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Abstract

The logical separation of control signaling from data transmission in a mobile cellular network has

been shown to have significant energy saving potential compared with the legacy systems. As a result,

there has been a lot of focus in recent years on development and realization of separation architectures.

Our study, however, shows that the energy savings of separation architecture remain under 16 − 17%

when compared with legacy systems and this gain falls to a mere 7% when both architectures are realized

under a CloudRAN (CRAN) setting. Moreover, when we strategically place some small base-stations

(SBSs) to cover the area in a densely deployed scenario and allow all other base-stations (BSs) to be

used only on-demand, the system consumes much less energy than the separation architecture. While

we expected that most equipment would be shut down during nights, our study shows that around 70%

of the small cells are required to be active to serve randomly distributed minimum data load, i.e., active

mobile equipment. Contemporary mobile traffic is predominantly data which does not go to extremely

low levels during nights. We discuss, in detail, the assumptions, their implications, and the effects of

system parameter values on our conclusions.

Index Terms

Control-Data Separation Architecture (CDSA), dense deployment, CloudRAN, energy management

I. INTRODUCTION

Separation of control and data transmissions is suggested as the ultimate architectural design

for cellular networks to achieve the real benefit of energy management [1]–[3]. In the traditional
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cellular systems, the network is required to transmit mandatory control signals to provide always-

on connectivity even when no data is transmitted [2]. When coverage is separated from capacity,

through logical decoupling of data and control transmissions, the equipment responsible for

data, and consuming most of the power, can only be used on-demand. Here, the signaling BSs

provide always-on connectivity and will be designed for low rate services consuming a very small

fraction of the power [3], [4]. The separation architecture discussed in this paper, also called

CDSA (Control-Data Separation Architecture), is about making radio access part of the network

(RAN) more energy efficient [5] and should not be confused with separation of control and

user plane (CUPS) in EPC or core network in the context of 5G (https://www.3gpp.org/cups) to

enable the implementation of Software Defined Networking for enhanced scalability. The state of

the art of CDSA considers a macro cell as a control or signaling only cell and data transmissions

are managed by SBSs [6], [7].

Earlier studies suggest that control-data decoupling may provide 85 − 90% energy saving

potential compared to the legacy systems (LTE) [2], [4] and remarkable improvement in energy

efficiency [3], [8]–[11]. There has been significant focus towards development and realization

of this paradigm [5], [7]. Our study, however, shows that the logical split of signaling and

data, referred to as separation architecture in this paper, is not always the most energy efficient

when compared with legacy or non-separation architectures under reasonable assumptions for

operating conditions. By legacy architectures, we refer to the networks consisting of standard

macro BSs and SBSs, e.g., macro eNodeB/gNB and small eNodeB/gNB, which are providing

control signaling as well as data transmissions. We observed that legacy networks with an

appropriate energy management scheme and a small number of strategically placed SBSs to

provide coverage, can provide much better energy savings than separation architecture. The

major cause for marginal savings is the requirement to activate around 70% of the small cells in

a separation architecture to serve the randomly distributed minimum load during early morning

hours, where full load activates 100% small cells. We looked into each of the earlier studies to

find out the reasons for this huge discrepancy. Section VIII has our detailed comments. In short,

we found that the major reasons for inflated saving estimates are the following.

1) Mobile traffic has become predominantly data. While voice traffic almost goes to 0% during

nighttime, data traffic remains over 10%. Considering the spatial distribution of the minimum

data load or users, significant number of SBSs, though all under-utilized, are active. The
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saving potential of 85− 90% was calculated with implicit assumption of 0% load [2].

2) The comparison between legacy and separation architecture is not fair in some studies. The

separation architecture appears energy efficient due to other assumptions in the study rather

than the separation itself. For example, a heterogeneous separated CRAN is energy efficient

than a conventional HetNet mainly due to centralization of BBU (Baseband Unit) pool [12].

3) Similarly, the smaller consumption of a SBS compared to a macro BS is the main reason

for separation architecture with small data cells to appear more energy efficient than legacy

systems with only macro cells [10].

We strongly emphasize that it is really important to reduce the carbon footprint of the

communication industry which is expected to consume 20% of all the world’s electricity by

2025 (www.climatechangenews.com). However, it is important to do it correctly. The concept of

providing coverage with minimal consumption of energy is important but some equipment should

also be active to serve the little amount of data load always present in the system. The separation

should not be between control signaling and data, it should be between control signaling plus

data during low utilization phase and the rest of the data. Where exactly the split should take

place, or how much data capacity should the low-power signaling infrastructure have, depends

on the specific scenario, traffic, and power consumption of relevant equipment.

The primary purpose of our analysis is to compare the relative merit of the separation

architecture over legacy architecture in terms of energy saving potential. It is only one of the many

performance measures for a mobile system. The merit of a system can only be judged against

another if we consider the quality of service or quality of experience the system can provide

along with the related costs, i.e., how efficient the system is in utilizing the resources to provide

a certain grade of service [13], [14]. The focus of our study remains, however, on the relative

energy savings as it is the key reason to introduce the control-data separation architecture and the

margins of savings should provide a motivation to investigate the other performance measures.

Generic assumptions about coverage, data traffic, energy management schemes, user demand,

and power consumption of system elements are used to compute the total power consumption of

different scenarios. Any complex handling of wireless channel effects, implementation of SBS

on/off strategies, etc., are outside the scope of the present paper. Our assumptions, provided in

sections II and IV, do not favor one scenario over another. As salient contributions, this paper:

• develops closed form expressions for activation probability of on-demand SBSs under
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Figure 1: Deployment scenarios in the study. Analysis is focused on target cell.

different cellular system architectures and validates them using simulations;

• calculates energy consumption of a reference scenario across separation and non-separation

architectures and studies the effects of parameter choices over relative performance;

• shows that the saving margins of separation architecture are not significant with in-depth

analysis of alternative architectures.

The rest of the paper is organized as follows. We first outline the mobile architectures compared

in this study in Section II, then introduce our analytical framework with a simple example in

Section III. Section IV describes the system model, basic assumptions, and relevant measures

from stochastic geometry. Section V calculates important probabilistic measures which are used

in Section VI to derive the activation probability of SBSs for each architectural alternative.

Section VII discusses our numerical results in detail. Section VIII discusses related work and

finally Section IX summarizes the conclusions.

II. MOBILE SYSTEM ARCHITECTURES

Figure 1 shows the four architectural alternatives, for mobile communication systems, com-

pared in this study. Scenario 2, Fig. 1-(b), shows the legacy architecture, consisting of a typical

macro cell along with clusters of homogeneous SBSs, deployed at the hot-spots to carry most

of the data transmissions. We assume that small cells can be turned off, or put in sleep mode,

if there is no data to send, although, the macro BS will remain on to cater for the control

signaling along with data. Scenario 1, Fig. 1-(a), is similar to scenario 2, except that it has

a signaling only macro BS [15], instead of a standard macro BS, to provide only always-on

control signaling in a separation architecture. Signaling macro BS consumes less amount of
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Figure 2: Target cell with thicker boundary, and overlapping small cells, (a) N = 1, (b) N = 3.

energy as it does not require large antenna arrays and high data rate processing units and is

the main reason behind separation architecture’s energy efficiency. On the other hand, the BSs

responsible for data transmission in a separation architecture are the same as the standard SBSs

[16] and consume similar amount of energy. Scenarios 3 and 4, Fig. 1-(c),(d), are hypothetical

scenarios with SBSs only to provide coverage and data services to all users. SBSs in scenario

3 are required to be on if there is data to send or area to cover. Scenario 4 assumes that some

of the small cells are specially positioned for providing coverage and are always on, shown by

green SBSs in Fig. 1-(d). All small cells in every scenario are assumed to be similar and except

scenario 4’s always-on cells, they can be turned off or put to sleep if not needed.

A SBS in all of the scenarios can be a small eNodeB, or small gNB, or a RRH (Radio Remote

Head) with small range in a CRAN setting. Similarly, a macro BS can be an eNodeB, or gNB,

or a macro cell RRH. We select one small cell, called the target cell, in a hot-spot of each of

the scenarios as shown in Fig. 1 for our comparative study. The target cell is assumed to be

overlapped by N small cells in all scenarios. The measure to compare in our study is the energy

consumed in a typical day by these N +1 small cells along with the relative consumption of the

signaling or standard macro BSs in scenarios 1 and 2 respectively when serving similar load.

III. CASE STUDY: AN EXAMPLE SCENARIO

Before formally describing the system model and developing the generic expressions for our

study, we explain our approach with a simple example. In this example, we will compare two

scenarios: (i) separation architecture (scenario 1), and (ii) small cells only (scenario 3).

Let us consider two randomly deployed homogeneous small cells, each has area A, with

overlapping coverage. One of these cells is the target cell and we will focus on determining its
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activation probability. The other identical cell is called cell 1, as shown in Fig. 2-(a). Both SBSs

can either be on, with probability β or off with probability 1 − β. The area of the target cell

overlapped by cell 1 is denoted by S1 and the rest of its coverage area by S0.

In scenario 1 of separation architecture, the small cells are responsible for only data trans-

missions and can be on if there is a user to serve. If cell 1 is off, any user in the area A of

the target cell will trigger the activation of the target cell. If we assume PPP (Poisson Point

Process) spatially distributed users with density λ, then the activation probability of the target

cell is poff = 1− e−λA when cell 1 is off1.

If BS 1 is on, the target BS will be on if there is at least one user in the area S0, or the users

in cell 1 exceeds the saturation capacity of BS 1. Assume that BS 1 can serve maximum Nsmall

number of users. If the area spanned by S0 is F0A, i.e., F0 is the fraction of coverage area A

served only by the target cell, the probability of at least one user in S0 is pon,0 = 1 − e−λF0A.

Similarly, the probability of users exceeding the saturation capacity of cell 1 is

pon,1 =
∞∑

j=Nsmall+1

(λA)j

j!
e−λA.

The activation probability of the target cell in the case when cell 1 is on is the union of two

independent events leading to pon,0 and pon,1, which can be given as

pon = 1− e−λF0A

Nsmall∑
j=0

(λA)j

j!
e−λA.

Summing the probabilities of both mutually exclusive events when cell 1 is on and off, i.e., ,

ponβ1 and poff(1− β1), we get the activation probability of the target cell β1

β1 = β1

(
1− e−λF0A

Nsmall∑
j=0

(λA)j

j!
e−λA

)
+(1− β1)

(
1− e−λA

)
. (1)

β1 represents the activation probability of all small cells for scenario 1.

In scenario 3, we assume that no separate signaling macro cell is available and we only have

SBSs. In this case, the SBSs should also provide coverage. If covering 1− ε fraction of the area

would be sufficient, where ε is an arbitrary number close to 0, then the target cell should be

activated if the uncovered fractional area exceeds ε. When BS 1 is off, the target BS should be

on as 100% of the cell area is uncovered. When BS 1 is on, the target BS will be activated if

1Here, the subscript indicates the cell 1 state.
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F0 > ε, or if users in cell 1 exceed Nsmall. We can rewrite (1) for β3, the activation probability

of the target cell in scenario 3, as

β3 = β3

(
1− Pr(F0 < ε)

Nsmall∑
j=0

(λA)j

j!
e−λA

)
+ (1− β3). (2)

We will use the results from stochastic geometry, described in the next section, to generalize the

model for N small cells, realistic traffic models, and also for the rest of two scenarios depicted

in Fig. 1. λ can be obtained from daily traffic profiles [17] to calculate activation probabilities,

which can then be used with the power consumption of associated equipment to determine the

total daily consumption for each scenario.

IV. MODEL DETAILS AND KEY SYSTEM PARAMETERS

A. Spatial Network Deployment and User Distribution

We consider a cluster of N homogeneous SBSs with overlapping coverage areas to a similar

small cell called the target cell as shown in Fig. 1 and illustrated in detail in Fig. 2. We will

calculate the activation probability of the target cell considering all possible events associated

with users’ presence in the target cell and the active/inactive states of the overlapping N small

cells. A Poisson Cluster Process (PCP) [18] is used for the spatial distribution of SBSs. In a

PCP, a parent PPP determines the locations of Nc hot-spots or clusters in a macro cell, and N

SBSs are uniformly distributed within each cluster.

Hexagonal grid models are also commonly used both in industry and academia for system-

level performance evaluation of wireless cellular networks [19]–[21]. The previous papers such

as [22], [23] showed that PPP models are as good as (and even better in some deployment

scenarios than) popular hexagonal grid models for modeling BS locations in terms of coverage

probability estimation when compared with real-world BS deployments. In particular, the PPP

based location model leads to a lower performance bound, whilst the grid model results in an

upper performance bound with almost the same deviations from the experimental data [23]. It was

also observed that PPP models become even more suitable for networks with femto-cells which

may take up unknown and unplanned positions [24]. Besides its modeling accuracy, the PPP

model in this work provides us with analytical tractability to derive network energy efficiency

formulas for different BS deployment scenarios, which are otherwise prohibitively hard to derive,

as in many other previous work in the field adopting PPPs to characterise BS locations [25]–[33].

The other point processes providing a better fit to real-world BS deployment data than PPPs
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and grid models (but at the expense of losing analytical tractability) are hard-core processes

(HCPs), Strauss process and Geyer saturation process [34]–[36].2 We also test the robustness

of our results obtained for PPPs using simulation experiments with Matérn I HCPs [37] that

impose minimum distance restriction between BSs. The energy saving predictions obtained by

PPPs continue to hold the same with those obtained by using HCPs.

The users are also assumed to be spatially distributed according to a PPP with density λ

within the hot-spots. Their respective traffic demand follows iid self-similar (Pareto inter-arrivals)

or Poisson distribution. It is assumed that users can select any reachable BS randomly with

equal probability causing possible activation for inactive SBSs. SBSs can either be on, with

probability β or off with probability 1− β. Section VI describes the methods to calculate these

activation probabilities in detail, which in turn determine the steady state distribution for the SBS

activation process under different architectural choices, and Section VII-A verifies the methods

by simulation experiments over range of model parameter values.

Circular cell models are more suitable for SBSs where line-of-sight (LOS) communication is

more likely and when the users are considered out of the range if the associate received power

is lower than a threshold [38]. Moreover, the transmission power almost remains the same for

all users within a small cell. We used circular small cells in Fig. 2 and in our model validation

experiments but it is not a requirement of the analysis model. It is required, however, that N

cells overlap the target cell, and all have the same area and perimeter. For example, in case of

circular coverage area with radius R, any SBS situated within 2R distance from the target SBS

will have overlapping coverage with the target cell.

B. k-Coverage Probability

For N homogeneous SBSs distributed according to the PPP with density λ, the areas indicated

by Sik|N in Fig, 2-(b), where k = 0, 1, · · · , N and i = 1, · · · ,
(
N
k

)
, are the spaces covered by

exactly k SBSs along with the target cell. The figure does not label all spaces for the sake of

illustration clarity. The probability that a point X belongs to one of the Sik|N [39], [40] is

Pr(X ∈ Sik|N) =
(2πA)k(2πA+ P 2)N−k

(2π(2A) + P 2)N
,

2The goodness-of-fit can be determined by the selected pseudo-likelihood functions as well as point process statistics such as

empty space function, area of Voronoi cells, J function and L function.
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where A is the area of each of the small cells and P is their perimeter. The probability that a

point X would be covered by exactly k SBSs besides target cell, i.e., X belongs to Sk|N , where

Sk|N = ∪(Nk)
i=1 S

i
k|N , is

Pr(X ∈ Sk|N) =

(
N

k

)
Pr(X ∈ Sik|N).

Interestingly, Pr(X ∈ Sik|N) is also equal to the fraction of the area of target cell spanned by

Sik|N [39], [40], i.e., if we denote f ik|N as the fractional area of Sik|N then

f ik|N = Pr(X ∈ Sik|N) =
(2πA)k(2πA+ P 2)N−k

(2π(2A) + P 2)N
. (3)

Similarly,

fk|N= Pr(X ∈ Sk|N)=

(
N

k

)
(2πA)k(2πA+ P 2)N−k

(2π(2A) + P 2)N
, (4)

where fk|N is the fraction of the area of the target cell occupied by Sk|N . f ik|N and fk|N can take

values from 0 to 1. Detailed relevant proofs can be accessed from [39] and [40].

C. Traffic Model

We assume that Yi ∈ {0, 1, 2, · · · } represents the traffic demand of ith user in terms of number

of Resource Blocks (RBs) for time interval (0, τ ]. Here, τ can be the length of one radio frame

in 5G, whose typical value is 10ms. Each radio frame can have maximum number of 140−2240

symbols or RBs depending on the traffic configuration of 5G3. Our traffic model generates the

demand for each user in the area of interest in each time interval τ using the model parameters.

Specifically, Yi’s are assumed to be iid random variables. For Poisson distributed traffic with

arrival rate µ, PYi(n), i.e., the probability that user i needs to send or receive n RBs in (0, τ ],

is given as

PYi(n) =
(µτ)n

n!
e−µτ . (5)

We also consider self-similar traffic with heavy-tailed distribution as it provides more realistic

representation of modern data traffic [14]. A popular example of self-similar traffic is Pareto

distributed inter-arrival times, T , i.e.,fT (t) = aba

ta+1 , where b, 0 < b ≤ t, is the minimum possible

value for t, and a, a ∈ (1, 2], reflects the heaviness of the distribution tail [14]. In this case,

PYi(n), i.e., the probability that user i needs to send or receive n RBs in (0, τ ], is [41]

3https://www.sharetechnote.com/html/5G/5G FrameStructure.html
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PYi(n) =
(a log τ/b)n

(τ/b)an!
, ∀i. (6)

More technically, the collection of points (Xi, Yi)
∞
i=1, with Xi ∈ R2 representing the location

of the ith user, form a Marked Poisson Process in R3 [42]. Here, Yi is the mark associated with

user i’s location. The probability that j users generate a combined traffic demand of n RBs in

cell area A can be computed using convolution of independent random variables.

Pr

(
j∑
i=0

Yi = n

)
=


(λA)j

j!
e−λA (jµτ)n

n!
e−jµτ Poisson

(λA)j

j!
e−λA (ja log τ/b)n

(τ/b)jan!
Self-similar

, (7)

where λ is the user density per unit area. The mean traffic demand from an area A in (0, τ ] is

λAµτ in case of Poisson traffic and λAa log(τ/b) in case of self-similar traffic.

D. Saturation Capacity of a BS

In this part, we will provide two important definitions that will be instrumental in determining

BS activation probabilities in Section VI by identifying their measure of communication capacity.

Definition 1. Saturation capacity Nsmall of a SBS is defined as the maximum number of RBs

it can allocate to users within its coverage area. Similarly, Nmacro is the maximum number of

RBs that a macro BS can allocate to the users within its coverage area.

We also define another term called relative saturation capacity. This is a useful metric that will

be used to characterize the relative fraction of RBs allocated to a set of users from a particular

part of the cell and contributing towards the saturation of the respective BS.

Definition 2. The relative saturation capacity Nf is the maximum number of RBs that can be

served by a cell in a fractional area f . Using the symbol bxe for rounding x to the nearest

integer, Nf is set to Nf = bfNcelle, where Ncell is either Nmacro or to Nsmall depending on the

BS type.

As described above, Yi is the traffic demand of each user i with position Xi. When a BS is in

saturation, we have
∑

j:Xj∈S Yj = Ncell, where S represents the associated cell with saturation

capacity of Ncell. The relative saturation capacity measure defined above is indeed the conditional

expected number of RBs (up to a rounding error) served by a BS in a particular area of interest

S∗ ⊆ S, when the BS is in saturation, i.e.,

Nf = E

[ ∑
i:Xi∈S∗

Yi

∣∣∣∣∣ ∑
j:Xj∈S

Yj = Ncell

 .
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In a PPP, users are uniformly distributed over a region given they are known to lie in this

region. Thus, the fractional area associated with S∗ is also equal to the probability of finding

Xi in S∗ once it is known to be in S. Using this observation, Nf is equal to Ncellf since this

identity holds for any number of users in S greater than zero.

The major issue resolved by the relative saturation capacity metric is to specify the number of

users that can be allowed in the region associated with f0|N without activating the target SBS.

For example, in scenario 1, the target SBS will be activated when there is any user in f0|N and

in scenario 3, coverage to this area is a more dominant issue, as shown in Section III. On the

other hand, in scenarios 2 and 4, we have a macro BS and always-on SBSs covering this area

respectively and some traffic can be allowed in this region without activating the target cell.

The important question here is how much traffic from this region can be accommodated without

triggering activation of the target cell. The concept of relative saturation capacity allows us to

quantify the traffic demand associated with f0|N without activating the target cell as bNmacro

NcAc
f0|NAe

in scenario 2 and bηNsmallf0|Ne in scenario 4. Here, Nc is the number of clusters or hot-spots of

area Ac in a macro cell and η compensates for possible overlapping of always-on cells. Details

are given in Theorems 4 and 6.

E. Power Consumption Model

Our power consumption model uses the number of active BSs, their types (i.e., SBSs and

macro cell BSs), and realistic power consumption values for each BS type as high-level system

parameters to compute power consumption of four different network architectures. This approach,

albeit simplicity of our power consumption model, will lead to insightful analytical expressions

for energy consumption comparison.

1) Macro BS Power Consumption: We assume that a macro BS consumes maximum power

Pmacro throughout the day. Out of the total power consumption of a macro BS, 55% − 60%

is consumed in the power amplifier and is load dependent [43]. Hence, a more realistic power

consumption model for macro BSs can take network load, transmission rates, channel state,

and multiple-access interference into account to optimize the power consumption. However, in

a load-based model, macro BS power consumption will vary depending on the network load

and could be less than the maximum consumption, whereas the energy consumption of SBSs

will mostly remain independent of the load as shown in [43]. This will further decrease the gap

between power consumption of the legacy architecture and that of separation architecture.
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2) Signaling BS Power Consumption: The power consumption of signaling only macro BS

will be taken as Psig−macro = Pmacro/ρ1 for ρ1 ≥ 1. In practice, ρ1 can be taken as 6 since

the signaling BS requires single antenna reducing the consumption by 1/3, and low rate data

processing, reducing the consumption by 1/2 by minimizing the load-dependent fraction [4]. In

a CRAN setting, the power consumption of a signaling only RRH with relevant BBU can be

taken as Pmacro/ρ2 for ρ2 ≈ 18. On top of single antenna use and low load, a RRH does not

need any cooling component either, reducing a further 1/3rd of the power. We vary these ratios

in Section VII to ascertain that our conclusions are not sensitive to the parameters’ values.

3) SBS Power Consumption: The power consumption of a SBS is almost independent of

load [43]. Moreover, since the communication is over short distances and mostly LOS [38], the

transmission power is not significantly different from one user to another within the cell. We

take the power consumption of a SBS, as Psmall = Pmacro/ρ3. ρ3 can be taken as 100 [43]. In

a CRAN, small RRHs’ consumption is Psmall/ρ4. A realistic value for ρ4 could be 1.15 due to

half (power amplifier) consumption [44]. The power consumption in sleep mode is selected as

Psleep = 0.1W in our simulation study [3]. The implementation of on/off/sleep cycles has many

issues [45] but it is outside the scope of the present paper. However, we assumed P off = Psleep

in order to avoid over-estimation of energy savings4.

V. SATURATION PROBABILITIES

As discussed in Section III, we need the saturation probability of the overlapping BSs, i.e.,

the probability that they are within their saturation capacity, in order to calculate the activation

probability of target BS. A user can be served by either of the reachable BS and the thinning

theorem can be used to calculate the probability of users assigned to each of the cells.

Theorem 1. The probability for each active SBS among l, 0 ≤ l ≤ N , to remain within the

saturation limit Nsmall, is given by

Pss=
∞∑
j=0

(λf(l−1, 0)A)j

j!
e−λf(l−1,0)A

Nsmall∑
n=0

Pr

(
j∑
i=0

Yi=n

)
, (8)

where Pr(
∑j

i=0 Yi = n) is given in (7) and

f(l − 1, 0) =
l−1∑
k=0

(
l − 1

k

)
f ik|l−1

k + 1
.

4Over-estimation of energy savings is equivalent to under-estimation of energy consumption.
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Proof. Each active small cell will have l − 1 overlapping active cells. In f ik|l−1, any BS from

k and the active cell can be selected with equal probability to serve a user. As a consequence,

the average number of users served by each BS in f ik|l−1 is λ/(k + 1) by using the thinning

theorem for Poisson processes. Hence, average number of users served by each BS is given by

the Poisson random variable with mean
l−1∑
k=0

λ

k + 1

(
l − 1

k

)
f ik|l−1A = λA

l−1∑
k=0

(
l − 1

k

)
f ik|l−1

k + 1

= λAf(l − 1, 0).

One important remark about (8) is that
∑Nsmall

n=0 Pr
(∑j

i=0 Yi = n
)

= Pr
(∑j

i=0 Yi ≤ Nsmall

)
.

We prefer to provide an expression for Pss as given in (8) because we can analytically express

the probability Pr
(∑j

i=0 Yi ≤ Nsmall

)
in closed form for all n ≥ 0.

Theorem 2. Consider the scenario in which there are M always-on small or macro cells and l

active SBSs. Assume M always-on cells collectively cover the area of these l active small cells.

Let Am ∈ [0, 1], for m = 1, . . . ,M , be the fraction of area of any of these l active small cells

simultaneously covered by m always-on cells (i.e., any point in such a region also belongs to

m always-on cells). If users are assigned to any active SBS in range with equal probability,

then the probability that each of the l SBSs to remain within the saturation limit Nsmall can be

expressed by

Pss2(M) =
∞∑
j=0

(λA
M∑
m=1

Amf(l − 1,m))j

j!
e−λA

∑M
m=1 Amf(l−1,m) Pr

(
j∑
i=0

Yi ≤ Nsmall

)
, (9)

where Pr
(∑j

i=0 Yi = n
)

is given in (7),
∑M

m=1Am = 1 and

f(l − 1,m) =
l−1∑
k=0

(
l − 1

k

)
f ik|l−1

k + 1 +m
.

Proof. The area of a given small cell A can be expressed as A =
∑M

m=1AmA, where Am ∈ [0, 1]

and
∑M

m=1Am = 1. Each Am is the fractional area where m always-on cells overlap, and users
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can be assigned to any reachable BS with equal probability. Using the thinning theorem, the

Poisson coefficient seen by each BS among l active SBSs is
l−1∑
k=0

(
l − 1

k

)
f ik|l−1

M∑
m=1

λ

k + 1 +m
AmA = λA

M∑
m=1

Am

l−1∑
k=0

(
l − 1

k

)
f ik|l−1

k + 1 +m

= λA

M∑
m=1

Amf(l − 1,m).

Corollary 1. Consider the scenario where M always-on small cells collectively cover the area

of l active small cells as described in Theorem 2. For each of the M special always-on SBSs,

the probability to remain within the saturation limit Nsmall is given as

Pss−on(M) =
∞∑
j=0

(λA
∑M−1

m=0 Amf(l,m))j

j!
e−λA

∑M−1
m=0 Amf(l,m) Pr

(
j∑
i=0

Yi ≤ Nsmall

)
, (10)

where Am is the fractional area where m always-on cells overlap, Am ∈ [0, 1] and
∑M−1

m=0 Am =

1, and Pr(
∑j

i=0 Yi = n) is given in (7) and

f(l,m) =
l∑

k=0

(
l

k

)
f ik|l

k + 1 +m
, m = 0, 1, · · · ,M − 1.

Proof. The proof is similar to the one given for Theorem 2. It is omitted to avoid repetitions.

Corollary 2. The probability, Psm, for macro cell to remain within its saturation limit Nmacro

can be given according to

Psm =
∞∑

Nc=1

(N̄c)
Nce−N̄c

Nc!(1− e−N̄c)

∞∑
j=0

(λf(l, 0)NcAc)
j

j!
e−λf(l,0)NcAc Pr

(
j∑
i=0

Yi ≤ Nmacro

)
(11)

in the presence of l small active cells in each hot-spot of area Ac and perimeter Pc, where N̄c

is the mean number of clusters in a macro cell and Pr(
∑j

i=0 Yi = n) is given in (7). Also,

f(l, 0) =
l∑

k=0

(
l

k

)
f ik|l
k + 1

, where f ik|l =
(2πA)k(2πAc + PPc)

l−k

(2π(A+ Ac) + PPc)l
.

Proof. When a macro cell is overlapped by l SBSs in each hot-spot, the number of users served

by the macro BS per hot-spot is given by a Poisson random variable with mean λf(l, 0)Ac, similar

to Theorem 1. Here, f ik|l reflects the fractional area of exact k-overlap when l small cells of area

A and perimeter P are randomly deployed over a hot-spot of area Ac and perimeter Pc [39],

[40]. This expression for f ik|l is used only for calculation of Psm. For all other probabilities, f ik|l
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is calculated by (3). Summing over Nc identical and independent clusters, we obtain a Poisson

random variable with mean λf(l, 0)NcAc, conditioned on Nc, for the total number of users

covered by the macro cell. Nc = 1, 2, · · · is also a Poisson random variable itself in the PCP

model [18] and (11) is achieved when the probability of attaining Nmacro RBs in a macro cell

for specific Nc is averaged over the distribution of Nc.

VI. ACTIVATION PROBABILITIES

In this section, we develop the activation probabilities for target cell in each of the architectural

alternatives discussed in Section II.

A. Scenario 1: Separation Architecture

In this scenario, we assume that a signaling macro cell is overlaying the target cell and N

small cells. A signaling macro cell [15] is a macro cell which is responsible to provide low-rate

control signaling only. In this case, N SBSs and the target SBS will be on only if there is a

user to serve. We define β1 as the activation probability of target and N SBSs in scenario 1.

Theorem 3. The activation probability β1 of the target cell, also for each of the N randomly

deployed cells, for scenario 1 is given as

β1 =
N∑
l=0

βl1(1− β1)(N−l) (1− p0(Pss)
l
)
, (12)

where Pss is given in Theorem 1 and p0 is given according to

p0 = Pr(no traffic in f0|lA) =

 e−λf0|lA(1−e−µτ ) for Poisson traffic

e−λf0|lA(1−(b/τ)a) for self-similar traffic
.

Proof. Consider the case in which there are l active cells out of N SBSs. In this case, the target

cell will not be turned on if and only if there is no traffic in the fractional area f0|l covered only

by the target cell and all l active cells remain unsaturated. The probability for the former event

is equal to p0, which is given by (cf. (7))

p0 = Pr
(
no traffic in f0|lA

)
=
∞∑
j=0

(λf0|lA)j

j!
e−λf0|lA Pr

(
j∑
i=0

Yi = 0

)
.

On the other hand, the probability for the latter event is (Pss)
l. Using symmetry in the problem

and summing up all possible cases, we arrive at (12), which concludes the proof.
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We note that (12) in Theorem 3 needs to be solved numerically to obtain the activation

probability β1 in this network deployment scenario. It is shown in validation experiments in

Section VII-A that this numerical calculation can be carried out efficiently and β1 matches the

simulated activation values accurately.

B. Scenario 2: Legacy Architecture

In this scenario, a standard macro cell overlay the target cell and N overlapping small cells

catering for coverage as well as for some of the data transmissions.

Theorem 4. Assume that users can be assigned randomly to an overlaying macro cell and any

l active cells. Then, the probability of activation of target SBS, β2, is given by

β2 =
N∑
l=0

βl2(1− β2)(N−l)(1− p02(Psm(Pss2(1))l + (1− Psm)(Pss)
l)
)
, (13)

where p02 = Pr(no traffic than that served by macro BS in f0|lA), Pss, Pss2(1), and Psm are

given in (8), (9) and (11), respectively.

Proof. Similar to the proof of Theorem 3, the target SBS will not be turned on in this scenario

of l active overlapping SBSs and a macro BS if and only if the traffic in f0|lA does not exceed

the capacity that can be assigned to macro BS, and all macro BS and l active SBSs remain

unsaturated. The probability of the former event is

p02 =
∞∑
j=0

(λf0|lA)j

j!
e−λf0|lA Pr

(
j∑
i=0

Yi ≤ N02

)
,

where N02 represents the maximum number of RBs that can be allocated to the macro BS and

associated with the users in f0|lA. The probability of the latter event is the union of two mutually

exclusive events. When the macro BS is within its saturation capacity, the users can be randomly

assigned to the macro BS and l SBSs. In this case, the probability that all active BSs remain

unsaturated is Psm(Pss2(1))l. On the other hand, when the macro cell is saturated, the users can

only be assigned to l active cells and the probability that they remain unsaturated while the

macro BS is saturated is (1−Psm)(Pss)
l. Using symmetry in the problem and summing up over

all possible cases, we arrive at (13), which concludes the proof.

We note that we cannot provide a closed form analytical expression for p02 in Theorem 4,

mainly due to unavailability of an accurate characterization of N02 . As one way of approximating

p02 , we propose to use the approximation N02 ≈ bNmacro

NcAc
f0|lAe, where Nmacro is the saturation
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capacity of a macro BS and Nc is the Poisson random variable representing number of hot-spots,

of area Ac, in the macro cell. This approximation is also discussed in Section IV. By using this

approximation for N02 , the probability p02 can be approximated as follows

p02 ≈
∞∑
j=0

(λf0|lA)j

j!
e−λf0|lA

∞∑
Nc=1

(N̄c)
Nce−N̄c

Nc!(1− e−N̄c)
Pr

(
j∑
i=0

Yi ≤
⌊
Nmacro

NcAc
f0|lA

⌉)
.

The derivation is similar to the one given for Corollary 2, and hence omitted to avoid

repetitions.

C. Scenario 3: Small Cells Only

In this scenario, the SBSs provide control signaling as well as data transmissions. In order

to provide coverage over (1 − ε) of the total area, one or multiple SBSs should be on all the

time. Also, as in scenario 1, an inactive SBS is turned on to serve users in case an active SBS

is saturated, though, it can still provide control signaling.

More specifically, for l, 0 ≤ l ≤ N , active SBSs, the target cell will be turned on if the

fractional area associated with S0|l is greater than ε in scenario 3. The stochastic geometry

expressions given in (3) and (4) were utilized in our analysis above to derive the activation

probabilities in scenarios 1 and 2 by calculating the mean values of fractional areas [40]. However,

in this case, we also need to know the distribution of the random fractional area spanned by S0|l

to derive activation probabilities. To this end, we define a random variable F0|l ∈ [0, 1], having

mean f0|l, which represents the fractional area spanned by S0|l in an instantaneous deployment.

We will use the probability Pr
(
F0|l < ε

)
in the statement of Theorem 5 to characterize the

activation probability β3 for the target cell in scenario 3. After the proof of this theorem, we

will provide an efficient approach to approximate this probability.

Theorem 5. The activation probability β3 of the target cell, also for each of the N randomly

deployed cells, for scenario 3 is given as

β3 =
N∑
l=0

βl3(1− β3)(N−l) (1− Pr(F0|l < ε)(Pss)
l
)
, (14)

where Pss is given in Theorem 1 and F0|l is the random fractional area spanned by S0|l.

Proof. For the case where there are l, 0 ≤ l ≤ N , active cells, the target cell will not be

turned on if F0|l < ε and all l SBSs remain within their saturation limit as in Theorem 3. Using
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symmetry in the problem and summing up all possible cases, we arrive at (14), which concludes

the proof.

Similar to Theorem 4, we cannot accurately characterize the probability expression Pr(F0|l <

ε) in Theorem 5. There are some important results in the stochastic geometry literature, such

as [46], which show that generalized geometric contents of many closed sets constructed over

PPPs have Gamma type distributions. Poisson-Voronoi tessellation is an important example of

such content. According to our search, however, there is no work relevant to the distribution

of F0|l. We still find that the assumption of F0|l having a Gamma distribution is a workable

choice. This assumption lets us calculate the coverage probabilities with reasonable accuracy,

as shown by the model validation experiments in Section VII-A. We also simulated scenarios

with random deployments of SBSs, calculated empirical distributions of F0|l, and calculated

p-values for distribution fit for relevant Gamma distributions. The calculated p-values provide

strong statistical significance for most of the cases.

In order to provide an approximation for Pr(F0|l < ε), let us define g(x) as the probability

density function (pdf) of F0|l. We set g(x) = Γ(x;α, θ)/C, where x ∈ [0, 1] and C is the nor-

malizing constant, α is the shape parameter and θ is the scale parameter of Gamma distribution.

g(x) is then given as

g(x) =
xα−1e−x/θ

CθαΓ(α)
,where Γ(α) =

∫ ∞
0

xα−1e−xdx and C =

1∫
0

xα−1e−x/θ

θαΓ(α)
dx.

Using the properties of Gamma pdfs, the parameters α and θ can be calculated through mean

and variance. In particular, the mean of F0|l is equal to f0|l, which can be calculated by using (4).

Let σ0|l be the standard deviation of F0|l. Then θ = σ0|l
2/f0|l and α = f0|l/θ. Using simple curve

fitting over the plot of f0|l vs. σ0|l, not shown in the paper due to space limitations, obtained

from simulations with various N and l, it can be seen that σ0|l ≈ f0|le
−2f0|l . The probability

Pr
(
F0|l < ε

)
can then be approximated according to

Pr
(
F0|l < ε

)
≈ 1

C

∫ ε

0

Γ(x; e4f0|l , f0|le
−4f0|l)dx. (15)

D. Scenario 4: Small Cells Only, With Always-on M SBSs

In this scenario, M SBSs are strategically placed to cover the whole area as shown in Fig. 3

and other SBSs, not shown in the figure, are located randomly or according to the data demand.

The fixed cells can also carry data. The users can be assigned to one of the reachable and active
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(a) (b)

Figure 3: Target cell has an overlay of M always-on SBSs to provide coverage to the area.

Randomly deployed SBSs are not shown. (a) small cells with same hexagonal area, (b) small

cells with same circular area.

cells, among the always-on cells or the active cells among randomly deployed N −M cells,

with equal probability.

Theorem 6. The activation probability β4 of the target cell, also for each of the N−M randomly

deployed cells, for scenario 4 is given as

β4 =
N−M∑
l=0

βl4(1− β4)(N−M−l)
[
1− p04 (Pss−on(M))M (Pss2(M))l

]
, (16)

where p04 = Pr(no traffic than that served by M SBSs in f0|lA), Pss−on(M) is given in Corol-

lary 1, and Pss2(M) is given in Theorem 2.

Proof. Consider the scenario with l, 0 ≤ l ≤ N , active cells and M always-on cells. The target

cell will not be turned on if and only if the traffic from users in f0|lA remains within the serving

capacity of M always-on cells, and M always-on SBSs and l active SBSs remain unsaturated.

Similar to the proof of Theorem 4, the probability of the former event is given by

p04 =
∞∑
j=0

(λf0|lA)j

j!
e−λf0|lA Pr

(
j∑
i=0

Yi ≤ N04

)
,

where N04 is the maximum RBs allocated by M always-on SBSs to the traffic generated in

f0|lA. The probability that M SBSs remain unsaturated is (Pss−on(M))M , and that for l active

SBSs is (Pss2(M))l. Using symmetry in the problem and summing up all possible cases, we

arrive at (16), which concludes the proof.

Similar to Theorem 4, accurate characterisation of N04 is not available. We propose an

approximation using the relative saturation capacity idea presented in Section IV, i.e., N04 ≈
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bηNsmallf0|le, where η ≥ 1 compensates for the fact that some area could be served by multiple

always-on SBSs. For example, η = 1.17 for the circular cell case and η = 1 for hexagonal cells.

Corollary 3. If small cells have hexagonal areas as shown in Fig. 3-(a), the activation probability

β4 of the target cell, also for each of the N − 3 randomly deployed cells, is given as

β4 =
N−3∑
l=0

βl4(1− β4)(N−3−l)
[
1− p04(Pss−on(3))3 (Pss2(3))l

]
, (17)

where p04 is given in Theorem 6, Pss−on(3) is given in Corollary 1 with A0 = 1, and Pss2(3) is

given in Theorem 2 with A1 = 1.

Proof. The proof is similar to the proof given for Theorem 6 with M = 3. In this case, there are

3 always-on cells which do not overlap each other, and hence A0 = 1 (i.e., see Fig. 3-(a)). Users

in the target cell can be assigned to l active SBSs or only one of the 3 always-on SBSs, and

therefore A1 = 1 for Pss2(3) in (17). Summing up over all possible cases, we arrive at (17).

Corollary 4. If small cells have circular areas as shown in Fig. 3-(b), the activation probability

β4 of the target cell, also for each of the N − 3 randomly deployed cells, is given as

β4 =
N−3∑
l=0

βl4(1− β4)(N−3−l)
[
1− p04 (Pss−on(3))3 (Pss2(3))l

]
, (18)

where p04 is given in Theorem 6, Pss−on(3) is given in Corollary 1 with A0 = 0.66, A1 = 0.34,

and Pss2(3) is given in Theorem 2 with A1 = 0.83, A2 = 0.17.

Proof. The proof follows from the similar lines as in the proof of Corollary 4 by using standard

equations for calculating overlapping areas for circular cells (i.e., see Fig. 3-(b)).

VII. NUMERICAL ANALYSIS

In this section, we present the numerical results regarding power consumption under different

scenarios described above. Unless stated otherwise, we have fixed the parameters as N = 10,

N̄c = 10, A = 3 × 104m2 [47], [48], a = 1.8, b = 1ms for the self-similar traffic [14], which

corresponds to E[Yi] = a log(τ/b) = 4 for τ = 10ms. According to [47], 20 users can be assigned

to a SBS and 70 users to a macro BS in a typical network. We consider then Nsmall = 20E[Yi]

RBs and Nmacro = 70E[Yi]. Ac, the area of each cluster is taken as 4A to allow all N + 1 SBSs

to lie within the cluster. Power consumption model parameters are selected as Pmacro = 1000W,

ρ1 = 6, ρ2 = 18, ρ3 = 100, ρ4 = 1.15 [4], [43], [44]. These values are close to the current state
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Figure 4: Activation Probability β versus λ (user density) for scenarios 1, 2, 3, and 4. Here β

can be β1 (separation), β2 (legacy), β3 (small cells only 1) and β4 (small cells only with 3 on

SBSs) relative to the scenario.

of the art of small cell deployments. ε is selected as 1%. We assume that all BSs have circular

cell areas only for model validation and compare the corresponding theoretical results with the

simulated probabilities. For the rest of the analysis, we only assume that all small cells have

similar area A. The exception is scenario 4, where we assume 3 fixed always-on small cells to

cover the area and calculate the activation probability using Corollary 4.

A. Model Validation

In order to verify Theorems 3, 4, 5 and 6, we simulated the scenarios in MATLAB. All SBSs

are assumed to have circular coverage with radius R = 100m. The target SBS is assumed to be

located at the origin and Ac, the area of a cluster, is selected as π(2R)2. Each simulation run

generates one instance of all scenarios, i.e., location of N SBSs, users and respective traffic,

for the parameter settings, assigns users randomly to reachable BSs, activates enough SBSs in

scenario 3 to achieve sufficient coverage, and saves the status of the target SBS once all users

are assigned. The activation probabilities are calculated by summing target SBS’ statuses for all

scenarios and normalizing over total Ts simulation runs.

Figure 4 shows the activation probabilities calculated via theoretical expressions and relevant

simulations for N = 4, 8, 12 and λ = 0.1−5, 0.201−3, · · · , 0.002 with self-similar user traffic. The

y-axis in Fig. 4 is β, representing β1, β2, β3, or β4 corresponding to the scenarios of separation
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architecture, legacy architecture, SBSs only network, or SBS only network including 3 on cells

for coverage, respectively. Each curve represents a specific value of N . Plot colors represent N

as shown by the color bar in Fig. 4. Activation probabilities are calculated from simulations with

Ts = 100 runs and are averaged over repeated 100 trials. In particular, each trial consisted of 100

simulation runs to generate a sample activation probability curve, and these curves are averaged

over 100 trials to obtain error bars for each data point. The error bars in Fig. 4 represent a single

standard deviation on both sides of the mean value of β from simulations. The compact error

bars in Fig. 4 show that the simulated values of activation probabilities lie within a small range

and closely follow the respective theoretical values.

B. Energy Consumption Analysis

An average data traffic profile over a day, denoted by Λ, is presented in [17]. The report [17]

also shows the breakdown of different types of traffic, such as computing, streaming, etc. Most

of the traffic types show higher usage during the day and very less during nights. In general, the

time of the day affects the number of the active users in the system and the proportional use of

the specific traffic type remains stable throughout the day. We selected to vary λ, the density of

the users, with Λ and kept the traffic model parameters a, b, and µ constant (cf. Section IV-C).

Smaller Λ results in fewer users in the system, which further results in less load.

We select λmax = 0.0016 as the minimum value of λ which yields βi = 0.99 ≈ 1,∀i,

interpreted as the full load. The user density for our experiments will be λ = λmaxΛ/100. The

normalized traffic profile Λ and associated β1, β2, β3 and β4 are given in Fig. 5.

In this figure, β3 > β1 for low traffic because the SBSs in scenario 3 are also responsible for

providing coverage. However, β1 ≈ 0.69, which can be interpreted as around 70% active cells.

This is the major cause of separation architecture not being as beneficial as expected. Although,

the traffic demand is low (≈ 20%), but the associated users are randomly distributed within the

area and multiple small cells are required to be active.

The signaling BS in scenario 1 can also be designed to provide some data transmissions as

well so all the data BSs can be turned off during low-utilization phase. Scenario 4 can be a

relevant example where we have 3 SBSs to cover the area. β1 is not expected to be lower than

β2 and β4 as macro cell of scenario 2 and always-on cells can serve some load. Scenario 1 can

only be power efficient than scenario 2 and 4 if the signaling only macro BS consumes much

less power than the standard macro BS and always-on SBSs in comparable area.
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Figure 6: Daily energy consumption for all

four scenarios calculated from activation prob-

abilities.

Using the activation probabilities over 24 hours and the power consumption model given in

Section IV-E, we add the energy consumption in kWh for all cells in scenarios 1-4. As an

example, the total energy consumption in a day for scenario 1 is

EC1 =
(N + 1)

φ

24φ∑
i=1

(β1iPsmall + (1− β1i)Psleep) + 24A
Psig−macro

N̄cAc
, (19)

where β1i is the activation probability for scenario 1 at the ith sample instant, φ is the number of

samples in an hour and N̄c is the mean number of clusters, each with area Ac, in a macro cell. The

energy consumption of other scenarios and also for CRAN scenarios are also calculated in similar

manner. Energy consumption values for scenarios 1-4 are given in the bar chart of Fig. 6. As

expected, CRAN based scenarios have better energy consumption than the scenarios with SBSs.

CRAN may be more energy efficient in practice as it offers better energy saving opportunities

through BBU sharing and more sophisticated alternatives of shutting down equipment.

The most important result of Fig. 6 is the marginal energy savings in scenario 1, i.e., the

separation architecture, when compared against scenarios 2 and 3. Separation architecture saved

489Wh over a day compared to the legacy architecture which turned out to be 16.48% savings.

This saving can be considered reasonable but when compared for the CRAN case, the separation

architecture saves a mere 6.85% against the legacy architecture. Comparing with scenario 3, com-

prised of small cells only, separation architecture saves 49.5Wh in a day which is approximately

1.96% savings. For the CRAN case, the energy saving of separation architecture stands at 4.41%

against scenario 3. On the other hand, scenario 4, with SBSs and CRAN, provides 33.31% and

23.68% respective savings compared to scenario 2 and 21.7% savings compared to scenario 3.
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Table I: Traffic Models and γij (SBS, CRAN).

Traffic Model γ12 (%) γ13 (%) γ14 (%)

Self-

similar

1− (a, b) = (1.8, 1ms) 16.48, 6.85 1.96, 4.41 -25.24, -22.05

2− (a, b) = (1.8, 0.1ms) 16.81, 7.28 1.78, 4.24 -25.56, -22.36

3− (a, b) = (2, 1ms) 16.53, 6.9 1.89, 4.35 -25.66, -22.46

Poisson

1− µ = 400 16.48, 6.85 1.96, 4.41 -25.24, -22.05

2− µ = 828 16.81, 7.28 1.78, 4.24 -25.56, -22.36

3− µ = 439 16.53, 6.91 1.89, 4.35 -25.66, -22.46

In scenario 4, we assumed 3 always-on small cells to provide coverage to the analysis area. In

practical situations, we may need more than 3 SBSs due to uneven terrain.

C. Sensitivity to the parameters

In order to be confident about our conclusions, we performed comprehensive sensitivity

analysis by considering the effects of almost all parameters in our study. We use % Energy

Savings as a figure of merit. The % Energy Savings, γij , for scenario i with respect to scenario

j is defined as

γij =
ECj − ECi

ECj
× 100,

where ECi is the energy consumption of scenario i computed over a day and i = 1 and j = 2−4.

1) Traffic Model: Table I shows γij when traffic was generated using Poisson as well as self-

similar distributions. We have varied the model parameters in both models. Set of parameters

with same ID across the models have same mean traffic E[Yi]. E[Yi] is µτ for Poisson model.

We can see that the % energy savings remain small across the varied traffic for separation

architecture and there are no significant variations specially in γ12 for both cases of SBSs and

CRAN. Moreover, Scenario 4 remains superior to the separation architecture as shown by the

negative γ14. We expected this result as variations in user traffic effect all scenarios in almost a

similar manner and thus the relative measure of % energy savings remains almost the same.

2) Hard Core Point Process (HCP): In a HCP, the SBSs are at least rd apart from each

other [37]. This distribution is also called Matérn I HCP and is based on an original PPP with

minimum distance constraint. We calculate activation probabilities for each scenario through

simulation experiments.

Table II shows γij when SBSs in all scenarios follow HCP with specific rd. Traffic is considered

to be self-similar with (a, b) = (1.8, 1ms). The % energy savings of separation architecture with



25

Table II: HCP and γij (SBS, CRAN).

rd (m) γ12 (%) γ13 (%) γ14 (%)

20 16.36, 6.87 0.29, 2.75 -22.64, -19.57

40 16.45, 6.9 0.27, 2.74 -22.57, -19.49

60 16.33, 6.78 0.002, 2.48 -23.37, -20.27
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Figure 7: The variation in γ12, γ13, and γ14 when λmax, N̄c, M , and ρ1 are varied between the

given ranges. All the parameters are kept at default values while one is varied.

respect to the other architectures is not significantly different from that computed with PPP spatial

distribution (row 1 of Table I). Separation architecture is still marginally better than scenarios 2

and 3, and significantly worse than scenario 4.

As rd increases, we observe the decrease in activation probabilities as the SBSs are more

spread out and cover a larger area together, but it happens for all deployment scenarios. The

% energy savings with respect to legacy scenario remain almost the same for both SBS and

CRAN cases. γ13 decreases indicating that scenario 3 is able to close the gap as it now requires

smaller number of SBSs to provide coverage. The decrease is more pronounced in case of SBSs

where the power consumption per unit of equipment is higher than the case of CRAN. Scenario

4 remains superior for all values of rd.

3) System Model Parameters: In Fig. 7, we varied λmax from 0.0003 to 0.003, N̄c from 2

to 30, M , the number of fixed always-on SBSs in scenario 4, from 3 to 10, and ρ1, the ratio

between power consumption of a normal macro BS and a signaling only macro BS, from 3 to 10.
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In each experiment, other parameters are fixed at default values while one is varied. Moreover,

since relative merit of alternative architectures remains similar across SBS and CRAN, we are

only focusing on networks with SBSs instead of RRH to study the effects of parameter values.

CRAN also produced similar conclusions.

The thick black lines show the respective energy savings for default parameter values, i.e.,

M = 3, λmax = 0.0016, N̄c = 10, and ρ1 = 6. We observed significant variations in %

energy savings across the scenarios, although, the variations are not always linear with the

varied parameter. The mean values of γij , shown with the red circle, are indicative of this fact.

The key takeaway point of Fig. 7 is that the maximum observed % energy savings of separation

architecture stays under 20% in all cases. Variations in λmax caused γ12 and γ13 to improve but

only for very small values of λmax where maximum resource utilization for scenario 1 falls

to 60% at peak load in a day and almost 40% of the equipment is never used. On the other

hand, 85% of the small cells in scenario 3 are active to provide coverage. Scenario 4 remains

superior for all values of λmax. As shown in Fig. 7, variations in N̄c and ρ1 only caused marginal

improvements in % energy savings, if any. Effects of varying Nmacro can also be explained by

the variations in Nc.

Figure 7 also shows the impact of increasing M on γ14. Here without considering any particular

shape of the cell, we assume that M cells, each with area A, are needed to cover the analysis

area. For simplicity, we assume that the cells do not intersect each other. Overlapping cells,

in general, allow more users to be served in the area lowering the activation probability and

corresponding energy consumption of the system. Our assumption, though may not be true in

practical scenarios, only makes the scenario 4 worse and not better. This reason causes a higher

value of γ14 shown in Fig. 7 for M = 3 than the default γ14 shown by thick black line, and

also reported by row 1 of Table I. Figure 7 shows that as M increases, scenario 4 becomes

slightly worse than the separation architecture. One important point here is that uneven terrain

would also affect the signaling macro cell in a separation architecture and we may need multiple

signaling cells to counter the signal attenuation through obstacles. We did not consider multiple

signaling macro BSs in Fig. 7 giving an advantage to the separation architecture.

Among the system model parameters, some impact all the scenarios in similar manner. For

example, changing N , the number of overlapping small cells, Nsmall, the saturation capacity of

small cells, and A, the area of small cells, changes the capacity and load of the system. Which

shifts β vs. λ (cf. Fig. 4) curves to either left or right but the relative energy consumption of
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Figure 8: Normalized data traffic profiles, activation probabilities, and weekly energy consump-

tion for residential area, office area, and transport area [49].

different scenarios would remain the same. Similarly, varying ρ3, i.e., the ratio between power

consumption of macro and SBS, and ρ4, the ratio between power consumption of SBS and small

RRH, has no effect over % energy savings as variation in numerator is canceled out by that of

the denominator.

4) Location Based Daily Traffic Profile: We also tested the scenarios under study with different

daily traffic profiles. A detailed study on various types of weekly data traffic profiles is performed

in [49] for different environments, such as residential, office, and transport areas. Transport area

profile is particularly interesting because the traffic in the night is very close to zero. All data

traffic profiles are normalized by the overall peak value and used in the calculation of activation

probabilities and power consumption values for scenarios 1, 2, 3, and 4 in a similar manner

and with similar parameters as in Section VII-B. λmax is chosen as 1.4 × 10−5 for residential

environment, 2.8 × 10−5 for office area, and 5 × 10−5 for transport area profile. These are the

values of λ which yield full utilization of resources.

The traffic profiles for one day are shown in top panels of Fig. 8 along with the activation

probabilities of all scenarios. Our analysis took weekly profile [49] into consideration. Due

to space constraints the traffic over a whole week is not shown here. The weekly energy

consumption in kWh is given in Fig. 8. In all of the environments, scenario 4, the small cells only

network with some fixed always-on cells, has the lowest consumption. The energy consumption

of scenario 1, the separation architecture, is only marginally better.
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VIII. RELATED WORK

First presented by Greentouch consortium (www.greentouch.org) [1], the idea of separation

architecture was studied under EU FP7 project EARTH [2] and by Ericsson and NTT DOCOMO

under the names ‘lean carrier’ [50] and ‘Phantom cell concept’ [16] and followed up with

evaluation studies [8]. The idea is also included in 3GPP release 12 under the concept of New

Carrier Type [51]. The focus of this section is only on the energy/power consumption studies for

separation architecture and not on the related development of the CDSA (Control-Data Separation

Architecture) technology [6], [7]. Most of the efforts to understand the margins of energy savings

reported very attractive figures. We found some issues with the assumptions in all of the studies.

Also, they all have compared against all-on scenario and did not use any energy management

scheme with the legacy network.

The analysis reported in [3] shows that depending on the daily load profile, the energy

efficiency can be improved by more than 50 times comparing to the legacy systems. We think

that these results could be due to under-utilized separation architecture. The paper reported 20%

activation probability at full load which means that 80% of the equipment was never used.

When this activation probability is compared against 100% on legacy systems, the discrepancy

in energy efficiency is greatly inflated. Moreover, the data BSs in the separation architecture

do not have finite capacity resulting in very low activation probability. The study in [2] under

EU FP7 project EARTH shows that the opportunity of improved sleep cycles in the separation

architecture have saving potential of 85−90% when compared to the legacy systems. This study

employs completely silent sub-frames, i.e., 0% load, to measure the saving potential of separation

architecture as compared to the always-on legacy BS.

In a follow-up paper on Phantom cell concept, the authors calculated spectral efficiency

and energy efficiency of Phantom cells (on-demand data cells in a separation architecture) and

compared it to the scenario with small cells [8]. Both scenarios assumed macro cell overlay.

In small cells, the same channels are used for macro and SBSs, whereas Phantom cells used

different channels than macro cell, which improved its spectral efficiency. Improved spectral

efficiency also translated into better energy efficiency, defined as bit/J. The power consumption

comparison in [10] of the separation architecture is done with that of a single macro cell scenario

and it showed that 50% or more reduction is possible. We remark that the savings are probably

the result of using small cells in separation architecture than a macro cell. The relative energy
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savings, of multiple small cells when compared against macro cell providing similar performance,

depends on many factors and one is not always better than another.

The power consumption of control-data separated heterogeneous CRAN (H-CRAN) is com-

pared against a conventional HetNet, instead of a non-separated H-CRAN, in [12] and the

simulation results show 16% improved power consumption. Interestingly, the paper did not

include sleep or off modes with the data BSs in their study and the improvement in the energy

efficiency is mainly due to the sharing of centralized BBU pool in H-CRAN, centralization of

control signaling, and also efficient resource allocation with reduction in control overhead.

The feasibility study reported in [9] also did not consider the finite capacity of BSs rather

they showed, through simulations, that low number of users would trigger a low activation

probability for on-demand BSs. The activation probability is not compared against that of the

current systems. In a recent study [11], the authors developed energy management strategies over

the separation architecture using sleep and off states of BSs and compared them with each other.

There was no comparison with the energy consumption of legacy system. Similarly, the recent

paper [52] calculates and optimizes coverage probability of signaling BSs under non-line-of sight

(NLoS) and energy efficiency of data BSs under LoS and NLoS conditions but did not compare

the energy efficiency with that of a legacy system.

IX. CONCLUSIONS

In this paper, we have modeled energy consumption for next generation HetNets with and

without logical separation of control and data transmissions. We expected to observe very low

energy consumption with separation architecture, but the results indicated otherwise and the

maximum % saving was under 18% when compared with a legacy network. For a CRAN based

setting, this margin was further reduced to under 7%. When we fixed minimal number of SBSs

to cover the area in a legacy architecture, with small cells only and without the separation, and

kept them always on, the non-separation architecture outperformed the separation architecture

by huge margin. One may argue that in practice, we may need more small cells to cover the area

because of uneven terrain and signal blockages due to buildings. However, this would affect the

signaling macro cells in a separation architecture as well.

The major reason for the discrepancy in our expectations and results is the non-negligible

requirement of active cells during low utilization period of the day. Our results show that around

70% of the SBSs in a separation architecture are needed to be on during nighttime according
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to the daily data traffic profile. For this type of traffic, a CRAN with shared BBU pool is more

efficient. Also, the signaling infrastructure should also be designed to carry data during low-traffic

phase. As future extension of the current research, we are planning to develop a framework for

detailed dimensioning of a signaling BS. This framework will be based on generalized energy

consumption model taking the transmission rates, channel state, and multiple access interference

into account. The model will be able to optimize signaling BS’ data capacity for given wireless

network and operating conditions with respect to energy efficiency.

As another future extension of the current paper, we are also developing mathematical expres-

sions for activation probabilities of target SBS when the overlapping SBSs are deployed according

to a Hard Core Point Process. As overlapping small cells increase, the problem becomes very

complex due to possible combinatorial nature of overlapping coverage and loss of independence

in deployment of SBSs.
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