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Abstract—The advent of elastic Content Delivery Networks
(CDNs) enable Content Providers (CPs) to lease cache capacity
on demand and at different cloud and edge locations in order
to enhance the quality of their services. This paper addresses
key challenges in this context, namely how to invest an avail-
able budget in cache space in order to match spatio-temporal
fluctuations of demand, wireless environment and storage prices.
Specifically, we jointly consider dynamic cache rental, content
placement, and request-cache association in wireless scenarios
in order to provide just-in-time CDN services. The goal is
to maximize the an aggregate utility metric for the CP that
captures both service benefits due to caching and fairness in
servicing different end users. We leverage the Lyapunov drift-
minus-benefit technique and Jensen’s inequality to transform
our infinite horizon problem into hour-by-hour subproblems
which can be solved without knowledge of future file popularity
and transmission rates. For the case of non-overlapping small
cells, we provide an optimal subproblem solution. However, in
the general overlapping case, the subproblem becomes a mixed
integer non-linear program (MINLP). In this case, we employ
a randomized cache lease method to derive a scalable solution.
We show that the proposed algorithm guarantees the theoretical
performance bound by exploiting the submodularity property
of the objective function and pick-and-compare property of the
randomized cache lease method. Finally, via real dataset driven
simulations, we find that the proposed algorithm achieves 154%
utility compared to similar static cache storage-based algorithms
in a representative urban topology.

Index Terms—Elastic CDN; file caching; area-BS association;
cache rental budget; Lyapunov drift-plus-penalty; submodular-
ity; randomized cache lease method

I. INTRODUCTION

The seminal paper of femtocaching [2] introduced a novel
wireless edge caching architecture and proposed an efficient
algorithm for proactively caching popular content files. How-
ever, a key limitation of this idea is that it considers a
static deployment of caches and their long-term population
with content. In practice, the dynamic (re-)scaling of the
cache capacity and the frequent refreshing of their contents
is imperative for coping with the time-varying file popularity
and user demand intensity. In this paper, we propose the elastic
femtocaching model which introduces a new wireless edge
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caching system for deciding how to scale the caches, which
files to cache in each of them, and how to route the content
to users.

The femtocaching architecture includes a set of edge caches
deployed at small base stations (SBSs) that underlay a macro
base station (MBS) in a heterogeneous wireless network.
These caches are filled during off-peak hours, e.g., overnight,
with popular files, which are then delivered to nearby users
when demand increases. This mitigates the network conges-
tion, as it economizes the bottleneck MBS wireless capacity
and reduces the utilization of the expensive SBS backhaul
links. At the same time, femtocaching improves the user
experience by replacing the long-range MBS transmissions
with the energy-prudent and fast SBSs-users wireless links.

The main assumption of femtocaching is that the caches
have a fixed, and cheap, storage capacity and that their
population with files is realized in a coarse time scale, e.g.,
once per day or week. However, in practice file demand
changes quite fast, as users might move from one location
to another, and content popularity at the various online con-
tent platforms peaks only for a few hours [3]. Moreover,
installing and maintaining storage units at the edge induces
operating expenditures that can render this model unsustain-
able. Under these conditions, the static femtocaching model
can be both performance-inefficient and unnecessarily costly.
This becomes particularly important today where we see the
proliferation of small service (or, content) providers that have
volatile demand and hence cannot afford buying or leasing
large storage capacity. For these business entities it is essential
to have access to elastic caching infrastructures, such as
uCDN and ElastiCache, two real market elastic CDN solutions
deployed by Huawei and Amazon Web Services, respectively.
The importance of such flexible storage deployments is best
manifested by the proliferation of solutions such as Huawei
uCDN or AWS ElastiCache that allow dynamic cache scaling.

Motivated by the above, we revisit this fundamental caching
model and propose a novel elastic femtocaching architecture.
In this system, the caches are re-scaled and the stored files are
updated in a finer time-scale in order to adapt to user needs.
Moreover, the association of users to SBSs aims not simply
to maximize the caching benefit, but to balance the caching
benefits for the different users. These decisions are updated
dynamically as new information about the expected demand
becomes available, and in a way that long-term monetary bud-
get and performance criteria are satisfied. Therefore, our goal
is to develop a rigorous analytical framework for addressing
these decision trade-offs in a systematic and provably-optimal
fashion.

We introduce a general system model that can capture
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different application scenarios. We assume that the network1

has a certain average budget to spend, over time, for deploying
the SBSs caches. The deployment cost might capture operating
expenditures (e.g., energy consumed by the servers) or the
leasing price when the network does not own the infrastruc-
ture, e.g., in solutions such as [4]. The system operates in
a time-slotted fashion, where each slot has a duration of a
few hours or less, based on the scenario. At the beginning of
each slot, the network obtains information about the expected
demand, and the servicing delay of the SBSs.2

Using this minimal-assumptions model, we formulate the
elastic femtocaching problem where decisions for (i) cache
scaling; (ii) file caching; and (iii) user-SBS association, are
taken in each time slot. The objective is to satisfy the user
requests with the maximum possible caching benefit, while
respecting certain fairness among different subareas.3 Our
approach ensures that users experiencing unfavorable wireless
conditions with the SBSs will not be exclusively served by the
MBS (over long-distance, high-delay links), hence it achieves
an even distribution of the edge-caching benefits. This idea
is in line with the fairness criteria that have been extensively
applied in wired networks (e.g., in TCP mechanisms [5]), yet
have been hitherto ignored in femtocaching.

The formulated optimization problem is NP-complete, as it
extends the standard femtocaching problem, and hence it is
solved with an approximate solution. In each slot we use a
low-complexity caching and association intra-slot policy that
attains a feasible, but possibly suboptimal, operation point.
Our approach leverages a lightweight greedy algorithm and
exploits the submodular property of the objective function.
Across different time-slots, we employ a Lyapunov-based
control policy that tracks the budget over/under-spending and
the QoS criteria violation as new information about demand
and transmission delays become available. These signals are
then used to modulate the decisions of the intra-slot policy, so
as to achieve, asymptotically, the desired operation point. Our
contributions can be summarized as follows:

1) We propose a wireless caching architecture, elastic fem-
tocaching in order to account for time-varying file popu-
larity and user-demand intensity.

2) We formulate the cache-scaling, content-caching, and
user-association mathematical program, with a fair
caching benefit maximizing objective criterion.

3) We propose a set of algorithms for solving this problem,
combining a greedy algorithm, using the submodularity
of objective function for the intra-slot decisions, with
a Lyapunov-based control policy [6] and a randomized
pick-and-compare [7] for the inter-slot decisions. The
resulting algorithms achieve asymptotically a provably-
optimal network operation point.

1We use the term network to refer to any entity in charge for making the
elastic femtocaching decisions; this can be the actual network operator as in
the standard femtocaching model or, for instance, a mobile-CDN, the content
provider, and so on.

2Such information can rely on simple statistics of the previous slot or
become available through sophisticated prediction methods.

3Namely, instead of maximizing the aggregate caching benefits, we aim
to balance the caching benefits across all users.

Fig. 1: Overview of an elastic femtocaching system.

4) We evaluate our algorithms using real datasets for de-
mand and various SBSs deployment scenarios. Especially,
we find that our elastic and joint policy attains 154%
higher performance than the static femtocaching model
in a typical urban network deployment scenario.

Paper Organization. The remaining of this paper is or-
ganized as follows. We discuss the related work in Sec. II
and introduce the system model and the elastic femtocaching
problem in Sec. III. We propose a Lyapunov-based dynamic
policy in Sec. IV, and in Sec. V we discuss two different
algorithms. We evaluate the proposed policies in Sec. VI and
conclude in Sec. VII. All proofs can be found in the Appendix,
unless otherwise stated.

II. RELATED WORK

Wireless edge caching. The idea of wireless edge caching was
introduced in [2] and further extended by several follow-up
works. For example, Abedini et al. [8] focused on stabilizing
queues of pending requests by managing jointly the link
bandwidth and storage of the SBSs. On the other hand, [9]
minimizes dynamically a cost criterion through both load-
balancing and content replication when the SBSs have hard
storage and soft link capacity constraints. The idea of creating
a femtocaching network through leased caches was proposed
in [10], that designed a low-complexity solution algorithm
based on Lagrange relaxation. Wu et al. [11] aimed at min-
imizing long-term energy consumption while guaranteeing
short-term user Quality of Service (QoS). They assumed
coded caching4 whereas we study more challenging problem
with discrete caching variables, and hence have the more
challenging model of discrete caching variables. Moreover,
Ryu et al. [12] designed cooperative caching algorithms where
multiple BSs optimize jointly the content placement without
knowing the file popularity. They used a mixed-time scale
model where in the long scale they retrieve files from the core
network, and in the short time scale share the files among
the BSs. However, they did not consider elastic cache scaling,
which is a core idea in our framework.

4In coded caching, a file can be split into several parts that can be stored
in different caches.
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TABLE I: Summary of the notations.
Notation Definition Notation Definition
8 ∈ I subarea index ℎ 9 (C) price to lease cache storage per unit bit for 9 and C
9 ∈ J small base station (SBS) index 38 9 (C) average delay for serving subarea 8 by SBS 9 during C
B macro base station (MBS) index 38B (C) average delay for serving subarea 8 by the remote server during C

5 ∈ F file index G8 9, 5 (C) association probability for 8, 9 , 5 , and C
�0E6 average budget constraint H 9 (C) leased cache space at SBS 9 during C
_8, 5 (C) demand profile for 8, 5 and C I 9, 5 (C) file caching indicator for 5 , 9 and C
C hour index (time slot) W8 (C) auxiliary variable of subarea 8 at time slot C
1 size of a video file

Dynamic caching policies. The original femtocaching model
[2] presumes static content popularity and proposes a one-
off proactive caching policy. Some recent studies in proac-
tive caching, including our work, dropped the assumption of
static popularity. Asheralieva et al. [13] exploited Lyapunov
optimization for proactive content caching and delivery in
cellular and device-to-device networks, aiming to minimize
the time-average network cost. Similarly, Paschos et al. [14]
addressed the issue of non-stationary content popularity using
an online learning approach in the design of the routing and
caching policies. Nevertheless, the above works overlooked the
possibility of cache scaling.

On the other hand, reactive policies, such as LRU (Least
Recently Used) and LFU (Least Frequently Used) [15], make
dynamic caching decisions upon the arrival of each request.
These policies have been originally designed for single (or,
independent) caches, and have been later extended to caching
networks. For instance, Giovanidis et al. [16] proposed a
spatial multi-LRU version where each request is routed via the
closest base station that has the file. This solution improves the
caching hit via cooperative caching whereas wireless latency
was not taken into account. Similarly, Leonardi et al. [17] pro-
posed a q-LRU algorithm where the caching update happens
depending on the cached status in multiple BSs. Chen et al.
[18] addressed a stochastic cooperative caching in several BSs
under assumption of coded and time-to-live (TTL) caching
aiming at reducing content download time. Similar to our
work, Carra et al. [ [19] addressed the dynamic cache resource
scaling aiming to simultaneously minimize the storage and
backhaul cost. However, unlike our work, they considered a
reactive caching policy, namely time-to-live (TTL) caching,
single cache and non-fairness criteria. Moreover, Dehghan et
al. [15] considered a utility-based objective function where the
utility captures fairness between different files. They proposed
utility-driven LRU and LFU algorithms aiming at maximizing
the sum of utilities over all files without consideration of cache
scaling. Besides, our utility function is designed to achieve
user - not file - fairness.

Content Caching using machine learning framework.
Past content caching works using machine learning, e.g.,
collaborative filtering, focused on accurate estimation of fu-
ture content popularity [20], [21]. Recently, several studies
exploited (deep) reinforcement learning (RL) to optimize the
operation of caching networks. For example, Xiong et al. [22]
addressed content caching in broadcasting systems using deep
reinforcement learning. Moreover, Sadeghi et al. [23] used
RL as a contents caching solution in a unicast system where

their storage price might change with time. In their previous
work, Sadeghi et al. [24] considered a hierarchical cloud-
edge caching model where the cloud stores files according
to global file popularity and the edge stores files according
to local file popularity. They modeled the spatio-temporal
popularity variations using a Markov chain model, and solved
them with RL. Finally, Somuyiwa et al. [25] proposed a mobile
proactive caching scheme, using again RL, where the caches
are deployed at the mobile users’ equipment, not at edge
servers as in our model.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an elastic caching network with a macro base
station (MBS), denoted with B, and a set J of small base
stations (SBSs). The set J ∪ {B} of all BSs provide coverage
to a geographic area and serve user requests for a catalog F
of content files, each with size 1, see Fig. 1. We partition the
geographical area into I non-overlapping subareas where each
subarea might include one or more users who share the same
network characteristics (propagation delay, shadowing effects,
and so on) and use J8 ⊆ J to denote the subset of SBSs
that are reachable by each subarea 8 ∈ I.5 while the MBS
is reachable from all subareas. Each SBS offers storage for
lease, which can be used to cache files so as to facilitate their
delivery to the users6.

The system operation is time slotted, where each slot
represents, for instance, an hour. For each file 5 ∈ F in
the catalog, we denote with _8, 5 (C) the average number of
requests for file 5 emanating from subarea 8 during slot C, and
is generated by an i.i.d. stochastic process {_8, 5 (C)}C . We also
introduce the demand vector λ(C) = (_8, 5 (C) : 8 ∈ I, 5 ∈ F ),
which is indicative of the file popularity in time and space,
and therefore crucial for adjusting caching decisions. When
a user requests a file, there is an associated download delay
38 9 (C), 9 ∈ J8 ∪ {B}, which depends on the subarea 8, where
the user is located, and on whether the file is cached at SBS 9

5The subarea model is general enough and allows the subareas to be
defined very small so as to have only one user in practice.

6We assume that SBS edge storage and an original file server are
connected with high-capacity links (e.g., optical lines). Then, our system will
retrieve the updated cached files via the fast dedicated link without significant
fetching costs.
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or not.7 When the file is not found in any reachable SBS, the
origin server that stores the entire catalog is contacted through
the MBS to obtain the file (Fig. 1), and although this ensures
delivery of every file, the corresponding download delay 38B (C)
is generally large, i.e., we naturally assume that 38B (C) > 38 9 (C)
for every slot and 8 ∈ I, 9 ∈ J . Hence, the perceived service
quality (QoS) is improved whenever the file is retrieved from
a nearby SBS cache, instead of the MBS. We denote with
d(C) = (38 9 (C), 38B (C),∀8 ∈ I, 9 ∈ J) the vector of all delays
in slot C.

We assume that there are costs for deploying storage at the
SBSs. Namely, the edge storage is leased at a time-fluctuating
unit price ℎ 9 (C) that can be potentially different for each SBS
9 . We define the respective vector h(C) = (ℎ 9 (C), 9 ∈ J)
which is extrinsic to our system. This volatility of storage
leasing prices can arise for various reasons. For instance, it
can be attributed to electricity price fluctuations [27], or due
to the volatility of a spot storage market that the operator uses
to lease such resources.8 This creates the need for a careful
leasing strategy. To that end, we introduce the investment
variables H 9 (C) ≥ 0 to denote the amount of 9 th SBS storage
that is leased for caching in slot C. These decisions are subject
to an economic constraint. Specifically, we have in mind an
average budget �0E6 (dollars/hour), which must be satisfied
over a long time horizon:

lim
)→∞

1
)

) −1∑
C=0

∑
9∈J

H 9 (C)ℎ 9 (C) ≤ �0E6, (1)

where the term
∑
9∈J H 9 (C)ℎ 9 (C) represents the total invest-

ment in slot C.
In any case, measurement errors may as well impact the

performance of such system. If they have a stationary zero-
mean distribution, such that their effect does not impact the
solution of the static problem, then they will not affect the
performance of our dynamic algorithm. If, however, they
do affect the static solution, then they will also impact our
dynamic algorithm. Clearly, three types of measurements,
i.e., file popularity, average delay and cache price jointly
affect the decisions of cache scaling, content caching and
routing. However, their solution would depend on the relative
measurement between different files.

In this context, our goal is to address the following content
provider’s (CP’s) question: what is the cache scaling strategy
that optimizes the average caching benefits while respecting
the long-term budget constraint? Answering this question is
very challenging for the following reasons: (i) the CP does not
know the future spatio-temporal profile of the demand, nor the
storage prices that might change substantially in short time

7In practice, wireless delay can be calculated by Shannon capacity
formula with wireless parameters, e.g., RSSI, CSI and interference obtained
in the previous time slot [26]. Otherwise, we can use the measurement-based
delay in the previous time slot. Specifically, the simple method to measure
average delay is to collect the measured delay in each subarea from all users
received any files from one of SBSs in the previous time slot, and take average
of it. Although there exist other estimation methods for average delay, they
might have a tradeoff relationship between estimation overhead and estimation
accuracy.

8For example, storage owners sell their unused storage, and hence the
price is affected by temporal ebbs and flows of traffic and storage demand.

intervals; and (ii) the benefits of caching at an SBS change
over time, and therefore even deciding the distribution of the
hourly budget to leasing different caches is highly non-trivial.

To determine the average delay experienced within each
slot, we must describe carefully how each file is delivered. We
first introduce two more sets of variables: (i) file placement
variable I 9 , 5 (C) ∈ {0, 1} which takes value 1 iff file 5 is
cached at SBS 9 in slot C, and (ii) the demand association
variable G8 9 , 5 (C) ∈ [0, 1] which denotes the fraction of
requests for file 5 from location 8 that is served by SBS 9 ,
during slot C. Hence, the hourly end-to-end caching benefit
from edge caching for each subarea 8 ∈ I can be expressed
as:

�8 (C) =
∑
9∈J8
(38B (C)−38 9 (C))

∑
5 ∈F

G8 9 , 5 (C)_8, 5 (C)I 9 , 5 (C), (2)

where G8 9 , 5 (C)_8, 5 (C) is 8’s demand fraction routed to SBS 9 ,
and (38B (C)−38 9 (C))G8 9 , 5 (C)_8, 5 (C) is the corresponding caching
benefits (delay reduction) which is realized if the file is cached
at the SBS, i.e., I 9 , 5 (C) = 1.

Finally, in each slot the system must satisfy the follow-
ing constraints. First, the entire demand of each subarea
8 ∈ I is routed to some of the SBSs9, hence it holds:∑
9∈J8 G8 9 , 5 (C) = 1,∀8, 5 , C. Routing to an unreachable SBS is

not allowed: G8 9 , 5 (C) = 0, ∀ 5 , if 9 ∉ J8 . Also, the cached files
should not exceed the leased capacity, i.e.,

∑
5 ∈F I 9 , 5 (C) ≤

H 9 (C)/1,∀ 9 , C.10 The notation is summarized in Table I.

B. Problem Formulation
Definition 1 (Femtocaching plan). An elastic cache plan for
time slot C is a selection of variables (H 9 (C), I 9 , 5 (C), G8 9 , 5 (C))
such that the instantaneous constraints are satisfied:∑

9∈J8
G8 9 , 5 (C) = 1, ∀8, 5 , C, G8 9 , 5 (C) = 0, ∀ 5 , C, 8 if 9 ∉ J8 ,(3)∑

5 ∈F
I 9 , 5 (C) ≤ H 9 (C)/1, H 9 (C) ≥ 0, ∀ 9 , C

I 9 , 5 (C) ∈ {0, 1},∀ 9 , 5 , G8 9 , 5 (C) ∈ [0, 1], ∀8, 9 , 5 .
(4)

Definition 2 (Elastic femtocaching policy). A feasible elastic
femtocaching policy c at every slot observes the system state
(λ(C),d(C),h(C)) and chooses a femtocaching plan such that
the time average budget constraint (1) is satisfied. We denote
with Π the set of all feasible elastic CDN strategies.

In order to improve system performance, we are clearly
interested to tune our elastic femtocaching policy towards
obtaining large caching benefits. Using the definition of the
instantaneous caching benefit in (2), we can define the time-
average caching benefit using policy c as:

�
c

8 , lim
)→∞

1
)

) −1∑
C=0

�8 (xc (C), zc (C);λ(C),d(C),h(C)),

9In our model, all requests are routed towards an SBS, even if they are
ultimately served by the MBS; in this case, we still require a dummy selection
of the G8 9, 5 (C) variables. Notice that this model is slightly different from
femtocaching model [2] where the association variable includes an MBS.

10We assume that 1 is the same for all files for simplicity, but we can
model a heterogeneous file size scenario by dividing the different sizes of
files into the same size chunks.
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where xc (C), zc (C) are the caching and association decisions
in slot C, under policy c. A reasonable objective is to maximize
the time-average total caching benefit:

∑
8 �

c

8 . However, to
achieve a fair caching improvement throughout the entire
geographical area, we employ a general U-fairness utility
function [28]11:

*8 (�̄8) =
{
(1 − U)−1�̄8

1−U
, if U ≥ 0, U ≠ 1,

log(1 + �̄8), if U = 1,
(5)

If U = 0, our system only considers average caching benefit
maximization without accounting for fairness across the dif-
ferent subareas; whereas for higher U values it forces more fair
distribution of the caching benefits among users in different
subareas. A representative function of this U-fairness utility
model is the function

∑
8 log(1 + � c

8 ). Hereinafter we will
focus on this specific function, though we mention that our
results hold true for any concave function.

In summary, we would like to address the CP’s question
“What is the feasible elastic femtocaching policy that achieves
the highest utility?" This question can be addressed by solving
the following problem:

Val(P) = sup
c∈Π

∑
8∈I

log(1 + � c

8 ).

Note that (P) is challenging for the following reasons: (i)
Parameters for the objective such as future traffic demand
_8, 5 (C), future caching gains 38B (C) − 38 9 (C) and cache lease
price ℎ 9 (C) are unknown at the time the investment decisions
H 9 (g) are taken (g < C). (ii) Due to the time average billing
constraint, a large investment H 9 (g) reduces the available
budget in future slots C > g, which can be problematic
in combination with the unknown future costs ℎ 9 (C), delays
38 9 (C), 38B (C) and traffic demand _8, 5 (C). (iii) Due to the non-
linearity of log function, it holds log(GC ) ≠ log GC , and hence
the objective is not decomposable to individual time slot
contributions.

C. Characterization of Achievable Performance

We characterize the performance region, denoted with G,
which contains all vectors (� c

8 ) of time-average caching
benefits achievable by any feasible elastic femtocaching policy
c ∈ Π. Once G is determined, Val(P) is equivalently calculated
by:

Val(P) = max
(�c

8 ) ∈G

∑
8∈I

log(1 + � c

8 ). (6)

Some technical assumptions are needed about the exoge-
nous random events. We assume that there are finite sets
D = {31, ..., 3 |D |} (for delays), Λ = {_1, ..., _ |Λ |} (for traffic
demand intensities), and H = {ℎ1, ..., ℎ |H |} (for storage costs)
from which a value (λ,d,h) is drawn at each slot according to
an unknown distribution ?λ,d,h. The assumption that these sets
are finite facilitates the analysis while taking large cardinalities
suffices to model any practical system.

11To capture fairness in the problem, we can use an additional constraint
which guarantees the minimum delay, instead of using this U-fairness utility
function.

Condition 1. Let q(x, y, z |λ,d,h) denote an empirical prob-
ability distribution over femtocaching plans (x, y, z) when
traffic demand profile λ, delay profile d, and cost profile h
are observed. Consider the following conditions:∑

(x,y,z)
q(x, y, z |λ,d,h) = 1,

0 ≤ q(x, y, z |λ,d,h) ≤1,∀(λ,d,h),
(7)∑

(λ,d,h)
?λ,d,h

∑
(x,y,z)

q(x, y, z |λ,d,h)
∑
9∈J

H 9ℎ 9 ≤ �0E6, (8)

where every tuple (x, y, z) considered above satisfies an
femtocaching plan in Definition 1.

Lemma 1. Condition 1 is necessary for any feasible elastic
femtocaching policy.

We remark that Condition 1 characterizes a convex set
of distributions of femtocaching plans. Since Condition 1
is necessary for any feasible elastic femtocaching policy, it
expresses an outer bound on the performance region of our
system. Therefore, one way to solve our control problem is to
solve an optimization problem over G and select as an elastic
femtocaching policy the randomized actions q∗ which are
the solution to the optimization. However, this is impossible
without knowledge of the distribution ?λ,d,h, and therefore in
the remaining sections, we will provide a dynamic algorithm
that adapts to the observed conditions.

D. Handling Non-Linear Utilities

Since the maximization of a nonlinear function of a time
average cannot be decomposed into slots, we consider an al-
ternative decomposable problem. Namely, problem (P), which
maximizes a nonlinear function of a time average, can be trans-
formed into maximization of the time average of a nonlinear
function using the auxiliary variable technique in [6, Chap-
ter 5]. To this end, we introduce an auxiliary variable vector
γ (C) = (W1 (C), ..., W |I | (C)) for all C and define a function 6(C) as
follows: 6(C) = ∑

8 log(1+W8 (C)),∀C. Using Jensen’s inequality,
we can upper-bound the mean value of 6(C) as follows: 6(C) ≤∑
8 log(1 + W8 (C)),∀C, where 6 and W8 denote the time-average

of 6 and W8 , respectively. Now, let us consider the following
problem. Every time slot, the CP observes (λ(C),d(C),h(C))
and chooses a control action (x(C), y(C), z(C)) and an auxiliary
vector γ (C), where 0 ≤ W8 (C) ≤ �<0G for all 8 and C to solve
the following (JP) problem:

max lim inf
)→∞

1
)

) −1∑
C=0

∑
8

log(1 + W8 (C)), (9)

s.t. lim inf
)→∞

1
)

��� ) −1∑
C=0

(
W8 (C)−�8 (x(C),y(C),z(C))

)���≤0,∀8 ∈ I,(10)

lim inf
)→∞

1
)

) −1∑
C=0

∑
9∈J

H 9 (C)ℎ 9 (C) ≤�0E6, (11)

where 0≤W8 (C) ≤�<0G ,∀8,∀C.
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Lemma 2. Solving problem (JP) yields a femtocaching plan
that is at least as good as the optimal solution of the problem
(P).

Proof. The lemma follows from [6, Chapter 5, 5.0.5]. �

Exploiting the transformation of (JP), we can decompose
the average objective function into different objectives for
each slot. That is, maximizing

∑
8 log(1 + W8 (C)) every slot is

equivalent to maximizing the average objective function in (9).
Hence, we can adopt a standard Lyapunov drift-minus-benefit
technique [6].

E. Virtual Queues

To keep track of the feasibility of problem (JP), we in-
troduce virtual queues corresponding to the average budget
constraint (1) and auxiliary constraint (10) whose backlogs
are updated by

&� (C + 1) =
[
&� (C) +

∑
9∈J H 9 (C)ℎ 9 (C) − �0E6

]+
, (12)

*8 (C + 1) =
[
*8 (C) + W8 (C) − �8 (C)

]+
, ∀8 ∈ I. (13)

Prior work [29] shows that if the stability conditions
lim)→∞

1
)

∑) −1
C=0 &� (C) < ∞ and lim)→∞

1
)

∑) −1
C=0 *8 (C) <

∞,∀8 ∈ I are satisfied, then so are constraints (1) and (10).
Intuitively, the backlogs &� (C) and *8 (C) for all 8 count
the excess budget spent and excess auxiliary variable in the
previous time slots for keeping track of the average budget
expenditures and average caching benefits. Then, we propose
a dynamic algorithm to solve (JP) in the next section.

IV. LYAPUNOV-BASED DYNAMIC SOLUTION

A. Slot-by-slot Problem

We consider the slot-by-slot problem without knowledge
of the average traffic demands E[_8, 5 (C)] for all subareas
and files and the average delays E[38 9 (C)] for all subareas
and SBSs. Then, let us focus on slot C. The decision-maker
is aware of (i) the traffic demand profile for the next hour
[_8, 5 (C)]8, 5 12 (ii) the delay profile realizations for the next
hour [38 9 (C), 38B (C)]8, 9 available by measurements, and the
readily available, (iii) prices [ℎ 9 (C)] 913, and (iv) virtual queue
lengths &� (C) and *8 (C) for all 8 ∈ I, while file size 1 is
assumed known. Therefore, the elastic femtocaching policy
is applied on the state (λ(C),d(C),h(C), &� (C), [*8 (C)]8). To
design a policy, we employ the Lyapunov drift-minus-benefit
framework in the following.

We first define the quadratic Lyapunov function and arising
drift as follows:

! (C) , 1
2

{
&� (C)2 +

∑
8∈I *8 (C)2

}
,

Δ(! (C)) , E{! (C + 1) − ! (C) |Q(C)},

12In practice, it is achieved by calculating the running average of files’
popularity based on the demand during the past few time slots, or by even
using more sophisticated statistical or machine learning methods, cf. [30].

13 This price information can be provided by cloud service providers,e.g.,
AWS [4]. If such information is available with coarser time granularity (i.e.,
less often), then the system can use the prices in the past few time slots.

where Q(C) , {&� (C),*1 (C), ...,* |I |}. Since we are also
interested in maximizing the time average of delay utility
log(1 + �8 (C)) for all subareas using feasible cache plans,
we next introduce the Lyapunov drift-minus-benefit function
(DMB):

DMB(x(C), y(C), z(C), γ (C)) =
Δ(! (C)) −+

∑
8∈I
E{log(1 + W8 (C)) |Q(C)}, (14)

where + is a constant parameter to balance the trade-off
between two conflicting objectives: improving the budget and
auxiliary variable satisfaction, or increasing the average delay
utility.

Applying the queue update equations (12), (13) and
Lemma 4.3 from [31], we obtain under any possible decision
(H 9 (C), G8 9 , 5 (C), I 9 , 5 (C), W8 (C)):

DMB(x(C), y(C), z(C), γ (C)) ≤%−+
∑
8∈I
E{log(1+W8 (C)) |Q(C)}

−E
{(
�0E6−

∑
9∈J

H 9 (C)ℎ 9 (C)
)
&� (C) |Q(C)

}
−

∑
8∈I
E
{
(�8 (C)−W8 (C))*8 (C) |Q(C)

}
,

(15)

where % = 1/2(�2
0E6 + |J |H2

<0Gℎ
2
<0G + 2|I |�2

<0G) is a
positive constant when H<0G , ℎ<0G �<0G denote the allowable
leased cache space at an SBS during an hour, the maximum
price and the maximum hourly caching benefit for a subarea,
respectively. Neely [6] showed that we can uncover optimal
decisions by minimizing the RHS of (15).

We propose the elastic femtocaching policy (EFP) which at
slot C takes actions (x(C), y(C), z(C), γ (C)) = (x∗, y∗, z∗, γ∗),
where

γ∗ ∈ arg maxγ∗ (C) +
∑
8∈I

log(1 + W8 (C)) −
∑
8∈I

*8 (C)W8 (C),︸                                           ︷︷                                           ︸
(JP)-(a)

(x∗, y∗, z∗) ∈arg maxx(C) ,y (C) ,z (C)∑
8∈I

*8 (C)�8 (x(C), y(C), z(C)) −&� (C)
∑
9∈J

H 9 (C)ℎ 9 (C),︸                                                                   ︷︷                                                                   ︸
(JP)-(b)

with instantaneous constraints (7) and (8).
The first straightforward result is that EFP is a feasible

elastic femtocaching policy. First, the instantaneous constraints
of service (7) and storage space (8) are automatically satisfied
at each slot by the design of the policy. Then, we may observe
that EFP minimizes the RHS of (15), therefore using lemma
4.6 in [6], we can show that EFP also stabilizes &� (C) and
*8 (C) for all subareas, and hence the billing constraint (1)
and constraint with respect to an auxiliary variable (10) are
asymptotically satisfied.

Additionally, by adopting similar proof methodology in
[6, Chapter 5, 5.1], we obtain the following results: (i)
Val(EFP) ≥ Val(UBound) − $ (1/+), where Val(Ubound)
denotes the value of the optimization problem with the sta-
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General algorithm (GA) to solve problem (JP)

Initialization: At C = 0, &� (C) = 0 and *8 (C) = 0, ∀8 ∈ I.
Result: G8 9 , 5 (C), H 9 (C), I 9 , 5 (C), W8 (C), ∀8, 9 , 5 , C
While In slot C, read values &� (C),*8 (C), _8, 5 (C), 38 9 (C),
38B (C), ℎ 9 (C), ∀8, 9 , 5

Step 1: Decision of auxiliary variables W∗
8
(C) for all subareas.

1: For each subarea 8 ∈ I,
2: Calculate W8 (C) = +

*8 (C) − 1.
3: If W8 (C) ∈ [0, �<0G], then W∗

8
(C) = W8 (C).

4: Else, W∗
8
(C) = max

(
0, + log(1 + �<0G) −*8 (C)�<0G

)
.

5: End For
Step 2: Decision of original control variables
(x∗ (C), y∗ (C), z∗ (C)).

6: Choose x(C), y(C), z(C) which maximize

(x∗ (C), y∗ (C), z∗ (C)) ∈arg maxx(C) ,y (C) ,z (C) (JP)-(b), (17)

with x(C), y(C), z(C) satisfying (3), (4).
Step 3: Update of parameters.
7: Update all virtual queues based on(

x∗ (C), y∗ (C), z∗ (C), γ∗ (C)
)

using (12) and (13).
8: Update C ← C + 1.

End While

tionary policy. (ii) All virtual queues can be stabilized and
average queue length (sum of total average virtual queues)

satisfies: E[ | |Q(C) | | ]
C

≤
√

2%+2+ (�<0G−\∗)
C

.

Now, we provide a general algorithm (GA) to solve problem
(JP). In this GA, γ∗ (C) in Step 1 can be obtained by a
straightforward manner since objective (16) is a concave
function with respect to the auxiliary variable for each subarea.
However, x∗ (C), y∗ (C), z∗ (C) in Step 2 cannot be obtained
easily due to the product of variables G8 9 , 5 (C) and I 9 , 5 (C)
in �8 (C). In order to implement the above GA in practice,
we consider two different cases, (i) non-overlapping, and (ii)
overlapping SBS coverages in the following section.

V. INTRA-SLOT PROBLEM AND ALGORITHMS

In this section, we turn our attention into solving problem
(17) in Step 2 to find solutions (x∗ (C), y∗ (C), z∗ (C)) given
cache lease budget �0E6 and the maximum caching benefit
�<0G .

A. Non-overlapping SBS Coverage
When SBS coverage is non-overlapping, each subarea can

reach a single SBS cache, which immediately simplifies rout-
ing splits G8 9 , 5 (C), such that G8 9 , 5 (C) = 1, ∀C if subarea 8 can
reach SBS 9 and 0 otherwise, for all 8, 9 , 5 . In essence, each
request can be served only by the reachable cache (or the MBS
when the file is not cached there). We will see that this makes
our problem relatively easy to solve.

First, we note that caching file 5 at SBS 9 in slot C yields
the following variable:

 9 , 5 (C) ,
∑
8

*8 (C):8 9 , 5 (C), (18)

where :8 9 , 5 (C) = (38B (C) − 38 9 (C))G8 9 , 5 (C)_8, 5 (C). It is com-
putable using known parameters d,x,λ (x is a parameter here
because it is fully determined by the reachability of the cache)
and independent of the decisions y(C), z(C). Consequently, the
EFP optimization problem becomes:

max
H 9 (C) ≥0

I 9, 5 (C) ∈{0,1}

∑
9 , 5

 9 , 5 (C)I 9 , 5 (C) −&� (C)
∑
9∈J

H 9 (C)ℎ 9 (C),

s.t.
∑
5 ∈F

I 9 , 5 (C) ≤ H 9 (C)/1, ∀ 9 , 5 .
(19)

Due to its simple form, (19) can be solved by inspection. At
each pair SBS-slot ( 9 , C), we order files in decreasing values of
 9 , 5 (C). For an investment H 9 (C), the highest caching benefit
is collected by caching the H 9 (C)/1 files that rank higher in
this list. This provides directly the solutions z(C) as a function
of y(C), it remains now to determine the latter. With a slight
abuse of notation, let us call f the permutation of file induces
that implies  9 ,f (1) (C) ≥ · · · ≥  9 ,f ( |F |) (C) (the abuse is
because we do not explicitly denote the dependence of f on
9 , C to reduce clutter), then we can decompose the investment
decisions per SBS, and find H∗

9
(C) by maximizing:

H∗9 (C) ∈ arg maxH 9 (C) ≥0

bH 9 (C)/1c∑
5 =1

 9 ,f ( 5 ) (C) −&� (C)ℎ 9 (C)H 9 (C).

Above, H∗
9
(C) can be efficiently computed by listing partial

sums
∑ bH 9 (C)/1c
5 =1  9 ,f ( 5 ) (C) for H 9 (C)/1 = 1, 2, . . . until the

difference of one partial sum from the previous one becomes
smaller than &� (C)ℎ 9 (C). Below, we provide the algorithmic
steps to find y(C) and z(C) in detail.

Joint Cache Rental and File Caching Algorithm (JCC)
(Step 2)
Result: H 9 (C), I 9 , 5 (C), ∀ 9 , 5 , C
Read values &� (C),*8 (C), G8 9 , 5 (C), _8, 5 (C), 38 9 (C),
38B (C), ℎ 9 (C), ∀8, 9 , 5

1: For all SBSs 9 ∈ J ,
2: For all files 5 ∈ F ,
3: Calculate  9 , 5 (C) using (18).
4: End For
5: Sort  9 , 5 (C) with permutation f, such that
 9 ,f (1) (C) ≥ · · · ≥  9 ,f ( |F |) (C).

6: Set partial sums ((4) = ∑4
5 =1  9 ,f ( 5 ) (C), for 4 =

1, 2, . . . and ((0) = 0.
7: Find 4∗ which maximizes ((4) −&� (C)ℎ 9 (C)14.
8: Choose cache lease: H 9 (C) = 4∗1
9: Choose file placement:

I 9 ,f ( 5 ) (C) =
{

1 if 5 ≤ bH 9 (C)/1c,
0 otherwise.

15: End For
16: End For

Then, the JCC algorithm in the non-overlapping SBS case
has the following features: (i) Given virtual queues, association
variables, demand traffic and delay profiles and storage price,
the algorithm finds the amount of storage that optimizes a
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weighted sum of caching benefit constrained by the virtual
queue stability. (ii) For the found storage amount that is leased,
files are cached at each SBS according to which yields the
highest caching benefit multiplied by virtual queue *8 (C) for
all subareas, until the available leased storage is filled up. (iii)
If the average caching benefit for subarea 8 until time slot
C becomes smaller, the virtual queue *8 (C) for subarea 8 gets
higher, which makes the probability to cache files requested by
subarea 8 higher by Eq. (18); hence the average caching benefit
for subarea 8 increases. Therefore, this mechanism intuitively
captures fairness among all subareas.

B. General Case with Overlapping SBS Coverage

Next, we consider the general case where the coverage
areas of the different SBSs can overlap. Then, the association
variables G8 9 , 5 (C) must be jointly decided with cache rental and
file placement. Recall that Eq. (17) in Step 2 of GA determines
the decisions solving:

max
H 9 (C) ≥0,∀ 9

G8 9, 5 (C) ∈[0,1]∀8, 9 , 5
I 9, 5 (C) ∈{0,1},∀ 9 , 5

(JP)-(b) (20)

s.t.
∑
5 ∈F

I 9 , 5 (C) ≤
H 9 (C)
1

, ∀ 9 ,
∑
9∈J8

G8 9 , 5 (C)=1,∀8, 5 .

We note that (20) is a mixed-integer non-linear program
(MINLP) due to the product of variables G8 9 , 5 (C) and I 9 , 5 (C)
that appear in the objective. To solve this problem, we can
consider two approaches:
• As explained in [2], it is possible to use MDS codes

to achieve an effective “fractional file placement". In
essence, each cache stores a number of linear combi-
nations of file chunks that correspond to fractions of a
file, and then each user can combine different such coded
chunks to produce the original file.

• A second approach to obtain an efficient approximate
solution is to apply the idea of “Low complexity schedul-
ing" from [7]. This method assigns to the leased cache
capacity by randomly selecting it for each SBS. Then, it
resolves our EFP optimization to get a new average delay
utility, and if these new values outperform previous delay
utilities, the random solution is applied.

In this paper, we take the second method since (i) it has
low computation complexity and (ii) it does not need to
invoke additional coded caching techniques. In this context, we
provide a stability guarantee for the budget queue length &� (C)
and the virtual queue lengths *8 (C) for all subareas, which
implies that the produced policy is asymptotically feasible. The
proposed joint cache rental, greedy file caching and routing
algorithm, namely JGCA is described as follows.

The greedy file caching and association (GFCA) policy
included in the JGCA can be explained as follows. First, if
the total leased cache capacity

∑
9 H 9 (C) is less than or equal

to the three folds of a file size (i.e., 31), compare (JP)-(b) for
all possible sets of (x(C), z(C)), and pick the biggest value. Let
(x′(C), z′(C)) be the corresponding set of association variables
and cached files, i.e., making the biggest (JP)-(b). For a given

Joint Cache Rental, File Caching and Routing Algorithm
(JGCA) (Step 2)

Result: H 9 (C), I 9 , 5 (C), G8 9 , 5 (C) ∀8, 9 , 5 , C
In slot C, read values &� (C), _8, 5 (C), 38 9 (C), 38B (C), ℎ 9 (C),
∀8, 9 , 5

1: At C = 1, H∗
9
(1) is chosen as �0E6/(|J |ℎ0E6) for all

9 ∈ J .
2: Based on the decided H∗

9
(1) for all 9 ∈ J , (x∗ (1), z∗ (1))

are obtained using a greedy file caching and association
(GFCA) policy.

3: For time slots C > 1, H′
9
(C) is uniformly and randomly

chosen among U = {0, 1, 21, ...H<0G} for all 9 ∈ J .
4: Based on the decided H′

9
(C) for all 9 ∈ J , (x′(C), z′(C))

are obtained using the GFCA policy.
5: Compare∑

8∈I
*8 (C)�8 (x′(C), z′(C)) −&� (C)

∑
9∈J

H′9 (C)ℎ 9 (C) (21)

and∑
8∈I

*8 (C)�8 (x∗ (C−1), z∗ (C−1))−&� (C)
∑
9∈J

H∗9 (C−1)ℎ 9 (C).

(22)
6: If Eq. (21) > Eq. (22), then (x∗ (C) = x′(C), y∗ (C) =
y′(C), z∗ (C) = z′(C)),

7: Else, (x∗ (C)=x∗ (C−1), y∗ (C)=y∗ (C−1), z∗ (C)=z∗ (C−1)).

file caching variable, the optimal subarea association can be
decided by

G ′8 9 , 5 (C) = arg maxG8 9, 5 (C)
∑
8∈I

*8 (C)

×
∑
5 ∈F

∑
9∈J
(38B (C) − 38 9 (C))I′9 , 5 (C)_8, 5 (C),∀8, 5 .

Since the maximum number of cached files for all SBSs
is three, the complexity of the exhaustive search of optimal
(x(C), z(C)) in this case can be manageable.

Second, if the total leased cache capacity
∑
9 H 9 (C) is greater

than 31, the GFCA policy iteratively caches files one-by-one
where an added file in each iteration is selected so as to
maximize (JP)-(b) with the corresponding optimal subarea
association x(C) until leased cache capacity H 9 (C) is com-
pletely filled up for all SBSs. For instance, at the first iteration,
caching file #5 at SBS #1 and the second iteration, caching
file #7 at SBS #5, and so on.

C. Performance Bounds

Now, we show the theoretical performance bounds of the
proposed algorithms in a general scenario. First, we show
the performance bound of slot-by-slot objective, i.e., (JP)-
(b) for a given cache lease capacity y(C) using submodularity
[32], [33] of (JP)-(b) in Lemma 3; and using the lemma and
randomized scheduling policy [34], we show the performance
bound of (JP)-(b) in each time slot. Finally, we prove that
the proposed algorithms in the general case can achieve
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constant performance bounds of the utility and virtual queues
in Theorem 1.

Definition 3. A real-valued set function A, defined on the
subsets of finite sets 
 is named a submodular set function
if it satisfies the following condition for all 
 ⊆ 
′, for all
5 ( 9) ∈ F \Ω′ 9 , and for all 9 ∈ J :

A(
 ∪ { 5 ( 9)}) − A(
) ≥ A(
′ ∪ { 5 ( 9)}) − A(
′). (23)

Lemma 3. The objective function (JP)-(b) for a given leased
cache capacity y is a non-decreasing and submodular set
function with respect to file caching assuming that the optimal
subarea association can be obtained for a fixed file caching
state.14

Proof. The submodularity of this function can be proved by
searching all possible cases when a new file is cached at a
particular SBS or not. �

Then, let the submodular objective function for a given
leased cache capacity in Lemma 3 be

� (x′(C), z′(C) |y(C)) =∑
8∈I

*8 (C)�8 (x′(C), y(C), z′(C)) −&� (C)
∑
9∈J

H 9 (C)ℎ 9 (C),

where y(C) denotes the given leased cache capacity, x′(C)
and z′(C) denote the subarea association and file caching
solutions from the GFCA policy, respectively. In addition, let
x∗ (C) and z∗ (C) be the optimal solutions of � (x(C), z(C) |y(C)),
respectively. The objective function � (x(C), z(C) |y(C)) is con-
vex in x(C) given z(C), but becomes a nonconvex and also
discontinuous function when z(C) is considered as a variable.
Thus, this problem is a challenging combinatorial problem
with $ (2 |F |) possible cases. However, prior works, e.g., [32],
[33] showed that if we can find an optimal solution of x(C)
(or similar coupled variables) within a polynomial time given
z(C), it is enough to prove 1 − 1/4 performance bound of
a greedy file caching algorithm using a submodularity of
� (x(C), z(C) |y(C)).

Therefore, the GFCA policy given y(C) can guarantee:

� (x′(C), z′(C) |y(C)) ≥ (1 − 1/4)� (x∗ (C), z∗ (C) |y(C)). (24)

According to JGCA in GA, the following lemma holds.

Lemma 4. With uniformly and randomly picked H 9 (C) for all
SBSs 9 ∈ J , there exists a positive constant 0 < d < 1 such
that %A{H 9 (C) = H∗9 (C),∀ 9 ∈ J} ≥ d.

Proof. The set of possible H 9 (C) values is finite, i.e., |S| < ∞
where S = {0, 1, 21, ..., H<0G}. Hence, if the random selection
of H 9 (C) distributes uniformly, there exist H∗

9
(C) for all SBSs

9 ∈ J which maximize � (x∗ (C), z∗ (C) |y∗ (C)) with probability
d ≥ 1

|S | |J| > 0. �

Then, we quantify the performance of the proposed
GA+JGCA in the following Lemma 5 and Theorem 1.

14Recall that the op timal subarea association can be easily obtained by a
typical optimization technique [35] since (JP)-(b) becomes a convex function
for a fixed file caching state [33].

Lemma 5. Let y′(C) and y∗ (C) be the solution of JGCA and
one of the optimal solutions of the problem (JP)-(b) satisfying
the femtocaching plan and the feasible elastic femtocaching
policy, respectively. Then, the JGCA in GA guarantees the
following performance in every time slot.

E
{
� (x′(C), z′(C) |y′(C)) |Q(C)

}
≥

(1 − 1/4)E
{
� (x∗ (C), z∗ (C) |y∗ (C)) |Q(C)

}
− ',

(25)

where ' = 1
min{?λ,d,h }d (2|I |�

2
<0G + |J |2H2

<0Gℎ
2
<0G +

�0E6 |J |H<0Gℎ<0G).

Theorem 1. Assume that a tuple (d,λ,h) is i.i.d. In addition,
let W′

8
(C) and W∗

8
(C) for all subareas 8 ∈ I be the solution of

GA and the optimal value of (JP), respectively, and let H′
9
(C)

and H∗
9
(C) for all SBSs 9 ∈ J be the solution of JGCA in

GA and the optimal value of (JP), respectively, and let � ′
8
(C)

and �∗
8
(C) for all subareas 8 ∈ I be the caching benefits

from JGCA in GA and the optimal value of (JP), respectively.
Assume n8 = (1− 1/4)E{W∗

8
(C)} − E{W′

8
(C)} > 0, ∀8 ∈ I. Then,

the proposed GA and JGCA guarantee:
1) The virtual queues &� (C) and *8 (C) for all 8 ∈ I are stable.

2)
E[| |Q(C) | |]

C
≤√

2(% + ') + 2+ (�<0G − \∗)
C

− 1
C2
) |I |n<8=*<8=.

(26)

3) lim
)→∞

1
)

) −1∑
C=0

∑
8∈I

log(1 + W′8 (C)) ≥ \∗ −
% + '
+

. (27)

This solution is robust due to the comparison mechanism
between the solution of the current time slot and that of the
previous slot. Namely, if the budget queue increases due to the
excessive investment for cache lease, it reduces the objective
value, hence it forces the decision-maker to choose the solution
of the previous slot. On the other hand, if the budget queue
decreases due to the smaller investment for cache leasing, it
increases the objective value, hence it forces the decision-
maker to choose the solution of the current time slot. This
mechanism stabilizes the budget queue. For the stabilization
of the virtual queues for auxiliary variables, if the average
caching benefit of subarea 8 until time C becomes smaller, the
virtual queue *8 (C) gets higher; thus W8 (C) becomes smaller
by Eq. (16). It makes negative feedback for the virtual queue
*8 (C). Therefore, *8 (C) can be stabilized.

VI. PERFORMANCE EVALUATION

In this section, we execute simulations to demonstrate the
performance of the proposed elastic femtocaching algorithms.

A. Analysis of Demand and Price Dataset

We analyze the real datasets of traffic demand and cache
lease price generated from the variation of electricity price.

Traffic demand: To generate traffic demand, we use the
YouTube file request dataset in [36]. We divide the dataset
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Fig. 2: Real BS topology (denoted by triangles) of a mobile
operator on the west side of the US for rural, suburban and
urban areas. We assume that the macro BS is located at the
center of each area.

into each file for each day and each region.15 Fig. 3(a)
and 3(b) depicts the result. The number of file requests in
Fig. 3(a) have daily and weekday/weekend traffic patterns.
However, the traffic pattern is not similar even between two
consecutive days, which makes the prediction of demand
difficult. In addition, the real distribution for different regions
and different time zones are fitted by Zipf distribution [37]
with different parameters to show the spatio-temporal diversity
of content popularity. The Zipf distribution is a well-known
content popularity distribution where a higher Zipf parameter
is interpreted as a higher difference of popularity among files.
As shown in Fig. 3(b), the distributions of content popularity
in different time zones and different regions have different
Zipf parameters.

Cache prices: Currently, Amazon AWS provides constant
per-hour pricing service, i.e., ElastiCache for leasing a unit
cache resource, e.g., $0.0309/hour/GB for cache.t2.micro CPU
and US Ohio region [39]. However, since various factors such
as electricity price can change this price over time, we use
open traces of electricity price in the Canada Ontario region
[38] to generate time-varying cache lease price with the mean
value of $0.0309/hour/GB. Fig 3(c) depicts cache lease price
traces per hour and GBytes, which is not static, but highly
dynamic. The analyses of Fig. 3 imply that the cache lease
capacity, file caching and subarea-SBS association algorithms
must be designed in an online fashion, and adapted to the
varying content popularity and cache lease price to optimize
the delay performance.

B. Simulation Setup

We consider two different cases in the simulations: i) linear
BS topology with manual parameters and ii) real BS topology

15The reference [36] provided an open YouTube video request dataset
collected every 5 minutes for 7 days in a certain university campus. The
data includes individual IDs of each requested video, requested time and
destination/source IP addresses, video size, and transmission data rate. We
distinguish different regions with different IP addresses.

in Fig. 2 (where a macro BS is located on the center of each
plane) and real parameters.

Linear BS topology case: A macro BS is located at the
center of a linear line and two SBSs are located at the same
distance from the macro BS. Moreover, 8 mobile users16

are uniformly distributed. The files are requested by Zipf
distribution with randomized Zipf parameters and the mean
cache lease price per bit is 0.025 with randomized varying pa-
rameters where the variance of the randomness (with Gaussian
distribution taking positive values) can be different.17 Here, the
order of popularity of each file in each subarea is randomly
chosen. The distance between a BS and a mobile user is used
to calculate the path-loss parameter. The transmission power
of an SBS is 1 whereas that of an MBS is 20. The path loss
is set to be 128.1 + 37.6 log10 (3) in a typical LTE system
evaluation [40] where 3 is the distance of the BS from the
center of each area, and the system bandwidth is set to be
10MHz. Moreover, fast fading is captured by randomness with
different variation rates. We generate wireless transmission
delay by dividing a constant file size, i.e., 1 into transmission
data rate calculated by Shannon capacity formula with these
path-loss parameters. In addition, delay for wired backhaul
transmission is randomly chosen. Here, delay 38 9 (C) from SBS
9 to subarea (or mobile user) is just wireless transmission delay
whereas delay 38B (C) via MBS B to subarea (or mobile user) 8
is the sum of wireless transmission delay plus wired backhaul
transmission since there are no files to be cached in MBS B.
The average cache rental budget �0E6 is set to be 20.

Real BS topology case: We exploit an open dataset (rural,
suburban and urban areas as shown in Fig. 2), namely cellmap-
per [41]. We divide this topology into 9 subareas and calculate
the wireless delay profile based on the center location of each
subarea. A way to calculate wireless delay profile is the same
with the linear BS topology case except for 100MBytes of file
size. Moreover, the backhaul transmission delay is randomly
picked from a dataset in [36]. Traffic demand and cache lease
prices follow the real traces from [36] and [39]. The average
cache rental budget is set to be enough to cache 20% of
the entire file catalog, which depends on the different BS
topology (rural, suburban and urban areas) and average cache
lease price. For all cases, the entire catalog has 200 files, 10
simulation runs are executed and the average values are taken
where the number of running time slots of each simulation is
set to be 2000, and + = 10.

We consider the following metrics to analyze the perfor-
mance of the proposed GA with JCC and JGCA: sum delay
utilities of all subareas, i.e., objective value (6) in our problem
formulation. In other words, maximizing this metric is exactly
the same as maximizing the objective function. Additionally,
we compare the proposed GA+JCC and GA+JGCA and four
comparing algorithms, i.e., FCB (Fixed Cache Lease Budget),
FFC (Fixed File Caching), LRU (Least Recently Used) and
LFU (Least Frequently Used). The FCB algorithm uses the
fixed cache lease budget for all SBSs and all-time slots,
i.e., each SBS has a constant cache lease budget �0E6/|J |.

16Here, each user represents each area.
17Note that we ignore units in this first case for simplicity.
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Fig. 3: Spatio-temporal variation of input parameters for seven days: In (a), it shows the total number of YouTube file requests
in a certain university campus over time from a dataset in [36]. In (b), the real content popularity distribution for different
regions and different time zones are fitted by Zipf distribution [37]. In (c), cache lease price traces per hour and GByte is
depicted from a real electricity price dataset [38] and cache lease price [39].

Here, the subarea-SBS association is given by the nearest SBS
association policy and file caching is based on the highest file
popularity every time slot. In addition, the FFC algorithm uses
the nearest SBS association policy and caches files with the
order of the global content popularity for all time slots, i.e.,
this algorithm does not take into account the spatio-temporal
variation of the content popularity. Note that the FCB and FFC
algorithms capture characteristics of other existing proactive
caching policies which, however, do not consider cache scaling
[13], [14]. Similarly, the LRU, LFU, multi-LRU and q-LRU
are representative reactive caching policies which also do not
consider cache scaling [15]–[18]. Specifically, the multi-LRU
policy [16] caches files at each SBS based on the LRU rule,
while the routing takes place via the closest BS that caches the
requested file. Besides, the q-LRU policy [17] with the “lazy"
rule for @ = 1 operates as the multi-LRU policy but updates
the cache only if the file is not in any neighboring BSs. Note
that the operation of multi-LRU and q-LRU are essentially
similar to the standard LRU policy when the BSs have non-
overlapping coverage areas. We choose the aforementioned
algorithms (i.e., FCB, FFC, LFU, LRU, multi-LRU, q-LRU)
as benchmarks because they are quite representative of the
entire spectrum of previous works.

C. Simulation Results

Linear BS topology case. We first show the simulation
results in the linear BS topology case to see the impact of
different parameters (variance of delay, mean traffic arrival,
and variance of price) on the system performance. We also
consider two different scenarios under non-overlapping SBSs
and overlapping SBSs. We present our results by summarizing
the key observations in the following.

1) Non-overlapping SBSs scenario. In this scenario, GA
with JCC is an optimal algorithm since the subarea-SBS
association and content caching is uncoupled. Fig. 4 depicts
the sum delay utilities for different parameters. We confirm
that all budget queues and virtual queues for auxiliary variables
in both GA+JCC and GA+JGCA are stable, which implies
that the proposed algorithms guarantee the average budget

constraint and constraint (10) (average difference between
auxiliary variable and caching benefit converges to zero) are
satisfied. The result shows that as the variation of input pa-
rameters becomes higher and mean traffic arrival increases, the
performance gap between the proposed elastic cache leasing
algorithms (i.e., GA+JCC and GA+JGCA) and the static cache
leasing algorithms (FCB, FFC, LRU, LFU) increases (e.g.,
the sum of delay utilities is 0.01475 when delay variance
is 0.01 and that is 0.06694 when delay variance is 0.05 in
Fig. 4(a)). This implies that the proposed elastic cache leasing
algorithms can attain greater performance compared to existing
static cache leasing algorithms in the case that the network
environments and pricing drastically change. Here, it is notable
that the proposed GA+JGCA algorithm achieves a similar
performance with the optimal GA+JCC algorithm.

2) Overlapping SBSs scenario. In this scenario, GA+JCC is
not an optimal algorithm anymore since the subarea-SBS asso-
ciation and content caching are tightly coupled with each other.
Fig. 5 depicts the sum delay utilities for different parameters,
i.e., delay variance, mean traffic arrival and price variance.
Similar to the non-overlapping SBSs scenario, the proposed
elastic cache leasing policies (GA+JCC and GA+JGCA) are
much better than the existing static cache leasing policies
(FCB, FFC, LFU, LRU, multi-LRU, q-LRU) and the gain
of elastic cache leasing becomes higher as the variation of
input parameters increases except for the price variation case.
Here, multi-LRU [16] and q-LRU [17] with the “lazy" rule for
@ = 1 outperform the original LRU and LFU due to intelligent
association rules. However, the proposed JCC and JGCA
outperform these recent policies thanks to the dynamic and
optimal usage of cache scaling. Moreover, the performance of
the proposed joint cache lease, file caching and subarea-SBS
association, i.e., GA+JGCA is higher (e.g., 30.3% to 48.8%
higher in different price variation) than independent control
of file caching and subarea-SBS association, i.e., GA+JCC in
this overlapping SBSs scenario.

Real BS topology case. Real BSs (SBSs and MBS) are
more irregularly deployed than that in the linear BS topology
case; hence delay profile of each user from each BS can be
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(a) Delay variance vs. sum delay utilities (b) Mean arrival vs. sum delay utilities (c) Price variance vs. sum delay utilities

Fig. 4: Sum utilities in linear BS topology case and non-overlapping SBSs scenario.

(a) Delay variance vs. sum delay utilities (b) Mean arrival vs. sum delay utilities (c) Price variance vs. sum delay utilities

Fig. 5: Sum utilities in linear BS topology case and overlapping SBSs scenario.
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Fig. 6: Performance gain of the proposed algorithms under
three real BS topologies and overlapping SBSs scenario.

significantly heterogeneous. Fig. 6 depicts the performance
gain (i.e., the gain of sum delay utilities) of the proposed
GA+JGCA algorithm over static FCB algorithm and the
proposed GA+JCC algorithm which uncouples routing and
caching decisions. First, since the real BS topology is more
heterogeneous than the linear BS topology, the impact of the
elastic cache leasing policy (i.e., GA+JGCA) on the system
performance is higher than that in the linear BS topology
case, especially in urban BS topology case. Second, as BS
topology becomes denser (from rural to urban), the impact
of the elastic cache leasing policy (i.e., GA+JGCA) on the
system performance increases. This is because the caching
benefits from backhaul transmission via the MBS to wireless
transmission via the SBSs are higher in urban areas than that
in rural areas. Third, joint control of cache leasing, file caching
and routing becomes more important as BS topology becomes
more dense. This interpretation can be driven from the fact that

as BS topology gets denser (i.e., from rural area to urban area),
the gain from the routing-caching the uncoupled solution, i.e.,
GA+JCC to the joint solution, i.e., GA+JGCA becomes higher.

VII. CONCLUDING REMARK

Motivated by recent market developments and the potential
of elastic CDNs, we proposed the new problem of dynamic
cache rental, file caching and user association for wireless edge
caching networks. We formulated an optimization problem
for deriving these decisions in a fashion that maximizes
aggregated delay savings and/or ensures servicing fairness
across users, while respecting average budget constraints. A
tailored dynamic algorithm was proposed to solve the problem
by capturing both caching benefit and fairness among different
users while ensuring long-term cache rental budget under
uncertainty of file popularity and wireless channel states over
time and space. Simulation results revealed that the proposed
elastic cache leasing algorithm would be more important when
the network environments and cache leasing price are highly
volatile, which is one of the common scenarios in wireless
and heterogeneous network architecture. Although we spurred
a joint optimization of cache scaling, file caching and routing
research, this work can be improved by addressing a few
more practical aspects. First, reconfiguration cost when new
files are retrieved from the original file server to the SBSs
can be incorporated into our framework. A few works on
Lyapunov optimization addressed the reconfiguration issue
[42]. The practical approach is that the decision maker updates
the corresponding file when the expected benefit (say, the
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objective function for newly cached file minus reconfiguration
cost, e.g., bandwidth cost) is greater than the objective function
for the previously cached file [14]. Second, incorporation of
resource allocation decisions, e.g., transmission power control
and beam/user scheduling, into this cache scaling framework
would further improve the system performance. Clearly, one
can achieve higher caching benefits when coordinating addi-
tional network operation parameters with the elastic caching
decisions.

APPENDIX A
PROOF OF LEMMA 1.

We pick an arbitrary feasible elastic CDN policy c, and
prove that Condition 1 is satisfied. Note that constraints (7)-
(8) are satisfied by the fact that c chooses elastic cache plans
every slot (see definition of the feasible elastic CDN policy).

Then, let ΦC (x, y, z |λ,d,h) denote the number of slots up
to C that the state was (λ,d,h) and policy c chose the elastic
cache plan (x, y, z), and further, let �C (λ,d,h) be the total
number of slots up to C that the state was (λ,d,h). Then the
empirical frequency of choosing this plan while in this state
is simply ΦC (x, y, z |λ,d,h)/�C (λ,d,h). Here we adopt the
standard assumption that the limits of empirical frequencies
exist:18

q(x, y, z |λ,d,h) , lim
C→∞

ΦC (x, y, z |λ,d,h)/�C (λ,d,h).

Immediately, we may observe that q(·) is a (conditional)
probability distribution over elastic cache plans, and therefore
it satisfies all constraints (7). Finally, it remains to count the
cost paid by c. This is simply

Total_Cost_Upto_C
C

=∑
λ,d,h

�C (λ,d,h)
C︸        ︷︷        ︸

fraction of time the
state was (λ, d,h)

∑
(x,y,z)

ΦC (x, y, z |λ,d,h)
�C (λ,d,h)︸                   ︷︷                   ︸

frequency of plan (x, y, z)
when state is (λ, d,h)

∑
9∈J

H 9ℎ 9 , (28)

and taking limits we arrive at the conclusion:

lim
C→∞

Total_Cost_Upto_C
C

=∑
(λ,d,h)

?λ,d,h

∑
(x,y,z)

q(x, y, z |λ,d,h)
∑
9∈J

H 9ℎ 9 .
(29)

Since policy c is feasible, it satisfies the constraint (1) and
therefore limC→∞

Total_Cost_Upto_C
C

≤ �0E6. It follows that con-
dition (8) must also be satisfied.

APPENDIX B
PROOF OF LEMMA 5

Recall the virtual queue dynamics in (12) and (13) for all
subareas 8 ∈ I, then we have: *8 (C) ≤ *8 (C−1)+W<0G , ∀8 ∈ I
and &� (C) ≥ &� (C − 1) − �0E6 where W<0G = �<0G . Let
us define g^,C < g^−1,C < ... < g1,C where d(g8,C ) = d(C),
λ(g8,C ) = λ(C) and h(g8,C ) = h(C), ∀8 ≤ ^, 8 ∈ N+.

18The generality of the proof requires to lift this ergodicity assumption,
which can be done using the analysis of [29]. We avoid this technicality for
ease of exposition.

From Lemma 4, there must exist ^ ∈ N+ such that H′
9
(g^,C ) =

H∗
9
(g^,C ) for all SBSs 9 ∈ J . Therefore, we have:∑

8∈I
*8 (C)�8 (x′(C), z′(C) |y∗ (C)) −&� (C)

∑
9∈J

H∗9 (C)ℎ 9 (C)

≤
∑
8∈I
(*8 (g^,C ) + (C − g^,C )�<0G)�8 (x′(C), z′(C) |y∗ (C))

−(&� (g^,C ) − (C − g^,C )�0E6)
∑
9∈J

H∗9 (C)ℎ 9 (C)

≤
∑
8∈I

*8 (g^,C )�8 (x′(g^,C ), z′(g^,C ) |y∗ (g^,C ))

−&� (g^,C )
∑
9∈J

H∗9 (g^,C )ℎ 9 (g^,C )

+(C − g^,C )
[
|I |�2

<0G + �0E6 |J |H<0Gℎ<0G
]
. (30)

Moreover, from the virtual queue dynamics in (12) and (13),
we have: *8 (C) ≥ *8 (C − 1) − �<0G for all subareas 8 ∈ I
and &� (C) ≤ &� (C − 1) + |J |H<0Gℎ<0G . Then, the following
inequality holds:∑
8∈I

*8 (C)�8 (x′(C), z′(C) |y′(C)) −&� (C)
∑
9∈J

H′9 (C)ℎ 9 (C)

≥
∑
8∈I

*8 (C)�8 (x′(g^,C ), z′(g^,C ) |y′(g^,C )) −&� (C)
∑
9∈J

H′9 (g^,C )ℎ 9 (C)

≥
∑
8∈I
(*8 (g^,C ) − (C − g^,C )�<0G)�8 (x′(C), z′(C) |y′(g^,C ))

−(&� (g^,C ) + |J |H<0Gℎ<0G (C − g^,C ))
∑
9∈J

H′9 (g^,C )ℎ 9 (g^,C )

≥
∑
8∈I

*8 (g^,C )�8 (x′(g^,C ), z′(g^,C ) |y∗ (g^,C )) − (C − g^,C ) |I|�2
<0G

−&� (g^,C )
∑
9∈J

H∗9 (g^,C )ℎ 9 (g^,C ) − (C − g^,C ) |J |
2H2
<0Gℎ

2
<0G . (31)

where the first inequality in (31) comes from the comparison
procedure between the previous solutions and the current
solutions in JGCA. From (30) and (31), we have:

E
{ ∑
8∈I

*8 (C)�8 (x′(C), z′(C) |y∗ (C)) −&� (C)
∑
9∈J

H∗9 (C)ℎ 9 (C) |Q(C)
}

≥ E
{ ∑
8∈I

*8 (C)�8 (x′(C), z′(C) |y′(C)) −&� (C)
∑
9∈J

H′9 (C)ℎ 9 (C) |Q(C)
}

+E
{
(C − g^,C ) |Q(C)

}(
|I |�2

<0G+|J |2H2
<0Gℎ

2
<0G+|I|�2

<0G+|I|�0E6H<0Gℎ<0G
)
. (32)

Recall that we assume that there is unknown distribution
?λ,d,h drawn from the finite states of a tuple (λ,d,h). From
the fact that E{(C − g^,C ) |Q(C)} ≤ 1

min{?λ,d,h }d
19, we have:

E
{ ∑
8∈I

*8 (C)�8 (x′(C), z′(C) |y∗ (C)) −&� (C)
∑
9∈J

H∗9 (C)ℎ 9 (C) |Q(C)
}

−E
{ ∑
8∈I

*8 (C)�8 (x′(C), z′(C) |y′(C)) −&� (C)
∑
9∈J

H′9 (C)ℎ 9 (C) |Q(C)
}

≤ 1
min{?λ,d,h}d

(
2|I |�2

<0G+|J |2H2
<0Gℎ

2
<0G+�0E6 |J |H<0Gℎ<0G

)
︸                                                                                       ︷︷                                                                                       ︸

'

.(33)

19since within time 1
min{?λ,d,h}d , at least one optimal solution y∗ (C) for

a tuple (d(C) ,λ(C) ,h(C)) exists.
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By plugging (24) in (33), this completes the proof.

APPENDIX C
PROOF OF THEOREM 1

We begin this proof from the DMB bound in Eq. (15)
without the objective function when we use the JGCA and
GA algorithms as follows.

Δ(! (C)) ≤ % − E
{
(�0E6 −

∑
9∈J

H′9 (C)ℎ 9 (C))&� (C) |Q(C)
}

−
∑
8∈I
E
{
(� ′8 (C) − W

′
8 (C))*8 (C) |Q(C)

}
≤ %+' + (1 − 1/4)E

{ ∑
9∈J

H∗9 (C)&� (C) −
∑
8∈I

�∗8 (C)*8 (C) |Q(C)
}

−E
{
�0E6&� (C) +

∑
8∈I

W′8 (C)*8 (C) |Q(C)
}

= %+' −
∑
8∈I
E
{
*8 (C) ((1 − 1/4)�∗8 (C) − W

′
8 (C)) |Q(C)

}
+E

{
&� (C) ((1 − 1/4)

∑
9∈J

H∗9 (C)ℎ 9 (C) − �0E6 |Q(C)
}
. (34)

The second inequality comes from the result of Lemma 5.
Moreover, by summing (34) over C = {0, 1, ...) − 1}, taking
expectations in both sides, and dividing both sides with ) , we
have:

E{! ())} − E{! (0)}
)

≤ % + ' − 1
)

) −1∑
C=0

∑
8∈I

n8*8 (C)

≤ %+'− 1
)

) −1∑
C=0

∑
8∈I

n<8=*8 (C), (35)

where n<8= denotes the minimum value among n8 for all subar-
eas 8 ∈ I. Using ! (0) < ∞, we have:

∑
8∈I E{*8 (C)} ≤ %+'

n<0G

since *8 (C) ≥ 0 for all time slots, n<0G ≥ 0 and whenever
n8 > 0, *8 (C), ∀8 ∈ I are stable.

Second, to prove the virtual queue bounds, we consider
DMB bound in Eq. (15) when we use the JGCA and GA
algorithms as follows.

Δ(! (C)) −+
∑
8∈I
E
{

log(1 + W∗8 (C)) |Q(C)
}

≤ % −+
∑
8∈I
E
{

log(1 + W∗8 (C)) |Q(C)
}

−E
{
(�0E6 −

∑
9∈J

H′9 (C)ℎ 9 (C))&� (C) |Q(C)
}

−
∑
8∈I
E
{
(� ′8 (C) − W

′
8 (C))*8 (C) |Q(C)

}
≤ %+'−+

∑
8∈I
E
{

log(1 + W∗8 (C)) |Q(C)
}

+(1 − 1/4)E
{ ∑
9∈J

H∗9 (C)&� (C) −
∑
8∈I

�∗8 (C)*8 (C) |Q(C)
}

−E
{
�0E6&� (C) +

∑
8∈I

W′8 (C)*8 (C) |Q(C)
}

= %+'−+
∑
8∈I
E
{

log(1 + W∗8 (C)) |Q(C)
}

+
∑
8∈I
E
{
*8 (C) (W′8 (C) − (1 − 1/4)�∗8 (C)) |Q(C)

}
+E

{
&� (C) ((1 − 1/4)

∑
9∈J

H∗9 (C)ℎ 9 (C) − �0E6) |Q(C)
}
. (36)

The second inequality comes from the result of Lemma 5.
Then, by summing (34) over C ∈ {0, 1, ..., ) − 1} and taking
expectations in both sides, we have:

E[| |Q(C) | |2]

≤ 2(% + ')) + 2)+ (�<0G − \∗) −
) −1∑
C=0

∑
8∈I

n<8=*8 (C). (37)

Since *8 (C), ∀8 ∈ I are stable, *8 (C) < ∞, ∀8 ∈ I.
In addition, using the fact that E[| |Q()) | |]2 ≤ E[| |Q(C) | |2],
and by dividing (37) with )2 and taking a square root, this
completes the proof of queue bound. Hence, the virtual queue
is also stable.

Finally, to prove the sum utility performance of JGCA and
GA algorithms, we rearrange (36), divide both sides by )+ ,
and use the fact that ! ()) ≥ 0 to have:

1
)

) −1∑
C=0

∑
8∈I

log(1 + W′8 (C))

≥ \∗ − % + '
+
+ 1
)+

) −1∑
C=0

∑
8∈I

n8E{*8 (C)}. (38)

Whenever n8 > 0, ∀8 ∈ I, by taking ) → ∞, this completes
the proof of utility bound.
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