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Abstract

Cellular-connected unmanned aerial vehicle (UAV) is a promising technology to unlock the full

potential of UAVs in the future by reusing the cellular base stations (BSs) to enable their air-ground com-

munications. However, how to achieve ubiquitous three-dimensional (3D) communication coverage for

the UAVs in the sky is a new challenge. In this paper, we tackle this challenge by a new coverage-aware

navigation approach, which exploits the UAV’s controllable mobility to design its navigation/trajectory to

avoid the cellular BSs’ coverage holes while accomplishing their missions. To this end, we formulate an

UAV trajectory optimization problem to minimize the weighted sum of its mission completion time and

expected communication outage duration, which, however, cannot be solved by the standard optimization

techniques mainly due to the lack of an accurate and tractable end-to-end communication model in

practice. To overcome this difficulty, we propose a new solution approach based on the technique of

deep reinforcement learning (DRL). Specifically, by leveraging the state-of-the-art dueling double deep

Q network (dueling DDQN) with multi-step learning, we first propose a UAV navigation algorithm

based on direct RL, where the signal measurement at the UAV is used to directly train the action-value

function of the navigation policy. To further improve the performance, we propose a new framework

called simultaneous navigation and radio mapping (SNARM), where the UAV’s signal measurement is

used not only for training the DQN directly, but also to create a radio map that is able to predict the

outage probabilities at all locations in the area of interest. This thus enables the generation of simulated

UAV trajectories and predicting their expected returns, which are then used to further train the DQN

via Dyna technique, thus greatly improving the learning efficiency. Simulation results demonstrate the
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effectiveness of the proposed algorithms for coverage-aware UAV navigation, as well as the significantly

improved performance of SNARM over direct RL.

I. INTRODUCTION

Conventionally, cellular networks are designed to mainly serve terrestrial user equipments

(UEs) with fixed infrastructure. With the continuous expansion of human activities towards the

sky and the fast growing use of unmanned aerial vehicles (UAVs) for various applications, there

have been increasing interests in integrating UAVs into cellular networks [2]. On one hand,

dedicated UAVs could be dispatched as aerial base stations (BSs) or relays to assist wireless

communications between devices without direct connectivity, or as flying access points (APs)

for data collection and information dissemination, leading to a new three-dimensional (3D)

network with UAV-assisted communications [3]. On the other hand, for those UAVs with their

own missions, cellular network could be utilized to support their command and control (C&C)

communication as well as payload data transmissions, corresponding to the other paradigm of

cellular-connected UAV [4]. In particular, by reusing the existing densely deployed cellular BSs

worldwide, together with the advanced cellular technologies, cellular-connected UAV has the

great potential to achieve truly remote UAV operation with unlimited range, not to mention

other advantages such as the ease of legitimate UAV monitoring and management, high-capacity

payload transmission, and cellular-enhanced positioning [2,4].

However, to practically realize the above vision of cellular-connected UAVs, there are still

several critical challenges to be addressed. In particular, as existing cellular networks are mainly

planned for ground coverage with BS antennas typically downtilted towards the ground [5], unlike

that on the ground, ubiquitous cellular coverage in the sky cannot be guaranteed in general [6].

In fact, even for the forthcoming 5G or future 6G cellular networks that are planned to embrace

the new type of aerial UEs, it is still unclear whether ubiquitous sky coverage is economically

viable or not, even for some moderate range of altitude, considering various practical factors

such as infrastructural and operational costs, as well as the anticipated aerial UE density in the

near future. Such coverage issue is exacerbated by the more severe aerial-ground interference as

compared to the terrestrial counterpart [4,6,7], due to the high likelihood of having strong line

of sight (LoS) channels for the UAVs with their non-associated co-channel BSs.

Fortunately, different from the conventional ground UEs whose mobility is typically random

and uncontrollable, which renders ubiquitous ground coverage essential, the mobility of UAVs is
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Fig. 1: Coverage-aware navigation for cellular-connected UAVs in urban environment.

more predictable and most of the time controllable, either autonomously by computer program

or by remote pilots. This thus offers a new degree of freedom to circumvent the aforementioned

coverage issue, via coverage-aware navigation or trajectory design: an approach that requires

no or little modifications for cellular networks to serve aerial UEs. There are some preliminary

efforts along this direction. In [8], by applying graph theory and convex optimization for cellular-

connected UAV, the UAV trajectory is optimized to minimize the UAV travelling time while

ensuring that it is always connected with at least one BS. A similar problem is studied in [9,10],

by allowing certain tolerance for disconnection.

However, the conventional optimization-based UAV trajectory design like those mentioned

above have practical limitations. First, formulating the corresponding optimization problems

requires accurate and analytically tractable end-to-end communication models, including the BS

antenna model, channel model, interference model and even local environmental model. Perhaps

for such reasons, prior works such as [8]–[10] have mostly assumed some simplified models

like isotropic radiation for antennas and/or free-space path loss channel model for aerial-ground

links. Although there have been previous works considering more sophisticated channel models,

like the probabilistic LoS channel model [11] and angle-dependent channel parameters [12,13],

these are statistical models that can only predict the performance in the average sense without

providing any performance guarantee for the local environment where the UAVs are actually

deployed. Another limitation of off-line optimization-based trajectory design is the requirement

of perfect and usually global knowledge of the channel model parameters, which is difficult to

acquire in practice. Last but not least, even with the accurate channel model and the perfect

information of all relevant parameters, most of these off-line optimization problems are highly

non-convex and thus difficult to be efficiently solved.
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To overcome the above limitations, we propose in this paper a new approach for coverage-

aware UAV navigation based on reinforcement learning (RL) [14], which is one type of machine

learning techniques for solving sequential decision problems. As shown in Fig. 1, we consider

a typical cellular-connected UAV system in urban environment, where multiple UAVs need

to operate in a given airspace with their communications supported by cellular BSs. The UAV

missions are to fly from their respective initial locations to a common final location with minimum

time,1 while maintaining a satisfactory communication connectivity with the cellular network

with best effort. Our main contributions are summarized as follows:

• First, we formulate the UAV trajectory optimization problem to minimize the weighted sum

of its mission completion time and the expected communication outage duration, which,

however, is difficult to be solved via the standard optimization techniques mainly due to

the lack of an accurate and tractable communication model. Fortunately, we show that the

formulated problem can be transformed to an equivalent Markov decision process (MDP),

for which a handful of RL techniques, such as the classic Q learning [14], can be applied

to learn the UAV action policy, or the flying direction in our problem.

• As the resulting MDP involves continuous state space that essentially has infinite number

of state-action pairs and thus renders the simple table-based Q learning inapplicable, we

apply the celebrated deep neural network (DNN) to approximate the action-value function

(or Q function), a technique commonly known as deep reinforcement learning (DRL)

or more specifically, deep Q learning [15]. To train the DNN, we use the state-of-the-

art dueling network architecture with double DQN (dueling DDQN) [16] and multi-step

learning. Different from the conventional off-line optimization-based designs, the proposed

DRL-based trajectory design does not require any prior knowledge about the channel model

or propagation environment, but only utilizes the raw signal measurement at each UAV as

the input to improve its radio environmental awareness, as evident from the continuously

improved estimation accuracy of the UAVs’ action-value functions.

• As direct RL based on real experience or measured data only is known to be data inefficient,

i.e., a large amount of data or agent-environment interaction is needed, we further propose

a new design framework termed simultaneous navigation and radio mapping (SNARM) to

improve the learning efficiency. Specifically, with SNARM, the network (say, a macrocell
1The results of this paper can be extended to the general case of different final locations for the UAVs.
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BS in the area of interest) maintains a database, also known as radio map [17,18], which

provides the outage probability distribution over the space of interest with respect to the

relatively stable (large-scale) channel parameters. As such, the obtained signal measurements

as UAVs fly along their trajectories are used for dual purposes: to train the DQN to improve

the estimation of the optimal action-value functions, as well as to improve the accuracy of

the estimated radio map, which is used for the prediction of the outage probability for

other locations in the considered area even if they have not been visited by any UAV yet.

The exploitation of the radio map, whose accuracy is continuously improved as more signal

measurements are accumulated, makes it possible to generate simulated UAV trajectories and

predict their corresponding returns, without having to actually fly the UAVs along them.

This thus leads to our proposed SNARM framework, by applying the classic Dyna [14]

dueling DDQN with multi-step learning to train the action-value functions with a combined

use of real trajectories and simulated trajectories, thus greatly reducing the actual UAV

flights or measurement data required.

• Numerical results are provided, with the complete source codes available online2, to verify

the performance of the proposed algorithms. It is observed that the SNARM algorithm is

able to learn the radio map very efficiently, and both direct RL and SNARM algorithms

are able to effectively navigate UAVs to avoid the weak coverage regions of the cellular

network. Furthermore, thanks to the simultaneous learning of the radio map, SNARM is

able to significantly reduce the number of required UAV flights (or learning episodes) than

direct RL while achieving comparable performance.

Note that applying RL techniques for UAV communications has received significant attention

recently [19]–[23] and DRL has also been used in wireless networks [24] for solving various

problems like multiple access control [25], power allocation [26], modulation and coding [27],

mobile edge computing [28], UAV BS placement [29], and UAV interference management [30],

among others. On the other hand, local environmental-aware UAV path/trajectory design has

been studied from different perspectives, such as that based on the known radio map [31]

or 3D city map [32,33], or the joint online and off-line optimization for UAV-enabled data

harvesting [34]. Compared to such existing path/trajectory designs, the proposed coverage-aware

navigation algorithms based on direct RL or SNARM do not require any prior knowledge or
2https://github.com/xuxiaoli-seu/SNARM-UAV-Learning
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assumption about the environment, but only utilize the UAV’s measured data as the input for

action and/or radio map learning, thus expected to be more robust to any imperfect knowledge

or change of the local environment. Although large data measurements are generally required

for the proposed algorithms, they are practically available according to the existing cellular

communication protocols, such as the reference signal received power (RSRP) and reference

signal received quality (RSRQ) measurements. Besides, as different UAVs in the same region

share the same local radio propagation environment, regardless of operating concurrently or

at different time, their measured data as they perform their respective missions can actually be

collectively utilized for our proposed designs, to continuously improve the quality of the learning

for the future missions, which thus greatly alleviates the burden for data acquisition in practice.

The rest of the paper is organized as follows. Section II introduces the system model and

problem formulation. In Section III, we give a very brief background about RL and DRL, mainly

to introduce the key concepts and main notations. Section IV presents the proposed algorithms,

including the direct RL based on dueling DDQN with multi-step learning for UAV navigation,

and SNARM to enable path learning with both real and simulated flight experience. Section V

presents the numerical results, and finally we conclude the paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a cellular-connected UAV system with arbitrary number of

UAV users. Without loss of generality, we assume that the airspace of interest is a cubic volume,

which is specified by [xL, xU ] × [yL, yU ] × [zL, zU ], with the subscripts L and U respectively

denoting the lower and upper bounds of the 3D coordinate of the airspace. UAVs with various

missions need to operate in this airspace with communications supported by cellular BSs. While

different UAVs usually have different missions and may operate at different time, since they share

the common airspace, their flight experience including their signal measurements along their

respective flying trajectories, can be exploited collectively to improve their radio environmental

awareness. To make the problem concrete, we consider the scenario that the UAVs need to fly

from their respective initial locations qI ∈ R3×1, which are generally different for different

UAVs, to a common final location qF ∈ R3×1, as shown in Fig. 2. This setup corresponds

to various UAV applications such as UAV-based parcel collection, with qI corresponding to the

customer’s home location and qF being the local processing station of courier company, or UAV-

based aerial inspection, with qI being the target point for inspection and qF being the charging
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Fig. 2: UAVs with various initial locations fly to a common destination.

station in the local area, etc. We assume that collision/obstacle avoidance is guaranteed by e.g.,

ensuring that UAVs are sufficiently separated in operation time or space, and their flight altitudes

are higher than the maximum building height. Without loss of generality, we can focus on one

typical UAV, since other UAVs may apply similar strategies to update the common location-

dependent database, such as the action-value function of the RL algorithms and the radio map

of the environment (to be defined later). The UAV needs to be navigated from its initial location

qI to the final location qF with the minimum mission completion time, while maintaining a

satisfactory communication connectivity with the cellular network. Let T denote the mission

completion time and q(t) ∈ R3×1, t ∈ [0, T ], represent the UAV trajectory. Then we should have

q(0) = qI , q(T ) = qF , (1)

qL � q(t) � qU ,∀t ∈ (0, T ), (2)

where qL , [xL; yL; zL] and qU , [xU ; yU ; zU ], with � denoting the element-wise inequality.

Let M denote the total number of cells in the area of interest, and hm(t), 1 ≤ m ≤ M ,

represent the baseband equivalent channel from cell m to the UAV at time t, which generally

depends on the BS antenna gains, the large-scale path loss and shadowing that are critically

dependent on the local environment, as well as the small-scale fading. The received signal

power at time t by the UAV from cell m can be written as

pm(t) = P̄m|hm(t)|2 (3)

= P̄mβm(q(t))Gm(q(t))h̃m(t), m = 1, · · · ,M, (4)

where P̄m denotes the transmit power of cell m that is assumed to be a constant, βm(·) and

Gm(·) denote the large-scale channel gain and the BS antenna gain, respectively, which generally

depend on the UAV location q(t), and h̃m(t) is a random variable accounting for the small-scale

fading. As the proposed designs in this paper work for arbitrary channels, a detailed discussion
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of one particular BS-UAV channel model adopted for our simulations is deferred to Section V.

Denote by b(t) ∈ {1, · · · ,M} the cell associated to the UAV at time t. We say that the UAV

is in outage at time t if its received signal-to-interference ratio (SIR) is below a certain threshold

γth, i.e., when SIR(t) < γth, where

SIR(t) ,
pb(t)(t)∑

m 6=b(t) pm(t)
. (5)

Note that for simplicity, we have ignored the noise effect, since BS-UAV communication is

known to suffer from more severe interference than the terrestrial counterparts, and thus its

communication performance is usually interference-limited. Besides, we consider the worst-case

scenario with universal frequency reuse so that all these non-associated BSs would contribute

to the sum-interference term in (5). The extension of the proposed techniques for dynamic

interference will be an interesting work for further investigation.

Due to the randomness of small-scale fading, for any given UAV location q(t) and cell

association b(t) at time t, SIR(t) in (5) is a random variable, and the resulting outage probability

is a function of q(t) and b(t), i.e.,

Pout(q(t), b(t)) , Pr (SIR(t) < γth) , (6)

where Pr (·) is the probability of the event taken with respect to the randomness of small-scale

fading {h̃m(t)}Mm=1. Then the total expected outage duration across the UAV’s mission duration

T is

T̄out({q(t), b(t)}) =

∫ T

0

Pout(q(t), b(t))dt. (7)

Intuitively, with longer mission completion time T , the UAV is more flexible to adapt its

trajectory to avoid the weak coverage regions of the cellular network in the sky and thus

reduce the expected outage duration T̄out. Therefore, there in general exists a tradeoff between

minimizing the mission completion time T and expected outage duration T̄out, which can be

balanced by designing {q(t)} and {b(t)} to minimize the weighted sum of these two metrics
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with certain weight µ ≥ 0, as formulated in the following optimization problem.

(P0) : min
T,{q(t),b(t)}

T + µT̄out({q(t), b(t)})

s.t. ‖q̇(t)‖ ≤ Vmax, ∀t ∈ [0, T ], (8)

q(0) = qI , q(T ) = qF , (9)

qL � q(t) � qU , ∀t ∈ [0, T ], (10)

b(t) ∈ {1, · · · ,M}, (11)

where Vmax denotes the maximum UAV speed. It can be shown that at the optimal solution to

(P0), the UAV should fly with the maximum speed Vmax, i.e., q̇(t) = Vmax~v(t), where ~v(t)

denotes the UAV flying direction with ‖~v(t)‖ = 1. Thus, (P0) can be equivalently written as

(P1) : min
T,{q(t),~v(t),b(t)}

T + µT̄out({q(t), b(t)})

s.t. q̇(t) = Vmax~v(t), ∀t ∈ [0, T ], (12)

‖~v(t)‖ = 1, ∀t ∈ [0, T ], (13)

(9)− (11).

In practice, finding the optimal UAV trajectory and cell association by directly solving the

optimization problem (P1) faces several challenges. First, to complete the problem formulation

of (P1) to make it ready for optimization, we still need to derive the closed-form expression for

the expected outage duration T̄out({q(t), b(t)}) for any given UAV location q(t) and association

b(t), which is challenging, if not impossible. On one hand, this requires accurate and tractable

modelling of the end-to-end channel hm(t) for cellular-UAV communication links, where prac-

tical 3D BS antenna pattern [35] and the frequent variations of LoS/NLoS connections, which

depends on the actual building/terrain distributions in the area of interest, need to be considered.

On the other hand, even with such modelling and the perfect knowledge of the terrain/building

information for the area of interest, deriving the closed-form expression for T̄out({q(t), b(t)}) is

mathematically difficult since the probability density function (pdf) of the SIR depends on the

UAV trajectory q(t) in sophisticated manners, as can be inferred from (4) and (5). Furthermore,

even after completing the problem formulation of (P1) with properly defined cost function, the

resulting optimization problem will be highly non-convex and difficult to be efficiently solved.

To overcome the above issues, in the following, we propose a novel approach for coverage-

aware UAV navigation by leveraging the powerful mathematical framework of RL and DNN,
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which only requires the UAV signal measurements along its flight as the input. By leveraging

the state-of-the-art dueling DDQN with multi-step learning [36], we first propose the direct

RL-based algorithm for coverage-aware UAV navigation, and then introduce the more advanced

SNARM algorithm to improve the learning efficiency and UAV performance.

III. OVERVIEW OF DEEP REINFORCEMENT LEARNING

This section aims to give a brief overview on RL and DRL, by introducing the key notations

to be used in the sequel of this paper. The readers are referred to the classic textbook [14] for

a more comprehensive description.

A. Basics of Reinforcement Learning

RL is a useful machine learning method to solve the MDP [14], which consists of an agent

interacting with the environment iteratively. For the fully observable MDP, at each discrete time

step n, the agent observes a state Sn, takes an action An, and then receives an immediate reward

Rn and transits to the next state Sn+1. Mathematically, an MDP can be specified by 4-tuple

< S,A,P ,R >, where S is the state space, A is the action space, P is the state transition

probability, with P (s′|s, a) specifying the probability of transiting to the next state s′ ∈ S given

the current state s ∈ S after applying the action a ∈ A, and R is the immediate reward received

by the agent, usually denoted by Rn for reward received at time step n or R(s, a) to show its

general dependency on s and a.

The agent’s actions are governed by its policy π : S × A → [0, 1], where π(a|s) gives the

probability of taking action a ∈ A when in state s ∈ S. The goal of the agent is to improve its

policy π based on its experience, so as to maximize its long-term expected return E[Gn], where

the return Gn ,
∑∞

k=0 γ
kRn+k is the accumulated discounted reward from time step n onwards

with a discount factor 0 ≤ γ ≤ 1.

A key metric of RL is the action-value function, denoted as Qπ(s, a), which is the ex-

pected return starting from state s, taking the action a, and following policy π thereafter,

i.e., Qπ(s, a) = Eπ[Gn|Sn = s, An = a]. The optimal action-value function is defined as

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S and a ∈ A. If the optimal value function Q∗(s, a) is known,

the optimal policy π∗(a|s) can be directly obtained as

π∗(a|s) =


1, if a = argmax

a∈A
Q∗(s, a),

0, otherwise.
(14)
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Thus, an essential task of RL is to obtain the optimal value functions, which satisfy the celebrated

Bellman optimality equation [14]

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′∈A

Q∗(s
′, a′),∀s ∈ S, a ∈ A. (15)

Bellman optimality equation is non-linear, and admits no closed-form solution in general. How-

ever, many iterative solutions have been proposed. Specifically, when the agent has the full

knowledge of the MDP, including the reward R and the state-transition probabilities P , the

optimal value function can be obtained recursively based on dynamic programming, such as

value iteration [14]. On the other hand, when the agent has no or incomplete prior knowledge

about the MDP, it may apply the useful idea of temporal difference (TD) learning to improve its

estimation of the value function by directly interacting with the environment. Specifically, TD

learning is a class of model-free RL methods that learn the value functions based on the direct

samples of the state-action-reward-nextState sequence, with the estimation of the value functions

updated by the concept of bootstrapping. One classic TD learning method is Q-learning, which

applies the following update to the action-value function with the observed sample reward-and-

state transitions (Sn, An, Rn, Sn+1):

Q(Sn, An)← Q(Sn, An) + α

[
Rn + γ max

a∈A
Q(Sn+1, a)−Q(Sn, An)

]
,

where α is the learning rate. It has been shown that Q-learning is able to converge to the optimal

action-value function Q∗ if each state-action pair is visited by sufficient times and appropriate

learning rate α is chosen [14].

B. Deep Reinforcement Learning

The RL learning method discussed in Section III-A is known as table-based, which requires

storing one value for each state-action pair, and the value is updated only when that state-action

pair is actually experienced. This becomes impractical for continuous state/action or when the

number of discretized states/actions is very large. In order to practically apply RL algorithms to

large/continuous state-action space, one may resort to the useful technique of function approx-

imation [14], where the action-value function is approximated by certain parametric function,

e.g., Q(s, a) ≈ Q̂(s, a;θ), ∀s ∈ S, a ∈ A, with a parameter vector θ. Function approximation

brings two advantages over table-based RL. Firstly, instead of storing and updating the value

functions for all state-action pairs, one only needs to learn the parameter θ, which typically has

much lower dimension than the number of state-action pairs. Secondly, function approximation
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enables generalization, i.e., the ability to predict the values even for those state-action pairs that

have never been experienced, since different state-action pairs are coupled with each other via

the function Q̂(s, a;θ) and parameter θ.

One powerful non-linear function approximation technique is via using artificial neural net-

works (ANNs), which are networks consisting of interconnected units (or neurons), with each

unit computing a weighted sum of their input signals and then applying a nonlinear function

(called the activation function) to produce its output. It has been theoretically shown that an ANN

with even a single hidden layer containing a sufficiently large number of neurons is a universal

function approximation [14], i.e., it can approximate any continuous function on a compact

region to any degree of accuracy. Nonetheless, researchers have found that ANNs with deep

architectures consisting of many hidden layers are of more practical usage for complex function

approximations. A combination of RL with function approximation based on deep ANNs leads

to the powerful framework of DRL [15].

With deep ANN for the action-value function approximation Q(s, a) ≈ Q̂(s, a;θ), the pa-

rameter vector θ actually corresponds to the weight coefficients and bias of all links in the

ANNs. In principle, θ can be updated based on the classic backpropagation algorithm [37].

However, its application for DRL faces new challenges, since standard ANNs are usually trained

in the supervised learning manner, i.e., the labels (in this case the true action values) of

the input training data are known, which is obviously not the case for DRL. This issue can

be addressed by the idea of bootstrapping, i.e., for each given state-action-reward-nextState

transition (Sn, An, Rn, Sn+1), the parameter of the network θ is updated to minimize the loss

given by (
Rn + γmax

a∈A
Q̂(Sn+1, a;θ)− Q̂(Sn, An;θ)

)2

. (16)

However, as the target in (16) also depends on the parameter θ to be actually updated, directly

applying the standard deep training algorithms with (16) can lead to oscillations or even diver-

gence. This problem was addressed in the celebrated work [15], which proposed the simple but

effective technique of “target network” to bring the Q-learning update closer to the standard

supervised-learning setup. A target network, denoted as Q̂(s, a;θ−) with parameter θ−, is a

copy of the Q network Q̂(s, a;θ), but with its parameter θ− updated much less frequently. For

example, after every B number of updates to the weights θ of the Q network, we may set θ−

equal to θ and keep it unchanged for the next B updates of θ. Thus, the loss in (16) is modified
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to (
Rn + γmax

a∈A
Q̂(Sn+1, a;θ−)− Q̂(Sn, An;θ)

)2

. (17)

This helps to keep the target remaining relatively stable and hence improve the convergence

property of the training.

Another essential technique proposed in [15] is experience replay, which stores the state-

action-reward-nextState transition (Sn, An, Rn, Sn+1) into a replay memory and then randomly

access them later to perform the weight updates. Together with mini-batch update, i.e., multiple

experiences are sampled uniformly at random from the replay memory for each update, experi-

ence replay helps to reduce the variance of the updates by avoiding highly correlated data for

successive updates.

Soon after the introduction of DQN in [15], many techniques for further performance im-

provement have been proposed, such as DDQN [38] to address the over-estimation bias of the

maximum operation of the Q learning, DQN with prioritized experience replay (PER) [39],

DQN with the dueling network architecture [16], and a combination of all major improvement

techniques, termed Rainbow, has been introduced in [36].

IV. PROPOSED ALGORITHMS

In this section, we present our proposed DRL-based algorithms for solving the coverage-aware

UAV navigation problem (P1).

A. Coverage-Aware UAV Navigation as an MDP

The first step to apply RL algorithms for solving a real-world problem is to reformulate it as

an MDP. As MDP is defined over discrete time steps, for the UAV navigation and cell association

problem (P1), we need to first discretize the time horizon [0, T ] into N time steps with certain

interval ∆t, where T = N∆t. Note that ∆t should be small enough so that within each time step,

the distance between the UAV and any BS in the area of interest are approximately unchanged,

or their large-scale channel gain and the BS antenna gain towards the UAV, i.e., βm(q(t)) and

Gm(q(t)) in (4), remain approximately constant. As such, the UAV trajectory {q(t)} can be

approximately represented by the sequence {qn}Nn=1, thus (12) and (13) can be rewritten as

qn+1 = qn + ∆s~vn, ∀n, (18)

‖~vn‖ = 1, ∀n, (19)
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where ∆s = Vmax∆t is the UAV (maximum) displacement per time step, and ~vn , ~v(n∆t)

denotes the UAV flying direction at time step n. Furthermore, as cell association is usually based

on large-scale channel gains with BSs to avoid too frequent handover, the associated cell thus

remains unchanged within each time step. Thus, the association policy b(t) can be represented in

discrete time as bn. As a result, the expected outage duration (7) can be approximately rewritten

as

T̄out({q(t), b(t)}) ≈ ∆t

N∑
n=1

Pout(qn, bn). (20)

For each time step n with given UAV location qn and cell association bn, deriving a closed-

form expression for Pout(qn, bn) is difficult as previously mentioned in Section II. Fortunately,

this issue can be circumvented by noting the fact that the time step ∆t, which corresponds to

UAV trajectory discretization based on the large-scale channel variation only, is actually in a

relatively large time scale (say fractions of a second) and typically contains a large number

of channel coherence blocks (say on the order of milliseconds) due to the small-scale fading.

This thus provides a practical method to evaluate (20) numerically based on the raw signal

measurement at the UAV. To this end, for given qn and bn at time step n, we first denote the

instantaneous SIR in (5) as SIR(qn, bn; h̃), where h̃ includes all the random small-scale fading

coefficients with the M cells in (4). Further define an indicator function I(·) as

I(q, b; h̃) =

1, if SIR(q, b; h̃) < γth

0, otherwise.
(21)

Then we have

Pout(qn, bn) = Pr
(

SIR(qn, bn; h̃) < γth

)
(22)

= Eh̃
[
I(qn, bn; h̃)

]
. (23)

Assume that within each time step n, the UAV performs J SIR measurements for each of the M

cell associations, which could be achieved by leveraging the existing soft handover mechanisms

with continuous RSRP and RSRQ reports. Denote the jth SIR measurement of time step n with

cell association bn ∈ {1, · · · ,M} as SIR(qn, bn; h̃[n, j]), where h̃[n, j] denotes the realization of

the small-scale fading. The corresponding outage indicator value, denoted as I(qn, bn; h̃[n, j]),

can be obtained accordingly based on (21). Then the empirical outage probability can be obtained

as

P̂out(qn, bn) ,
1

J

J∑
j=1

I(qn, bn; h̃[n, j]). (24)
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Then by applying the Law of Large Numbers to (23), we have limJ→∞ P̂out(qn, bn) = Pout(qn, bn).

Therefore, as long as the UAV performs signal measurements sufficiently frequently so that

J � 1, Pout(qn, bn) in (20) can be evaluated by its empirical value P̂out(qn, bn).

Based on the above discussion, (P1) can be approximated as

(P2) : max
N,{qn,~vn,bn}

−N − µ
N∑
n=1

P̂out(qn, bn)

s.t. qn+1 = qn + ∆s~vn, ∀n, (25)

‖~vn‖ = 1, ∀n, (26)

q0 = qI ,qN = qF , (27)

qL � qn � qU ,∀n, (28)

bn ∈ {1, · · · ,M}. (29)

Note that we have dropped the constant coefficient ∆t in the objective of (P2). Obviously, the

optimal cell association policy to (P2) can be easily obtained as b∗n = arg min
b∈{1,··· ,M}

P̂out(qn, b).

With a slight abuse of notation, let

P̂out(qn) = min
b∈{1,··· ,M}

P̂out(qn, b), (30)

then (P2) reduces to

(P3) : max
N,{qn,~vn}

−N − µ
N∑
n=1

P̂out(qn)

s.t. (25)− (28).

As such, a straightforward mapping of (P3) to an MDP < S,A,P ,R > is obtained as follows

• S: the state corresponds to the UAV location qn, and the state space constitutes all possible

UAV locations within the feasible region, i.e., S = {q : qL � q � qU}.

• A: the action space corresponds to the UAV flying direction, i.e., A = {~v : ‖~v‖ = 1}.

• P: the state transition probability is deterministic governed by (25).

• R: the reward R(q) = −1−µP̂out(q), so that every time step that the UAV takes would incur

a penalty of 1, and an additional penalty with weight µ if the UAV enters into a location

with certain outage probability. This will thus encourage the UAV to reach the destination

qF as soon as possible, while avoiding the weak coverage regions of the cellular network.

With the above MDP formulation, it is observed that the objective function of (P3) corresponds

to the un-discounted (i.e., γ = 1) accumulated rewards over one episode up to time step N , i.e.,
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Fig. 3: Dueling DQN for coverage-aware UAV navigation.

G1 =
∑N

n=1Rn. This corresponds to one particular form of MDP, namely the episodic tasks

[14], which are tasks containing a special state called the terminal state that separates the agent-

environment interactions into episodes. For episodic tasks, each episode ends with the terminal

state, followed by a random reset to the starting state to start the new episode. For the UAV

navigation problem (P3), the terminal state corresponds to qF and the start state is qI . After

being formulated as an MDP, (P3) can be solved by applying various RL algorithms. In the

following, we first introduce a solution based on the state-of-the-art dueling DDQN with multi-

step learning, and then propose the SNARM framework to improve the learning efficiency.

B. Dueling DDQN Multi-Step Learning for UAV Navigation

Both the state and action spaces for the MDP defined in Section IV-A are continuous. The

most straightforward approach for handling continuous state-action spaces is to discretize them.

However, a naive discretization of both state and action spaces either leads to poor performance

due to the discretization errors and/or results in a prohibitively large number of state-action pairs

due to the curse of dimensionality [14]. In this paper, we only discretize the action space A

while keeping the state space S as continuous, and use the powerful ANN to approximate the

action-value function. By uniformly discretizing the action space A (i.e., the flying directions)

into K values, we have Â = {~v(1), · · · , ~v(K)}.

With the above action space discretization, the action-value function Q(q, ~v) contains the

continuous state input q ∈ S and the discrete action input ~v ∈ Â. We use the state-of-the-

art DQN with the dueling network architecture [16] to approximate Q(q, ~v), as illustrated in

Fig. 3. At each time step n, the input of the network corresponds to the state (or the UAV

location) qn ∈ S, and it has K outputs, each corresponding to one action in Â. Note that the

distinguishing feature of dueling DQN is to first separately estimate the state values and the
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state-dependent action advantages, and then combine them in a smart way via an aggregating

layer to give an estimate of the action value function Q [16]. Compared to the standard DQN,

dueling DQN is able to learn the state-value function more efficiently, and is also more robust

to the approximation errors when the action-value gaps between different actions of the same

state are small [16]. The coefficients of the dueling DQN are denoted as θ, which is trained so

that the output Q̂(q, ~v;θ) gives good approximations to the true action-value function Q(q, ~v).

To train the dueling DQN, besides the standard techniques of experience replay and target

network as discussed in Section III-B, we also apply the multi-step DDQN learning techniques

[38]. Specifically, define the truncated N1-step return from a given state qn as

Rn:n+N1 =

N1−1∑
i=0

γiRn+i+1. (31)

Then a multi-step DQN learning is to minimize the loss given by [14](
Rn:n+N1 + γN1max

~v′∈Â
Q̂(qn+N1 , ~v

′;θ−)− Q̂(qn, ~vn;θ)

)2

. (32)

It is known that multi-step learning with appropriately chosen N1 usually leads to faster learning

[14].

Furthermore, double Q learning has been widely used to address the overestimation bias of

the maximum operation in (32), via using two separate networks for the action selection and

value evaluation of bootstrapping. Specifically, with DDQN, the loss of the multi-step learning

in (32) is changed to (
Rn:n+N1 + γN1Q̂(qn+N1 , ~v

∗;θ−)− Q̂(qn, ~vn;θ)
)2
, (33)

where

~v∗ = arg max
~v′∈Â

Q̂(qn+N1 , ~v
′;θ). (34)

Note that we have used the target network with coefficients θ− to evaluate the bootstraping

action in (33) while using the Q network with coefficients θ for action selection in (34).

The proposed algorithm for coverage-aware UAV navigation with dueling DDQN multi-step

learning is summarized in Algorithm 1. Note that the main steps of Algorithm 1 follow from the

classic DQN algorithms in [15], except the following modifications. First, the more advanced

dueling DQN architecture is used, instead of DQN. Second, to enable multi-step learning, a

sliding window queue with capacity N1 as in steps 6 and 11 is used to store the N1 latest

transitions. Therefore, at the current time step n, the UAV can calculate the accumulated return

from the previous N1 time steps, as in step 12 of Algorithm 1. Third, a double DQN learning
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is used in step 14.

Algorithm 1 Dueling DDQN Multi-Step Learning for Coverage-Aware UAV Navigation.

1: Initialize: the maximum number of episodes N̄epi, maximum number of steps per episode
N̄step, initial exploration ε0, decaying rate α, set ε← ε0

2: Initialize: reaching-destination reward Rdes, outbound penalty Pob, outage penalty weight µ

3: Initialize: the replay memory queue D with capacity C
4: Initialize: the dueling DQN network with coefficients θ, the target network with coefficients

θ− = θ
5: for nepi = 1, · · · , N̄epi do
6: Initialize a sliding window queue W with capacity N1

7: Randomly initialize the state qI ∈ S, set the time step n← 0 and q0 ← qI .
8: repeat
9: Choose action ~vn from Â based on the ε-greedy policy, i.e., ~vn = ~v(k∗), where

k∗ =

randi(K), with prob. ε,
argmax
k=1,··· ,K

Q̂(qn, ~v
(k);θ), with prob. 1− ε.

10: Execute action ~vn and observe the next state qn+1, measure the signals and obtain
the empirical outage probability P̂out(qn+1) as in (30), and set the reward as Rn =
−1− µP̂out(qn+1)

11: Store transition (qn, ~vn, Rn,qn+1) in the sliding window queue W
12: If n ≥ N1, calculate the N1-step accumulated return R(n−N1):n based on (31) using the

stored transitions in W , and store the N1-step transition (qn−N1 , ~vn−N1 , R(n−N1):n,qn)
in the replay memory D

13: Sample random minibatch of N1-step transition (qj, ~vj, Rj:j+N1 ,qj+N1) from D
14: Set

yj =


Rj:j+N1

+Rdes, if qj+N1
= qF

Rj:j+N1 − Pob, if qj+N1 /∈ S
Rj:j+N1 + γN1Q̂(qj+N1 , ~v

∗;θ−), otherwise ,

where ~v∗ = arg max
~v′∈Â

Q̂(qj+N1
, ~v′;θ).

15: Perform a gradient descent step on
(
yj − Q̂(qj, ~vj;θ)

)2 with respect to network
parameters θ

16: Update n← n+ 1, ε← εα
17: until qn = qF or qn /∈ S, or n = N̄step.
18: After every B episodes, set the target network parameters θ− ← θ
19: end for

While theoretically, the convergence of Algorithm 1 is guaranteed [14], in practice, a random

initialization of the dueling DQN may require a prohibitively large number of time steps for the

UAV to reach the destination qF . Intuitively, θ should be initialized in a way such that in the

early episodes when the UAV has no or limited knowledge about the radio environment, it should

be encouraged to select actions for the shortest path flying. Thus, we propose the distance-based
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initialization for Algorithm 1, with θ initialized so that Q̂(q, ~v;θ) approximates −‖q′ − qF‖,

where q′ is the next state with current state q and action ~v. Note that as the distance from any

location S to the destination qF is known a priori, the above initialization can be performed

by sampling some locations in S without requiring any interaction with the environment. With

such an initialization, it can be obtained from step 9 of Algorithm 1 that the UAV will choose

the shortest-path action in the first episode with probability 1− ε, and random exploration with

probability ε. As the UAV accumulates more experience after some episodes so that the dueling

DQN has been substantially updated, the ε-greedy policy in step 9 would generate UAV flying

path that achieves a balance between minimizing the flying distance and avoiding the weak

coverage region, as desired for problem (P3).

C. Simultaneous Navigation and Radio Mapping

The dueling DDQN multi-step learning proposed in Algorithm 1 is a model-free Q learning

algorithm, where all data used to update the estimation of the action-value function is obtained

via the direct interaction of the UAV with the environment, as in step 10 of Algorithm 1. While

model-free RL requires no prior knowledge about the environment nor intending to estimate

it, it usually leads to slow learning process and requires a large number of agent-environment

interactions, which is typically costly or even risky to obtain. For instance, for the coverage-

aware UAV navigation problem considered in this paper, each step 10 in Algorithm 1 actually

requires to fly the UAV and perform signal measurements at designated locations to get the

empirical outage probability so as to obtain the reward value. Extensive UAV flying increases

the safety risk due to e.g., mechanical fatigue. To overcome the above issues, in this subsection,

we propose a novel SNARM framework for cellular-connected UAVs by utilizing the dueling

DDQN multi-step learning algorithm with model learning [14].

For RL with model learning, each real experience obtained by the UAV-environment interaction

can actually be used for at least two purposes: for direct RL as in Algorithm 1 and for model

learning so as to gain useful information about the environment. A closer look at the MDP

corresponding to problem (P3) would reveal that the essential information needed for coverage-

aware navigation is the reward function R(q), which depends on the outage probability Pout(q)

for any location q visited by the UAV. Therefore, model learning for (P3) corresponds to learning

the radio map of the airspace where the UAVs are operating, which specifies the cellular outage

probability Pout(q), ∀q ∈ S. Thus, the actual measurement of the outage probability P̂out(q) at
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Fig. 4: SNARM for cellular-connected UAV.

location q can be simultaneously used for navigation, i.e., determining the UAV flying direction

~v for the next time step, and also for radio mapping, i.e., helping to predict the outage probability

for locations that the UAV has not visited yet. This leads to our proposed framework of SNARM.

A high-level overview of SNARM is illustrated in Fig. 4. Different from the standard RL

setup, with SNARM for cellular-connected UAV, the cellular network (say, a selected macro-cell

in the area of interest) maintains a radio map M = {Pout(q),∀q ∈ S} containing an estimation

of the cellular outage probability for all locations in S. Note thatM might be highly inaccurate

initially, but can be continuously improved as more real experience is accumulated. For any

cellular-connected UAV flying in the considered airspace S, it may either download the radio

map M from the network off-line before the mission starts, or continuously receive the latest

update of M in real time. At each time step n as the UAV performs its mission, it observes

its current location qn, together with the radio map M, then determines its flying direction ~vn

for the next step. After executing the action and reaching the new location qn+1, it measures

the empirical outage probability P̂out(qn+1), and receives the corresponding reward Rn. The

obtained empirical outage probability P̂out(qn+1) based on signal measurement can be used as

the new data input to improve the radio map estimation. In the following, we explain the radio

map update and UAV action selection of SNARM, respectively.

With any finite measurements {qn, P̂out(qn)}, predicting the outage probability Pout(q),∀q ∈

S is essentially a supervised learning problem. In this paper, we use a feedforward fully-

connected ANN with parameters ξ to represent the radio map, i.e., ξ is trained so that Pout(q) ≈

P̂out(q; ξ), ∀q ∈ S. Note that compared to the standard supervised learning problem, the radio

mapping problem has two distinct characteristics. First, the data measurement {qn, P̂ (qn)} only

arrives incrementally as the UAV flies to new locations, instead of all made available at the
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beginning of the training. Second, as the UAV performs signal measurements as it flies, those data

obtained at consecutive time steps are typically correlated, which is undesirable for supervised

training. To tackle these two issues, similar to Algorithm 1, we use a database (replay memory)

to store the measured data {qn, P̂ (qn)}, and at each training step, a minibatch is sampled at

random from the database to update the network parameter ξ.

On the other hand, the problem for UAV action selection with the assistance of a radio map

M is known as indirect RL, for which various algorithms have been proposed [14]. Different

from that for direct RL in Algorithm 1, with the radio map M in SNARM, the UAV is able

to predict the estimated return for each trajectory it would take, without having to actually fly

along it. As a result, we may generate as much simulated experience as we wish based on M,

which, together with the real experience, can be used to update the UAV policy based on any

RL algorithm, such as Algorithm 1. However, as the radio map might be inaccurate at the initial

stages, over-relying on the simulated experience may result in poor performance due to the model

error. Therefore, we need to seamlessly integrate the learning with simulated experience based

on the radio map and that with the real experience. A simple but effective architecture achieving

this goal is known as Dyna [14], where for each RL update based on the real experience, we

have several updates based on the simulated experience. The proposed SNARM based on Dyna

dueling DDQN with multi-step learning is summarized in Algorithm 2.

Obviously, Algorithm 2 expands Algorithm 1 by inserting the radio map learning operations

and the double DQN update based on simulated UAV experience. Note that the simulated

trajectory is initialized independently from the real trajectory (see steps 3 and 12 of Algorithm 2),

and it is used Ñ times more frequently than the real trajectory, i.e., for each actual step the UAV

takes in real experience, Ñ steps will be taken in the simulated trajectory, as in steps 7 to 13.

Note that in general, Ñ should be increasing with the number of episodes, since as more real

experience is accumulated, the constructed radio map becomes more accurate, which makes

the predicted returns of the simulated trajectories more reliable. Regardless of simulated or

real experience, the same action-value update based on dueling DDQN multi-step learning is

performed. Besides, the radio map is updated in step 6 based on the actual measurement data,

and used in step 9 to generate simulated UAV experience.
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Algorithm 2 Dyna dueling DDQN with multi-step learning for SNARM.

1: Download the radio map P̂out(q; ξ) from the cellular network, and denote the existing
database containing all measurements {q, P̂out(q)} as E

2: Steps 1–7 of Algorithm 1
3: Randomly initialize the simulated starting state q̃I ∈ S , set the simulated time step ñ ← 0

and q̃0 ← q̃I
4: Steps 8–16 of Algorithm 1
5: Add the measured data (qn+1, P̂out(qn+1)) to E
6: Sample random minibatch from E and update the network parameter ξ for radio map
7: for i = 1, · · · , Ñ do
8: Choose action for the simulated state q̃ñ based on the ε-greedy policy similar as step 9

of Algorithm 1
9: Obtain the simulated next state q̃ñ+1, predict the outage probability P̂out(q̃ñ+1; ξ) based

on the radio map M and the corresponding reward R̃ñ = −1− µP̂out(q̃ñ+1; ξ).
10: Perform similar operations as steps 11–15 of Algorithm 1 for the simulated experience
11: Update the simulated time step ñ← ñ+ 1
12: If q̃ñ = qF or q̃ñ /∈ S or ñ = N̄step, reset the simulated trajectory as in step 3
13: end for
14: Steps 17–19 of Algorithm 1.

V. NUMERICAL RESULTS

In this section, numerical results are provided to evaluate the performance of the proposed

algorithms. As shown in Fig. 5, we consider an urban area of size 2 km × 2 km with high-

rise buildings, which corresponds to the most challenging environment for coverage-aware UAV

navigation, since the LoS/NLoS links and the received signal strength may alter frequently as the

UAV flies (see Fig. 1). To accurately simulate the BS-UAV channels in the given environment,

we first generate the building locations and heights based on one realization of the statistical

model suggested by International Telecommunication Union (ITU) [40], which involves three

parameters, namely, αbd: the ratio of land area covered by buildings to the total land area; βbd:

the mean number of buildings per unit area; and γbd: a variable determining the building height

distribution, which is modelled as Rayleigh distribution with mean value σbd > 0. Note that

such statistical building model has been widely used to obtain the LoS probability for aerial-

ground links [11], which, however, only reflects the average characteristics over a large number

of geographic areas of similar type. While for each local area with given building locations

and heights, the presence/absence of LoS links with cellular BSs can be exactly determined by

checking whether the line connecting the BS and UAV is blocked or not by any building. Fig. 5

shows the 3D and 2D views of one particular realization of the building locations and heights
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with αbd = 0.3, βbd = 300 buildings/km2, and σbd = 50 m. For convenience, the building height

is clipped to not exceed 90 m.

We assume that the considered area has 7 cellular BS sites with locations marked by red stars

in Fig. 5, and the BS antenna height is 25 m [7]. With the standard sectorization technique, each

BS site contains 3 sectors/cells. Thus, the total number of cells is M = 21. The BS antenna

model follows the 3GPP specification [5], where an 8-element uniform linear array (ULA) is

placed vertically. Each array element itself is directional, with half-power beamwidths along the

vertical and horizontal dimensions both equal to 65◦. Furthermore, pre-determined phase shifts

are applied to the vertical antenna array so that its main lobe is electrically downtilted towards

the ground by 10◦. This leads to the directional antenna array with fixed 3D radiation pattern,

as shown in Fig. 4 of [2]. To simulate the signal strength received by the UAV from each cell,

we firstly determine whether there exists an LoS link between the UAV and each BS at the

given UAV location based on the building realization, and then generate the BS-UAV path loss

using the 3GPP model for urban Macro (UMa) given in Table B-2 of [7]. The small-scale fading

coefficient is then added assuming Rayleigh fading for the NLoS case and Rician fading with

15 dB Rician factor for the LoS case. It is worth mentioning that for a given environment,

the aforementioned LoS condition, antenna gain, path loss and small-scale fading with each BS

are all dependent on the UAV location in a rather sophisticated manner. This makes them only

suitable to generate the numerical values with given UAV location, instead of being directly used

for UAV path planning with the conventional optimization technique as for solving (P1), even

with accurate channel modelling and perfect global information. This thus justifies the use of

RL techniques for UAV path design as pursued in this paper.

For both Algorithms 1 and 2, the dueling DQN adopted is a fully connected feedforward

ANN consisting of 5 hidden layers. The numbers of neurons of the first 4 hidden layers are

512, 256, 128, and 128, respectively. The last hidden layer is the dueling layer with K + 1

neurons, with one neuron corresponding to the estimation of the state-value and the other K

neurons corresponding to the action advantages for the K actions, i.e., the difference between

the action values and the state value of each state. The outputs of these K + 1 neurons are then

aggregated in the output layer to obtain the estimation of the K action values [16], as shown in

Fig. 3. For SNARM in Algorithm 2, the ANN for radio mapping also has 5 hidden layers, with

the corresponding numbers of neurons given by 512, 256, 128, 64, and 32, respectively. The

activation for all hidden layers is by ReLu [37], and the ANN is trained with Adam optimizer to
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(a) 3D view (b) Top view

Fig. 5: The building locations and heights in 3D and 2D views. The BS locations are marked
by red stars, where each BS site contains 3 cells.

TABLE I: Main simulation parameters.

Simulation parameter Value
Maximum number of episodes
N̄epi

5000

Initial exploration parameter ε0 0.5
Exploration decaying rate α 0.998
Replay memory capacity C 100000
Steps for multi-step learning N1 30
Update frequency for target net-
work B

5

Maximum step per episode N̄step 200
Step displacement ∆s 10 m
Reaching-destination reward Rdes 200
Outbound penalty Pob 10000
Outage penalty weight µ 40
Number of signal measurements
per time step J

1000

minimize the mean square error (MSE) loss, using Python with TensorFlow and Keras.3 For ease

of illustration, we assume that the UAV’s flying altitude is fixed as H = 100 m, and the number

of actions (or flying directions) at each time step is K = 4. All UAV missions have a common

destination location qF = [1400, 1600, 100]T m, while their initial locations qI are randomly

generated. The transmit power of each cell is assumed to be P̄m = 20 dBm and the outage SIR

threshold is γth = 0 dB. Other major simulation parameters are summarized in Table I.

Fig. 6(a) shows the true global coverage map for the considered area, i.e., the coverage (non-

outage) probability for each location by the cellular network, where coverage probability is the

complementary probability of the outage probability defined in (6). Note that such a global
3https://keras.io/
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(a) True coverage map
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(b) Learned coverage map

Fig. 6: The true versus learned coverage maps, where the coverage probability at each location
is the complementary probability of the outage probability.

coverage map is numerically obtained based on the aforementioned 3D building and channel

realizations via computer simulations, while it is not available for our proposed Algorithm 1

or Algorithm 2. It is observed from Fig. 6(a) that the coverage pattern in the sky is rather

irregular due to the joint effects of the 3D BS antenna radiation pattern and building blockage.

It is observed that around the center of the area, there are several weak coverage regions with

coverage probability less than 30%. Obviously, effective coverage-aware UAV navigation should

direct UAVs to avoid entering such weak coverage regions with the best effort.

To validate the quality of radio map estimated by the SNARM framework proposed in

Algorithm 2, Fig. 6(b) shows the finally learned coverage map by Algorithm 2. By comparing

Fig. 6(a) and Fig. 6(b), it is observed that the learned coverage map is almost identical to

the true map, with only slight differences. This thus validates the effectiveness of applying

SNARM for the radio map estimation and coverage-aware path learning based on it. This is

further corroborated by Fig.7, which shows the MSE and mean absolute error (MAE) of the

learned radio map versus the episode number. Note that the MSE and MAE are calculated by

comparing the predicted outage probabilities using the learned radio map versus their actual

values in the true map for a set of randomly selected locations. It is observed that the quality

of the learned radio map is rather poor initially, but it improves rather quickly with the episode

number as more signal measurements are accumulated. For example, with only 200 episodes,

we can already achieve 87.1% of the MSE reduction that is achieved after 5000 episodes.

As for the performance of the proposed learning algorithms, Fig. 8 shows the moving average

return per episode for the direct RL in Algorithm 1 and SNARM in Algorithm 2, where the
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Fig. 7: The MSE and MAE of radio mapping versus episode number.

moving window has the length of 200 episodes. For the SNARM algorithm, the number of steps

Ñ based on simulated experience per actual step at episode n is set as Ñ = min(bn/100c, 10),

so that Ñ increases with the episode number and converges to 10. Recall that the return of each

episode for RL is the accumulated rewards for all time steps in the episode. It is observed that

though experiencing certain fluctuation, as usually the case for RL algorithms, both proposed

algorithms demonstrate an overall tendency of increasing average return. Furthermore, recall

that the dueling DQNs are initialized to encourage shortest path flying for the early episodes

when the UAV has completely no knowledge about the radio environment, which leads to an

average return about −2700 initially. After training for 5000 episodes, the resulting return has

increased to −1089 and −1486 for SNARM and direct RL, respectively. Another observation

from the figure is that the direct RL has faster improvement over the SNARM algorithm at the

earlier episodes. This is probably due to the insufficient accuracy of the learned radio map for

SNARM, which may generate inefficient simulated experience. However, as the quality of the

radio map improves, the SNARM algorithm achieves better performance than direct RL, thanks

to its exploitation of the learned radio map for path planning. In practice, such a performance

improvement translates to fewer agent-environment interactions, which is highly desirable due to

the usually high cost of data acquisition from real experience. For example, to achieve an average

return of −1500, Fig. 8 shows that about 3200 actual UAV flight episodes are required for direct

RL in Algorithm 1, but this number is significantly reduced to about 1000 with SNARM in

Algorithm 2.

Last, Fig. 9 shows the resulting UAV paths with the proposed algorithms for the last 200
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(a) Direct RL
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Fig. 9: The resulting UAV trajectories with direct RL in Algorithm 1 and SNARM in Algorithm 2.
All episodes share a common destination location labelled by the big blue triangle, and their
initial locations are randomly generated, labelled by red crosses.

episodes of learning, which correspond to 200 randomly generated initial locations, as denoted

by red crosses in the figure. The common destination location qF is labelled by a big blue

triangle. Also shown in the figure is the true global coverage map. It is observed that both direct

RL and SNARM algorithms are able to direct the UAVs to avoid the weak cellular coverage

regions with the best effort, as evident from the generally detoured UAV paths as well as the

much sparser paths in areas with low coverage probabilities. For example, as can be seen from

Fig. 9(b), the SNARM algorithm is able to discover and follow the narrow “radio bridge” located

at the x axis around 1000 m and the y axis from about 1000 m to 1700 m. This shows the peculiar

effectiveness of SNARM for coverage-aware UAV path learning.
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VI. CONCLUSIONS

This paper studies coverage-aware navigation for cellular-connected UAVs. To overcome the

practical limitations of the conventional optimization-based path design approaches, we propose

DRL-based algorithms, which only require UAV signal measurements as the input. By utilizing

the state-of-the-art dueling DDQN with multi-step learning, a direct RL-based algorithm is first

proposed, followed by the more advanced SNARM framework to enable radio mapping and

reduce the real UAV flights for data acquisition. Numerical results are provided to show the

effectiveness of the proposed algorithms for coverage-aware UAV navigation, and the superior

performance of SNARM over direct RL based navigation.
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