36 dB Uniform

Number of PRBs 26 (312 subcarriers) None

Subcarrier spacing 15 kHz None

OFDM symbol duration 71 µs None

TTI length 14 OFDM symbols / 1 ms None

Modulation scheme 16-QAM None

Code rate 658
1024

None

Number of RX/TX antennas 2/1 None

DMRS configuration Four options, see Fig. 5 Uniform

interference ratio (SIR) are randomized, although it should be noted that interference is present

only in some of the results. Moreover, we wish to emphasize that drawing the logarithmic SNR

from a uniform distribution is a conscious choice to make the training more efficient for the full

considered SNR range. It is well known that in reality SNR is more likely to follow a log-normal

distribution.

As for the DMRS configuration, four different options are included in the data, each of them

illustrated in Fig. 5 for a single PRB. For each frame of 10 TTIs, one of these configurations

is chosen randomly. Note that in the validation results the four pilot configurations are only

differentiated in terms of how many OFDM symbols include pilots (i.e., either one or two).

We refer to these cases as “one pilot“ or “two pilots” in the following. The reason for this is

that we have not observed the frequency domain positioning of DMRS symbols to have any

significant impact on the performance, and differentiating between them in the figures would

only clutter the results without bringing any new insights. It should also be noted that only the

DMRS configurations with two pilots are feasible for traditional LMMSE receivers, given the
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Fig. 5: The considered DMRS/pilot configurations, illustrated for one PRB over the duration

of a TTI. Note that in the forthcoming results the pilot configurations are only differentiated in

terms of how many OFDM symbols they utilize.

rather large Doppler range. The configurations with one pilot are included in the study only in

order to evaluate the performance boundaries of DeepRx.

The simulated data sets are generated using ten different 3GPP channel models, whose detailed

descriptions can be found in [26]. The models ending with letters A, B, and C represent NLOS,

while those ending with D and E are constructed for LOS. It is also important to note that the

models CDL-A, CDL-E, TDL-A, and, TDL-E are used only for validation, while the training is

performed with the remaining six channel models listed in Table II (hence the 60%/40% split

between training and validation data). This ensures that the deep neural network cannot achieve

its high performance by simply learning the characteristics of the individual channel models.

In addition, we also generate a smaller training data set using a fully synthetic channel model,

where the channel for an individual OFDM symbol is a 7-tap Rayleigh fading channel. After

each OFDM symbol, the channel is randomly changed such that 90% of the variance of the

new channel consists of the previous channel realization, while 10% of the variance is stemming

from a new randomly generated 7-tap channel. This ensures a certain level of channel correlation

between consecutive OFDM symbols. The purpose of this artificial channel model is not to

represent a realistic propagation channel, but simply capture some fundamental properties of a

wireless channel while still being different from the realistic 3GPP channel models. This allows

for some insightful experiments as reported in more detail below in Section V-B. However, it

should be emphasized that in the forthcoming results the 3GPP channels are used for both training

and validation unless mentioned otherwise.
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V. RESULTS

In this section, we compare the proposed CNN-based receiver, DeepRx, to two traditional

LMMSE (Section II) receivers:

• One that performs LS channel estimation and interpolates the channel estimate over the data

symbols and subcarriers;

• One that obtains the full channel information as a priori knowledge.

The former represents a realistic benchmark and is therefore referred to as a practical LMMSE

receiver, while the latter one estimates the upper bound of the achievable performance with

LMMSE equalization. Since we observed that approximating the LLRs with (5) has only a

negligible impact on the final receiver performance, the approximated demapping rule is used

in both the benchmark receivers, including the one with full channel knowledge. It should also

be emphasized that the LMMSE receiver with full channel knowledge is resorting to otherwise

practical OFDM receiver processing, meaning that it is not always able to achieve perfect

equalization. This is primarily due to inter-carrier-interference caused by Doppler spread and the

underlying channel changing also within each resource element.

We use bit error rates (BER) as the main performance criteria throughout this section. In

particular, we consider two types of BERs: 1) a “raw” BER based on the hard decision (bit is 1

if LLR < 0, or 0 otherwise) referred to as the uncoded BER, and 2) the coded BER obtained by

feeding the LLRs through a 5G-compliant LDPC decoder (preceded by a rate dematcher) and

comparing the decoded bits to the original bit sequence. Investigating the coded BER reveals

whether the LLRs provided by the DeepRx sufficiently capture the uncertainty of the detected

bits for the purposes of LDPC decoding. The coded BER can also be seen as a proxy to the

accuracy of the LLRs themselves, as direct evaluation of LLRs is difficult due to lack of ground

truth (there is no explicit formula for the ideal LLRs under the utilized channel models).

The model is trained using the simulated link-level data described in Section IV. The

optimization is carried out using the LAMB optimizer [31], starting from a random initialization

with the main learning rate set to 10−2. We also apply a small weight decay with the scaling

factor of 10−4 that prevents the weight magnitudes from growing during a long training run.

LAMB allows for scaling the training to larger batch sizes (e.g., 80 TTIs, each TTI having

312× 14× 8 bits, altogether ∼2,8M bits per batch, using four 2080Ti GPUs in parallel), while

for smaller batch sizes (e.g., 20 TTIs), AdamW [32] might also suffice. For large batch sizes, we
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Fig. 6: (a) Uncoded BER and (b) coded BER performance of the DeepRx compared to the

reference LMMSE receivers, without inter-cell-interference.

also use a linear learning rate warmup period from zero to main learning rate, with the duration

of 800 iterations. In addition, the learning rate is decayed linearly to zero after reaching 30%

of the total iterations. In total, we usually run 30k iterations with a batch size of 80 TTIs, and

we have not observed significant improvement with longer runs. Overfitting was not observed

with our models using the datasets described above, meaning that DeepRx was not observed,

for instance, to memorize the training samples and thereby compromise its performance under

validation.

A. Primary Validation Results

First, we consider performance of DeepRx without inter-cell-interference. From Fig. 6a, which

shows the uncoded BER, it can be seen that DeepRx clearly outperforms the practical LMMSE

receiver performing LS channel estimation. In fact, the CNN-based DeepRx can essentially match

the performance of the LMMSE receiver with full channel knowledge, even when it has just

one pilot symbol in time at its disposal. Due to the rather wide Doppler shift range within the

data, the practical LMMSE receiver performs very poorly with just one pilot since it requires

two pilots to operate reliably under such conditions. This is in stark contrast to DeepRx, for

which, at higher SINRs, just one pilot is enough to outperform by a factor of 10 the practical

LMMSE receiver having two pilots at its disposal. The reasons behind such exceptionally high

performance are investigated further in Section V-B.
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Fig. 7: (a) Uncoded BER and (b) coded BER performance of the DeepRx compared to the

reference LMMSE receivers, with inter-cell-interference.

In addition, the coded BERs (Fig. 6b) indicate that the LLRs calculated by DeepRx are of

sufficient quality for the LDPC decoder as the coded BER matches that of the LMMSE receiver

with full channel knowledge. The gain over the practical LMMSE receiver with two pilots is

roughly 2 dB, whereas the practical LMMSE receiver does not even reach the waterfall region

of the code with one pilot. The performance of DeepRx suffers only a marginal reduction when

the number of pilot symbols is reduced from two to one.

Next, we consider a case with some inter-cell-interference in the received uplink signals. The

interfering signal has a similar waveform as the signal of interest, but it has a random time offset

and a different channel realization. The power of the interference is on average 4 dB lower than

the noise power. The results are shown in Fig. 7. It can be observed that all the reference LMMSE

receivers suffer from reduced performance as they do not have any capabilities for minimizing

the effects of the interference. On the other hand, since DeepRx is trained with data that includes

similar interference levels, it implicitly learns to manage the interference and outperforms even

the LMMSE receiver with full channel knowledge. However, we wish to emphasize that this

interference-related performance gap could likely be reduced if the LMMSE receivers were

utilizing, for example, some type of interference rejection combining (IRC) [33].

Under inter-cell-interference, the performance gain of DeepRx compared to the reference

receivers is even higher when coded BER is considered (Fig. 7b). This likely stems from the

fact that the traditional demapper assumes Gaussian-distributed white noise in the calculation



19

100 200 300 400
Maximum Dopple  shift (Hz)

10−5

10−4

10−3

10−2

10−1

100

Un
co

de
d 

BE
R

DeepRx, 1 pilot
DeepRx, 2 pilots
LMMSE, 1 pilot
LMMSE, 2 pilots
LMMSE, known channel

Fig. 8: Uncoded BER with respect to the maximum Doppler shift of the channel, calculated for

SINRs sampled uniformly between 10–20 dB and without inter-cell-interference.

of LLRs, while the rather strong interference signal invalidates this assumption. DeepRx does

not resort to such assumptions as it implicitly learns the proper receiver procedure for the given

noise-plus-interference distributions, based on the training data it observes. Consequently, it

outperforms even the benchmark with full channel knowledge by 2 dB, while the practical

LMMSE receiver fails to even enter the waterfall region of the code within the considered SINR

range.

B. Exploring the Reasons Behind DeepRx’s Performance

The exceptionally high performance of DeepRx obviously raises questions as to what the CNN

actually learns to do. In this section we will discuss some of our experimental findings that

provide some insight into this.

Temporal Tracking of the Channel: Figs. 6 and 7 showed very high performance with just one

pilot symbol, positioned in the first half of the TTI. This suggests that the CNN-based DeepRx

is capable of exceptionally accurate temporal tracking of the channel. To investigate this aspect

in more detail, Fig. 8 shows the uncoded BER with respect to the maximum Doppler shift of

the channel, which is inversely proportional to the coherence time of the channel. As can be

expected, the practical LMMSE receiver with one pilot suffers from a rapid degradation of BER

when the Doppler shift increases, as it must assume that the channel remains constant throughout

the TTI. With two pilots, even the practical LMMSE receiver is capable of tracking the channel
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Fig. 9: (a) Uncoded BER and (b) coded BER performance of the DeepRx trained with a synthetic

channel model and validated using the 3GPP channel models, compared to the reference LMMSE

receivers, without inter-cell-interference.

rather well up to Doppler shifts of 400 Hz, although DeepRx outperforms it throughout the

considered Doppler shift range. In fact, even with the highest considered Doppler shift of 500 Hz,

DeepRx using just one pilot symbol can match the BER of the LMMSE receiver with full channel

knowledge. This corresponds to a UE velocity of roughly 135 km/h, representing already a case

of rather severe mobility. Note that the slight increase of BER for DeepRx and LMMSE receiver

with full channel knowledge under the higher Doppler shifts is likely due to the frequency-domain

spreading of the subcarriers, which reduces their orthogonality.

DeepRx Does Not Cheat by Learning Channel Models: Even though the channel models used

in training are different from those used for validation, which prevents DeepRx from taking

unfair advantage of the properties of individual channel models, it is still a possibility that

the channel models share some modeling deficiencies which it can exploit. In order to ensure

that no such exploitation occurs, we also trained DeepRx using the synthetic Rayleigh channel

model described in Section IV, which is completely independent from the 3GPP channel models.

Figure 9 shows the performance of such model validated with the 3GPP channel models listed in

Table II. Although the performance of the newly trained DeepRx is somewhat worse than when

trained with the realistic 3GPP channel models, it still clearly outperforms the practical LMMSE

receiver. For instance, with one pilot symbol, its BER performance is still an order of magnitude

better than that of the practical LMMSE receiver. These results indicate that DeepRx indeed
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Fig. 10: Two alternative CNN architectures for investigating the behavior of DeepRx.

learns a generic solution for bit detection as it can be successfully applied to such different

channel models. It is also likely that the performance deficit of the model trained with synthetic

data is simply a result of the artificial behavior of the synthetic channel model, which prevents

DeepRx from learning a fully accurate interpolation rule for the channel estimate2.

Blind Utilization of the Unknown Data During the Detection Process: To gain more insight

into the reasons behind DeepRx’s performance, let us train a more restricted CNN architecture.

Fig. 10 shows two alternatives where the RX data is routed differently through CNN. The two

alternatives differ in whether or not the data-carrying RX subcarriers are fed to a deep CNN

whose receptive field covers several subcarriers and symbols in time. This is depicted with a

simple switch in Fig. 10, where a closed switch indicates that the deep CNN has full view of

also the RX data array, in addition to the pilots. If the switch is open, on the other hand, the

deep CNN has only access to the received and transmitted pilots, based on which it can perform

the channel estimation. The equalization and demapping is carried out by a head of 3 layers of

1x1 convolutions (32 channels each), whose weights are also learned from the data. Such 1x1

convolutions facilitate equalization and demapping only in a symbol-by-symbol manner, i.e., the

restricted CNN cannot utilize any spatial or temporal correlations in the RX data to improve

the bit estimates. Furthermore, we wish to point out that the CNN architecture of Fig. 10 with

the switch closed is essentially identical in performance and architecture to the primary DeepRx

architecture presented in Section III, except for the additional 1x1 convolutional layers, which

2We wish to emphasize that we cannot claim that a neural network would carry out channel estimation or equalization in the

traditional sense. Determining exactly what happens inside a trained neural network is an open question. When referring to

DeepRx, we simply use these terms to reflect on the internal processing of pilots and RX data which is necessary for performing

bit detection.
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Fig. 11: (a) Uncoded BER and (b) coded BER performance of the restricted CNN Receiver

which can only process one data symbol at a time after pilot-based channel estimation, compared

to the the unrestricted DeepRx and reference LMMSE receivers, without inter-cell-interference.

were added to ensure that it can be directly compared with the restricted CNN architecture.

Therefore, for clarity, we shall refer to the unrestricted case as DeepRx in the forthcoming

discussion. Moreover, we wish to point out that the restricted CNN architecture of Fig. 10 is

somewhat representative of the existing deep learning based channel estimators [6], [12], and

therefore the corresponding performance comparisons will provide also some insight into the

benefits of DeepRx when compared against these prior deep learning-aided receivers.

The BER results corresponding to the two architectures of Fig. 10 are shown in Fig. 11. For

simplicity, the BER of DeepRx is only shown for the case of one pilot to ensure the readability

of the figure. Altogether, it can be observed that the performance gain of the restricted CNN

receiver over the practical LMMSE receiver is rather marginal. With one pilot, the BER of the

restricted CNN receiver remains very high, whereas the unrestricted DeepRx is on par with the

LMMSE having full channel knowledge, as observed already earlier. When there are two pilot

symbols, the restricted CNN receiver fares better but is still clearly outperformed by DeepRx.

These observations indicate that a crucial aspect for the high performance of DeepRx is to ensure

that the CNN has full access to the data subcarriers. In other words, one should not impose too

many restrictions on how the deep CNN processes the RX signal to obtain the LLR estimates,

such as limiting the deep learning processing to only channel estimation. Namely, it is to be

expected that considering all the tasks jointly results in higher performance than learning and
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(b) QPSK data with manipulated transmit symbol distribution

Fig. 13: (a) Uncoded BER after training and validating the DeepRx with regular QPSK data,

and (b) uncoded BER after validating the DeepRx with QPSK data whose transmit symbol

distribution is as depicted in Fig. 12.

performing them separately. This way DeepRx can freely learn an extremely accurate reception

procedure which might differ from the processing flow of a traditional receiver. Finally, we note

that we experimented also with larger and deeper 1x1 convolutional heads, and the results were

similar, so the aforementioned performance differences cannot be attributed to a smaller network

handling the data symbols.

Advanced Utilization of Data Symbol Distribution: Another reason behind the high performance

of DeepRx is that it might learn to utilize distributional information of data symbols (e.g., the
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Fig. 14: Uncoded BER of DeepRx and the restricted CNN receiver with 16-QAM data where

transmit symbols are allocated as depicted in Fig. 12. The models are the same that have been

validated also in Figs. 6 and 11.

known constellation points) to track the changes in the channel through time and frequency. For

instance, DeepRx could learn to utilize the local distribution of symbols for blindly scaling and

rotating the received data symbols to better match the known properties of the used constellation

(compression and encryption of the transmitted data implicitly enforce a nearly uniform symbol

distribution). To study this hypothesis, let us consider QPSK-modulated data in which each

quadrant of the time-frequency grid of a TTI is filled with an identical symbol as shown in

Fig. 12, while still retaining the regular pilot symbol positions. We validate DeepRx3 with this

type of data and compare the performance to a case where the validation data has a typical

(nearly uniformly random) distribution of QPSK symbols. As shown in Fig. 13, there is only a

small performance reduction with this artificial validation data: DeepRx still clearly outperforms

the practical LMMSE receiver, especially in the single-pilot case.

Next, we repeat the same experiment with 16-QAM constellation. Figure 14 shows results for

a validation in which the data is constructed such that the time-frequency quadrants of each TTI

are allocated with four randomly chosen 16-QAM symbols as shown in Fig. 12. Figure 14 also

includes results for the restricted CNN receiver described above. Now, when both magnitude

and phase of a symbol are used to encode information (as opposed to QPSK where all the

3This version of DeepRx is trained with regular QPSK data with uniform random symbols. We did not include this particular

type of artificial data (Fig. 12) to the training data as it would lead to a task too easy to learn due to the known repetition of

symbols.
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information is in the phase of the symbol), the results are very different. Namely, DeepRx fails

to deliver sufficient performance under the manipulated transmit symbol distribution. Moreover,

the restricted CNN receiver, which is not able to learn to utilize the data symbol distribution

since it cannot observe multiple symbols at once, clearly outperforms the (unrestricted) DeepRx

architecture.

These findings indicate that DeepRx learns to rely on the data symbol distribution to perform

some type of local magnitude normalization or magnitude tracking to accurately equalize the

channel amplitude response, and is now fooled when the distribution is artificially violated in

the validation data. Indeed, the restricted CNN architecture, which can only process one symbol

at a time, is not affected by this. This failure seems to be mostly related to the amplitude of

the symbols, indicating that DeepRx might have learned some type of a blind equalization

scheme that bears resemblance to the well-known constant-modulus algorithm (CMA) [34]. This

becomes particularly evident when considering the accuracy of the individual bits detected by

DeepRx, averaged over the whole SINR range. It is observed that the two most significant bits

(corresponding to the phase of the symbol; see Fig. 4a) remain very accurate (BER: 9.0× 10−3),

while the two least significant bits (requiring also magnitude information of the symbol) are very

inaccurate under a manipulated data symbol distribution (BER: 3.4× 10−1).

Comparison to Iterative Receiver Processing: Finally, we investigate further a hypothesis that

DeepRx learns a reception technique which utilizes information about the legal constellation

points. Such information is employed, for instance, in iterative receiver processing (see, e.g., [35]).

In order to gain further insight into this hypothesis, we created an additional data set where the

channel is just a single uniformly distributed random phase shift for the whole TTI. This means

that the channel for each TTI is essentially a scalar on the open interval of (0, 2π). To make

the task of channel estimation still sufficiently demanding, we use only a single pilot symbol

located at the center subcarrier of the 3rd OFDM symbol in time4. For this experiment, we also

implemented a simple iterative receiver, which is using its initial symbol decisions as additional

information to further refine the channel estimate. More precisely, it performs the initial channel

estimation using the single pilot symbol and equalizes the RX symbols, after which it calculates

a new channel estimate using also the equalized RX symbols. This refined channel estimate is

4This is not to be confused with the one pilot cases presented in Fig. 5 and used in the other results, where the pilot covers

one OFDM symbol but multiple subcarriers. In this particular experiment, each TTI has only one resource element allocated for

a pilot symbol.
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Fig. 15: Uncoded BER after training and validating the DeepRx with data where the channel is

just a random phase rotation.

then averaged over the whole TTI, after which it can be used for equalizing the RX symbols

again. This procedure is repeated 40 times to ensure that convergence is achieved.

DeepRx is executed with an otherwise identical configuration and architecture as earlier, except

for increasing the sizes of the convolutional filters and lengths of dilations: all (3,3)-convolutional

filters are changed to (10,3)-filters and dilations in the frequency direction are increased such that

the maximum dilation 6 is increased to 16 and other dilations are increased with a similar ratio

(cf. Table I). This is done to ensure the visibility of the pilots as each TTI now contains just

one pilot subcarrier, unlike in the primary scenario where the pilots span multiple subcarriers.

Furthermore, we input two additional 2D arrays as channels to the network, one filled with the

used frequencies and the other filled with the used time slots (both normalized to the unit interval).

This allows the network to utilize time and frequency information, allowing the convolutional

filters to specialize to this specific case of a single pilot5.

The resulting uncoded BER performance for the different receivers is shown in Fig. 15. Both

the DeepRx and the iterative receiver are able to detect the channel almost perfectly, since they

can utilize the unknown data symbols for channel estimation. On the other hand, the practical

LMMSE receiver can only utilize a single pilot symbol for a noisy channel estimate, and thus

falls short of the other solutions. This indicates that the processing learned by the DeepRx most

likely resembles that of iterative receivers.

5We wish to note that a fully convolutional architecture is not the optimal one for this simple task. The purpose of this

experiment is merely to provide a simple setting for probing into the behavior of DeepRx, for which reason we did only minimal

changes to its primary architecture.
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TABLE III: Ablation study results (uncoded BER for uniformly distributed SINR between 15 dB

and 20 dB). The architecture written in boldface refers to the primary DeepRx architecture (cf.

Table I) used to generate the results in Sections V-A and V-B. The labels S, M, L and XL in the

architecture name refer to small, medium, large and extra large in terms of number of parameters.

Name

Depth,
ResNet
Blocks Params Channels

Min-
Max
Dilat.

BER (1 pilot,
interference)

BER (2 pilots,
interference)

BER (1 pilot,
no interference)

BER (2 pilots,
no interference)

Non-trainable baselines

LMSSE 1.11× 10−1 3.38× 10−3 1.10× 10−1 2.60× 10−3

LMSSE with known channel 9.98× 10−4 9.62× 10−4 4.51× 10−4 4.81× 10−4

Large networks

11 XL 11 7M 256-512 1-6 4.49× 10−4 3.77× 10−4

11 L 11 3.4M 128-512 1-6 4.95× 10−4 4.14× 10−4

13 L 13 1.8M 64-256 1-6 5.72× 10−4 4.71× 10−4

Different depths

13 M 13 1.2M 64-128 1-6 6.19× 10−4 4.93× 10−4 4.37× 10−4 4.14× 10−4

DeepRx 11 1.2M 64-256 1-6 6.23× 10−4 4.98× 10−4 4.47× 10−4 4.18× 10−4

5 M 5 1.2M 192-256 1-6 1.09× 10−3 7.36× 10−4 5.91× 10−4 5.13× 10−4

3 M 3 1.2M 256-448 1-6 1.63× 10−3 8.33× 10−4

Depth multiplier (DM) 1 instead of 2 in all depthwise separable convolutions

11 S-DM1 11 0.6M 64-128 1-6 4.63× 10−4 4.24× 10−4

Different widths

11 S1 11 0.5M 64-128 1-6 7.72× 10−4 5.82× 10−4

11 S2 11 0.3M 32-128 1-6 8.63× 10−4 6.32× 10−4

11 S3 11 0.1M 16-64 1-6 3.72× 10−1 3.72× 10−1

11 S4 11 0.06M 32 1-6 2.58× 10−3 1.23× 10−3

No dilation (ND)

11 M-ND 11 1.2M 64-256 1 6.91× 10−4 5.18× 10−4

3 M-ND 3 1.2M 256-448 1 1.14× 10−1 1.17× 10−3

Regular convolutions, i.e., not depthwise separable (C)

11 M-C 11 2.7M 64-256 1-6 1.57× 10−3 8.71× 10−4

Restricted CNN receiver, Fig. 10 (R)

11 R 11 1.2M 64-256 1-6 7.00× 10−2 1.29× 10−3

C. Ablation Studies and Notes on Complexity

Finally, to better understand the relationship between the exact architecture of DeepRx and

its performance, we experimented with different CNN architectures and their hyperparameters.

The results of this study are documented in Table III. The networks were trained with the full
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SINR range, while the BER values of the table are averages calculated for the SINR range from

15 dB to 20 dB for more informative results. The study was first performed using 16-QAM data

with interference, after which we repeated it using the same hyperparameters and data without

interference. Therefore the no-interference results can be considered as a separate test set. We

also verified the lack of overfitting to the validation sets with a second test set generated with

different random seed and confirmed that there was no significant difference between the results.

For most of the runs, we have used the same optimizer hyperparameters defined earlier in

Section V. The notable exception is the model which uses normal convolutions instead of

depthwise separable convolutions, where we had to divide the main learning rate by 2 in order

for the model to converge.

Overall, it is clear from Table III that, with interference, almost all of the tested architectures

outperform the LMMSE baselines. When tested with data without interference, the margin is

smaller, but for cases with only one pilot, the performance gains from the CNN receivers are

still considerable. For the remainder of this section, we consider the uncoded BER with one pilot

and interference the primary benchmark metric for the different CNN architectures.

Regarding number of ResNet blocks (i.e., different depths), it seems that 11 blocks provide

good performance under all scenarios, while still allowing for shrinking the network in terms

of layer widths for more efficient inference. With dilations, it is possible to get relatively good

performance with as few as 3 or 5 ResNet blocks, but the performance degrades slightly with one

pilot and interference (1.63× 10−3 for 3 blocks vs. 6.23× 10−4 for 11 blocks). In general, the

dilation experiments indicate that the network requires a certain receptive field size to function

well, although the deeper 11-block networks work well also without dilations (6.91×10−4 without

dilations vs. 6.23× 10−4 with dilations).

Let us then investigate the effect of number of parameters, which is roughly proportional to

the computational cost of inference for a given neural network (within certain conditions on the

network architecture, such as number of layers and type of convolutions). Considering a CNN

architecture of same depth of 11 ResNet blocks but with different widths, it is evident that roughly

1.2M parameters (primary DeepRx model with 64-256 convolutional channels, i.e., convolutional

filters) provides a good balance between network complexity and BER performance. If only

0.1M parameters are used (model 11 S3 with 16-64 convolutional channels), the performance is

heavily degraded. We also tried bigger networks, for example, model 11 XL with 7M parameters,

and still observed some additional gains, but the performance increase started to level off after
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the 1M parameters mark. In order to explore smaller networks, we deviated from the general

architecture a bit, and trained networks with constant width, and found a very small architecture

(11 S4) with 32 convolutional channels, whose performance was relatively good (2.58× 10−3, 1

pilot). By default, all of the above models utilizing depthwise separable convolution [29], [30] use

a depth multiplier value of 2, with the exception of one model (11 S-DM1), which uses a depth

multiplier of 1 in order to demonstrate that DeepRx is robust to changing this hyperparameter.

In addition, as mentioned previously, we tested a network without depthwise separable

convolutions (model 11 M-C) and a restricted network that has to perform the channel estimation

without having access to the unknown data symbols (model 11 R, similar to Fig. 10). As shown

in Table III, resorting to normal convolutions results in a slight drop in performance, while

restricting the access to unknown data symbols deteriorated the performance to the level of the

LMMSE baselines, as already observed in Section V-B.

As a final note, we emphasize that the computational complexity of DeepRx for scaling to

larger TTIs is linear both in subcarrier and time dimensions (i.e., its asymptotic complexity can

be expressed as O (SF )), owing to the fully convolutional architecture. This applies to all the

network architectures considered herein, as long as the pilot density within the TTI is kept roughly

constant (otherwise receptive field might have to be adjusted to cover sparser pilots). On the

other hand, the LMMSE receiver also has the complexity of O (SF ) when making the reasonable

assumption that its computational complexity is dominated by the equalization and demapping

phase (see Section II). This means that the theoretical asymptotic complexity of DeepRx in terms

of the reception bandwidth and TTI length is similar to that of the LMMSE receiver, although

DeepRx has a larger constant multiplier not visible in the asymptotic expressions. Therefore,

we expect that in practice DeepRx has a higher computational cost than the LMMSE receiver,

although it also achieves superior radio performance. As for scaling DeepRx to support a larger

amounts of antennas, the impact on the computational complexity is more difficult to assess

since it likely requires alterations to the network architecture such as increasing the number of

convolutional filters for the first layers. Considering such multi-antenna aspects in more detail is

left for future work.

VI. CONCLUSION

In this paper we considered a ML-based digital radio receiver, trained as a supervised training

task from frequency domain antenna signals into uncoded bits, and implemented in a 5G-compliant
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manner. Our hypothesis and primary motivation behind the work was that training the nearly

complete digital receiver chain as a single supervised system would result in higher performance

compared to training multiple smaller parts of the receiver separately. This allows for optimizing

the system directly for the end task of recovering the transmitted bits. In addition, restricting

the neural network architecture as little as possible allows it to learn improved, and potentially

unforeseen, receiver schemes. With this, it could learn to implicitly solve various radio channel

and hardware impairments which might otherwise be challenging to capture.

To address and investigate the hypothesis, we implemented a deep fully convolutional neural

network, referred to as DeepRx, which was trained to detect the uncoded bits directly from the

frequency-domain antenna signals. Moreover, DeepRx was trained to support different 5G-specific

pilot configurations and modulation schemes. In contrast to many related works, the input of the

neural network was constructed such that both the unknown data symbols as well as the known

pilot symbols were arranged as convolutional input channels. This allowed DeepRx to efficiently

combine both the data and pilot symbols when estimating the channel.

Through simulations modeling 5G uplink data transmission, we showed that the proposed

DeepRx network outperforms traditional methods by a significant margin. It also outperformed

an alternative neural network implementation where channel estimation and equalization were

considered separately. We attributed the success primarily to DeepRx learning to utilize the known

constellation points of the unknown data symbols, together with the local symbol distribution, to

estimate and equalize the channel very accurately. In fact, some of the experiments indicated that

the internal processing of DeepRx somewhat resembles that of iterative receivers. Moreover, it

was also shown that DeepRx learns to deal efficiently with non-Gaussian interference and noise.

One restriction of this work is that it only includes a limited computational complexity analysis

as the primary focus of this article is on the radio performance gains achieved by applying deep

learning. Even though we have studied different approaches in improving the efficiency of the

network, a further study on adapting these networks to inference time neural network chips is

needed. Moreover, a fully comprehensive complexity comparison against conventional receivers

is highly hardware-specific and needs to focus on latency and power consumption versus radio

performance. While conducting such analysis is outside the scope of this article, it constitutes an

important future work item for us. Another important future work topic is extending the DeepRx

architecture to MIMO reception.
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