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Abstract

In this paper we propose a highly efficient and very accurate deep learning method for
estimating the propagation pathloss from a point x (transmitter location) to any point y on
a planar domain. For applications such as user-cell site association and device-to-device link
scheduling, an accurate knowledge of the pathloss function for all pairs of transmitter-receiver
locations is very important. Commonly used statistical models approximate the pathloss as
a decaying function of the distance between transmitter and receiver. However, in realistic
propagation environments characterized by the presence of buildings, street canyons, and
objects at different heights, such radial-symmetric functions yield very misleading results. In
this paper we show that properly designed and trained deep neural networks are able to learn
how to estimate the pathloss function, given an urban environment, in a very accurate and
computationally efficient manner. Our proposed method, termed RadioUNet, learns from
a physical simulation dataset, and generates pathloss estimations that are very close to the
simulations, but are much faster to compute for real-time applications. Moreover, we propose
methods for transferring what was learned from simulations to real-life. Numerical results
show that our method significantly outperforms previously proposed methods.

Keywords: Convolutional Neural Networks, Signal Strength Prediction, Radio Maps.

1 Introduction

In wireless communications, the pathloss is a quantity that measures the loss of signal strength
(reduction in power, or attenuation) between a transmitter (Tx) and receiver (Rx) due to large
scale effects. The signal power attenuation may be caused by different factors, such as free-space
propagation loss, reflections and diffraction from buildings, waveguide effect in street canyons, and
obstacles blocking line of sight between Tx and Rx. The pathloss function (sometimes referred
to as path gain function or radio map), is a function that assigns to each Tx-Rx pair of locations
x, y the corresponding large-scale signal attenuation G(x, y). Notice that in addition to the large
scale effects, wireless propagation is also subject to small-scale fading, due to the superposition of
scattered wavefronts with different phases at the Rx location. Such small-scale effects are typically
modeled as a Gaussian random variable H that, without loss of generality, can be normalized with
unit second moment. Therefore, denoting by Y =

√
G(x, y)HX + Z a signal sample at the Rx

baseband output, where X is the transmitted signal sample with power PTx, H is the normalized
small-scale fading, and Z is the additive noise with power spectral density N0, the received energy
per sample is given by E[|Y |2] = G(x, y)PTx/W + N0, where W denotes the signal bandwidth,
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and the Signal to Noise Ratio (SNR) at the input of the Rx baseband processor is given by

SNR = G(x,y)PTx

N0W
. In this paper we develop a deep learning method for estimating radio maps,

which we call RadioUNet.

1.1 Applications of Radio Maps

Many applications in wireless communication explicitly rely on the knowledge of the pathloss
function, and thus, estimating pathloss is a crucial task. For example, in device-to-device (D2D)
link scheduling, there exists a set of wireless devices that transmit signals to each other in pairs.
A pair of devices that communicate defines a Tx-Rx link. The signal sent by a Tx is generally
received by multiple Rxs beyond its intended destination, creating mutual interference between
the links. While the general information theoretic setting for this problem is the Gaussian inter-
ference channel, whose capacity region and optimal coding techniques are still an open problem
in general, a huge amount of work has been devoted to the problem of scheduling subsets of
links to be active on the same time slot and frequency subband, such that their mutual inter-
ference is sufficiently weak and the multiuser interference can be treated as Gaussian noise. It
turns out that in a particular regime of weak interference, Treating Interference as Noise (TIN) is
information-theoretic approximately optimal [1]. Furthermore, efficient link scheduling and power
control combined with TIN yields very good performance in comparison with classical interference
avoidance schemes such as CSMA [2]. A practical such link scheduling algorithm developed by
Qualcomm is FlashLinQ [3]. Recent works on information-theoretic inspired D2D link scheduling
include [4, 5], that significantly improve upon FlashLinQ. A recent more direct approach based on
fractional programming optimization is provided in [6]. All these schemes somehow assume that
the pathloss function between every Tx-Rx locations is known or can be accurately estimated via
some probing scheme. A deep learning approach to D2D link scheduling is proposed in [7], which
is implicitly based on the fact that interference is a decreasing function of distance and therefore
that the pathloss function has a radial symmetry. Therefore, such scheme does not directly apply
to more complicated urban propagation scenarios as considered in the present paper. From the
above works it is clear that an accurate knowledge of the radio map for a specific environment is
very important for efficient D2D links scheduling.

Another classical use-case example of radio maps is base station assignment, or user-cell site
association, where the goal is to assign a set of wireless devices to a set of cellular base stations.
In order to decide which device to assign to which station, it is important to know the radio map
(e.g., see [8] and references therein).

Some additional applications that rely on the knowledge of the pathloss function are fingerprint
based localization [9], physical-layer security [10], power control in multi-cell massive MIMO sys-
tems [11], user pairing in MIMO-NOMA systems [12], precoding in multi-cell large scale antenna
systems [13], path planning [14], and activity detection [15].

1.2 Radio Map Prediction

A multitude of approaches for estimating the pathloss function have been proposed in the litera-
ture. For the sake of clarity, we can group these approaches in three categories.

Data driven interpolation methods assume that some measurements of the pathloss function are
given at certain locations. These methods estimate the pathloss function at non-measured locations
via some signal processing approach (e.g., Kriging [16]) and do not rely—or rely only lightly—on
a model of the physical phenomenon. Beyond Kriging, other examples of such approaches are
radial basis function interpolation [17, Sect 5.1], tensor completion [18], support vector regression
[19], and matrix completion [20].

Model-based data fitting methods combine measurements of the pathloss function with a priori
assumptions on the physical system to estimate the pathloss function at non-measured locations.
For example, in tomography methods, the attenuation due to shadowing can be derived under some
modeling assumptions from the so called spatial loss field (SLF), which in turn can be estimated
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from the measurements. Here, various assumptions on the underlying SLF can be imposed, e.g.,
low-rank structure [21], sparsity [22], and piecewise homogeneity [23, 24].

Last, model-based prediction estimates the pathloss function based only on available prior
knowledge, e.g., physical considerations, without taking any measurements from the area of in-
terest. Some examples are ray-tracing [25], dominant path model [26], and empirical models, e.g.
[27].

1.3 Radio Map Prediction Using Deep Learning

Two recent papers proposed deep learning approaches for estimating radio maps [28, 29]. There,
the neural network is a function that returns an estimate of the pathloss for each input Tx-
Rx locations. The network is trained on a fixed map and simulated pathloss values at a set of
Tx-Rx locations. This procedure is a data-fitting method for the 4-dimensional (4D) function
G(x, y).1 Different city maps require re-training the network and each trained network describes a
specific map. In contrast, our RadioUNet learns to approximate the (outcome of the) underlying
physical phenomenon, which is independent of a specific city map. Namely, the trained RadioUNet
produces a radio map from any given Tx source and city map. We thus think of RadioUNet as a
type of implicit simulation, given by the operations of its underlying convolution network. Even
when the map is fixed, we show that RadioUNet significantly outperforms previous deep learning
proposed methods.

There are several more papers on pathloss prediction that use fully connected neural networks,
which do not take the city map information into consideration, and use additional information
such as the height of the transmitter/receiver or the distance between them. For example, see the
survey [30], and the papers [31, 32, 33]. These methods are clearly unsuited to predict the radio
map as a function of the city map geometry, given as an input to the neural network, which is
instead the focus of this paper.

Another recent work based on data-fitting to radio maps via deep learning, in the above
fashion, is [34]. The authors of [34] also proposes a transfer learning approach to learn a radio
map estimator corresponding to some antenna tilt TB from a radio map estimator of another tilt
TA. There, it is assumed that there is a large amount of data to train the tilt TA, and a small
amount of data for the tilt TB . We also consider a transfer learning approach, in which we train
a radio map estimator on a large dataset of simulations, and transfer it to real-life with the aid of
a small dataset of real-life measurements.2

Slightly after our work, a convolutional autoencoder network was proposed for spectrum map
interpolation [35], where multiple transmitters with unknown locations operate simultaneously,
and the city map is considered as an input along with measurements with known locations.

1.4 Our Contribution

In this paper we propose several versions of a radio map estimation method based on deep learning,
which we term RadioUNet. In our setting, we consider mobile devices/base stations in an urban
environment. Our deep learning based methods are efficient, estimating the whole radio map
within an area of 2562m2 in an order of 10−3sec to 10−2sec, with root mean square accuracy of
order 1dB, where the range of pathloss values from the noise floor to the maximal gain is 100dB.
This is a mean accuracy of 1% (RMSE divided by the range). Some preliminary results where
reported in [36], were the proof of concept of estimating radio maps with UNets was illustrated
on a preliminary dataset of simulations based only on the city maps (buildings) but not including
details such as cars along the streets. The source code of RadioUNet can be found at https://

github.com/RonLevie/RadioUNet, and our dataset, RadioMapSeer, at https://RadioMapSeer.
github.io. For reproducibility, see the compute capsule at https://codeocean.com/capsule/

ea977fe8-d945-4a49-8326-0c687f96f8ff/tree.

1Notice that when x and y are points on the plane R2, the function G(·) has domain in R4.
2Please see point 2) of Section 1.4 for the concept of “real-life” measurements used in this paper.
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1.4.1 RadioUNet Methods

Our radio map estimation methods are based on UNets [37] and their compositions. One version
of RadioUNet (called RadioUNetC) only uses as input the city map (i.e., the geometry of the
urban environment), the Tx location, and no pathloss measurements. Thus, this method can be
categorized as model-based simulation. However, as opposed to classical model-based simulation,
our model is learned from training data. As such, on the one hand it does not have an explicit
physically interpretable formulation, but on the other hand, its execution run-time (for the trained
network) is much faster than existing model-based tools. Another model that we propose (called
RadioUNetS, with S for samples) takes as an additional input variable some measurements of the
pathloss at a few locations. Thus, this method can be categorized as a model-based data fitting
method. Another optional input variable is the locations of cars along the streets, which help
predicting the shadowing effect due to the penetration of the signal through cars.

1.4.2 The Training Data

We present a new dataset, called RadioMapSeer,3 of 56,000 simulated radio maps in different
city locations and different Tx locations. Each simulation has a number of versions, generated
using different types of coarse simulations (see details in Section 3.1). In one type of simulation,
cars are generated along the streets, and affect the outcome of the simulation. The cars serve as
unpredictable obstacles perturbing the received signal strength. Alongside each simulation, the
map of the city, the Tx locations and cars are also provided.

In addition, we present a smaller dataset of 1400 high accuracy simulations, with and without
cars, called IRT4 (see Section 3.1). In our setting, IRT4 serves as a surrogate for real-life measured
radio maps, i.e., the effective ground truth with respect to which we calculate the prediction error.
To imitate a realistic scenario, where the 1400 IRT4 simulations represent real-life measurements
collected during a measurement campaign or even in real-time from user devices, each of the 1400
radio maps is only measured sparsely, e.g., we only have 300 receiver locations per map. At this
point it is important to point out that the scope of our work is not to assess the accuracy of IRT4
with respect to real-life measurements. The main idea here is that the coarse simulations and
IRT4 share the same basic underlying propagation phenomenon, but IRT4 has additional finer
details not present in the coarse simulations. One goal is then to develop methods to predict such
fine details even though in training we have access to a (large) dataset of coarse simulations, but
only to a (small) set of sparse measurements of IRT4. Of course, when RadioUNet is employed in
practice, the refined phenomenon should be taken as the actual real-life measurements.

1.4.3 Transferability to “real-life”

One important aspect that we address in this paper is how to improve what RadioUNet learned
from the coarse simulations to refined representations of the pathloss function. The ultimate goal
for the sake of practical relevance is to transfer what RadioUNet learned from simulated data
(the labeled training set) to real-life deployments. As a proof of concept, in the RadioMapSeer
dataset we use the small set of high accuracy IRT4 simulations as a surrogate to actual real-life
measurements. Through this proof of concept, we show that the proposed methods learn the “big-
picture” coarse phenomenon from the large coarse simulation datasets, and use the additional
smaller set of IRT4 sparse samples to refine and adapt the RadioUNet to the refined phenomenon,
using a small subset of the trainable parameters. Given the fact that ray tracing commercial tools
are routinely used for wireless networks layout planning (e.g., see [38] or https://www.remcom.

com/wireless-insite-em-propagation-software), it is clear from engineering experience that
high accuracy ray tracing can predict real-life measurements sufficiently well. This corroborates
the significance of this proof of concept, where the role of real-life measurements (which are costly
and difficult to obtain on such a large scale) is played here by the sparse but accurate IRT4
samples.

3The dataset can be found at https://RadioMapSeer.github.io.
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A second approach for transferability consists of training a RadioUNet to estimate radio maps
from three input feature channels, the city map data, the Tx location, and some pathloss measure-
ments. In this case the measurements are also taken from the same coarse simulation. However,
once trained, the RadioUNet is then applied in “real life”, where real-life measurements of the
pathloss are used as input. Again, in our experiments we test the transferability capability of this
approach on the fine IRT4 simulation set.

1.4.4 Applications

Our RadioUNet can be directly applied to any of the problems mentioned before, where an accurate
knowledge of the pathloss function between any Tx-Rx pair of locations is useful. In a dynamic
environment, the set of refined measurements can be provided in real-time from the mobile devices,
along with their position. For the sake of space limitation, in this work we demonstrate the
potential of our radio map estimation method with two toy applications.
i) Coverage classification. We show how to predict the service area of a Tx, and conversely,
show how to estimate the domain where the Tx creates small interference with other devices.
ii) Pathloss fingerprint based localization. Using the estimated radio maps of a set of
devices/base-stations with known location, the location of some other device d can be accurately
computed if d reports the received signal gains from the base-stations.

2 Background and Preliminaries

2.1 Wireless Communication

Consider a general Gaussian interference network with K Tx and N Rx devices located over a
certain region of the 2D plane. Following the Generalized Degrees of Freedom (GDoF) oriented
model in [1], it is useful to normalize the received signal such that the variance of the noise samples
N0 and the signal energy per symbol PTx/W are both equal to 1, and define a parameter P such
that the normalized received signal at each j-th Rx is given by

Yj =

K∑
i=1

√
Pαi,jXi + Zj . (1)

where αi,j =
log SNRi,j

logP and SNRi,j is the SNR between Tx i and Rx j as defined in Section

1. It turns out that the GDoF region of the underlying Gaussian interference network (i.e., a
high-SNR representation of the capacity region) is defined by the exponents αi,j . Furthermore,
under certain conditions of weak interference referred to as the TIN regime4 (see [1, 5] for the
information-theoretic details) the GDoF region yields the actual capacity region within a bounded
gap, independent of the SNR scale parameter P . These facts provide a strong evidence that the
relevant notion of pathloss function is contained in the α’s exponents, i.e., the pathloss function
should be estimated in logarithmic scale (in dB). Furthermore, from the theory in [1] it follows
that negative values of the α’s exponents are irrelevant, that is, for the GDoF region it is sufficient
to take the positive part of the αi,j ’s. In practice, this means that we do not have to spend much
effort in estimating very large negative values (in dB) of the pathloss function. As a matter of
fact, it makes sense to truncate such function so that the received signal power is not too much
smaller than the noise floor.

Driven by the above considerations, we define the pathloss in dB scale as PL = (PRx)dB −
(PTx)dB, where PTx and PRx denote the transmitted power and received power at the Tx and Rx
locations, respectively. The truncation and rescaling of the pathloss function in dB scale in order
to make it suitable for the proposed deep learning estimation method is given in Sections 3.2 and
3.3.

4In the information theoretic literature TIN stands for “Treating Interference as Noise” and the TIN regime is
when TIN achieves the GDoF region, i.e., it is GDoF-optimal.
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2.2 Deep Learning

In this section we review some concepts from deep learning necessary for the understanding of this
paper.

2.2.1 Convolutional Neural Networks

A Convolutional neural network (CNN) is a popular deep learning architecture, typically used
in machine learning applications in imaging science [39, 40]. In our context, a feature map is a
function from a 2D grid to some RN , where N is called the number of feature channels. If N = 1,
we call the feature map a gray level image.

A CNN is defined by aggregating the following five basic computational steps as the layers of
the network. i) In a convolution layer an input feature map is convolved with a filter kernel and
added to some scalars called the bias. The number of input feature channels and output feature
channels need not coincide. More accurately, let N be the number of input feature channels and
M the number of output feature channels. Let f1, . . . , fN be the components of the input feature
map. Note that each fn is a gray level image, not a scalar. The components of the output feature
map, gm, are defined for every m = 1 . . . ,M by

gm =

N∑
n=1

fn ∗ yn,m + bm (2)

where ∗ denotes convolution, and for each m = 1, . . . ,M and n = 1, . . . , N , yn,m is a gray level
filter kernel, and bm is the m-th component of the bias. ii) An activation function is any function
applied on the entries of a feature map, and a typical choice is ReLU, defined by r(z) = max{0, z}.
iii) A pooling layer takes a feature map and down-samples it, e.g., by assigning the maximal entry
of each 2 × 2 patch to the corresponding entry of the down-sampled feature map. iv) An up-
sampling layer up-samples lower resolution feature maps to higher resolution ones. v) A fully
connected layer is a general linear operator/matrix applied on the feature map, and added to
some pre-defined bias. A CNN architecture is defined by choosing how to combine the above
layers, choosing the number of feature channels, and choosing the shapes of the filter kernels. The
trainable parameters are the filters, the fully connected matrices, and the biases.

2.2.2 UNets

UNet is a special CNN architecture, introduced in [37], and used in a multitude of applications,
including image segmentation [41, 42, 43, 44], video predicting [45], super resolution/image in-
painting [46], inverse problems in imaging [47], image-to-image translation [48], and medical image
analysis [49] to name a few.

UNets consist of convolution, pooling, up-sampling, and activation function layers, without
fully connected layers. The UNet architecture is divided into two paths. The first portion of the
layers gradually contracts the image as the layers deepen, and gradually increases the number of
feature channels. This path—also called the encoder—is interpreted as a procedure for extracting
“concepts” which become more complex/high-level and less spatially localized along the layers.
The second portion of the layers—also called the decoder—expands the image as the layers deepen
and reduces the number of feature channels gradually. This path is interpreted as a procedure
of combining/synthesizing the concepts, layer by layer, to lower-level concepts, and eventually
to an output image. The decoder layers are derived by up-sampling lower resolution images,
and thus lack high resolution information on their own. To provide high resolution information
to the decoder layers, the feature maps in the encoder layers are copied and concatenated to
the corresponding feature maps of the decoder layers having the same resolution. This copying
between non-neighboring layers is called skip connection.

Let p denote the concatenation of all learnable parameters of the UNet, and let Up denote
the UNet, mapping input images f to output images Up(f). In supervised learning, a training set
of many example inputs images fk and corresponding desired output images gk are given, where
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k = 1, . . . ,K and K is the size of the dataset. The goal is to fine tune the parameters p of Up

so that Up(fk) ≈ gk for every k = 1, . . . ,K. This is typically done by some variant of gradient
descent, and the loss function to be optimized is typically of the form

L(p) =
1

K

∑
k

‖gk − Up(fk)‖ (3)

for some norm, e.g., the root mean square norm. In stochastic gradient descent (SGD), k runs
over one batch in each iteration.

2.2.3 Curriculum Learning

The SGD optimization procedure (and its variants) explores configurations of the parameters only
along the 1D path of descent, which might miss good configurations. Namely, SGD searches the
parameter space in a highly non-exhaustive manner. Thus, the expressive capacity of a network
does not guarantee high quality trained networks. It is thus often important to lead gradient de-
scent in a more deliberate way, and in some sense to “micro manage” the exploration of parameter
configurations in the optimization process. One approach for achieving this is called curriculum
learning [50]. In curriculum learning, training is divided into a curriculum, namely, a list of opti-
mization problems, where the optimal solution of the previous problem is used as the initial guess
for the next optimization problem. The idea is to first teach the network how to solve an easy to
learn simplified version of the problem, and gradually to increase the complexity of the problem
until reaching the original formulation of the loss function.

2.2.4 Transfer Learning

In some learning scenarios the training data does not represent exactly the data in the target
application (e.g., when a large enough training set is difficult or costly to obtain). It is thus
important to know whether the network, trained on one data distribution, performs well for
another data distribution. The idea of training in one domain and testing in another domain is
called transfer learning [51, 52]. The capacity of a network to perform well in new domains is
called its transferability.

3 The RadioMapSeer Dataset

In this section we introduce RadioMapSeer, a dataset of city maps with corresponding simulated
radio maps that we have created and made available for this work.

3.1 General Setting

The RadioMapSeer dataset consists of 700 maps, 80 transmitter locations per map, and corre-
sponding coarsely simulated radio maps. The coarse simulations are generated using the Dominant
Path Model (DPM) method [26] and Intelligent Ray Tracing (IRT) [53] based on 2 interactions
of the rays with the geometry, referred to here as IRT2. In addition, we have also generated fine
simulations using IRT with 4 interactions (IRT4), for the first two transmitters of each map. The
city maps are taken from OpenStreetMap [54] in the cities Ankara, Berlin, Glasgow, Ljubljana,
London, and Tel Aviv. We set the heights of the transmitters, receivers and buildings as 1.5m,
1.5m, and 25m, respectively, which is relevant to device-to-device scenarios (see Section 3.2 for
more details). All simulations were computed using the software WinProp [38]. For different sit-
uations (e.g., campus networks, cellular networks) one should generate new data sets accordingly.
Some example radio maps from the dataset are shown in Figure 1. All simulations are saved as
dense sampling of the radio map in a 2D grid of 256×256 m2.
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(a) DPM (b) DPM with cars (c) IRT4 (d) IRT4 with cars

Parameter Value
Number of 
transmitters 80

Frequency 5.9GHz
Bandwidth 10MHz
Pixel length 1 meter
Noise power 
spectral density -174dBm/Hz

Transmit power 23dBm
Noise figure 0dB

(e) RadioMapSeer
Dataset parameters

Figure 1: RadioMapSeer examples and parameters. Buildings are blue, cars red, and pathloss yellow.

3.1.1 Maps and Transmitters

Each map is 256 × 256m2 where buildings and roads are saved in the dataset as polygons. Each
map is also converted to morphological 2D image (binary 0/1 pixel values with no intermediate
gray levels) of 256 × 256 pixels, where each pixel represents one square meter. The interior of
the buildings has pixel value = 1, and the exterior of the buildings has pixel value = 0. The
transmitter locations are stored as numerical 2D values, and also given as morphological images,
where the pixel in which the transmitter is located has value 1 and the rest is 0. Along with the
city maps, roads are given both as polygonal lines and as morphological images with 1 on the road
and zero outside. Cars are generated along and aside roads, and given as separate morphological
images.

3.1.2 Coarsely Simulated Radio Maps

The coarse radio maps were generated using DPM and IRT2 with the radio network planning
software WinProp [38]. Each simulated radio map stores at each pixel the pathloss between the
pixel location and the transmitter location in dB.

To represent uncertainty in the dataset we consider two cases. First, a set of simulations
on all city maps including the cars is produced using DPM and IRT2. These simulations are
perturbations of the simulations based on the city map alone, without cars. We moreover provide
separate datasets of perturbed city maps, where in each map of the original dataset m buildings
are missing. We provide four such datasets with m = 1, . . . , 4.

3.1.3 Higher Accuracy Simulations

An additional smaller dataset of higher accuracy simulations is provided by using IRT4 with the
same WinProp radio network planning software. Here, for each of the 700 maps we consider
two transmitter locations. The goal of the higher accuracy simulations is to provide means of
testing whether the network, trained on simulations, performs well in refined representations of
pathloss functions. As already said before, we reiterate here that the high accuracy simulation
serves as a surrogate for the real-life physical phenomenon, and it is useful for demonstrating the
transferability property of our scheme.

3.1.4 Pathloss Scale

The pathloss values PL are converted to gray level pixel values between 0 and 1 (see Subsection
3.3). Therefore, each radio map is a gray level image of size 256× 256.

3.2 System Parameters

This study was originally motivated by device-to-device communications for safety in the context of
intelligent transportation systems (ITS), currently based on the IEEE 802.11p standard. Accord-
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ingly, we consider a signal bandwidth W of 10MHz in the 5.9GHz band. We choose the transmitter
power and thermal noise power spectral density as (PTx)dB = 23dBm and (N0)dB = −174dBm/Hz
in compliance with IEEE 802.11p and assume an idealistic noise figure of 0dB at receivers (cf. Ta-
ble 1(e) for a summary of the system parameters).

We express by (N )dB = 10 log10WN0+NF the noise floor in dB, with NF being the noise figure.
We consider the points where the received signal power (PRx)dB = PL+(PTx)dB yields a signal-to-
noise ratio above a desired SNR level, i.e. the points where (SNR)dB = (PRx)dB−(N )dB ≥ SNRthr

holds. Solving this for PL we get the threshold PL,thr for the pathloss

PL ≥ PL,thr = −(PTx)dB + SNRthr + (N )dB. (4)

We call PL,thr the pathloss threshold. Consider for example the SNR requirement that the received
signal power should be above the noise floor, i.e., when SNRthr = 0. With the choice of parameters
in Table 1(e), we find PL,thr = −127dB.

One task of RadioUNet is to extract the area in the city map above the noise floor, given
an input city map and transmitter location. To do this, the network must learn the physical
phenomenon both above and below the noise floor. We thus truncate the pathloss values below
another threshold PL,trnc < PL,thr. We choose PL,trnc such that the difference between the maxi-
mum pathloss M1 in the dataset and PL,thr is approximately four times greater than the difference
between PL,thr and PL,trnc, i.e., M1 − PL,thr = 4(PL,thr − PL,trnc). The maximum and the mini-
mum pathloss in the dataset are -47.84dB and -186.41dB, respectively. Note that the maximum
is -47.84dB and not 0dB since the pathloss is integrated over 1m2 pixels. To meet the previously
mentioned condition, we set PL,trnc = −147dB. Since any signal below PL,thr cannot be detected
in practice, and is only used in simulation for theoretical reasons, we call PL,trnc the analytic noise
floor.

3.3 Gray Level Conversion

We convert the pathloss values PL to pixel values between 0 and 1 as follows. Denote by M1 the
maximal pathloss in all radio maps in the dataset, and define f = max{ PL−PL,trnc

M1−PL,trnc
, 0}. Here, f = 0

represents anything below the analytic noise floor, and f = 1 represents the maximal gain at the
transmitter. Any intermediate value is referred to as a gray level.

Let us explain the importance of our gray level conversion when evaluating the performance
of any pathloss estimation. We evaluate performance of any approximation f̃ : D → R of a
signal/image f : D → R, where D = {xn}n is some finite grid in R2, via the normalized mean
square error (NMSE)

E =

∑
n |f̃(xn)− f(xn)|2∑

n |f(xn)|2
. (5)

The numerator in (5) represents the absolute error, and the denominator represents the global
magnitude of f . The coefficients |f̃(xn) − f(xn)|2 and |f(xn)|2 having larger values affect the
outcome of E the most, and small values are negligible. It is thus crucial to express the signal f
in a representation in which the important parts of the signal obtain large values.

In our case, the representation of the radio map should be constructed in such a way that small
powers contribute small values to E. Indeed, locations of small power represent a weak signal.
If we represent the radio map as standard pathloss, in dB, the smaller the power in a certain
location, the higher the magnitude of the pathloss, with negative sign. When the power goes to
zero, the pathloss diverges to −∞. In this representation, locations of a weak signal dominate the
global magnitude of the radio map, and in general define a misleading concept of the “size” of the
radio map. A similar situation occurs for the absolute error (the numerator of (5)).

As discussed in Section 2.1, motivated by the GDoF region of a Gaussian interference network,
we know that very large negative values of the pathloss are effectively irrelevant and should not
dominate the overall error. Our gray level conversion resolves this issue. Indeed, anything below
the noise floor, or more generally, below PL,trnc, is deemed “too small to be interesting”, and set
to zero. In contrast, the values of higher power, which are most important, are transformed to

9



levels close to 1. We note that papers like [18, 20, 21] suffer from the aforementioned shortcoming,
and it is thus difficult to interpret their reported performance.

When root mean square error (RMSE) is used, the gray level error is simply a scaling of the
RMSE of the pathloss in dB (up to the truncation below the analytic noise floor). More precisely,
we have √∑

n

|P̃L(xn)− PL(xn)|2 = C

√∑
n

|f̃(xn)− f(xn)|2,

where PL is the pathloss in dB. For SNRthr = 0 we have C = 80.

Remark 1 It is worthwhile noticing that the RMSE of the pathloss in dB scale (up to rescaling
as explained above) comes here not by accident, and in fact it is a very sensible choice for the ap-
proximation error from a communication theory significance viewpoint. The pathloss PL in natural
scale operates as a multiplier of quantity PTx

N0W
in order to yield the SNR at the Rx location. If PL

is perfectly known, then the pathloss prediction result can be immediately translated into a receiver
rate result, using either the Shannon capacity formula for the appropriate channel model, or a table
of rates versus Rx SNR according to the family of coding and modulation schemes specified by a
particular communication standard. On the other hand, if PL is known up to the approximation
RMSE σ in dB scale, we can model such approximation error as normal with standard deviation
σ.5 This means that the pathloss PL in linear scale is known up to a log-normal shadowing fluc-
tuation with parameter σ. Then, one can easily provide performance guarantees in terms of rate
versus outage probability, where the latter can be evaluated from the tail of the log-normal distri-
bution. Since these results are highly dependent on the system assumptions, we provide here just a
simple example, leaving to the reader the generalization to to any system of choice. Using the ca-
pacity formula for the AWGN channel and assuming a Tx transmission rate R bit/s/Hz, a receiver
with pathloss (in linear scale) PL ×∆, where PL is the exact value and ∆ is the log-normal error,

can decode successfully if R is strictly less than the capacity log2

(
1 + PL ×∆× PTx

N0W

)
. Then, the

probability of (block) decoding error for such ideal coded system is given by the information outage
probability, i.e., the probability that the Shannon capacity falls below the transmission rate R [56].
Using the fact that 10 log10 ∆ is normally distributed N (0, σ2), we obtain immediately:

Pout(R) = 1−Q
(

(2R − 1)dB + (N0W )dB − (PTx)dB − (PL)dB
σ

)
,

where Q(x) =
∫∞
x

1√
2π
e−u

2/2du is the Gaussian tail function. Hence, knowing PL and the RMSE

σ it is possible to obtain results in terms of receiver rate R for a given guaranteed block error
probability Pout(R) at any location xn of the map. ♦

4 Estimating Radio Maps via RadioUNets

In this section we introduce a number of methods, collectively called RadioUNet, that learn to
estimate radio maps in different scenarios. We evaluate the accuracy of the proposed methods
and compare them to state-of-the-art.

4.1 Motivation for RadioUNet

UNets have been extensively applied to imaging problems in the past few years with resounding
success, and are considered to be a baseline method for image-to-image tasks [57]. Our problem
can be seen as mapping an image representing the city and Tx to an image representing the radio
map, and hence using UNets is a natural choice. One advantage of using UNets in our case is
that they respect the translation invariance symmetry of the physical phenomenon. Namely, this

5Notice that approximating a random variable with zero mean and given standard deviation σ as normalN (0, σ2)
yields the maximum-entropy approximation, which has been widely used in statistics [55].
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symmetry is built in to RadioUNet, and requires no training. Another strong point of UNets is
the encoder-decoder interpretation, as we discuss next.

In Fig. 6(a) we show an example of a ground truth radio map generated by simulation, and
the estimated radio map computed by the RadioUNetC and RadioUNetS. Aside from the low
quantitative error, RadioUNet seems to synthesize radio maps from the urban geometry which
qualitatively captures the correct shadow patterns. Note that the results in Fig. 6(a) are rep-
resentative of the general quality of RadioUNet. One might naively interpret the success of the
RadioUNet by postulating that it learns to mimic a physical model, like ray-tracing or some differ-
ential equation like Maxwell’s equations. However, we believe that this is a misleading viewpoint.
A more reasonable interpretation follows from the encoder-decoder description of general UNets.
In the encoder path, the RadioUNet extracts complicated concepts about the geometry of the
urban environment and the mutual relationship between the different geometric features, their
location, and the location of the transmitter. Then, in the decoder path, the RadioUNet uses
these concepts to synthesize the radio map. Thus, RadioUNet is based on extracting and analyz-
ing global information about the urban environment, as opposed to classical physical models that
are based on local information, like collisions with the geometry in ray-tracing and derivatives
in differential equations. In this viewpoint, it is more fitting to compare RadioUNet to a highly
skilled artist that draws radio maps from his/her perception of the urban environment as a whole,
rather than comparing to a classical local physical model.

4.2 Different Setting in Radio Map Estimation

We consider the following scenarios for the input of the UNet, the map of the city, the learning
setting, and the properties of the simulated dataset. The problem setting can be any combination
of the choices presented in Subsections 4.2.1 and 4.2.2.

4.2.1 Network Input Scenarios

City map and transmitter location. In the first case, the UNet receives as input the map of
the city and the Tx location as morphological images. From these two input feature channels the
network estimates the radio map.

In this accurate map scenario, if the simulated dataset without cars is used, then the map
without cars is given as input, while if the simulated dataset includes cars, then the map without
cars is given as one feature channel, and the cars in an additional input feature channel.

When the map is accurate and the simulated data used for training is assumed to represent
reality accurately, the radio map is uniquely determined by the map and the Tx location. Thus,
the input feature channels are sufficient for high quality radio map reconstruction.

City map, transmitter location, and measurements. In the second case, the UNet receives
as input the two/three feature channels of map and Tx location as before, and an additional feature
channel of measurements of the “true” radio map. The measurements are taken at some locations
on the true map, i.e., their values are sampled from the target “ground truth”. This third feature
channel is given as a gray level image, where in the pixels corresponding to the locations of the
measurements the gray level value is the measurement. Non-measured pixels are set to zero. The
network estimates the radio map from these three/four input feature channels.

This scenario is useful when the “nominal” map given as input feature channel does not repre-
sent reality completely accurately. Hence, the network learns a hybrid of a radio map estimation
method based on the given map, which is not completely reliable, and an interpolation method of
the accurate pathloss measurements. In this non-accurate maps scenario, a perturbed version of
the ground truth maps is given as input to the UNet. We consider two types of perturbations: 1)
the map is given with a one to four missing buildings; 2) the map is given without cars, but the
ground truth simulation is computed with the cars.

Another source of inaccuracy, for which relying on measurements is useful, is the fact that
training is done against coarse simulations, which are only approximations of reality (or, in our
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setting, approximations of IRT4).

4.2.2 Learning Scenarios

Large and dense simulation dataset. Here, the network is trained in supervised learning to
predict a large dataset of 2D gray-level images representing dense measurements of radio maps on
a fine grid. The images are the DPM simulations, the IRT2 simulations, both with or without cars,
or random combinations of DPM and IRT2. In particular, the goal in the randomized simulation is
to push the network to learn that it can only rely on the simulations for the big-picture behavior of
radio maps, shared both by DPM and IRT2, but not on the fine details. This pushes the network
to use additional information for refining the estimations, like the input measurements if given, or
the smaller dataset of sparse IRT4 if given.

Transferring the trained network to the ground truth (IRT4 or real-life maps) is a zero-shot
generalization. Namely, the network only learned to estimate the coarse simulations, not ever see-
ing the ground truth phenomenon, and we rely on the accuracy of the simulations, and optionally
on the measurements, to predict the ground truth radio maps.

In case measurements are given as an input feature channel to the RadioUNet, real-life measure-
ments would be given to the RadioUNet in the real-time operations, even though measurements
from the crude simulation are used in training. Real-life measurements can be provided in real-
time directly from the deployed devices, e.g., from the beacon signals of the transmitters, in the
same way current systems report “Channel Quality Indicators” as measurements of the received
signal strength. Hence, no costly measurement campaign is needed for training. The network can
generalize well to real-life radio maps since it learned to interpolate the measurements, which are
now accurate, while what was learned from the crude simulations roughly guides the interpolation
procedure to be physically feasible. We demonstrate this experimentally by training on coarse
simulations and using IRT4 samples and targets (as a proxy for real-life measurements) in testing.
Large and dense simulation dataset + small sparse measured dataset. Here, in addition
to the large dataset of dense measurements, we also assume that we have a small dataset of sparse
measurements taken from refined radio maps (the IRT4 simulations, which can be potentially
replaced by real-life measurements). For each of the 700 maps of the RadioMapSeer dataset we
consider two transmitter locations, and measurements in K receiver locations, where K is fixed,
e.g., K = 300. In this scenario we first train a large network that estimates the crude simulations,
using the large simulation dataset. Then, we improve the network output, using a smaller network,
to match the small dataset of real-life measurements (see Subsection 4.3.2).

4.3 RadioUNet Architectures

The simplest RadioUNet comprises of one UNet. The input of the UNet has two, three or four
feature channels, depending if measurements and cars are used, and the output is the one feature
channel estimated radio map. In most architectures of RadioUNet we compose a second UNet on
the first one. We call such an architecture a WNet (U+U makes a W). The input of the second
UNet are the same as the inputs of the first UNet, plus an additional feature channel, the output
of the first UNet. The architectures of our proposed UNets are reported in Table 2. The number of
layers and feature channels were crudely searched to reduce overfitting and increase performance
on the validation set, while not being too large to allow fast inference. The second UNet can be
used for three different purposes, summarized in the following three subsections.

4.3.1 Retrospective Improvement

The idea here is to give RadioUNet a chance to improve its estimation in retrospective. The first
UNet learns implicitly an algorithm for estimating the radio map from the input, by extracting
high level concepts from the map and synthesizing a radio map from them. The philosophy here is
that it would be beneficial to inspect the resulting estimation, and correct visible inconsistencies
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First UNet
Layer In 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 out

Resolution 256 256 128 64 64 32 32 16 8 4 8 16 32 32 64 64 128 256 256 256
Channels 2/3/4 6 40 50 60 100 100 150 300 500 300+300 150+150 100+100 100+100 60+60 50+50 40+40 20+6+2/3/4 20+2/3/4 1
Filter 3 5 5 5 5 3 5 5 5 4 4 4 3 6 5 6 6 5 5 -

Second UNet
Layer In 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 out

Resolution 256 256 128 64 64 32 32 16 8 4 8 16 32 32 64 64 128 256 256 256
Channels 3/4/5 20 30 40 50 60 70 90 110 150 110+110 90+90 70+70 60+60 50+50 40+40 30+30 20+20+3/4/5 20+3/4/5 1
Filter 3 5 5 5 5 3 5 5 5 4 4 4 3 6 5 6 6 5 5 -

Figure 2: RadioUNet architecture. Resolution is the number of pixels of the image in each feature channel
along the x, y axis. Filter is the number of pixels of each filter kernel along the x, y axis. The input layer
is concatenated in the last two layers.

with the map and with the physical phenomenon. To inspect the output of the first UNet, a second
UNet extracts high level concepts from the estimated radio map, the city map, and all other inputs,
and synthesizes from these concepts an improved estimation of the radio map. We observe that
the retrospective improvement yields better performance especially when the first UNet is small
(see Fig. 5(a)). This WNet is thus a technique for reducing the size of the RadioUNet without
degrading performance.

The WNet is trained in a curriculum. The first UNet is trained first to estimate the ground
truth radio maps, with MSE loss. In the second phase, the weights of the first UNet are frozen,
and the second UNet is trained to estimate the ground truth radio maps with MSE loss.

4.3.2 Adaptation to Refined Measurements

Here, we first train the first UNet to estimate coarse simulations from the large dataset with MSE
loss. The simulations may be randomized or deterministic. After training, the weights of the first
UNet are frozen, and the second UNet is trained to improve the estimation of the first UNet on
the small dataset of IRT4.

The IRT4 training consists of sparse images, namely, for each map, there are K Rx locations
{xk}Kk=1, and the pathloss f(xk) is only known for these locations. We typically take K = 300.
The loss function for the second UNet is the weighted MSE, with weights Wk = 1

K for the points
{xk}Kk=1, and weight 0 for the unmeasured points. We train the adaptation UNet in two steps.
First, we train a retrospective improvement UNet on the coarse dataset, and then we further train
this UNet on the sparse IRT4 dataset.

4.3.3 Thresholder

A thresholder second UNet is used in the service area classification method. The goal of the second
UNet here is to take the estimated radio map of the first UNet and to produce a service map from
it. More details are give in Subsection 6.1.

4.4 Training

The 700 maps of the RadioMapSeer dataset are randomly split into 500 training maps, 100 valida-
tion maps, and 100 test maps. The random split is fixed, and available in the project web page6.
We aim in this split to have a large enough training set, for avoiding overfitting, and a large
enough test set, to avoid test set bias. To illustrate that this split is reasonable, we also consider
a 400/100/200 train/validation/test split, where the last 100 test example of the 200 are the 100
test examples of the original 500/100/100 split. After training on the 400/100 train/validation
split, the error on the 200 test set is very close to the error on the last 100 test examples (see
Fig. 4). Hence, there does not seem to be a visible bias in the original 100 test set.

6https://github.com/RonLevie/RadioUNet
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RadioUNet Accuracy
RadioUNet c Test Accuracy RadioUNet s Test Accuracy

Coarse 
Simulations Zero Shot IRT4 Adaptation to 

IRT4
Coarse 

Simulations Zer Shot IRT4 Adaptation to 
IRT4

Setting NMSE RMSE NMSE RMSE NMSE RMSE NMSE RMSE NMSE RMSE NMSE RMSE
Accurate Map

deterministic DPM simulation 0.0075 0.02 0.0284 0.0384 0.0166 0.0292 0.0052 0.0164 0.0183 0.0307 0.0135 0.0262
deterministic IRT2 simulation 0.0219 0.032 - - 0.0143 0.0271 - - - - - -
non-deterministic simulation 0.0152 0.0272 0.0324 0.0405 0.0135 0.0262 0.0068 0.0183 0.0122 0.0245 0.0086 0.0209

Missing Four Buildings
deterministic simulation 0.102 0.0742 0.1205 0.0759 0.1015 0.0735 0.0321 0.0415 0.0409 0.0474 0.04 0.043

non-deterministic simulation 0.1156 0.0769 0.1153 0.0783 0.1013 0.0726 0.0443 0.039 0.0417 0.0437 0.0372 0.041
Cars `

deterministic simulation with 
unknown cars 0.0132 0.0256 0.0357 0.0412 0.0249 0.0343 0.0072 0.0187 0.0197 0.0304 0.0156 0.0269

deterministic simulation with 
input cars 0.0092 0.0207 0.0315 0.0385 0.0201 0.0308 0.0062 0.0173 0.0195 0.0305 0.0156 0.027

Figure 3: Comparison of RadioUNet accuracy in different scenarios

We perform supervised learning on the RadioMapSeer dataset. The loss function is the MSE
between the inferred radio maps by RadioUNet and the simulation radio maps from the training
set. Training of all methods was performed with Adam [58], with learning rate of 10−4. We take
50 epochs for each UNet, no regularization, and batch size 15. To alleviate overfitting, out of
the 50 epochs we pick the model with smallest error in the validation set. Lastly, the models are
tested either on the coarse simulations on the test maps, or on the IRT4 simulations on the test
maps. Performance is evaluated by RMSE on the gray levels and by NMSE (normalized MSE).
Note that the RMSE in dB is 80 times the RMSE of gray level.

4.5 RadioUNet Performance

In Fig. 3 we report the results in all of the above settings. Recall that RadioUNetC and RadioUNetS
denote the RadioUNet based on no input measurements and input measurements, respectively.
From the table we can observe that both the adaptation method to sparse IRT4 samples, and
the training with randomized coarsely simulated maps, promote transferability. All accuracies
are given both in NMSE and RMSE. RMSE is the square root of the MSE on the whole test
set. The pathloss threshold is taken as PL,thr = −127dB. The best results on IRT4 for each
category are marked in bold face. RadioUNetS was trained and tested with a random number
of input measurements between 1 and 300. Zero-shot IRT4 means testing the methods, trained
on coarse simulations, on IRT4. Adaptation to IRT4 means training a second small UNet to
match the sparse IRT4 measurements. All architectures are based on the WNets of Fig. 2, where
for zero-shot transfer the second UNet is a retrospective improvement, and for adaptation to
sparse IRT4, the second UNet is the adaptor. The receiver points of the sparse IRT4 dataset are
randomly generated for each map, and fixed forever. For RadioUNetC , the sparse IRT4 dataset
has 300 receivers per transmitter. For RadioUNetS , the sparse IRT4 dataset has 600 receivers per
transmitter, out of them 1 to 300 random points are taken as input points of the RadioUNetS .
The training loss is computed for all 600 points. To show that the higher transferability of the
random simulations is not simply because IRT2 is closer to IRT4 than DPM, we also include the
scenario where the deterministic simulation is IRT2. This produces inferior results compared to
the random simulations.

In Fig. 5(a) we compare RadioUNetC with and without retrospective improvement for different
pathloss thresholds. The results demonstrate that the retrospective improvement UNet is effective
when the first UNet is small, thus making it a useful strategy for reducing the network size for
the same accuracy. In Fig. 5(b) we compare the performance of different RadioUNetS methods
on maps with various numbers of missing buildings. We observe that the strategy of combining
random coarse simulations with an adaptor UNet to IRT4 promotes transferability.
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RadioUNet Accuracy on 200-test set and 100-test subset
RadioUNet c Test Accuracy RadioUNet s Test Accuracy

Coarse 
Simulations Zero Shot IRT4 Adaptation to 

IRT4
Coarse 

Simulations Zer Shot IRT4 Adaptation to 
IRT4

Setting 200-set 
RMSE

100-set 
RMSE

200-set 
RMSE

100-set 
RMSE

200-set 
RMSE

100-set 
RMSE

200-set 
RMSE

100-set 
RMSE

200-set 
RMSE

100-set 
RMSE

200-set 
RMSE

100-set 
RMSE

Accurate Map
deterministic DPM simulation 0.0203 0.0206 0.038 0.0384 0.0288 0.0295 - - - - - -
non-deterministic simulation - - - - - - 0.0225 0.0226 0.0249 0.025 0.0217 0.0217

Missing Four Buildings
deterministic simulation 0.0733 0.073 0.0736 0.0723 0.0685 0.0693 - - - - - -

non-deterministic simulation - - - - - - 0.0459 0.0462 0.0456 0.0445 0.0442 0.0468

Figure 4: Performance of selected RadioUNet methods on the 400/100/200 train/validation/test split.
The last 100 test examples of the 200 test set are the 100 test examples of the original 500/100/100 split.
The performance on the 200 and 100 test sets is comparable, indicating that the 100 test set is not “too
small”.

Threshold

R
M

S
E

 a
cc

ur
ac

y

0

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4 0.5

Small network, first UNet Small network, second UNet
Large network, first UNet Large network, second UNet

(a) Accuracy of RadioUNetC of different network sizes and
different pathloss thresholds PL,thr. The small network has
6,109,271 parameters and large one has 25,411,831 parameters.
We plot the accuracy of the RadioUNets with and without the
retrospective improvement. Small networks outperform large
networks when both have retrospective improvement. The ac-
curacy of RadioUNet with pathloss threshold at pixel value 0.6
is comparable to the quantization error of the png image file.

number of missing buildings

ac
cu

ra
cy

0.01

0.02

0.03

0.04

0.05

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4

DPM DPM to IRT4 zero shot DPM to IRT4 adaptor
Rand Rand to IRT4 zero shot Rand to IRT4 adaptor

(b) Accuracy of RadioUNetS with
different numbers of missing build-
ings, different types coarse simula-
tions, and different transfer methods
to sparse IRT4.

Figure 5: RadioUNet performance

15



5 Comparison of RadioUNet to state-of-the-art

In Fig. 6(c) we present the performance of different methods of radio map estimation. For methods
that depend on samples, we use an input map with four missing buildings, and for methods that
do not rely on samples we use the full map. Apart from the fact the RadioUNet outperforms
the data driven interpolation methods, the tomography method and the previously proposed deep
learning approach significantly, these other methods need a separate training/optimization to fit
the model to each map. Particularly, variations in the environment, like moving cars, requires
re-computing the methods, which is not efficient. RadioUNets, in comparison, are trained offline
only once, and are then employed in any environment very efficiently. RadioUNet can deal with
cars by using the measurements input, where the network is trained on a dataset of simulations
with cars. All GPU methods ran on Nvidia Quadro GP100, and CPU methods on Intel Core
i7-8750H.

5.1 Comparison to Model-Based Simulation

We compare the run-time7 with the efficient dominant pathloss method [26]. RadioUNet esti-
mates radio maps roughy two to three orders of magnitudes faster. In our experiments, WinProp
completes a simulation in roughly an order of 1sec on a Intel Core i7-8750H CPU, and RadioUNet
an order of 10−3sec to 10−2sec. IRT2 and IRT4 took an order of 10sec and 102sec, respectively.

5.2 Comparison to Data Driven Interpolation

Next, we compare RadioUNetC and RadioUNetS with data driven interpolation methods: radial
basis function (RBF) interpolation using multiquadric function [17, Sect 5.1] and tensor completion
[18]. For the data driven methods we set to zero the gray level values inside the known buildings
of the map post-processing, thus using the urban geometry data. Without this step, data driven
interpolation methods obtain a very poor accuracy since they are not able to recover the sharp
building edges. In Fig. 6(c), we plot the average NMSE over 80 Txs of RadioUNetS and of the
two data driven interpolation methods as a function of the number of samples. Both versions
of RadioUNet clearly outperform state-of-the-art. Aside from that, RadioUNet is roughly three
orders of magnitude faster than RBF interpolation, and five orders of magnitude faster than tensor
completion interpolation.

5.3 Comparison to Model-Based Data Fitting

We compare RadioUNet with a tomography method. In general, tomography methods model the
attenuation in the channel strength as the sum of a distance dependent pathloss and a shadowing
term which models the attenuation due to obstructions. To model shadowing, a spatial loss field
L : R2 → R (SLF) is defined. For each spatial location y, the value L(y) in a sense models the
transparency of y, where L(y) = 0 models free space, and L(y) > 0 represents a “translucent”
obstacle. The shadowing term from the Tx location x to the Rx location y is computed as the
integral of L in a narrow oval for which the transmitter and receiver sit on the edges of he largest
diameter. More generally, the oval can be replaced by some other shape, which may be trainable.

Note that as opposed to ray-tracing methods, tomography method do not consider at all wave
propagation phenomena like diffraction and reflections, and only model the attenuation due to
the penetration of the signal through material. For high frequency signals, the attenuation due
to penetration in urban environments is very large, which make tomography method less realistic
than DPM and IRT.

In tomography methods (e.g., [22, 59, 21, 23, 24]), the SLF is typically estimated from observed
pathloss values between samples transmitter-receiver pairs, by solving an inverse problem. In our
situation the problem is easier, since we are given the city map. Thus, the SLF outside the

7Notice that the run-time is the computation time of the trained network. This does not include the training,
which is done offline and once for all.
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buildings, in free space, is known to be zero. Moreover, the building material is constant, and
thus it is natural to consider an SLF with one value f inside buildings, and 0 outside. Hence, the
computation of the SLF is reduced to finding the scalar f for which the tomography method gives
a radio map as close as possible to the ground truth radio map. This method takes an order of
102sec to run.

5.4 Comparison to Deep Learning Data Fitting

We compare RadioUNet to the deep learning one-step prediction approach of [29]. We note that
the two-step prediction approach of [29] did not perform well in our setting. As explained in
Subsection 1.3, this method is a data-fitting of a multilayer perceptron (MLP) to a 4D radio map
of a specific city map. The network receives the transmitter and receiver 2D locations and returns
the estimation of the pathloss for this pair. The network architecture is reported in Fig. 6(b). For
a fixed map, the 80 transmitters are split to 60 training, 10 validation and 10 test transmitters.
The network is trained and tested against all receiver locations in the 256×256 grid. This method
takes an order of 10sec to estimate all 256×256 pixels, which must be computed separately.

5.5 Complexity comparison

Consider a radio map of n × n pixels. We compare the asymptotic complexity of all considered
methods.

• RadioUNet. In our UNets, the resolution of Layer l is O(n24−l), and the number of channels
cl increase in l slower than 2l. Moreover, the convolution kernels are spatially localized. This
means that the complexity is O

(
n2
∑
l 4
−lclcl−1

)
= O(n2).

• MLP regression. Each estimation takes O(1) operations, and there are n2 estimations to
cover the map. Thus the complexity of O(n2). We note that in practice the constant here
is large, since the MLP must be able to realize a complicated function on a 4D domain.

• DPM and IRT. In both methods there is a pre-processing step in which a graph that rep-
resents the line of sight between different wall and edge segments, and receiving points, is
constructed. For a map with W wall and edge segments. The complexity of this step is
O(W (W + n2)). Let us roughly estimate this complexity in terms of n. Since walls are one
dimensional, a reasonable estimation of the number of wall pixels in a dense urban envi-
ronment is An for some A > 1. Another reasonable assumption is that, on average, each
set of B > 1 wall/edge pixels are grouped to one segment. This puts the pre-processing
complexity at O(n3). The pre-processing complexity poses a lower bound to the complexity
of both DPM and IRT, regardless of the number of interactions. In IRT, the complexity
grows exponentially with respect to the number of interactions (multiplied by n2). In an-
other version of DPM, preprocessing is not required [60]. In this algorithm, the so called step
3 dominates complexity, with O(n3) operations. Indeed, the average path has O(n) pixels,
and there are n2 receiving points.

• Tomography. On average, the shape in which the spatial loss field is integrated has propor-
tional area to n2. Thus, since all receiver points are computed separately, the complexity is
O(n4) with a small constant.

• RBF. For k measurements, RBF takes O(k3) operations. In typical situations we take k
proportional to n, in which case the complexity is O(n3).

• Tensor completion. In our case we have a matrix completion problem. The dominating term
in each iteration is due to SVD within the shrinkage operation [61]. Thus the complexity
for T iterations is O(Tn3).
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(a) Comparison of RadioUNet with RBF with four
missing buildings in the input. From left to right.
1:Ground truth radio map. 2:RadioUNetc with
all buildings. 3:RadioUNetS with missing build-
ings. 4:RBF. The measured 127 locations for both
RadioUNetS and RBF are marked in red. For
RBF the transmitter is also a measurement, and
the known buildings are set to zero post-processing.
Known buildings are marked in blue.

Fully Connected Radio Map Network
Layer In 1 2 3 4 5 6 7 out

Neurons 4 64 200 2000 4000 4000 2000 64 1

(b) Architecture of the MLP of [29].
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(c) Estimation error of the radio map reconstruction
methods as a function of the number of measure-
ments. We chose Map 12 from the test set, on which
RadioUNet performs worse than the average test map
(three times the average NMSE). RadioUNetC, To-
mography, and deep learning one-step (MLP), are
based on no samples, and are given as horizontal
baselines.

Figure 6: Comparison or RadioUNet with state-of-the-art.
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6 Applications

In this section we demonstrate the usefulness of RadioUNet with two simple applications and also
discuss some future applications as future work.

6.1 Coverage Classification

Service area classification shows up in two situations. In the first problem, given a Tx-Rx link, we
would like to know if the received signal strength is large enough. In the second problem, given
two Tx-Rx links, we would like to know if the interference caused by one link on the other is low
enough. In both cases, the goal is to classify if the pathloss of a certain Tx is above or below some
threshold at the location of some Rx. For a fixed Tx location x, let f(y) denote the radio map at
location y. We define the coverage map as the thresholding function

C(y) =

{
0 if f(y) ≤ T,
1 if f(y) > T,

(6)

where T is a threshold in gray scale. For the first problem, depending on the system requirements,
T is some value above the noise floor. For example, for high bit rates the signal has to arrive with
high SNR, so a typical value for T might be pixel value 0.5 (see e.g. [62]). For the second problem,
a typical choice for T is the noise floor, which is pixel value 0.2 for us.

Our goal is to predict the coverage map from the input city and transmitter location. Note that
in principle UNets are expressive enough to predict coverage maps, since coverage maps are a sub-
phenomenon of radio maps, and UNets are expressive enough to predict radio maps. However,
this naive point of view disregards the fact the the gradient descent optimization procedure is
highly non-exhaustive, and only searches parameter configurations along a 1D path. As it turns
out, simple UNets fail to learn meaningful predictions of coverage maps. Intuitively, radio maps
are more predictable than coverage maps since shadow patterns are always associated with simple
concepts like building corners and spatial relations between building, receiver locations, and the
location of the transmitter. In contrast, in the coverage map most shadow edges disappear and
are “absorbed” by one or the domains above or below T .

For the architecture to successfully predict the coverage map, it must first understand the
underlying phenomenon of radio maps. We thus consider a WNet architecture, where the first
UNet is RadioUNet, and predicts the radio map from the city and transmitter inputs, and the
second UNet receives the predicted radio map as input, along with the map and the transmitter
location, and computes the coverage map from them. We call the second UNet the thresholding
UNet, or TUNet. We call this architecture the Coverage WNet, or CWNet in short.

To train CWNet we use curriculum learning. We first train the RadioUNet as before. We then
freeze the RadioUNet, and train the TUNet in a curriculum as explained next. As it turns out, the
discontinuous nature of the coverage map is still too challenging for the TUNet to learn directly.

Instead, we relax the coverage map to a soft coverage map Cα(y) = sigmoid
(
α
(
f(y)− T

))
where

α is a parameter that determines how soft the transition between 0 and one 1 is. We interpret
Cα(y) as the probability of location y being in the coverage area. In the curriculum we first train
the TUNet to predict Cα(y) with α = 1, and gradually increase α. We end up with α = 128,
which we judge to be high enough to represent a sharp transition.

The accuracy of SWNet for different thresholds and an example service map are presented in
Fig. 7.

6.2 Pathloss Based Fingerprint Localization

Suppose that a device is simultaneously in the coverage of several base stations located at Tx
points x1, . . . , xK , and reports the strengths gk (converted in gray scale) of their corresponding
beacon signals. Let fk(y) denote the estimated radio map for Tx location x = xk, for k = 1, . . . ,K.

19



(a) Localization
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Figure 7: Left: Localization result. Green +: true Rx position, red X: estimated Rx position, yellow:
pixels of the localization intersection, magenta circles: Txs of the best localization result out of the R,
green circles: the rest of the Txs. Middle: Coverage map results with threshold 0.5. Red: coverage map.
Blue: city map. Yellow: transmitter. Right: accuracy of service map estimation for different thresholds
in RMSE.

For some ε > 0, we define the ε-level set for level gk as

Lεk = {z ∈ Γ : |fk(z)− gk| ≤ ε}, (7)

where Γ is the discrete grid (domain of the radio map, in our case the 256×256 grid). Then,
in order to identify the location of the receiver y we can consider the intersection of the ε-level
sets S =

⋂K
k=1 L

ε
k. If this set is localized about a single point, then we have located y with high

probability.
Assuming that the reported values {gk}k are equal to the true radio map values, if for some k

the radio map prediction error satisfies |fk(y) − gk| > ε then y /∈ Lεk and y will not be contained
in the intersection S. We call such k an outlier. In contrast, if we choose K too small, then S will
contain multiple points and the localization is ambiguous. Hence, the method works well when
the estimated radio maps are accurate and the number of reported signal strengths K is large
enough but not too large.

To alleviate the effect of outliers, instead of computing a single intersection we can select
random subsets of J < K Txs and consider the intersection of the corresponding ε-level sets. We
also take random ε values for each map, since different maps have different unknown accuracies.
Repeating this random selection R times, we generate R candidate sets, some of which may
be empty and some of which may contain multiple points. For the R′ non-empty outcomes we
compute a score for the quality of the result, and pick the outcome with the best score. For
example, we use the variance of the localization outcome. Let St be the localization outcome of
sample t, where t = 1, . . . R′. Then, we define the expected position given St as ŷt =

∑
z∈St

z
|St| ,

and the associated variance

Vt =
∑
z∈St

|z − ŷt|2

|St|
,

where |z−ŷ| is the Euclidean distance between z and ŷt in R2 and |St| is the area of St. Since smaller
variance means better localization, we pick the non-empty localization outcome with smallest
variance. In this paper we mention this approach just as an example of the use of accurate radio
map estimation. In future work we will deal with improving the pathloss based localization with
more sophisticated localization extraction, and using additional signal fingerprints.

In Fig. 7(a) we present an example localization result with K = 10, J = 5, R = 5, ε = 0.03.
The best outcome has a standard deviation of 0.5 meters. The distance between the estimated
and true receiver location is 1.58 meters.
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7 Conclusion

In this paper we introduced RadioUNet, a deep learning method for simulating radio maps given
a city geometry, Tx location, and optionally some pathloss measurements and car locations. For
training RadioUNet, we introduced the new dataset RadioMapSeer, which we hope will be used
for developing deep learning methods for pathloss prediction by other researchers as well. We
developed approaches for transfering what was learned on the large dataset of coarsely simulated
radio maps to real-life, and demonstrated the superior performance of our methods with respect
to state-of-the-art, both in run-time and accuracy.
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[44] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning
dense volumetric segmentation from sparse annotation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2016, pp. 424–432, Springer International Publishing, 2016.

[45] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video prediction beyond mean square
error,” in Int. Conf. Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

[46] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks for single image
super-resolution,” in Proc. Conf. Computer Vision and Pattern Recognition Workshops (CVPRW),
(Honolulu, HI, USA), pp. 1132–1140, July 2017.

[47] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse
problems in imaging,” IEEE Trans. Image Proc., vol. 26, pp. 4509–4522, Sep. 2017.

[48] Z. Yi, H. Zhang, P. Tan, and M. Gong, “DualGAN: Unsupervised dual learning for image-to-image
translation,” in Proc.IEEE Int. Conf. Comp. Vision (ICCV), pp. 2868–2876, Oct 2017.

[49] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der
Laak, B. van Ginneken, and C. I. Sanchez, “A survey on deep learning in medical image analysis,”
Medical image analysis, vol. 42, pp. 60 – 88, December 2017.

[50] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proc. 26th Annual
Int. Conf. Machine Learning, ICML ’09, p. 41–48, Association for Computing Machinery, 2009.

[51] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via transfer component
analysis,” IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 199–210, 2011.

[52] K. Weiss, T. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big Data, vol. 3,
no. 9, 2016.
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