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Abstract—We consider that a transmitter covertly communi-
cates with multiple receivers under the help of a friendly jammer.
The messages intended for different receivers are transmitted in
mutually orthogonal frequency bands. An adversary observes
all these frequency bands aiming at detecting whether or not
communication occurs, while the friendly jammer broadcasts
jamming signals to degrade the detection performance of the
adversary. We consider a block Rayleigh fading channel model
and evaluate the performance of covert communication in two
situations: 1) the wireless channels vary slowly such that the
transmission ends within one channel coherent time block, and
2) the wireless channels vary fast such that the wireless channels
have changed several times before the whole transmission is
finished. In the former case, subject to a covertness constraint,
we maximize the sum of the effective rates by optimizing
the transmit power allocation and the transmission rate for
each receiver. In the latter case, we take the channel training
process into consideration, and subject to a covertness constraint,
we maximize the sum of the ergodic rates by optimizing the
power allocation and the pilot length. Though both of the two
optimization problems are non-convex, we presented methods
to find their global optimal solutions. Besides, we also present
methods to find sub-optimal solutions with lower computational
complexities. Numerical results are presented to evaluate the
performance under the two situations.

Index Terms—Covert communication, jamming, power control,
resource allocation, wireless security.

I. INTRODUCTION

Providing endogenous network security represents one of

the new paradigm shifts of next generation wireless networks

[1], [2]. Recently, covert communication has gained consider-

able attention for its ability to hide the occurrence of the com-

munication itself [3], [4]. Consider a wireless system wherein

a transmitter sends its message to an intended receiver. An

adversary listens to the wireless channels aiming at detecting

whether or not transmission occurs, posing a threat on system

security. The technique of covert communication enables the

transmitter to reliably communicate with the receiver while

ensuring a high probability that the detector of the adversary

produces an incorrect result, which greatly enhances wireless

security.

The information-theoretic performance limits of covert com-

munication have been studied in [5]–[8]. It was revealed in

[5] that covert communication over additive white Gaussian

noise (AWGN) channels is subject to the so called square root

K.-W. Huang and H.-M. Wang are with the School of Information and Communi-

cations Engineering, and also with the Ministry of Education Key Lab for Intelligent

Networks and Network Security, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.

R. China (e-mail: xjtu-huangkw@outlook.com, xjbswhm@gmail.com).

H. Deng is with the School of Physics and Electronics, Henan University, Kaifeng

475001, China (e-mail: gavind@163.com).

law (SRL). Specifically, a transmitter is able to reliably and

covertly transmit at most O(
√
n) bits to a receiver in n channel

uses as n → ∞. [6]–[8] further extended the SRL to binary

symmetric channels and general discrete memoryless channels.

The SRL indicates that the covert communication rate is

asymptotically zero, i.e., limn→∞
√
n
n = 0. Some recently

efforts have been devoted to improving the covert commu-

nication performance. It has been revealed that by exploiting

the adversary’s uncertainty on the statistical information of its

channel outputs, the covert communication performance can

be greatly improved, and in some cases, non-vanishing covert

communication rates exist, for example, when the adversary

has uncertainty on its noise power [9], [10] or when the

adversary is uncertain about the transmission time [11]–[13].

A. Wireless covert communication

Covert communication over practical wireless channels has

also been extensively investigated. Due to the openness of

wireless media and the randomness of wireless environment,

wireless transmissions inevitably suffer from co-channel inter-

ference. Though co-channel interference is harmful to normal

wireless communication process, it also leads to a poor detec-

tion performance at the adversary, and thus its impacts have

been studied in many existing works [14]–[27].

Covert communication under co-channel interference has

been studied in [14]–[19]. In [14], [15], the locations of the

interferers were modeled as a Possion point process. Subject to

a covert outage probability upper bound, the covert throughput

was maximized by optimizing the transmit power and the

transmission rate. Covert communication in device-to-device

(D2D) underlaying cellular networks was studied in [16],

where the wireless signals of the cellular users were treated

as interference and used to hide the communications between

D2D pairs. [17], [18] studied covert communication in one-

way relay networks, and the authors maximized the effective

covert rate achieved by the relay. In [19], the dynamicity of

the interference environment was considered, and the authors

studied the covert throughput scaling law with respect to the

codeword length and the variation rate of the background

interference environment.

The performance of covert communication can be improved

by letting a friendly jammer deliberately broadcast jamming

signal to degrade the detection performance of the adversary

[20]–[24]. Remarkably, [20] theoretically showed the existence

of constant covert communication rates provided that the

adversary does not know the jamming power or the instanta-

neous realization of the jamming channel. In [21], a truncated
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channel inversion power adaption scheme was proved to be

optimal in term of minimizing the outage probability subject

to a covertness constraint. In [22], the covert throughput in

a random network was studied, wherein the jammer who is

closest to the adversary broadcasts jamming signal. In [23] and

[24], a friendly jammer was assumed to have multiple antennas

and use beamforming to maximize its ability to degrade the

detection performance of the adversary.

Instead of relying on external friendly jammers, the works

in [25]–[27] assumed that the receiver operates in full-duplex

mode, i.e., simultaneously receiving the signal from the trans-

mitter and broadcasting jamming signal to the deteriorate

detection performance of the adversary. Due to the imper-

fect self interference cancellation, the trade-offs between the

covertness and the reliability should be carefully designed. In

particular, [25] and [26] designed the transmit power of the

transmitter and the jamming power of the receiver to maximize

the detection error probability at the adversary subject to a

lower bound on the effective throughput, and to minimize the

outage probability subject to a lower bound on the detection

error probability at the adversary, respectively. In [27], an on-

off transmission strategy were proposed to optimize the covert

communication performance.

B. Motivations, challenges, and contributions

Existing works have presented important insights on the

achievable performance of covert communication over wire-

less channels, however, most of them have only discussed the

transmissions from a single transmitter to a single receiver.

Motivated by this observation, in this paper, we study a covert

communication scenario wherein a transmitter simultaneously

communicates with multiple receivers over wireless fading

channels. Under the help of a friendly jammer, the transmitter

communicates with different receivers in different and mutu-

ally orthogonal frequency bands (namely the system works in

a frequency-division multiplexing manner). The adversary is

able to observe all the frequency bands to make a decision

on whether communication occurs or not, whereas we let

the friendly jammer broadcast jamming signals in all these

frequency bands to degrade the detection performance of the

adversary.

It is worth noting that compared to the single-receiver

case investigated in literature, analyzing the covertness of the

communication becomes more challenging in the considered

multiple-receiver case. Specifically, in existing works such

as [14]–[18], [21]–[25], [27], the optimal detector of the

adversary was shown to be an energy-based detector [20], i.e.,

comparing the received energy to a predesigned threshold. By

exploiting the simple mathematical form of the energy-based

detector, the optimal detection performance of the adversary

can be accurately characterized by analyzing the false alarm

and missed detection probabilities of the optimal energy-based

detector. However, in our case, due to the fact that the fading

channel coefficients in different frequency bands are different,

the energy-based detector becomes strictly suboptimal, which

prevents us from analyzing the covertness of the communica-

tion by using the methods adopted in existing works.

In addition, the transmit power allocation problem is also a

key issue in the considered multiple-receiver scenario. Since

the adversary is able to observe all the frequency bands, in-

creasing the transmit power in each single frequency band will

lead to an improved detection performance at the side of the

adversary. Then, a natural question is that subject to a certain

constraint on the covertness, how to allocate the transmit

power to the multiple receivers in different frequency bands

in order to achieve the optimal communication performance.

Based on this observation, the issue of power allocation at the

side of the transmitter constitutes the main problem that will

be studied in this paper.

The contributions of this paper are summarized as follows,

1) We consider that a transmitter covertly communicates

with multiple receivers in mutually orthogonal frequency

bands under the help of a jammer. Depending on the

temporal dynamic properties of the wireless channels, we

consider two different situations: 1) the wireless channels

vary slowly over time and a single transmission of the

transmitter terminates before the wireless channels have

changed, and 2) the wireless channels vary fast and during

a single transmission period, the wireless channels change

several times. For convenience, the wireless channels

are said to be quasi-static and fast-varying in these two

situations, respectively. For both situations, analytically

tractable upper bounds on the total variation distance

between f1 and f0 are derived to characterize the covert-

ness of the communication, where f1 and f0 denote the

probability density functions (PDFs) of the adversary’s

channel outputs given that covert communication occurs

and does not occur, respectively.

2) Under the condition that the channels are quasi-static,

we maximize the sum of the effective communication

rates of the multiple receivers subject to a constraint

on covertness by jointly optimizing the power alloca-

tion and the transmission rate for each receiver. The

established optimization problem is non-convex, however,

by exploiting its monotonic properties, we can obtain

the global optimum by using the polyblock outer ap-

proximation (POA) method. Besides, we also present

a computationally efficient method based on successive

convex approximation (SCA) to search for a sub-optimal

solution.

3) Under the condition that the channels are fast-varying,

due to the limited channel coherent time, we take the

channel training process into consideration. Accordingly,

we maximize the sum of the ergodic rates subject to a

constraint on covertness by jointly optimizing the pilot

length and the power allocation. An exhaustive search

(ES) based method is proposed to calculate the global

optimal solution. In addition, we also present an alternat-

ing optimization based method to obtain a sub-optimal

solution, which has a lower computational complexity

than the ES based method but causes little performance

loss.

The rest of this paper is organized as follows: in Section

II, we introduce the system model; in Section III and Section
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K

Fig. 1: A comprehensive system model, wherein Tx represents the
transmitter and Rx k is the k-th receiver.

IV, we study the covert communication performance under the

conditions that the channels are quasi-static and fast-varying,

respectively; Numerical results are presented in Section V; and

finally, Section VI concludes the paper.

Notations: C, R, and R+ denote the set of complex, real,

and non-negative numbers, respectively. (·)T and (·)H denote

transpose and conjugate transpose, respectively. E(·) and P(·)
denote mathematical expectation and probability, respectively.

| · | and ‖ · ‖ denote the absolute value and the norm,

respectively. CN (·, ·) and E(·) denote the complex Gaussian

and exponential distributions, respectively. Diagonal matrix is

denoted by diag(·). For any two real vectors x,y ∈ Rn,

x ≥ y if xi ≥ yi for ∀i = 1, 2, · · · , n where xi and yi
are the i-th elements of x and y, respectively. Im denotes

the m-by-m identity matrix. f(x) = O(g(x)) means that

limx→∞
f(x)
g(x) ≤ c for some constant c > 0. f(x) = ox(1)

means that limx→∞ f(x) = 0. For any two PDFs f1(x)
and f0(x) defined in S ⊆ Rn (or Cn), the total variation

distance between f1(x) and f0(x) is defined as V(f1, f0) =
1
2

∫

S |f1(x)−f0(x)|dx, and the Kullback-Leibler (KL) diver-

gence is defined as D(f1||f0) =
∫

S f1(x) ln
f1(x)
f0(x)

dx.

II. SYSTEM MODEL

Consider that a transmitter communicates with K receivers

in K mutually orthogonal frequency bands (K ≥ 1). An

adversary aims to detect the occurrence of the communication

by observing the K frequency bands. The goal of the trans-

mitter is to reliably communicates with the K receivers while

ensuring that the adversary is unable to effectively detect the

existence of the communication. Following the works in [20]–

[24], we consider that a friendly jammer broadcasts jamming

signals in order to deteriorate the detection performance of

the adversary, which potentially helps the transmitter to ac-

complish its transmission covertly. A comprehensive system

model is depicted in Fig. 1.

A. Signal model and basic assumption

We assume that the transmitter has M (M ≥ 1) antennas

and that the K receivers, the adversary, and the jammer

each have a single antenna. For convenience, assume that

the transmitter uses the k-th orthogonal frequency band to

communicate with the k-th receiver where 1 ≤ k ≤ K .

We consider a block fading channel model. Specifically,

the channel coefficients remain unchanged in each channel

coherent time block and are identically and independently

distributed (i.i.d.) in different time blocks. Besides, the channel

coefficients in different frequency bands are also i.i.d. For

simplicity, we assume that all the channels share the same

channel coherent time. In the i-th (i ≥ 1) time block, denote

by hk,i ∼ CN (0, IM ) and φk,i ∼ CN (0, 1) the small-

scale fading channels from the k-th receiver to the transmitter

and the jammer, respectively. Denote by gk,i ∼ CN (0, IM )
and ϕk,i ∼ CN (0, 1) the small-scale fading channels from

the transmitter and the jammer to the adversary in the k-th

frequency band, respectively.

We consider that the communication system works in time

division duplex mode. In each channel coherent time block,

which consists of N (N > 1) symbol periods, each receiver

first sends a pilot sequence of length Nt to the transmitter, and

the transmitter estimates the channels by exploiting the chan-

nel reciprocity. After that, the transmitter uses the remaining

Nd = N − Nt symbol periods to transmit its data to the

receivers. In the i-th time block, the pilot sequence received

by the transmitter in the k-th frequency band is

Yk,i =
√

PRk
SRk,Thk,i

(

x
(p)
k

)H

+Zk,i, 1 ≤ k ≤ K, i ≥ 1,

(1)

where PRk
is the transmit power of the k-th receiver, SRk,T is

the distance-based path loss between the k-th receiver and the

transmitter, x
(p)
k ∈ CNt×1 is the pilot sequence sent by the k-

th receiver, and Zk,i ∈ CM×Nt is the AWGN with each of its

elements distributed as CN (0, σ2
k,T). For notation simplicity,

we assume that PR1 = · · · = PRK = PR and σ2
1,T = · · · =

σ2
K,T = σ2

T. Based on (1), the minimum mean square error

estimation of hk,i, denoted by ĥk,i, and the estimation error,

denoted by h̃k,i, are respectively given by

ĥk,i =

√

PRSRk,T

NtPRSRk,T + σ2
T

Yks ∼ CN
(

0,
Nt

Nt + µk
IM

)

,

(2)

h̃k,i = hk,i − ĥk,i ∼ CN
(

0,
µk

Nt + µk
IM

)

, (3)

where µk ,
σ2
T

PRSRk,T
. After obtaining ĥk,i, the transmitter

adopts the maximum ratio transmission beamforming scheme

to transmits its data to the k-th receiver, and the beamforming

vector is given by bk,i =
ĥk,i

||ĥk,i||
. Accordingly, the k-th receiver

receives

yk,i =
√

PkSRk,Th
H
k,ibk,ix

(d)
k,i

+
√

QkSRk,Jφk,ivk,i + zk,i, (4)

where Pk is the transmit power allocated for the k-th receiver,

x
(d)
k,i ∼ CN (0, INd

) is the data sequence, Qk is the jamming

power that the jammer emits in the k-th frequency band, SRk,J

is the path loss between the k-th receiver and the jammer,

vk,i ∼ CN (0, INd
) is a sequence of the jamming signals

transmitted by the jammer, and zk,i ∼ CN (0, σ2
Rk

INd
) is the

AWGN. It is worth noting that by (1) and (4), we assume that

the jammer keeps silent during the channel training process

and jams the K frequency bands during the data transmission

process.

Remark 1: In this paper, we aim to keep the adversary
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unaware of the transmission from the transmitter while the

receivers are allowed to broadcast wireless signals. Similar

assumptions have also been adopted in existing works such

as [25]–[27] wherein full-duplex receivers are exploited to

broadcast jamming signals to improve covert communication

performance. In our situation, we let the receivers broadcast

pilot sequences so that the transmitter can estimate the wireless

channels and design beamforming vectors.

B. Adversary model and metric for covertness

From the perspective of the adversary, it does not know

whether communication occurs or not, and the signals received

by the adversary in the i-th time block can be modeled as

wk(i) =















√

PkSA,Tg
H
k,ibk,ix

(d)
k,i

+
√

QkSA,Jϕk,ivk,i + z̃k,i, H1,
√

QkSA,Jϕk,ivk,i + z̃k,i, H0,

(5)

where k ∈ {1, 2, · · · ,K},H1 andH0 stand for the hypotheses

that communication occurs and does not occur, respectively,

wk(i) ∈ CNd×1 is the signal received in the k-th frequency

band, SA,T and SA,J are the path losses from the transmitter

and the jammer to the adversary, respectively, and z̃k,i ∼
CN

(

0, σ2
Ak

IM
)

is the AWGN. We assume that the adversary

does not know the instantaneous channel realizations, i.e., ϕk,i

and gk,i for 1 ≤ k ≤ K , but knows their statistic distributions.

Besides, we assume that the jamming powers, i.e., Qk for

1 ≤ k ≤ K , are fixed constants.

The goal of the adversary is to determine whether or not

communication occurs based on its received signals in the

K frequency bands. We consider the following two scenarios

depending on the temporal dynamic properties of the wireless

channels:

1) The channels are quasi-static: The channel coherent

time block is sufficiently long, and the transmission from the

transmitter terminates before the end of a channel coherent

time block. In this case, we assume that the adversary makes

a decision to determine whether communication occurs at the

end of each time block.

2) The channels are fast-varying: The wireless channels

vary fast as compared to the length of a single transmis-

sion. Specifically, we consider that a single transmission is

comprised of L > 1 consecutive short channel coherent time

blocks. In this case, we assume that the adversary collects the

signals received in the L consecutive time blocks together to

make a decision.

For a given detector of the adversary, denoted by d, let

PFA(d) and PMD(d) be the false alarm and the missed

detection probabilities, respectively. In this paper, the com-

munication between the transmitter and the multiple receivers

is said to be (1 − ǫ)-covert if it satisfies that

min
d

PFA(d) + PMD(d) ≥ 1− ǫ, (6)

where ǫ ∈ (0, 1) is a pre-fixed number. Note that the minimiza-

tion operation in (6) is with respect to the detector adopted by

the adversary. This means that the covertness is guaranteed

no matter how the adversary performs the detection [5]. For

convenience, we refer to (6) as the covertness constraint in

the subsequent part of this paper.

Remark 2: From the viewpoint of the adversary, it solves

a binary hypothesis testing problem which tests H1 against

H0 defined in (5). By [34, Theorem 13.1.1], the optimal

detector that minimizes the sum of the false alarm and the

missed detection probabilities is the likelihood ratio test, which

makes a decision by comparing the likelihood ratio with a

pre-designed threshold. We assume that the adversary knows

the exact values of p̂k = PkSA,T, q̂k = QkSA,J, and σ2
Ak

,

1 ≤ k ≤ K , so that it can perform the optimal detection. It is

also worth noting that the optimal detector is not equivalent to

the energy-based detector due to the different fading channel

coefficients in different frequency bands and time blocks, see

e.g., [19], [20].

C. Covert communication problem formulation

1) Covert communication over quasi-static channels: In

this situation, we assume that the pilot sequence is sufficiently

long so that the transmitter can accurately estimate the channel

coefficients. As a result, according to (4), the signal-to-noise

ratio (SNR) of the k-th user is

SNRk =
PkSRk,T||hk||2

QkSRk,J |φk|2 + σ2
Rk

. (7)

Here, we have omitted the time block index i because in this

case, the transmission terminates within a single time block.

Suppose that the transmission rate for the k-th receiver is rk >
0. Due the randomness of the interfering channel φk , an outage

event occurs if ln(1+SNRk) ≤ rk, and the outage probability

is given by

Ok , P {SNRk ≤ erk − 1}

= I

{

erk − 1 ≤ PkSRk,T||hk||2
σ2
Rk

}

× e
−

PkSRk,T||hk||2

erk−1
−σ2

Rk
QkSRk,J . (8)

We define the effective rate of the k-th receiver as r
(e)
k =

(1−Ok)× rk. The goal of the transmitter is to maximize the

sum of the effective rates of the K receivers while ensuring

that its transmission is at least (1−ǫ)-covert for some pre-fixed

ǫ ∈ (0, 1), i.e.

max
p,r∈RK

+

r(e) ,

K
∑

k=1

r
(e)
k , s.t. (6), (9)

where p = [P1, P2, · · · , Pk]
T and r = [r1, r2, · · · , rK ]T .

2) Covert communication over fast-varying channels: In

this case, the wireless channel changes several times before the

transmission is finished. Without loss of generality, we assume

that the transmission starts in the 1-st time block and ends

at the L-th time block. Due to the limited channel coherent

time, the pilot length, Nt, cannot be neglected as compared

to the block length N . As a result, the channel estimation



5

error becomes non-negligible. To evaluate the communication

performance, we reformulated (4) as follow,

yk,i =
√

PkSRk,TE{hH
k,ibk,i}x(d)

k,i

+
√

PkSRk,T(h
H
k,ibk,i − E{hH

k,ibk,i})x(d)
k,i

+
√

QkSRk,Jφk,ivk,i + zk,i, (10)

where k ∈ {1, 2, · · · ,K} and i ∈ {1, 2, · · · , L}. Following

[28, Theorem 1], an achievable ergodic rate of the k-th receiver

is

r̄k =
N −Nt

N

× ln

(

1 +
PkSRk,T|E{hH

k,ibk,i}|2
QkSRk,J + PkSRk,TVar(h

H
k,ibk,i) + σ2

Rk

)

.

(11)

Note that in (11), |E{hH
k,ibk,i}|2 and Var(hH

k,ibk,i) are in-

dependent of the time block index i due to the fact that the

channel coefficients are i.i.d. over different time blocks. Based

on (11), we consider to maximize the sum of the ergodic rates

by optimizing the power allocation and the pilot length, i.e,

max
p∈RK

+ ,0<Nt<N
r̄ ,

K
∑

k=1

r̄k, s.t. (6). (12)

In summary, in this section, we have formulated two op-

timization problems to enhance the covert communication

performance. Subject to the communication being at least

(1 − ǫ)-covert, we maximize the sum of the effective rates

under the condition that the channels are quasi-static, and we

maximize the sum of the ergodic rates under the condition

that the channels are fast-varying. In the subsequent two

sections, we present our methods to solve these two problems,

respectively.

Remark 3: In this paper, we do not impose any transmit

power constraint at the transmitter. In fact, to avoid being

detected by the adversary, the transmit power is usually

very small. This means that in many situations, the power

consumption does not constitute a performance bottleneck of

covert communication. Based on this viewpoint, in this paper,

we assume that the transmitter has enough power budget to

accomplish its transmission.

III. COVERT COMMUNICATION OVER QUASI-STATIC

CHANNELS

In this section, we study the covert communication perfor-

mance under the condition the channels are quasi-static. In

the following, we first analyze the covertness constraint and

transform it into a mathematically tractable form. Then, we

present our method to solve the effective sum-rate maximiza-

tion problem.

A. Covertness constraint analysis

By assumption, the adversary independently runs its detec-

tion process in each single time block. In the i-th time block,

the detection problem at the adversary can be formulated as

the following binary hypothesis testing problem,

W (i) , (w1(i),w2(i), · · · ,wK(i)) ∼
{

f
(Nd)
1 , H1,

f
(Nd)
0 , H0,

(13)

where wk(i), 1 ≤ k ≤ K , are defined in (5), f
(Nd)
1 and f

(Nd)
0

are the PDFs of W (i) under the condition that transmission

occurs and does not occur in the i-th time block, respectively.

For notation simplicity, we omit the time block index i in the

subsequent part of this section.

Define Uk , PkSA,T|gH
k bk|2 + QkSA,J|ϕk|2 + σ2

Ak
and

Vk , QkSA,J|ϕk|2 + σ2
Ak

, and then f
(Nd)
1 and f

(Nd)
0 can be

written as

f
(Nd)
1 (W ) =

K
∏

k=1

f
(Nd)
1,k (wk), f

(Nd)
0 (W ) =

K
∏

k=1

f
(Nd)
0,k (wk),

(14)

where f
(Nd)
1,k (·) , EUk

{

f (Nd)(·|Uk)
}

, f
(Nd)
0,k (·) ,

EVk

{

f (Nd)(·|Vk)
}

, and for x > 0, f (Nd)(wk|x) ,

1
πNdxNd

e−
w

H
k wk
x is the PDF of a circular symmetrical complex

Gaussian random vector with covariance matrix xINd
. The

PDFs of Uk and Vk are presented in the following lemma.

Lemma 1: The PDFs of Uk and Vk are given by

fUk
(x) =



















e
− 1

q̂k
(x−σ2

Ak
) − e

− 1
p̂k

(x−σ2
Ak

)

q̂k − p̂k
, if p̂k 6= q̂k,

x− σ2
Ak

q̂2k
e
− 1

q̂k
(x−σ2

Ak
)
, if p̂k = q̂k,

(15a)

fVk
(x) =

1

q̂k
e
− 1

q̂k
(x−σ2

Ak
)
, (15b)

where x ≥ σ2
Ak

, q̂k , QkSA,J and p̂k , PkSA,T.

Proof: First of all, we have |ϕk|2 ∼ E(1) by assumption.

Besides, due to the fact that gk ∼ CN (0, IM ) and that bk is

independent of gk with ||bk||2 = 1, it is straight that gH
k bk ∼

CN (0, 1) and thus |gH
k bk|2 ∼ E(1).

Note that in covert communication, the signal power is

usually very small compared to the jamming-plus-noise power

in order to guarantee the covertness of the transmission.

Therefore, in the following, we assume that p̂k < q̂k holds.

By [34, Theorem 13.1.1], the optimal detector of the ad-

versary that minimize the sum pf the false alarm and missed

detection probabilities satisfies mind PFA(d) + PMD(d) =

1 − V(f
(Nd)
1 , f

(Nd)
0 ). Therefore, the covertness constraint (6)

can be re-formulated as V(f
(Nd)
1 , f

(Nd)
0 ) ≤ ǫ. The following

proposition presents an expression for V(f
(Nd)
1 , f

(Nd)
0 ) given

that Nd is sufficiently large.

Proposition 1: Define fU (u) ,
∏K

k=1 fUk
(uk) and

fV (v) ,
∏K

k=1 fVk
(vk), where fUk

and fVk
, for 1 ≤ k ≤ K ,

are presented in (15a) and (15b), respectively. As Nd → ∞,

the total variation distance between f
(Nd)
1 and f

(Nd)
0 satisfies

limNd→∞ V

(

f
(Nd)
1 , f

(Nd)
0

)

= V (fU , fV ).

Proof: Please refer to Appendix A.
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For the special case of K = 1, V (fU , fV ) can be written

in a closed form,

V (fU , fV ) =
1

2

∫ ∞

σ2
A1

|fU1(x) − fV1(x)|dx

=
1

2

∫

X1

fU1(x) − fV1(x)dx +
1

2

∫

X2

fV1(x)− fU1(x)dx

=
1

2

∫

X1

fU1(x) − fV1(x)dx +
1

2

∫

X2

fV1(x)− fU1(x)dx

+
1

2

∫

X1

fU1(x)− fU1(x)dx +
1

2

∫

X1

fV1(x) − fV1(x)dx

(a)
=

∫

X1

fU1(x)− fV1(x)dx (16)

(b)
=

∫ ∞

q̂1p̂1
q̂1−p̂1

ln
q̂1
p̂1

p̂1e
− 1

q̂1
x

(q̂1 − p̂1)q̂1
− e−

1
p̂1

x

q̂1 − p̂1
dx = χ

1
1−χ1

1 . (17)

where X1 ,
{

x : fU1(x) ≥ fV1(x), x ≥ σ2
A1

}

, X2 ,
{

x : fU1(x) < fV1(x), x ≥ σ2
A1

}

, χ1 ,
p̂1

q̂1
, step (a) is due

to the fact that
∫∞
σ2
A1

fU1(x)dx =
∫∞
σ2
A1

fV1(x)dx = 1, and step

(b) is obtained by substituting fU1(x) and fV1(x) derived in

(15) into (16) and letting x← x− σ2
A1

.

For K ≥ 2, it is still too complicated to simplify V (fU , fV ),
which involves a K-fold integral. Therefore, in the following,

we derive an analytically tractable upper bound on V (fU , fV )
for the ease of numerically optimizing the covert communica-

tion performance.

Proposition 2: An upper bound on V (fU , fV ) is given by

V (fU , fV ) ≤
K
∑

k=1

χ
1

1−χk

k (18)

where for 1 ≤ k ≤ K , χk ,
p̂k

q̂k
=

PkSA,T

QkSA,J
.

Proof: By the definition of V (fU , fV ), we have

V (fU , fV ) = V

(

K
∏

k=1

fUk
,

K
∏

k=1

fVk

)

=
1

2

∫

Υ

∣

∣

∣

∣

∣

K
∏

k=1

fUk
(xk)−

K
∏

k=1

fVk
(xk)

∣

∣

∣

∣

∣

dx

=
1

2

∫

Υ

∣

∣

∣

∣

∣

(fUk
(x1)− fVk

(x1))

(

K
∏

k=2

fUk
(xk)

)

+ fVk
(x1)

(

K
∏

k=2

fUk
(xk)−

K
∏

k=2

fVk
(xk)

)∣

∣

∣

∣

∣

dx

(a)

≤ 1

2

∫

Υ

∣

∣

∣

∣

∣

(fUk
(x1)− fVk

(x1))

K
∏

k=2

fUk
(xk)

∣

∣

∣

∣

∣

dx

+
1

2

∫

Υ

∣

∣

∣

∣

∣

fVk
(x1)

(

K
∏

k=2

fUk
(xk)−

K
∏

k=2

fVk
(xk)

)
∣

∣

∣

∣

∣

dx

(b)
=V (fU1 , fV1) + V

(

K
∏

k=2

fUk
,

K
∏

k=2

fVk

)

(c)
=χ

1
1−χ1
1 + V

(

K
∏

k=2

fUk
,

K
∏

k=2

fVk

)

(d)

≤χ
1

1−χ1
1 + χ

1
1−χ2
2 + V

(

K
∏

k=3

fUk
,

K
∏

k=3

fVk

)

≤ · · · ≤
K
∑

k=1

χ
1

1−χk

k (19)

where x = [x1, x2, · · · , xK ]T , Υ , {x : xk ≥ σ2
Ak

for 1 ≤
k ≤ K}, Υ′ , {[x2, x3, · · · , xK ]T : xk ≥ σ2

Ak
for 2 ≤ k ≤

K}, step (a) is due to the triangle inequality, i.e., |u + v| ≤
|u|+ |v| for any real-valued u and v, step (b) is obtained by

calculating the integral with respect to x2, x3, · · · , xK for the

first term and calculating the integral with respect to x1 for

the second term, and using the definition of V(·, ·), step (c)
follows from (17), step (d) is obtained by applying the steps

from (a) to (c) to V

(

∏K
k=2 fUk

,
∏K

k=2 fVk

)

.

Based on Proposition 2, in order to make sure that the

communication is at least (1 − ǫ)-covert, we consider the

following constraint,

K
∑

k=1

η(χk) ≤ ǫ, (20)

where η(x) , x
1

1−x . The tightness of using
∑K

k=1 η(χk) as

an upper bound on V (fU , fV ) will be numerically evaluated

in Section V-A.

B. Covert communication performance optimization

In previous subsection, we have presented our method to

reformulate the covertness constraint. In this subsection, we

maximize the effective sum-rate subject to the covertness

constraint (20).

For the case with K = 1, based on (17), we ensure the

covertness of the communication by letting χ
1

1−χ1

1 ≤ ǫ. As a

result, the maximal feasible transmit power is given by P ∗
1 =

χ∗q̂1
SA,T

, where χ∗ is the unique solution to x
1

1−x = ǫ in (0, 1).
Substituting P ∗

1 into (9), we obtain the following problem,

max
0≤γ1≤A1χ∗/ ln(B1)

R
(e)
1 (γ1) ,

(

1−B1e
−A1χ∗

γ1

)

ln (1 + γ1) ,

(21)

where γ1 , er1 − 1 is viewed as the optimization variable,

A1 ,
SRk,TSA,J

SRk,JSA,T
||h1||2 and B1 , eσ

2
Rk

/(Q1SRk,J). The optimal

solution to (21), denoted by γ∗
1 , is presented below.

Proposition 3: γ∗
1 = 1

κ∗ , where κ∗ is the unique solution

in (0,∞) to equation Ξ(κ) = B1, where Ξ(κ) , eA1χ
∗κ −

A1B1χ
∗κ(1 + κ) ln

(

1 + κ−1
)

.

Proof: Let κ = 1
γ1

and denote R̂(κ) = R
(e)
1 (κ−1). Now,

we maximize R̂(κ) with respect to κ. First of all, we have

R̂′(κ) = e−A1P∗
1 κΞ̂(κ)

κ(1+κ) where Ξ̂(κ) , B1 − Ξ(κ). It can be

seen that the sign of R̂(κ) is determined by that of Ξ̂(κ). By

checking the derivative of Ξ̂(κ), it can be easily shown that

Ξ̂(κ) first increases and then decreases with κ. Since Ξ̂(0) =
B1 − 1 > 0 and limκ→∞ Ξ̂(κ) = −∞, we conclude that κ∗,

which is the root of Ξ̂(κ) = 0, maximizes the value of R̂(κ).

It is worth noting that κ∗ ≥ ln(B1)
A1P∗

1
always holds. Otherwise,
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R̂(κ∗) ≤ 0 by definition. Therefore, γ∗
1 = 1

κ∗ is the unique

solution to (21).

Now, we discuss the case where K ≥ 2. By using
∑K

k=1 η(χk) as an upper approximation of V (fU , fV ), we

obtain the following optimization problem,

max
χ,γ∈RK

+

R(e)(χ,γ), (22a)

s.t.

K
∑

k=1

η(χk) ≤ ǫ, (22b)

where R(e)(χ,γ) ,
∑K

k=1 I{Bke
−Akχk

γk ≤ 1}(1 −
Bke

−Akχk
γk ) ln(1 + γk), χ = [χ1, χ2, · · · , χK ]T with χk ,

PkSA,T

QkSA,J
, γ = [γ1, γ2, · · · , γK ]T with γk , erk − 1, Ak ,

SRk,TSA,J

SRk,JSA,T
||hk||2, and Bk , eσ

2
Rk

/(QkSRk,J). Note that in (22),

we view (χ,γ) as the optimization variables instead of (p, r)
for convenience.

Now, we present our method to solve (22). Though (22) is a

non-convex optimization problem, its global optimal solution

can still be obtained. First of all, we observe that for a fixed χ,

(22) becomes K parallel sub-problems. Specifically, the k-th

sub-problem, with a single optimization variable γk, is in the

same form as (21). Therefore, for a fixed χ, we can obtain

the optimal γ, denoted by γ∗(χ), by using Proposition 3. In

this way, (22) can be reformulated as

max
χ∈RK

+

R̃(e)(χ), s.t. (22b) (23)

where R̃(e)(χ) , R(e)(p,γ∗(χ)). For optimization problem

(23), we observe that:

1) R̃(e)(χ) is a monotonically increasing function (see Def-

inition 1 in Appendix B); specifically, for any two points

χ1 and χ2, if χ1 ≥ χ2 ≥ 0, then R̃(e)(χ1) ≥ R̃(e)(χ2);
2) the feasible set of χ, denoted by X , is contained in a

box (see Definition 2 in Appendix B), i.e., for ∀χ ∈ X ,

it satisfies that 0 ≤ χ ≤ χ̄ = χ∗
1K , which follows from

(22b);

3) the feasible set X is a normal set (see Definition 3 in

Appendix B); specifically, for any two points χ1 ≥ 0

and χ2 ≥ 0, if χ1 ≤ χ2 and χ2 ∈ X , then χ1 ∈ X ;

Based on these observations, optimization problem (22) is

a monotonic optimization problem, and its globally optimal

solution can be obtained by using the POA method [30],

[31]. We present a brief introduction on the POA method in

Appendix B.

C. An SCA based method

In this subsection, we present an alternative method to

search for a suboptimal solution to (22). Define t =
[t1, t2, · · · , tK ]T with tk ,

χk

γk
for 1 ≤ k ≤ K . We view

t and γ as the optimization variables and recast (22) as the

following problem,

max
t,γ∈RK

+

K
∑

k=1

(

1−Bke
−Aktk

)

ln (1 + γk) (24a)

s.t.

K
∑

k=1

η(tkγk) ≤ ǫ, (24b)

Bke
−Aktk ≤ 1, 1 ≤ k ≤ K, (24c)

The main difficulty on solving (24) lies in the fact that

(24b) is not a convex constraint and that the objective of

(24) is non-concave. Note that η(x) satisfies that η(0) = 0,

limx→0 η
′(x) = 1. By checking the high order derivatives of

η(x), if can be proved that η′′(x) ≤ 0 for ∀x ∈ (0, 1). There-

fore, η(x) is a monotonically increasing concave function, and

satisfies

η(x) ≤ x, ∀x > 0 (25)

Based on (25), we can replace the inequality constraint

(24b) with tTγ ≤ ǫ to obtain a lower bound on opti-

mal covert communication performance. We further simplify

(24), by introducing two vector-valued slack variables α =
[α1, α2, · · · , αK ]T ∈ RK

+ and β = [β1, β2, · · · , βK ]T ∈ RK
+ ,

and obtain the following problem,

min
t,γ,α,β∈RK

+

R(α,β) (26a)

s.t. tTγ ≤ ǫ (26b)

1−Bke
−Aktk ≥ αk, 1 ≤ k ≤ K, (26c)

ln (1 + γk) ≥ βk, 1 ≤ k ≤ K, (26d)

where R(α,β) ,
||α−β||2−||α+β||2

4 = −αTβ. Note that in

(26), constraint (24c) is neglected because (24c) is guaranteed

if (26c) is satisfied and α ∈ RK
+ .

Problem (26) is still a non-convex problem due to the

non-convex objective function Rs(α,β) and the non-convex

constraint (26b). However, (26), in its current form, can be effi-

ciently handled by the SCA method. In brief, the SCA method

handles a non-convex optimization problem by transforming it

into a series of parameterized convex problem. By iteratively

solving the obtained convex problems with the parameters at

each iteration being the optimal solution obtained in previous

iteration, the SCA method generates a series of solutions

which converges to a Karush-Kuhn-Tucker (KKT) point of

the original non-convex problem. A brief introduction of the

SCA method is presented in Appendix C. In our case, in the

(j + 1)-th iteration of the SCA method, we need to solve the

following convex problem,

min
t,γ,α,β∈R+

||α− β||2 − 2
(

ρ(j)
)T

(α+ β) (27a)

s.t.
1

2
tTΛ

(j)
1 t+

1

2
γT

Λ
(j)
2 γ ≤ ǫ, (27b)

1−Bke
−Aktk ≥ αk, 1 ≤ k ≤ K, (27c)

ln (1 + γk) ≥ βk, 1 ≤ k ≤ K, (27d)

where ρ(j) = α(j) + β(j), Λ
(j)
1 =

(

Γ
(j)
)−1

T (j), Λ
(j)
2 =

(

T (j)
)−1

Γ
(j), Γ

(j) = diag(γ(j)), T (j) = diag(t(j)),
and {α(j),β(j), t(j),γ(j)} consists of the optimal solu-

tion obtained in the j-th iteration. The derivation of (27)

is explained in Appendix C. To start the SCA iteration,

{α(0),β(0), t(0),γ(0)} can be initialized to be any feasible

solution to (26). Note that as (27) is a convex problem, it can
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be efficiently solved by using software such as CVX [38].

Remark 4: In this section, we have proposed the POA

and the SCA methods to maximize the effective sum-rate

subject to a covertness constraint. Though the POA method

provisdes us the globally optimal solution, it generally exhibits

a high computational complexity. Specifically, after a vertex

is searched, K new vertexes will be added into the vertex set

(see Appendix B for more details), meaning that the worst-

case computational complexity of the POA method scales

with K exponentially. As for the SCA method, it solves

a sequence of convex optimization problems, i.e., (27), by

using standard convex optimization algorithms, for example,

the interior-point method combined with Newton’s method

[37], and the computational complexity grows with K in a

polynomial manner. Based on these observations, we conclude

that the POA method better suits to the case where the number

of receivers, K , is small, whereas if K is large, the SCA is

computationally more efficient.

IV. COVERT COMMUNICATION OVER FAST-VARYING

CHANNELS

In this section, we consider the situation where the wireless

channels are fast-varying. In the following, we first analyze

the covertness constraint, based on which we then discuss the

ergodic sum-rate maximization problem.

A. Covertness constraint analysis

Without loss of generality, assume that the transmission

starts in the 1-st and ends at the L-th time blocks (if it occurs).

Accordingly, the detection problem of the adversary can be

formulated as the following hypothesis testing problem,

W̃ = (W (1),W (2), · · · ,W (L)) ∼
{

f̃
(Nd)
1 , H1,

f̃
(Nd)
0 , H0,

(28)

where W (i), 1 ≤ i ≤ L, are defined in (13), f̃
(Nd)
s (W̃ ) ,

∏L
i=1 f

(Nd)
s (W (i)) for s ∈ {0, 1} are the PDFs of W̃ under

H1 andH0, respectively, with f
(Nd)
1 and f

(Nd)
0 defined in (14).

Based on (28), by using [34, Theorem 13.1.1], we obtain that

mind PFA(d)+PMD(d) = 1−V(f̃ (Nd)
1 , f̃

(Nd)
0 ). Note that (28)

differs from (13) in the sense that in (28), the signal matrices

obtained in different time blocks are collected together to make

a decision, while in (13), the decision is made based solely

on the signal matrix obtained in a single time block.

In principle, we can use the method in Proposition 1 and

2 to obtain an upper bound on V(f̃
(Nd)
1 , f̃

(Nd)
0 ). However,

given that the channel coherent time is short, such an upper

bound, which requires Nd → ∞, becomes inaccurate. In

the following, we use Pinsker’s inequality, see e.g., [36,

Lemma 11.6.1] to derive a mathematically tractable bound on

V(f̃
(Nd)
1 , f̃

(Nd)
0 ). We have

V(f̃
(Nd)
1 , f̃

(Nd)
0 ) ≤

√

1

2
D(f̃

(Nd)
0 , f̃

(Nd)
1 )

(a)
=

√

√

√

√

L

2

K
∑

k=1

D

(

f
(Nd)
0,k , f

(Nd)
1,k

)

, (29)

where step (a) is because W (i) for 1 ≤ i ≤ L are

i.i.d. random matrices. Based on (29), we use the following

constraint to ensure the covertness of the transmission,

K
∑

k=1

D

(

f
(Nd)
0,k , f

(Nd)
1,k

)

≤ 2

L
ǫ2. (30)

The mathematical expression of D
(

f
(Nd)
0,k , f

(Nd)
1,k

)

is presented

in the following proposition

Proposition 4: For n ≥ 1, D(f
(n)
0,k , f

(n)
1,k ) =

−
∫∞
0

zn−1Φ(qk,z)
(n−1)! ln Ψ(pk, qk, z)dz, where

Ψ(pk, qk, z) , 1 + pk

qk−pk

(

1− Φ(pk,z)
Φ(qk,z)

)

, Φ(x, z) ,
∫∞
0 e−v 1

(1+xv)n e
− z

1+xv dv, pk ,
p̂k

σ2
Ak

, and qk ,
q̂k
σ2
Ak

.

Proof: By definition, D(f
(n)
0,k , f

(n)
1,k ) can be simplified as

(31) in the top of next page. where in step (a), we express

the complex-valued integral variables w1, w2, · · · , wn in polar

coordinates, i.e., wi = xie
jθi with xi ∈ R+ and θi ∈ (−π, π],

step (b) is obtained by first calculating the integral w.r.t. θ

and then changing the integral variables by letting yi = x2
i for

1 ≤ i ≤ n; and finally, in step (c), we let z =
∑n

j=1 yj and

zi =
∑i

j=1 yj for 1 ≤ i ≤ n − 1, and calculate the integral

w.r.t. (z1, z2, · · · , zn−1). We further have that

EVk

{

e
− z

Vk

V n
k

}

=

∫ ∞

σ2
Ak

e
−

v−σ2
Ak

q̂k

q̂k

e−
z
v

vn
dv

=
1

σ2n
Ak

∫ ∞

0

e−ve
−

z/σ2
Ak

1+qkv

(1 + qkv)n
dv =

1

σ2n
Ak

Φ

(

qk,
z

σ2
Ak

)

. (32)

Similarly, we obtain

EUk

{

e
− z

Uk

Un
k

}

=
1

σ2n
Ak

(

qk
qk − pk

Φ

(

qk,
z

σ2
a,k

)

− pk
qk − pk

Φ

(

pk,
z

σ2
Ak

))

. (33)

We complete the proof by inserting (32) and (33) into (31)

and letting z ← z
σ2
Ak

,

Based on Proposition 4, for a given power allocation vector

p = [P1, P2, · · · , PK ]T , we can check its feasibility subject to

constraint (30). However, (30) is too complicated to facilitate

to solve optimization problem (12). In view of the fact that

pk is generally small to ensure the covertness, the following

proposition provides a way to approximate D(f
(n)
0,k , f

(n)
1,k ).

Proposition 5: limpk→0
D(f

(n)
0,k ,f

(n)
1,k )

p2
k

= ζ(qk,n)
2q2k

, where

ζ(qk, n) , −1 +
∫∞
0

zn−1e−z

(n−1)!
e−z

Φ(qk,z)
dz.

Proof: First of all, it is straight that

D(f
(n)
0,k , f

(n)
1,k )

∣

∣

pk=0
= 0. Besides, it can be verified

that
dD(f

(n)
0,k ,f

(n)
1,k )

dpk

∣

∣

pk=0
=

∫∞
0

zn−1

(n−1)!
e−z−Φ(qk,z)

qk
dz = 0.

We further have that
d2

D(f
(n)
0,k ,f

(n)
1,k )

dp2
k

∣

∣

pk=0
=

1
q2k

∫∞
0

zn−1Φ(qk,z)
(n−1)!

(

1− e−z

Φ(qk,z)

)2

dz = 1
q2k
ζ(qk, n) > 0,

which completes the proof.
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D(f
(n)
0,k , f

(n)
1,k ) =

∫

Cn

EVk

{

V −n
k e−wHw/Vk

πn

}

ln
EVk
{V −n

k e−wHw/Vk}
EUk
{U−n

k e−wHw/Uk}dw

(a)
=

∫

Rn
+

(

n
∏

i=1

xi

)

∫

(−π,π]n
EVk

{

V −n
k e−xTx/Vk

πn

}

ln
EVk
{V −n

k e−xTx/Vk}
EUk
{U−n

k e−xTx/Uk}dθdx

(b)
=

∫

Rn
+

EVk

{

V −n
k e−

∑n
i=1 yi/Vk

}

ln
EVk
{V −n

k e−
∑n

i=1 yi/Vk}
EUk
{U−n

k e−
∑

n
i=1 yi/Uk}dy

(c)
=

∫

R+

zn−1

(n− 1)!
EVk

{

V −n
k e−z/Vk

}

ln
EVk
{V −n

k e−z/Vk}
EUk
{U−n

k e−z/Uk}dz (31)

Based on Proposition 5, we can approximate the covertness

constraint (30) by,

K
∑

k=1

ζ(qk, N −Nt)

2
χ2
k ≤

2

L
ǫ2. (34)

where χk for 1 ≤ k ≤ K are defined in (22).

Remark 5: For qk > 0, it can be verified through numerical

calculation that
d3

D(f
(n)
0,k ,f

(n)
1,k )

dp3
k

∣

∣

pk=0
< 0, meaning that the left-

hand-side (LHS) of (34) is an upper bound on the LHS of (30)

when pk is sufficiently small. Note that in (34), with N and

Nt fixed, the transmit power Pk is upper bounded by O( 1√
L
),

which is analogous to the SRL. Note that here, L stands for

the number of time blocks but not the number of channel uses.

Similar result has also been presented in [19].

B. Covert communication performance optimization

In this subsection, we present our method to maximize the

sum of the ergodic rates subject to (34). Based on (2) and (3),

for 1 ≤ k ≤ K , we have

|E{hH
k,lbk,l}|2 =

∣

∣

∣
E

{

ĥH
k,lbk,l + h̃H

k,lbk,l

}∣

∣

∣

2

=
∣

∣

∣
E

{

||ĥk,l||
}
∣

∣

∣

2

=
Nt

Nt + µk
G, (35)

Var{hH
k,lbk,l} = Var

{

||ĥk,l||+ h̃H
k,lbk,l

}

=
Nt

Nt + µk
E +

µk

Nt + µk
, (36)

where G , Γ2
(

M + 1
2

)

/Γ2 (M), E , M −G, and we have

used the fact that ĥk,l and h̃k,l are independent. Substituting

(35) and (36) into (11), we obtain,

max
χ∈RK

+ ;τ∈ZN

R̄(χ, τ) , (1− τ)

K
∑

k=1

ln
(

1 + SNRk

)

(37a)

s.t.

K
∑

k=1

ζk(τ)

2
χ2
k ≤

2

L
ǫ2. (37b)

where SNRk = χkτGk

τχkEk+χkµ̃k+τFk,1+Fk,2
, τ , Nt

N , ZN =
{

1
N , 2

N , · · · , N−1
N

}

, Gk ,
QkSA,J

SA,T
NG, Ek ,

QkSA,J

SA,T
NE,

µ̃k ,
QkSA,J

SA,T
µk Fk,1 , N

QkSRk,J+σ2
Rk

SRk,T
, Fk,2 ,

µk
QkSRk,J+σ2

Rk

SRk,T
, and ζk(τ) , ζ(qk, N(1 − τ)). Note that in

(37), we equivalently optimize (χ, τ) instead of (p, Nt) for

notation simplicity.

In the following, we present our method to solve (37). We

observe that if τ is fixed, R̄(χ, τ) is a concave function of

χ, and thus (37) becomes a convex optimization problem, the

global optimum of which can be efficiently obtained. In light

of this, we can solve (37) by first optimizing χ with τ fixed

and then calculating the optimal τ by an exhaustively search

over the finite discrete set ZN . For a given value of τ , the

optimal χ is presented in the following proposition.

Proposition 6: Let τ be a fixed constant in (0, 1). For 1 ≤
k ≤ K , the optimal χk, denoted by χ∗

k, is the unique solution

in (0,∞) to the following equation,

χk

(

G̃kχk + Ẽkχk + Ĩk

)(

Ẽkχk + F̃k

)

=
G̃kF̃k

λ∗ζk(τ)
, (38)

where G̃k , τGk , Ẽk , τEk + µ̃k, F̃k , τFk,1 + Fk,2,

and λ∗ > 0 is the optimal Lagrange multiplier satisfying that
∑K

k=1
ζk(τ)

2 (χ∗
k)

2 = 2
L ǫ

2.

Proof: Let λ be the Lagrange multiplier associ-

ated with constraint (37b). The KKT conditions of (37)

state that
∂L(χ,λ)

∂χk
= 0, where L(χ, λ) , R̄(χ, τ) +

λ
(

∑K
k=1

ζk(τ)
2 P 2

k − 2
L ǫ

2
)

is the Lagrangian function, which

results in (38). Since R̄(χ, τ) and
∑K

k=1
ζk(τ)

2 χ2
k increase with

χk for 1 ≤ k ≤ K , constraint (38) is active at the optimum,

meaning that the optimal Lagrange multiplier λ∗ satisfies that
∑K

k=1
ζk(τ)

2 (χ∗
k)

2 = 2
L ǫ

2.

Note that in Proposition 6, (38) can be solved in a closed-

form due to that fact that (38) is a cubic equation. As for λ∗,

it can be efficiently searched by using the bisection method.

Based on Proposition 6, we can obtain the optimal χ for each

fixed value of τ . Then, the optimal τ can be obtained by an

exhaustive search over the set ZN .

C. An alternating optimization based method

In this subsection, we present a method to obtain a subop-

timal solution of (37) with a lower computational complexity

than the ES based method proposed in previous subsection.

The basic idea is that we replace constraint (37b) with the

following one

K
∑

k=1

ζk(0)

2
χ2
k ≤

2

L
ǫ2. (39)
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In fact, by setting τ = 0 in (37b), we equivalently let the

adversary observe N > Nd samples in each time block.

Therefore, this improves the detection performance of the

adversary and leads to a lower bound on the achievable

communication performance.

Since (39) is independent of τ , we replace (37b) with (39)

and solve the resulting problem by using the AO method.

Specifically, we alternatingly optimize χ with τ fixed and

optimize τ with χ fixed until the value of R̄(χ, τ) converges.

For the sub-problem of optimizing χ, the optimal solution is

presented in Proposition 6. Given that χ is fixed, the sub-

problem of optimizing τ is given by,

max
τ∈ZN

R̄χ(τ) , (1− τ)

K
∑

k=1

ln

(

1 +
τḠk

τĒk + F̄k

)

, (40)

where Ḡk , χkGk, Ēk , χkEk + Fk,1, and F̄k , χkµ̃k +
Fk,2. To solve (40), we relax τ to be a real number in (0, 1),
and the optimal real-valued τ is presented in the following

proposition.

Proposition 7: R̄χ(τ) is a concave function of τ , and

τ∗ , argmaxτ∈(0,1)R̄χ(τ) is the unique solution in (0,1) to

the following equation

R̄′
χ(τ) =

K
∑

k=1

(

ḠkF̄k(1 − τ)

(Ēkτ + F̄k)
(

(Ḡk + Ēk)τ + F̄k

)

− ln

(

1 +
Ḡkτ

Ēkτ + F̄k

)

)

= 0. (41)

Proof: The second order derivative of R̄χ(τ) is presented

in (42) at the top of next page. Given that τ ∈ (0, 1),
R̄′′

χ(τ) < 0. Thus, R̄χ(τ) is a concave function. Besides,

it can be verified that R̄χ(0) = R̄χ(1) = 0, R̄′
χ(0) > 0,

and R̄′
χ(1) < 0. Therefore, τ∗ is unique, which satisfies

R̄′
χ(τ

∗) = 0.

Since R̄χ(τ) is concave, R̄′
χ(τ) decreases with τ . There-

fore, the root of (41) can be efficiently calculated by using

the bisection method. Based on Proposition 6 and 7, we

can iteratively update χ and τ until the objective function

converges. Given that the objective has converged, we project

the obtained value of τ into ZN to recover a integer-valued

Nt. After that, we propose to once again update χ using

Proposition 6 under constraint (34) to refine the obtained

solution.

Remark 6: In this section, the ES and the AO methods are

proposed to maximize the ergodic sum-rate subject to a covert-

ness constraint. The ES method treats τ = Nd

N as a discrete

variable and searches the optimal τ in ZN exhaustively. The

AO method relaxes τ as a continuous variable in (0, 1) and

optimizes τ and χ alternately. Theoretically, the AO method

only produces a sub-optimal solution. Note that for each fixed

value of τ , both the ES and the AO methods need to compute

the optimal χ, denoted by χ∗(τ), by using the bisection

method to solve for the optimal dual variable according to

Proposition 6. Conceptually, the ES method needs to compute

χ∗(τ) for N −1 times as |ZN | = N −1. For the AO method,

there is generally no guarantee on the maximal number of

iterations before convergence. However, our simulation results

in Section V-B show that only a few iterations are sufficient

for the AO method to converge, and thus the AO method is

computationally more efficient than the ES method.

V. NUMERICAL RESULT

We numerically evaluate the covert communication perfor-

mance in this section. We let the transmitter, the adversary,

the jammer, and the k-th receiver (1 ≤ k ≤ K) be in the

same two-dimensional plane with their positions given by

sT, sA, sJ, and sRk
, respectively. The distance-based path

loss between node a and node b is Sa,b = ||sa − sb||−4

where a, b ∈ {T,A, J,R1, · · · ,RK}. We set sT = (0, 0),
sA = (−dA, 0), and sJ = (−dJ, 0). The positions of each

receivers, sRk
for 1 ≤ k ≤ K , are independently and

uniformly distributed in a circular region with the center and

the radius being (dR, 0) and rc, respectively. Unless specified,

we set dA = 150 m, dJ = 250 m, dR = 150 m, and rc = 30
m, σ2

A1
= · · · = σ2

AK
= −80 dBm, σ2

R1
= · · · = σ2

RK
= −80

dBm, and σ2
T = −80 dBm, PR1 = · · · = PRK = PR = 5

dBm, and Q1 = · · · = QK = Q = 25 dBm.

A. Covert communication over quasi-static channels

In this subsection, we evaluate the covert communication

performance under the condition that the channels are quasi-

static. Unless specified, we set M = 20 and ǫ = 0.005.

In Fig. 2, we compare V(fU , fV ) with its upper bound

derived in (18). Here, we set K = 2 and χ1 = χ2 = χ for

illustrative simplicity. As there is no closed-form expression

for V(fU , fV ), we calculate it via numerical integration.

Fig. 2 reveals that the upper bound derived in (18) tightly

approximates V(fU , fV ), especially when χ → 0. In Fig.

2, we also illustrate two widely used upper bounds on total

variation distance, namely, the Hellinger distance based upper

bound, see e.g., [34, Theorem 13.1.2], and the KL-divergence

based upper bound obtained by using Pinsker’s inequality [36,

Lemma 11.6.1]. However, Fig. 2 shows that in the considered

scenario, these bounds are not as tight as the proposed upper

bound in (18).

Fig. 3 illustrates the convergence behavior of the SCA

method. We run the SCA method under four groups of

randomly generated system parameters. Specifically, for each

curve in Fig. 3, the locations of the receivers are randomly

generated as introduced at the beginning of this section, and

the channel coefficients are randomly generated by using the

complex Gaussian distribution as assumed in Section II-A.

From Fig. 3, we can see that the SCA method converges within

a few iterations. In fact, through a large number of numerical

experiments, we observe that under the considered system

settings, the SCA method converges within 10 iterations with

the relative error smaller than 0.01 in most cases.

In Fig. 4, we plot the optimized effective sum-rate, R(e),

versus the jamming power, Q, wherein the results obtained

by using the SCA method are compared to those obtained by

using the POA method. Fig. 4 indicates that the performance

obtained by the SCA method is nearly optimal. Besides, Fig.

4 also shows that the covert communication performance gets

improved as the jamming power increases. This is because



11

R̄′′
χ(τ) = −

K
∑

k=1

Ḡk Īk(2Ē
2
kτ + Īk(Ḡk + 2Īk + Ḡkτ) + 2Ēk(Īk + Ḡkτ + Īkτ))

(Ēkτ + Īk)2((Ḡk + Ēk)τ + Īk)2
(42)

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3
Total variation distance, LHS of (18)
The proposed upper bound in (18)
Hellinger distance based upper bound
KL divergence based upper bound

Fig. 2: V(fU , fV ) and its upper bounds.
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0
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Random realization 2
Random realization 3
Random realization 4

Fig. 3: Convergence of the SCA method with K = 3.

whether or not the covertness constraint (20) is satisfied only

depends on the values of χ1, χ2, · · · , χK . By definition, χk

is proportional to Pk

Qk
, meaning that we can proportionally

increase Pk with Qk without sacrificing the covertness. And

thus if P1, P2, · · · , PK are chosen such that P1

Q1
, P2

Q2
, · · · , PK

QK

are fixed constants and satisfy the covertness constraint, then

it can be checked that the effective rate r
(e)
k increases with Qk

for 1 ≤ k ≤ K . Therefore, the optimal effective sum-rate also

increases with the jamming power.

In Fig. 5, we plot the maximal effective sum-rate as a

function of M . Fig. 5 inspires us that increasing M is

a promising method to enhance the covert communication

performance. In fact, in the considered scenario, with the

knowledge about the channel state information (CSI), the

transmitter can design beamforming vectors to enhance the

SNRs at the receivers. Note that due to the mismatch between

the beamforming vector of the transmitter and the CSI of

the adversary, increasing M does not increase the signal

power received by the adversary, meaning that the covert

communication performance can be improved by using more

antennas without sacrificing the covertness.

B. Covert communication over fast-varying channels

In this subsection, we evaluate the ergodic sum-rate under

the condition that the channels are fast-varying. Unless spec-

20 25 30 35
1.3

1.8

2.3

2.8

3.3

Fig. 4: R(e) versus Q.

8 12 16 20 24
1

1.5

2

2.5

3

3.5

Fig. 5: R(e) versus M with K = 4.

ified, we set M = 20, N = 100, L = 100, ǫ = 0.05, and

K = 4.

We first study the convergence behavior of the AO method

introduced in Section IV-C. For each curve in Fig. 6, we

randomly generate the locations of the receivers and then apply

the AO method to optimize the ergodic sum-rate. We set the

initial value of τ as 0.5. The value of R̄ obtained in each

iteration of the AO method are plotted. As we can see from

Fig. 6, the AO method converges very fast. In fact, through a

large number of numerical experiments, we observe that the

improvement on R̄ becomes negligible after two iterations of

the AO method in most cases.

In Fig. 7, we show R̄ as a function of PR. Both the AO

and the ES methods are implemented to solve (37). Note that

the solutions obtained by the ES method are global optimal.

From Fig. 7, it can be seen that the performance achieved by

the AO method is nearly optimal. Combining Fig. 6 and 7,

we conclude that the AO method is computationally efficient

while causes little performance loss. Fig. 7 also reveals that the

communication performance gets significantly improved as the

PR increases, which is due to that fact that with a larger value

of PR, the transmitter can estimate the CSIs more accurately.

The influences of the jamming power on the ergodic sum-

rate are plotted in Fig. 8. From Fig. 8, we observe that increas-

ing the jamming power does not always improve the communi-
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Fig. 6: Convergence of the AO method.
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Fig. 7: R̄ versus PR with ǫ = 0.05.

cation performance, and there seems to exist an optimal value

of the jamming power. In fact, through numerical calculation,

we observe that ζ(qk, N−Nt) in constraint (34) increases with

qk (recall that qk ∝ Qk). This means that subject to (34), the

increase of Qk inevitably leads to the decrease of χk, which

finally reduces R̄. We notice that the effects of increasing the

jamming power are quiet different in Fig. 4 and 8. Specifically,

in Fig. 4, the covert communication performance improves

as the jamming power increases, whereas in Fig. 8, the

covert communication performance becomes degraded when

the jammer power is sufficiently large. This inspires us that

in practice, the jamming power should be carefully designed

according to the temporal dynamic properties of the wireless

channel of the wireless channels.

In Fig. 9, we illustrate the ergodic sum-rate, R̄, as a

function of the lower bound on the error probability of the

adversary, i.e., 1 − ǫ, wherein we fix N × L = 1.5 × 103.

As 1 − ǫ approaches 1, R̄ monotonically decreases, which is

the direct result of the reduced transmit power in order to

satisfy the covertness constraint. It is also worth noting that

R̄ decreases with L. In fact, as L increases, the adversary

obtains more signal samples that are under different random

channel realizations. This helps the adversary to average out

the unknown fading channel coefficients, and thus leads to a

more reliable detection result.

VI. CONCLUSION

Covert communication between a transmitter and multiple

receivers under the help of a friendly jammer has been studied.

When the channels are quasi-static, we maximized the sum

of the effective rates. When the channels are fast-varying, we

18 20 22 24 26 28 30
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0.45

0.5

0.55

0.6

0.65

0.7

Fig. 8: R̄ versus Q with K = 2, 3, and 4.
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Fig. 9: R̄ versus 1− ǫ with N × L fixed as 1.5× 103.

maximized the sum of the ergodic rates. The optimal solutions

to both of the two optimization problems can be numerically

obtained. And we have also presented methods to search

for sub-optimal solutions with relatively lower computational

complexities. Numerical results have been presented to show

the covert communication performance. We revealed that in-

creasing the number of antenna at the transmitter is promising

in improving the covert communication performance. Besides,

it has also been revealed that the existence of a friendly

jamming greatly helps improving the covert communication

performance.

APPENDIX

A. The proof of Proposition 1

Let n ≥ 1 be an integer, by the definition of the total

variation distance, we obtain that

2V(f
(n)
1 , f

(n)
0 ) =

∫

CKn

∣

∣

∣

∣

∣

f
(n)
1 (W )− f

(n)
0 (W )

∣

∣

∣

∣

∣

dW

(a)
=

∫

RK
+

∣

∣

∣

∣

∣

∏

k

∫ ∞

σ2
Ak

zn−1
k fUk

(uk)

(n− 1)!

e−zk/uk

un
k

duk

−
∏

k

∫ ∞

σ2
Ak

zn−1
k fvk(vk)

(n− 1)!

e−zk/vk

vnk
dvk

∣

∣

∣

∣

∣

dz

(b)
=

∫

RK
+

∣

∣

∣

∣

∣

∏

k

f
(n)
Uk

(yk)−
∏

k

f
(n)
Vk

(yk)

∣

∣

∣

∣

∣

dy

=

(

∫

Ω

+

∫

RK
+ \Ω

)
∣

∣

∣

∣

∣

∏

k

f
(n)
Uk

(yk)−
∏

k

f
(n)
Vk

(yk)

∣

∣

∣

∣

∣

dy (43)
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where W = [w1, · · · ,wK ] with wk =

[wk,1, · · · , wk,n]
T , f

(n)
1 (·) and f

(n)
1 (·) are defined

in (14), f
(n)
Uk

(x) ,
∫∞
σ2
Ak

nnxn−1fUk
(u)

(n−1)!
e−nx/u

un du,

f
(n)
Vk

(x) ,
∫∞
σ2
Ak

nnxn−1fVk
(v)

(n−1)!
e−nx/v

vn dv, Ω , (0, G]K

for some sufficiently large positive constant G, step (a) is

obtained by using step (a), (b), and (c) in the derivation

of (31), and in step (b), we make a change of variable

yk ← zk/n for 1 ≤ k ≤ K .

Lemma 2: For 1 ≤ k ≤ K and x > 0, we have

limn→∞ f
(n)
Uk

(x) = fUk
(x) and limn→∞ f

(n)
Vk

(x) = fVk
(x)

almost everywhere. Besides, for n ≥ 2, there exists some

constraint c > 0 (independent of n) such that for ∀x > 0,

f
(n)
Uk

(x) < c and f
(n)
Vk

(x) < c.

Lemma 3: V
(n)
2 ,

∫

RK
+ \Ω

∣

∣

∣

∏

k f
(n)
Uk

(yk)−
∏

k f
(n)
Vk

(yk)
∣

∣

∣
dy

= oG(1) + on(1).
Lemma 2 indicates that for ∀n ≥ 1,

∣

∣

∣

∏

k f
(n)
Uk

(yk)−
∏

k f
(n)
Vk

(yk)
∣

∣

∣
is bounded above by some

constant. Therefore, by using the bounded convergence

theorem, see e.g., [33, Theorem 1.4], we have that

limn→∞ V
(n)
1 =

∫

Ω |
∏

k fUk
(yk) −

∏

k fVk
(yk)|dy where

V
(n)
1 ,

∫

Ω |
∏

k f
(n)
Uk

(yk) −
∏

k f
(n)
Vk

(yk)|dy for any fixed

G > 0. Since 2V(f
(n)
1 , f

(n)
0 ) = V

(n)
1 + V

(n)
2 , Proposition 1 is

proved by using Lemma 3 and letting G→∞.

Proof of Lemma 2: For simplicity, we only prove for the

case of f
(n)
Vk

(x), and the proof can be directly extended to the

case of f
(n)
Uk

(x). For x ∈ (0, σ2
Ak

), by definition, we have that

f
(n)
Vk

(x) =
n

x

∫ ∞

σ2
Ak

fVk
(v)

nnxn

n!

e−nx/v

vn
dv

(a)

≤
√
n√

2πx

∫ ∞

σ2
Ak

fVk
(v)en̺(x/v)dv (44)

(b)

≤
√
n√

2πx
en̺(x/σ

2
Ak

) n→∞−−−−→ 0 = fVk
(x), (45)

where step (a) is because n! ≥
√
2πnnn/e−n (Stirling’s

formula) and ̺(z) , 1 − z + ln z, and step (b) follows

from the fact that ̺(z) ≤ ̺(1) = 0 for any z > 0, and

that ̺(z) is increasing in z ∈ (0, 1). For x ∈ (σ2
Ak

,∞),

we have that f
(n)
Vk

(x) =
(

∫

Xξ
+
∫

X c
ξ

)

fVk
(v)nnxn−1

vn(n−1)! e−
nx
v dv,

where Xξ , ((1− ξ)x, (1 + ξ)x), X c
ξ , (σ2

Ak
,∞) \ X , and ξ

is a small positive number such that (1− ξ)x > σ2
Ak

.We have

∫

Xξ

fVk
(v)nnxn−1

vn(n− 1)!
e−

nx
v dv

=
fVk

(x′)n

n− 1

∫ 1
1−ξ

1
1+ξ

nn−1v̂n−2

(n− 2)!
e−nv̂dv̂

(a)−−→ fVk
(x) (46)

∫

X c
ξ

fVk
(v)nnxn−1

vn(n− 1)!
e−

nx
v dv

(b)

≤ 1

q̂k

n

n− 1

∫

(0, 1
1+ξ )∪( 1

1−ξ ,∞)

nn−1v̂n−2

(n− 2)!
e−nv̂dv̂

n→∞−−−−→ 0

(47)

where x′ is some real number that lies between (1 −

ξ)x and (1 + ξ)x, step (a) is due to the fact that
∫

1
1−ξ
1

1+ξ

nn−1v̂n−2

(n−2)! e−nv̂dv̂
n→∞−−−−→ 1 for any ξ > 0 and thus

obtained by first letting n→∞ and then ǫ ↓ 0, and step (b) is

due to the fact that fVk
(x) ≤ 1

q̂k
for ∀x ≥ σ2

Ak
. In summary,

for ∀x ∈ (0, σ2
Ak

) ∪ (σ2
Ak

,∞), limn→∞ f
(n)
Vk

(x) = fVk
(x).

Besides, by using the steps in (46) and (47), it can be shown

that for ∀x ≥ 0, f
(n)
Vk

(x) ≤ 1
q̂k

n
n−1 ≤ 2

q̂k
and thus is bounded

above by some constant that is independent of n.

Proof of Lemma 3: Define V
(n)
2,V ,

∫

RK
+ \Ω

∏

k f
(n)
Vk

(yk)dy and V
(n)
2,U ,

∫

RK
+ \Ω

∏

k f
(n)
Uk

(yk)dy.

It is straight that V
(n)
2 ≤ V

(n)
2,V + V

(n)
2,U . By the definition of

Ω, we have V
(n)
2,V ≤

∑K
k=1

∫∞
G f

(n)
Vk

(yk)dyk. We further have

that
∫∞
G f

(n)
Vk

(x)dx =
∫∞
G

∫∞
σ2
Ak

nnxn−1fVk
(v)

(n−1)!
e−nx/v

vn dvdx =

Xk,1+Xk,2 where Xk,1 ,
∫∞
G

∫
G
2

σ2
Ak

nnxn−1fVk
(v)

(n−1)!
e−nx/v

vn dvdx

and Xk,2 ,
∫∞
G

∫∞
G
2

nnxn−1fVk
(v)

(n−1)!
e−nx/v

vn dvdx. By

changing the order of integration, Xk,1 satisfies Xk,1 =
∫

G
2

σ2
Ak

fVk
(v)Γ(n, nG/v)dv ≤ Γ(n, 2n) = on(1). For Xk,2,

we have that Xk,2 ≤
∫∞
0

∫∞
G
2

nnxn−1fVk
(v)

(n−1)!
e−nx/v

vn dvdx =
∫∞

G
2
fVk

(v)dv = oG(1). Similarly, it can be shown that

V
(n)
2,U = oG(1) + on(1), which completes the proof.

B. A brief introduction on the POA method

In this part, we briefly introduce the POA method. We first

present some basic definitions.

Definition 1 (Monotonic functions): A function h : Rn →R
is monotonically increasing if h(x) ≥ h(y) when x ≥ y.

Definition 2 (Hyper-rectangles (a.k.a. Boxes)): Let a, b ∈
Rn with x ≤ y, then the set of x ∈ Rn such that a ≤ x ≤ b

is a box in Rn, which is denoted by [a, b].

Definition 3 (Normal sets): A set X is normal if ∀x ∈ X ,

then the box [0,x] ⊆ X .

Definition 4 (Polyblocks): A set P ∈ Rn
+ is a polyblock if

P = ∪v∈V [0,v], where V is refer to as the vertex set of P
with |V| < +∞.

Definition 5 (Monotonic optimization): Let h : Rn →R be

a monotonically increasing function, and G ⊆ [0,v] for some

v ∈ Rn
+ is a compact normal set with nonempty interior. Then,

maxx∈G h(x) is a monotonic optimization problem.

Based on the definitions above, let’s consider a sim-

ple monotonic optimization problem in the form of

maxx∈G h(x), where h : Rn
+ → R is continuous and

monotonically increasing, and G ⊆ Rn
+ is a compact normal

set. The basic idea behind the POA method to solve such a

monotonic optimization problem is to iteratively generate a

sequence of polyblocks to approximate the feasible set G, i.e.,

P1 ⊇ P2 ⊇ · · · ⊇ Pj ⊇ · · · ⊇ G, where Pj is the polyblock

used to approximate G in the j-th iteration. Denote by Vj the

vertex set of Pj . The j-th iteration of the POA method consists

of the following steps:

1) Find the best vertex: x
(v)
j = argmaxx∈Pj

h(x) =
argmaxx∈Vj

h(x);
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Fig. 10: Illustration of the POA method in a two-dimensional space, where the shadow area is the feasible set G. Here, in the first iteration,
G is approximated by P1 whose vertex set is V1 = {v1,1}, see Fig. 10(a). After the first iteration, we obtain an refined polyblock outer
approximation, i.e., P2, whose vertex set if V2 = {v2,1,v2,2}, see Fig. 10(b). Following similar steps, we obtain P3, whose vertex set is
V3 = {v3,1,v3,2,v3,3}, see Fig. 10(c). The iteration continues until some pre-defined termination criterion is satisfied.

2) Project x
(v)
j into the feasible set G: x

(f)
j = ρx

(v)
j , where

ρ = max{t : t ∈ (0, 1), tx
(v)
j ∈ G};

3) Updating the vertex set: Vj+1 = (Vj \ x(v)
j ) ∪ {x : x =

x
(v)
j −Ei(x

(v)
j −x

(f)
j ), 1 ≤ i ≤ n}, where Ei = diag(ei)

and ei is the i-th standard basis of Rn.

The iteration continues until some certain termination cri-

terion is satisfied, which we introduce later. We illustrate

the POA iteration introduced above in Fig. 10 for better

understanding. As we can see that the POA method itera-

tively generates a sequence of feasible points. Denote the

set of the feasible points obtained after the j-th iteration as

Xj , {x(f)
1 , x

(f)
2 , · · · , x(f)

j }, and among Xj , denote the best

feasible point as x∗
j = maxx∈Xj h(x). Then, at the (j+1)-th

iteration, it is reasonable to terminate the iteration process if

h(x
(v)
j+1)− h(x∗

j ) ≤ δ where δ > 0 a given tolerance. In fact,

this means that h(x∗
j ) ≤ maxx∈G h(x) ≤ maxx∈Pj+1 h(x) =

maxx∈Vj+1 h(x) = h(x
(v)
j+1) ≤ h(x∗

j ) + δ, and thus x∗
j is a

δ-optimal solution.

Note that in general, the number of points in the vertex set

Vj increases exponentially with j, leading to a high computa-

tional complexity. There are some methods to reduce the points

in Vj , for example, [31, Proposition 2.7] and [31, Section 3.3],

which is helpful to reduce the computational burden. We also

note that in this part, we have only considered a simplified

version of the canonical monotonic optimization formulation,

which is, however, enough to handle the optimization problem

in (23). For more details about the framework of monotonic

optimization and the POA method, please refer to [30], [31]

and references therein.

C. A brief introduction on the SCA method and the derivation

of (27)

Consider a general non-convex optimization problem

minx∈X g0(x) + h0(x), where X , {x : gt(x) + ht(x) ≤
0, 1 ≤ t ≤ T } is the feasible set with T being the number

of the constraints, gt(x) for 0 ≤ t ≤ T are convex functions,

and ht(x) for 0 ≤ t ≤ T are non-convex functions. The

SCA method handles such a general non-convex optimization

problem by replacing the non-convex function ht(x) with a

convex approximation near some feasible point x̂, denoted by

ĥt(x; x̂), and iteratively solving the resultant convex problem.

Specifically, in the j-th iteration, the SCA method solves

minx∈Xj g0(x) + h0(x;xj−1) where Xj , {x : gt(x) +

ht(x;xj−1) ≤ 0, 1 ≤ t ≤ T }, where xj−1 is set to be

the optimal solution obtained in the (j − 1)-th iteration.

Consequently, the SCA method generates a sequence of so-

lutions {x1,x2, · · · }. It has been shown in literature that for

∀0 ≤ t ≤ T , if ĥt(x; x̂) satisfies 1) ĥt(x; x̂) ≤ ht(x) for ∀x,

2) ĥt(x̂; x̂) = ht(x̂) for ∀x, 3)
∂ht(x)

∂x

∣

∣

∣

x=x̂
= ∂ĥt(x;x̂)

∂x

∣

∣

∣

x=x̂
,

and 4)ĥt(x; x̂) is continuous in (x; x̂), then under some mild

assumptions, the limiting point generated by the SCA method

is a KKT solution to the original non-convex problem. For

more details about the SCA method, please see, e.g. [32], [33]

and references therein.

In our problem in (26), the objective and the constraint in

(26b) are non-convex. To use the SCA method, in the (j+1)-th
iteration, we approximate the non-convex part of the objective,

i.e., −||α + β||2, by using its first order Taylor expansion.

For the non-convex constraint (26b), we approximate it using
1
2t

T
Λ

(j)
1 t + 1

2γ
T
Λ

(j)
2 γ ≤ ǫ, where the definitions of Λ

(j)
1

and Λ
(j)
2 are presented below (27). It can be verified that

the convex approximations adopted here satisfy the conditions

mentioned above, and thus enable the SCA method.
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