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Abstract

This paper considers an uplink massive machine-type communication (mMTC) scenario, where a large

number of user devices are connected to a base station (BS). A novel grant-free massive random access

(MRA) strategy is proposed, considering both the sporadic user traffic and short packet features. Specifically,

the notions of active detection time (ADT) and active detection period (ADP) are introduced so that active

user detection can be performed multiple times within one coherence time. By taking sporadic user traffic and

short packet features into consideration, we model the joint active user detection and channel estimation issue

into a dynamic compressive sensing (CS) problem with the underlying sparse signals exhibiting substantial

temporal correlation. This paper builds a probabilistic model to capture the temporal structure and establishes

a corresponding factor graph. A novel sequential approximate message passing (S-AMP) algorithm is designed

to sequentially perform inference and recover sparse signal from one ADT to the next. The Bayes active user

detector and the corresponding channel estimator are then derived. Numerical results show that the proposed S-

AMP algorithm enhances active user detection and channel estimation performances over competing algorithms

under our scenario.

I. INTRODUCTION

Recently, the development of the 5G cellular communication systems drives a number of newly

emerging use cases. This leads to the key requirements to support massive machine-type communica-

tions (mMTC), providing connectivity for millions of devices that perform machine-centric tasks such

as environment sensing, surveillance, control and event detection [1]. Different from the conventional

human-centric communications network, such as 4G LTE, aiming for a high data rate using large packet

sizes, the core mission in the mMTC scenario changes into the uplink access with a low transmission

rate. The common features of the typical mMTC application scenarios are: massive number of user

devices, sporadic user activity and small data packets [2]. Such completely different assumptions

compared with those in human-centric communication systems trigger a completely different set of

technologies.
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To be more specific, the non-orthogonal medium access and grant-free access control have been

considered to provide access for a massive number of devices in the uplink [3], [4]. Typically, the

massive number of user devices makes it impossible to assign orthogonal pilot sequences to all potential

user devices. Hence, the non-orthogonal sequences are considered in the preamble design to enable

a certain degree of temporal resource overloading. For the access control, the traditional strategies

are grant-based, where devices access the network with a prior scheduling assignment, which requires

good predictions of the uplink requests, as well as additional control signaling or message exchanges

to facilitate the granting of resources [2]. When the base station (BS) detects multiple user access

requests simultaneously, the affected user devices will be arranged to restart the access procedure

after a time expire [5]. However, for the case of mMTC, grant-based access design is difficult and

potentially inefficient to support massive connectivity to access the network. Therefore, the promising

access control pattern in mMTC applications is the grant-free random access scheme, where each active

device directly transmits its unique preamble sequence to the BS without waiting for any permission,

which results in a low control overhead.

However, non-orthogonal sequence based grant-free access often suffers from collisions, namely,

multiple users access concurrently, and thus cannot be successfully detected and decoded [2]. Therefore,

joint active user detection and channel estimation becomes a critical issue for mMTC applications.

To address such a problem, the sparse feature of mMTC can be taken into consideration. Due to the

low-rate feature of the devices in mMTC scenario, it is always the case that most devices sleep most

of the time for energy efficiency and are only activated when triggered by external events. This causes

that the traffic pattern for each user device is sporadic and partly unpredictable with only a small subset

of users being active concurrently. From a physical layer perspective, this situation leads to a sparse

recovery problem in mMTC. Compressive sensing (CS) technology is therefore promising to provide an

advanced collision resolution to serve massive user devices, where randomly generated non-orthogonal

pilot sequences are assigned to user devices [3], [6]–[8]. Especially, the approximate message passing

(AMP) algorithm [9] has attracted high attentions to efficiently cope with the challenge of joint active

user detection and channel estimation under the massive random access (MRA) scenario in [3], [5],

[10], [11]. The AMP framework can achieve a high efficiency, and the performance of AMP can be

evaluated via the so-called state evolution equation. The authors in [3], [10] have shown that the prior
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statistic knowledge of the wireless channel can be exploited by modifying the denoiser function in the

AMP framework to enhance the detection performance.

These works exhibit efficiencies of the CS technology to provide joint active user detection and

channel estimation strategies with large number of devices and sporadic user traffic, which are the two

primary standard literature assumptions of the mMTC scenario. However, the designs of the existing

algorithms did not further take the short packet feature into account. Typically, the average length of

packets potentially goes down to a few bytes in mMTC scenario [2], leading to that the transmission

duration of one user device is far shorter than that of the traditional human-centric communications

[2], [12]. And, it is often the case that the geographical locations of devices change negligibly, which

results in the insignificant fluctuation of user channel coefficients and therefore a long coherence time.

Further, as discussed, the event-driven traffic makes the access patterns unpredictable and sporadic.

These scenarios and features will give rise to the facts that the user devices can potentially exist

multiple state switches, i.e., on-off, within one coherence time duration, and the times of access are

totally random and unpredictable.

However, the existing algorithms, such as [3], [4], assume that all the user devices maintain active

or inactive throughout the whole coherent time duration, which does not fully conform the above

features of mMTC. Specifically, user devices are considered synchronized, and the joint activity

detection and channel estimation operations are implemented once within a coherence block, and

data transmissions of the active user devices continue until the start of the next coherent time block.

Further, the independent block-fading channel model is considered, which assumes that all the channels

follow independent quasi-static flat fading within a block of coherence time. Such conditions are too

restrictive for mMTC with short packets and unpredictable traffics.

In this work, we design a new scheme to achieve grant-free MRA with considering the features of

both the sporadic traffic and the short packet. To be more specific, we define active detection time

(ADT) as the time point for user activity detection and channel estimation. The interval between the

two adjacent ADTs is denoted as the active detection period (ADP), which can be divided into two

phases. In the first phase, all active user devices transmit unique non-orthogonal pilot sequences to

enable the active user detection and channel estimation. And in the second phase, data sequences

with low rates will be transmitted. Note that although we still assume the synchronous user access,
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the duration of an ADP is much shorter than the coherence time, so that the user requests could be

responded in a timely manner. In addition, the user devices are permitted to access multiple times

within one coherence time. These features fit the sporadic traffic and the short packet features well

compared with the traditional synchronous access schemes mentioned above, such as [3], [4].

Taking all the above features into consideration, in this paper, we model the joint user detection

and channel estimation issue into a dynamic CS problem. Specifically, we denote the underlying time-

varying sparse signal using access state sparse vector, which exhibits substantial temporal correlation

in two aspects. First, the active user indicator, which is the support vector of sparse signal, varies

correlatively with ADTs. Second, the channel coefficients of user devices, which is the amplitude of

the sparse signal, changes smoothly with ADTs.

In mMTC applications, the dynamic CS algorithms have been considered for multi-user detection

[13], [14], where the temporal correlation of the user support between adjacent time step is exploited.

Particularly, the authors in [14] further utilized the quality of the prior-information support set. Some

related works in the signal processing literature have considered to solve the dynamic CS problem.

Algorithms in [15], [16] are inspired by convex relaxation. On the other hand, the authors in [17],

[18] consider a Bayesian framework. Specifically, [17] blends elements of Bayesian models with more

traditional CS through convex relaxation and greedy methods, while in [18], the authors consider a

full Bayesian framework but the algorithm is heuristic and lack of theoretical measure rule.

To the best of our knowledge, our paper is the first to consider the temporal correlations of both the

channel coefficient and the active user indicator in the massive connectivity literature. In this paper, we

utilize the temporal correlations for both user support and user channel, and design a novel AMP-based

method for solving our dynamic CS problem under the Bayesian framework. The performance of our

proposed algorithm can be predicted by state evolution equation. To passing the message from one

ADT to the next, we design a distribution approximation strategy based on moment-matching, which

is optimal under a typical measure rule. Our contributions can be summarized as follow.

• We build a probabilistic model to reflect the temporal structure under the proposed MRA strategy.

We establish a specific factor graph model in our scenario and provide the corresponding message

passing schedule to implement the message passing algorithm under our graph model.

• We propose a novel sequential message passing algorithm to recursively recover the access state
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sparse vector. Specifically, we utilize the AMP framework based on the historical knowledge-aided

prior. We derive the historical knowledge-aided prior based on the moment matching equations,

which is optimal in the perspective of Kullback-Leibler (KL)-divergence. The state evolution

analysis is provided, indicating that the historical knowledge benefits the AMP framework in our

scenario.

• We derive the active user detection and channel estimation strategy, which can be performed in

each ADT after executing the proposed message passing algorithm. Specifically, the LLR test

with Bayes criterion is considered and the channel estimation can be derived directly based on

the recovered sparse vector.

Notation: Throughout this paper, scalars are denoted by lower-case letters, vectors by bold-face

lower-case letters, and matrices by bold-face upper-case letters. For a matrix A, AT and AH denote

its transpose and conjugate transpose, respectively. The Pr{·} returns the probability mass and p(·)
returns the probability density. {·}ba returns the collection of variables from index a to b. The distribution

of a circularly symmetric complex Gaussian random vector x with mean µ and covariance matrix Σ

is denoted by CN (x;µ,Σ). Finally, R(·) returns the real part of the variable.

II. SYSTEM MODEL

In this paper, we consider the uplink of a mMTC scenario with one BS located at the center of

the cellular and N devices located randomly in a coverage area. For simplicity, we assume that the

BS as well as each device is equipped with a single antenna. User device n is assigned a unique

pilot sequence of length L, denoted as sn ∈ CL , [s1n, s2n, . . . , sLn]
T . Since we are interested in the

scenario that the number of potential user devices is much larger than the length of pilot sequence,

i.e., N ≫ L, the non-orthogonal pilot sequences are assigned to user devices. We further assume that

the pilot sequence is generated according to an i.i.d. complex Gaussian distribution with zero mean

and variance 1/L such that each sequence has a unit power [3], [10].

A. Access Strategy

In this work, we define the concepts of ADT and ADP, which can be seen in Fig. 1. We consider a

synchronous access strategy, and each user device is permitted to choose whether or not to access the

network in each ADT. For the sporadic nature of user traffic, in the tth ADT, there is only a subset
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Fig. 1. Sporadic and short packet transmission pattern for mMTC.

of the users that are active, and the other users are idle. We denote a
(t)
n as the active user indicator in

tth ADT, with a
(t)
n = 0 or 1 indicating the user is idle or active, respectively. The received signal in

the tth ADT at the BS can be modeled as

y(t) =

N
∑

n=1

a(t)n snh
(t)
n +w(t), (1)

where h
(t)
n ∈ C is the channel coefficient between user n and BS, and w(t) ∈ CL is the corresponding

complex Gaussian noise vector with each element w
(t)
n ∼ CN (w

(t)
n ; 0, σ2

w). Note that the user transmit

power pn is absorbed into the channel coefficient for concise. We define x
(t)
n , a

(t)
n h

(t)
n , and the vector

x(t) , [x
(t)
1 , x

(t)
2 , . . . , x

(t)
N ]T ∈ CN forms a sparse time vector in each ADT, which is denoted as access

state sparse vector. As a consequence, the system model in (1) can be restated as

y(t) = Sx(t) +w(t). (2)

where S , [s1, . . . , sN ] ∈ CL×N . For the sake of presentation, according to (2), we define a(t) ,

[a
(t)
1 , a

(t)
2 , . . . , a

(t)
N ]T , h(t) , [h

(t)
1 , h

(t)
2 , . . . , h

(t)
N ]T . And Y , {y(t)}Tt=1 ∈ CL×T , X , {x(t)}Tt=1 ∈ CN×T ,

A , {a(t)}tt=1 ∈ CN×T , H , {y(t)}Tt=1 ∈ CN×T are denoted as the collections of y(t), x(t), a(t), h(t)

in T consecutive ADTs, respectively.

Note that for the typical scenario in mMTC, where the mobility of the user devices is negligible,

the user channel coherence time could be extremely long, so that the user devices may potentially

exist multiple state switches, i.e., on-off, with unpredictable times of accesses within one coherence
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time duration. Although we still assume the synchronous user access strategy, the duration of an

ADP is designed much shorter than the length of a coherence block, so that the user requests could be

responded in a timely manner. Moveover, the user devices are permitted to access multiple times within

one coherence block. Such a design fits the sporadic traffic and short packet features well compared

with the access schemes in [3], [4], where they consider that there is only one ADT in each period of

coherence time. Such a design is also compatible with the case that different user devices belong to

different terminal patterns. For example, when the packet length and the transmission duration for a

user device are relatively short, the user device may access at one ADT and immediately disconnect

from the network at the next. On the contrary, the user with a long transmission duration typically

covers several consecutive ADPs. As shown in Fig. 1, there could exist i) multiple consecutive ADTs

within one user device transmission, and ii) multiple consecutive ADTs within one coherence time.

Obviously, the access state sparse vector x(t) often exhibits a high degree of correlation from one ADT

to the next, which reflects in two aspects. First, the active user indicator a(t), which can be regarded as

the support vector of the corresponding sparse vector x(t), is highly correlated in the adjacent ADTs.

Second, the channel coefficient h(t), which is the amplitude of x(t), changes smoothly with ADTs.

B. Probabilistic Model

To characterize the time-variation of the active user indicator a(t), and the smooth evolution of

the channel vector h(t), we consider a probabilistic model as follow. We model the change of the

nth element of the support vector a
(t)
n across time as a Markov chain characterized by a couple of

transition probabilities, i.e., p
(10)
n , Pr{a(t)n = 1|a(t−1)

n = 0} and p
(01)
n , Pr{a(t)n = 0|a(t−1)

n = 1}, and

N users are supposed to form independent Markov chains. We further assume that each chain is under

a steady state with Pr{a(t)n = 1} = λn that indicates the activation probability of each user n. Under

this condition, the Markov chain of each user n can be specified by parameters p
(01)
n and λn, with

the transition probability p
(10)
n formulated as p

(10)
n = λnp

(01)
n /(1 − λn). Especially, we assume that in

each ADT the active user ratio is λ and the ratio of users from active to idle is p01, and the transition

and activation probabilities are independent with n, i.e., p
(10)
n = p10, p

(01)
n = p01, λn = λ, ∀n. Note that

such an assumption captures the transition ratio and active user ratio in each ADT, and has shown
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its efficiency in the similar application [18]1. The probabilistic distribution that specifies the Markov

chains can be given as

p(a(t)n |a(t−1)
n ) = (1− p10)

(1−a
(t)
n )(1−a

(t−1)
n )p

a
(t)
n (1−a

(t−1)
n )

10 (1− p01)
a
(t)
n a

(t−1)
n p

(1−a
(t)
n )a

(t−1)
n

01 , (3)

where we define p(a
(1)
n |a(0)n ) , p(a

(1)
n ) = (1− λ)1−a

(1)
n λa

(1)
n .

On the other hand, the smooth evolutions of the channel coefficients for all the users can be

characterized by a set of independent Gaussian Markov state-space models. Since for each user, the

probabilistic distribution of the channel coefficient depends highly on the propagation environment

and the geographical location changes negligibly in several channel coherence blocks, the statistical

characteristics of channel coefficient stay unchanged. Hence, we assume a steady-state Gaussian

Markov processes for each user, which can be characterized by a first order autoregressive (AR-1)

model [19], [20] as

h(t)n = ηnh
(t−1)
n + u(t)n , (4)

where ηn = J0(2πDnTb) is the AR coefficient that controls the temporal correlation, J0(·) is the

zeroth order Bessel function of the first kind, Dn is the Doppler frequency of user n, and Tb is the

time duration of an ADP. We further suppose that the Gaussian-Markov process for user n is under

steady state with zero mean and variance ρn, and the evolution noise u
(t)
n is therefore distributed

as u
(t)
n ∼ CN (u

(t)
n ; 0, (1 − η2n)ρn). Thus, the Gaussian-Markov can be specified by the following

probabilistic distribution

p(h(t)n |h(t−1)
n ) = CN (h(t)n ; ηnh

(t−1)
n , (1− η2n)ρn), (5)

where we define p(h
(1)
n |h(0)n ) , p(h

(1)
n ) = CN (h

(1)
n ; 0, ρn). Further, according to the definition of sparse

vector x(t), we can infer that the probabilistic distribution of x
(t)
n conditional on h

(t)
n and a

(t)
n is

p(x(t)n |h(t)n , a
(t)
n ) = δ(x(t)n − h(t)n a

(t)
n ), (6)

where δ(·) is the Dirac delta function. We assume that channel coefficient h
(t)
n evolves independently

from the support vector a
(t)
n . Marginalizing out h

(t)
n and a

(t)
n via (3) and (5), we can obtain the marginal

distribution over x
(t)
n as [18]

p(x(t)n ) = (1− λ)δ(x(t)n ) + λCN (x(t)n ; 0, ρn). (7)

1Although it ignores some specific information for each user, e.g., the average transmission duration of each user device may be

different, it has shown its efficiency in [18]
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The form of distribution (7) is the Gaussian-Bernoulli distribution and also known as the “spike-and-

slab” prior distribution, which is an efficient sparsity-promoting prior with point-mass on x
(t)
n = 0

[18], [21]. The parameter λ controls the fraction of x
(t)
n that is expected to be zero.

Note that the parameters for the probabilistic model can be specified by some specific information of

user devices. The active ratio λ, the transition probability p10, the channel correlation coefficient ηn, the

channel variance ρn can be specified by the user access frequency [3], user transmission duration [18],

user speed [20], and the distance between user device and the BS, respectively, which are considered

known for BS in this paper.

The goal for the BS is to first detect the user activities and to further estimate the corresponding

channel coefficient for each active user. This can be done by recovering the access state sparse vector

x(t) in each ADT. Since we have introduced the temporal correlation between the user indicator (3)

and the temporal correlation between channel coefficient (5), we consider recursively recover the

sparse vector x(t). This forms a dynamic CS problem, which is different from the sparse recovery

algorithms in traditional MRA models [3], [10], where the recovery is performed independently with

the invariant prior distribution (7). The proposed algorithm to recursively recover the sparse signal

is called sequential approximate message passing (S-AMP). The algorithm mainly focuses on the

following issues: how to recover the sparse signal in current ADT with historical knowledge and how

to deliver the knowledge from the current ADT to the next.

III. S-AMP: GRAPH REPRESENTATION AND SCHEDULE

Our inference is based on the message passing framework under a specific factor graph of our

system model. In this section, we specify the factor graph and design the message passing schedule

in our model.

A. Graph Representation

The factor graph is derived based on the decompositions of a joint distribution. Exploiting the

inherent statistical structure of our model (1), the corresponding joint distribution of sparse signals,

active indicators, channel coefficients can be decomposed as

p(X,A,H|Y ) = Z−1
T
∏

t=1

L
∏

l=1

p(y
(t)
l |x(t))

N
∏

n=1

p(x(t)n |a(t)n , h
(t)
n )p(a(t)n |a(t−1)

n )p(h(t)n |h(t−1)
n ), (8)
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Fig. 2. Factor graph representation of the proposed model.

where Z is a normalized constant, p(y
(t)
l |x(t)) = CN (y

(t)
l ; sTl x

(t), σ2
w) with y

(t)
l denoted the lth element

of y(t) and sTl denoted the lth row of the pilot sequence matrix S. We then give notations of the factor

nodes within (8) as g
(t)
l (x(t)) , p(y

(t)
l |x(t)), f

(t)
n (x

(t)
n , a

(t)
n , h

(t)
n ) , p(x

(t)
n |a(t)n , h

(t)
n ), q

(t)
n (a

(t)
n , a

(t−1)
n ) ,

p(a
(t)
n |a(t−1)

n ) and d
(t)
n (h

(t)
n , h

(t−1)
n ) , p(h

(t)
n |h(t−1)

n ). Note that the variable node for each observed

received signal y
(t)
l is absorbed into the factor node g

(t)
l (x(t)). Then, the associated factor graph is

shown in Fig. 2

B. Scheduling the Message Passing

From Fig. 2, we observe that all of the variables related in the tth ADT can be arranged on a plane,

which is referred as a “frame”. The connections between the neighboring frames are established by the

temporal correlated variables a
(t)
n , h

(t)
n and their corresponding factor nodes q

(t)
n , d

(t)
n for all n. We can

observe in Fig. 2 that the temporal correlation between variable nodes a
(t)
n and h

(t)
n in each tth ADT

brings additional loops compared with the generic AMP algprithms in the traditional MRA models

[3], [10]. Therefore, the specific implementing schedule for the message passing within our proposed

graph model has to be designed.

The designed message passing schedule from the tth frame to the (t + 1)th frame can be divided

into two distinct parts. In the first part, the algorithm focuses mainly on passing the messages within

the tth frame with given input messages from the (t − 1)th frame. In the second part, the algorithm

focuses mainly on passing the messages from the tth frame into the next. Specifically, for the first
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part of schedule, the input messages that provide current beliefs of temporal correlated variables a
(t)
n

and h
(t)
n are delivered to x

(t)
n . Then, the node x

(t)
n updates the message with given received signals

available in the tth frame, i.e., {y(t)}tt=1. Finally, the updated messages are output from the node x
(t)
n .

For the second part, the node x
(t)
n propagates the messages providing the updated beliefs to a

(t)
n and

h
(t)
n . Then, such messages are further propagated to the next (t + 1)th frame as the input messages

that carry the beliefs of a
(t+1)
n and h

(t+1)
n .

We note that in the first part of the schedule, the algorithm includes messages exchange between

nodes g
(t)
l and x

(t)
n . The matrix S couples a sequence of nodes {x(t)n }Nn=1 into each g

(t)
l , leading to

several loops between nodes g
(t)
l and x

(t)
n . Hence, the corresponding messages passing algorithm in

the first part of the schedule is required to be executed iteratively. On the contrary, we observe that

in the second part of the schedule, the messages are propagated only in one direction. Namely, once

the messages are passed from the current frame to the next, they will not feed back to re-update the

belief in the current frame. As a consequence, we note that the convergence condition of the proposed

algorithm is same as the AMP algorithms [9]. For large but finite-sized i.i.d. Gaussian matrix S, the

AMP performance is shown to be close to Bayes-optimal [22]. Moreover, the AMP framework has

been shown to perform extremely well in a number of applications in the mMTC literature, such as

[3], [10]. In the following sections, we consider the design of the concrete S-AMP algorithm based

on such a schedule.

IV. S-AMP: AMP BASED ON HISTORICAL KNOWLEDGE-AIDED PRIOR

In this section, we focus on the message passing algorithm under the first part of the schedule, where

it absorbs the messages from the (t−1)th frame and updates the messages with the available received

signal in the tth frame. We assume that the messages from (t− 1)th ADT to the tth are known, and

we will show that the proposed algorithm in this part based on such messages is equivalent to the

generic AMP algorithm based on the historical knowledge-aided prior.

A. AMP Based on Historical Knowledge-Aided Prior

The first part of the schedule can be further partitioned into three distinct steps, which are denoted

as “into”, “within”, and “out” step, respectively. Specifically, in each ADT, the “into” step involves

the passing messages that provide current beliefs of temporal correlated variables a
(t)
n and h

(t)
n and
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forms the historical knowledge-aided prior of x
(t)
n for each user device n. The “within” step utilizes

the prior, together with the observations in the tth ADT to generate the posterior estimation of sparse

signal x(t), aiming to achieve minimum mean square error (MMSE). The “out” step feeds back the

updated messages to every node x
(t)
n , which will be utilized in the second part of the schedule.

1) “into” step: Since we concern a filtering-like framework, no information will be conveyed from

the unexperienced frame (t+1) in current tth frame. Hence, it is equivalent to disconnecting the links

between factor nodes q
(t+1)
n , d

(t+1)
n and variable nodes a

(t)
n , h

(t)
n in this step. Therefore, the message

ν
f
(t)
n →x

(t)
n

can be derived as

ν
f
(t)
n →x

(t)
n

(x(t)n ) ∝
∑

a
(t)
n ={0,1}

∫

h
(t)
n

f (t)
n (x(t)n , a

(t)
n , h

(t)
n ) · ν

a
(t)
n →f

(t)
n

(a(t)n ) · ν
h
(t)
n →f

(t)
n

(h(t)n ), (9)

where ν
a
(t)
n →f

(t)
n

(a
(t)
n ) = ν

q
(t)
n →a

(t)
n

(a
(t)
n ) and ν

h
(t)
n →f

(t)
n

(h
(t)
n ) = ν

d
(t)
n →h

(t)
n

(h
(t)
n ) because there is only one

edge between both a
(t)
n and q

(t)
n as well as h

(t)
n and d

(t)
n . The messages ν

q
(t)
n →a

(t)
n

(a
(t)
n ) and ν

d
(t)
n →h

(t)
n

(h
(t)
n )

provide current beliefs of variables a
(t)
n and h

(t)
n , which absorb the messages from (t − 1)th frame,

carrying historical knowledge. Since the initial forms of messages ν
q
(1)
n →a

(1)
n

(a
(1)
n ) and ν

d
(1)
n →h

(1)
n

(h
(1)
n )

are Bernoulli and Gaussian distribution, respectively, we assume that

ν
q
(t)
n →a

(t)
n

(a(t)n = 1) , π̂n,t, ν
d
(t)
n →h

(t)
n

(h(t)n ) , CN (h(t)n ; ξ̂n,t, ψ̂n,t), (10)

where π̂n,t, ξ̂n,t and ψ̂n,t are the parameters of the prior and assumed known in this part. Particularly,

in the first frame, we have π̂n,1 = λ and ξ̂n,1 = 0 and ψ̂n,1 = ρn for each n. As a consequence, the

prior of the node x
(t)
n in (9) can be formulated as

ν
f
(t)
n →x

(t)
n

(x(t)n ) = (1− π̂n,t)δ(x
(t)
n ) + π̂n,tCN (x(t)n ; ξ̂n,t, ψ̂n,t). (11)

Comparing this historical knowledge-aided prior (11) of x
(t)
n with (7), we find that both of them are

‘spike-and-slab” prior distributions, which are sparsity-promoting. The difference is that the updated

parameters π̂n,t, ξ̂n,t and ψ̂n,t in (11) contain historical knowledge about the received signals {y(t)}t−1
t=1.

2) “within” step: : In this step, our task is to utilize the historical knowledge-aided prior (11),

together with the observations y(t) in current tth ADT, to generate the posterior estimation of sparse

signal x(t), aiming to achieve MMSE. The main difficulty for this problem is that the matrix S mixes

the coefficients of x(t) into y(t). Fortunately, in large system limit, i.e. L,N → ∞ with L/N fixed,
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such a vector-valued estimation problem can be efficiently solved via the generic AMP framework

[23], and an estimate of x(t) based on y(t) that minimizes the mean-squared error (MSE) could be

obtained. For concise, we drop the superscript of index t. The generic AMP initializes µ0
n = 0, z0l = yl,

and c0 ≫ σ2
w for all n and l, and then iterates the following equations for ith iteration,

φi
n =

∑L

l=1
S∗
lnz

i
l + µi

n, (12)

µi+1
n = Fn(φ

i
n, c

i), vi+1
n = Gn(φ

i
n, c

i), (13)

zi+1
l = yl −

∑N

n=1
Slnµ

i+1
n +

zil
L

∑N

n=1
F ′
n(φ

i
n, c

i), (14)

ci+1 = σ2
w + 1/L

∑N

n=1
vi+1
n , (15)

where F ′
n(φ

i
n, c

i) , ∂Fn(φi
n,c

i)
∂φi

n

is the first derivative of function Fn(φ
i
n, c

i) with respect to φi
n. Using

(11), (19) and together with the definitions, the specific expressions of above functions are given as

Fn(φ
i
n, c

i) = (1 + γn(φ
i
n, c

i))−1

(

ψ̂nφ
i
n + ξ̂nc

i

ψ̂n + ci

)

, F ′
n(φ

i
n, c

i) =
1

ci
Gn(φ

i
n, c

i), (16)

Gn(φ
i
n, c

i) = (1 + γn(φ
i
n, c

i))−1

(

ψ̂nc
i

ψ̂n + ci

)

+ γn(φ
i
n, c

i)|Fn(φ
i
n, c

i)|2, (17)

where

γn(φ
i
n, c

i) ,

(

1− π̂n
π̂n

)

(

ψ̂n + ci

ci

)

exp

(

−
[

ψ̂n|φi
n|2 + 2R(ξ̂∗nc

iφi
n)− ci|ξ̂n|2

ci(ψ̂n + ci)

])

. (18)

After the convergence of the generic AMP algorithm (12)-(15), the posterior estimation of the sparse

vector x is given by x̂ = µI , where we denote µI , [µI
1, µ

I
2, . . . , µ

I
N ]

T ∈ CN and the index I indicates

the maximal number of AMP iteration times.

3) “out” step: So far, we have considered the messages exchange between nodes {xn}Nn=1 and

{gl}Ll=1 with the historical knowledge-aided prior (11). Next, we derive the output message from xn,

i.e., the message passing from xn to fn, which will be used in the second part of our schedule. In the

large system limit, it is reasonable to regard the message νigl→xn
(xn) as Gaussian because of the Berry-

Esseen central limit theorem [23]. This Gaussian quantity in each ith iteration can be parameterized by

the mean µi
nl and variance vinl of the message νixn→gl

(xn). According to [24], the message νigl→xn
(xn)

takes the form as νigl→xn
(xn) = CN (Slnxn; z

i
ln, c

i
ln),, where we define ziln , yl −

∑

q 6=n Slqµ
i
ql and

ciln , σ2
w +

∑

q 6=n |Slq|2viql. By applying the fact

∏

q

CN (x;µq, vq) ∝ CN (x;

∑

q µq/vq
∑

q v
−1
q

,
1

∑

q v
−1
q

), (19)
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and together with the sum product algorithm, we can obtain

νxn→fn(xn) =
∏

l
νigl→xn

(xn) = CN (xn;
∑

l
S∗
lnz

i
ln, c

i
n). (20)

For further derivation, we utilize the general assumptions of the generic AMP framework that ziln =

zil + δziln +O(1/N) and µi
nl = µi

n + δµi
nl +O(1/N), then the mean ziln can be rewritten as

ziln = yl −
∑

n
Slnµ

i
nl + Slnµ

i
nl +O(1/N) = zil + Slnµ

i
n +O(1/N). (21)

We note that the term δµi
nl is absorbed into O(1/N), since Sln is also a O(1/N) term. Then, substituting

(21) into (20), after convergence, the message νxn→fn(xn) yields

νxn→fn(xn) = CN (xn;
∑

l
S∗
lnz

I
l + µI

n, c
I) = CN (xn;φ

I
n, c

I), (22)

where we have utilized the approximation cin ≈ ci [23]. By utilizing sum-product algorithm [24], the

posterior distribution of variable xn can be obtained by multiplying the messages from all directions

to node xn, i.e., νxn→fn(xn) and νfn→xn
(xn). Since the message νfn→xn

(xn) is considered as the local

prior for xn, we imply that νxn→fn(xn) can be regarded as the approximate likelihood function of xn.

B. State Evolution Analysis

One remarkable property of the AMP framework is that the performance of sparse vector recovery

can be measured by the state evolution function when the entries of the sensing matrix generated from

i.i.d. Gaussian distribution [25]. In the case that the Bernoulli-Gaussian prior with the form (11) is the

exact prior distribution and the MMSE denoiser (16) is utilized, the equation (15) is exactly the state

evolution function in the large system limit . For further analysis, we consider a more general form of

the state evolution that applies to any arbitrary denoiser fθn(·, θn) with θn denoted as the corresponding

parameter set for each user device n. The general state evolution function of AMP framework is given

by

ci+1 = σ2
w +

N

L
E[|fΘ(X +

√
ciV,Θ)−X|2], (23)

where the X , V , and Θ are random variables with X following pX|Θ, V ∼ CN (0, 1), and the probability

distribution of Θ denoted as pΘ. The expectation are taken over X , V and Θ. The state evolution

equation (23) predicts the state of AMP accurately in the large system limit with the condition that

the empirical distribution of {θn}Nn=1 and {xn}Nn=1 converge to the probability measure pΘ,X .
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Further, we denote a random variable Φ, and we can observe from (22) that after the convergence

of AMP, the messages passing from each node xn to fn are in the form of N independent Gaussian

distributions. Thus, the sequence of signals {φn}Nn=1 can be regarded as N independent samples of the

random variable Φ = X +
√
cIV , which can be interpreted as a Gaussian noise-corrupted version of

X with noise level cI . Therefore, in tth ADT, the set of random variable Θt in (23) can be defined as

Θ(t) , {Γ, {Φ(t)}t−1
t=1} with a sequence of realizations {θ(t)n }Nn=1, where θ

(t)
n , {ηn, ρn, {φ(t)

n }t−1
t=1}, and

we assume that the empirical distribution of {ηn}Nn=1 and {ρn}Nn=1 converge to the probability measure

probability measure pΓ.

As a consequence, in the tth ADT, the denoiser fθn(·, θn) for each user device n is designed to recover

the random variable X(t) from its noisy version Φ(t) = X(t) +
√
ctV , with X(t) ∼ pX(t)|Θ(t)(x

(t)
n |θ(t)n ),

and the term E[|fΘ(t)(X(t) +
√
ctV,Θ) − X|2] based on the state evolution equation (23) can be

interpreted as the MSE of the denoiser in each iteration with given ct. Note that for concise, we have

omitted the superscript i that will serve to keep track of the multiple iterations. Obviously, the optimal

denoiser that achieves MMSE for each user is given by the expectation of the corresponding posterior

distribution p(x
(t)
n |φ(t)

n , θ
(t)
n ; ct). In this condition, the MSE with respect to ct can be formulated as

M(ct) = E[Var(X(t)|Φ(t),Θ(t))], (24)

where the Var(X(t)|Φ(t),Θ(t)) is the conditional variance of the posterior distribution pX(t)|Φ(t),Θ(t)

with given Φ(t) and Θ(t) and the expectation is taken over both Φ(t) and Θ(t). Note that (24) is the

achievable MSE in the tth ADT with given ct, when the BS knows exactly the historical information

{φ(t)
n }t−1

t=1 and the model parameters ηn, ρn. To characterize the feature of (24), we utilize the theorem

of variance decomposition, and reformulate (24) as

M(ct) = E[Var(X(t)|Φ(t),Γ)]− E[Var(E[X(t)|Φ(t),Γ, {Φ(t)}t−1
t=1]|Φ(t),Γ)], (25)

where the term E[Var(X(t)|Φ(t),Γ)] is exactly the achievable MSE without the historical knowledge

[10]. To examine the MSE relationship in (25), we expand the second term as

E[Var(E[X(t)|Φ(t),Γ, {Φ(t)}t−1
t=1]|Φ(t),Γ)]

= EΦ(t),Γ[E{Φ(t)}t−1
t=1

[|E[X(t)|Φ(t),Γ, {Φ(t)}t−1
t=1]|2 − |E{Φ(t)}t−1

t=1
[E[X(t)|Φ(t),Γ, {Φ(t)}t−1

t=1]]|2]].
(26)

Note that we have E[Var(E[X(t)|Φ(t),Γ, {Φ(t)}t−1
t=1]|Φ(t),Γ)] ≥ 0, with equality if,

pX(t)|Γ,{Φ(t)}t−1
t=1

(·) = pX(t)|Γ(·).
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Hence, the achievable MSE of the denoiser can be reduced by E[Var(E[X(t)|Φ(t),Γ, {Φ(t)}t−1
t=1]|Φ(t),Γ)]

with given historical knowledge. From the factor graph perspective, this condition holds only in the

case that the links between node h
(t−1)
n , h

(t)
n and node a

(t−1)
n , a

(t)
n are vanished. In other words, the

achievable MSE with historical knowledge degrades to that without the historical knowledge under

same noise level only when there is no temporal correlations between adjacent ADTa. Note that the

MSE is a monotone increasing function with respect to the noise level, so that with the inherent

temporal correlations, the historical knowledge benefits the detection performance of AMP in each

iteration with the same initialization.

To achieve this optimal MSE, one requires to derive the exact posterior distribution or equivalently to

track the exact prior distribution pX(t)|Γ,{Φ(t)}t−1
t=1

(·) in every ADT. However, as we shall see in the next

section, such a condition is not impractical, and we turn to find the optimal tractable approximation

under some constrains to take advantage of the historical knowledge.

V. S-AMP: DERIVATION OF HISTORICAL KNOWLEDGE-AIDED PRIOR

In this section, we focus on the second part of our schedule, which aims to propagate the beliefs from

one ADT to the next, deriving the historical knowledge-aided prior of sparse vector in every ADT. We

have claimed that the achievable MSE in each ADT is benefited from the historical knowledge, and the

optimal performance is achieved by cycling (12)-(15) until convergence when the prior distribution of

sparse signal is in the form of (11). However, in this section, we will observe that the prior distribution

will not maintain a consistent form with ADTs. Worse, the number of mixture components will increase

exponentially, making it impractical to accurately track the prior distribution of sparse signal. Thus, in

this section, we propose an approximation, restricting the forms of messages in each ADT to make the

prior distribution tractable. Then, we find the corresponding approximate historical knowledge-aided

prior, which is optimal in the perspective of KL divergence.

We have claimed in section IV-A2 that the generic AMP algorithm in the “within” step of the

first part of our schedule decouples the vector-valued estimation problem into a sequence of scalar

problems, with the MMSE achieved by tracking the prior distribution pX(t)|Γ,{Φ(t)}t−1
t=1

(·) in each ADT.

This is equivalent to independently tracking the prior distributions p(x(t)|ηn, ρn, {φ(t)}t−1
t=1) for N

switching state space models (SSSMs) in each ADT with given historical evidence {φ(t)
n }t−1

t=1 and
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model parameters ηn, ρn. Specifically, for each SSSM model related to a particular user device, the

evidence φ
(t)
n of Gaussian Markov state-space model (5) is controlled by a Markov chain (3) and the

probability measure p(φ
(t)
n |h(t)n , a

(t)
n ) = CN (φ

(t)
n |h(t)n a

(t)
n , ct), so that the filter density p(h

(t)
n |{φ(t)

n }tt=1) in

the tth ADT is specified as p(h
(t)
n |{φ(t)

n }tt=1) =
∑

a
(t)
n ={0,1} p(a

(t)
n |{φ(t)

n }tt=1)p(h
(t)
n |a(t)n , {φ(t)

n }tt=1), where

p(h(t)n |a(t)n , {φ(t)
n }tt=1) ∝ p(φ(t)

n |h(t)n , a
(t)
n )

∫

h
(t−1)
n

p(h(t)n |h(t−1)
n , a(t)n )p(h(t−1)

n |{φ(t)
n }t−1

t=1, a
(t)
n ), (27)

p(h(t−1)
n |{φ(t)

n }t−1
t=1, a

(t)
n = k) =

∑

j={0,1}
ωjkp(h

(t−1)
n |a(t−1)

n = j, {φ(t)
n }t−1

t=1), k = {0, 1}, (28)

with the weights given as ωjk ∝ pjkp(a
(t−1)
n = j|{φ(t)

n }t−1
t=1). Note that we have omitted the conditions

ηn and ρn in the expressions of probability measure, since the parameters ηn and ρn remain fixed for

each user. It is obvious that the component number of the filter density p(h
(t)
n |{φ(t)

n }tt=1) will grow

exponentially, leading to an intractable form of sparse signal prior distribution after several ADTs.

A. Approximation Strategy

One approach to solving this problem is to restrict the complexity of the prior distribution rep-

resentation in every ADT, and find the optimal approximate prior under restrictions, allowing AMP

algorithm to operate on it effectively. Specifically, to maintain the sparsity-promoting feature of prior,

we choose to restrict the approximate prior in the form of Bernoulli-Gaussian (11), with the historical

knowledge of {φ(t)
n }tt=1 contained in π̂n,t, ξ̂n,t and ψ̂n,t in (11). We notice that the newly derived prior

distribution based on the previous approximate prior will typically not in the restricted family, leading

that the approximation should be performed in every ADT. One may concern that the errors will

be out of control over extended periods of time by accumulation due to the repeated approximations.

Fortunately, authors in [26] have shown that this problem does not occur because the mere stochasticity

of the process serves to attenuate the effects of errors over time, fast enough to prevent the accumulated

error from growing unboundedly.

To measure similarity of a distribution and an approximation to it, we introduce the KL-divergence,

which is defined as

D[p(x)||q(x)] = Ep

[

ln
p(x)

q(x)

]

=

∫

x

p(x) ln
p(x)

q(x)
. (29)

The integral will be replaced by the summation when the discrete random variable is considered. The

KL-divergence, or Relative Entropy in the information theory literature [27], is a very natural measure
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to quantify the information loss or inefficiency incurred by using distribution q(x) when the true

distribution is p(x) [28]. One important feature of the KL-divergence is that it satisfies D[p(x)||q(x)] ≥
0, with equality if, and only if, p(x) = q(x), and minimizing (29) can be considered as minimizing

the loss of information after approximation.

Hence, one intuition is to minimize the KL-divergence between the newly derived prior distribution

and the one restricted in the Gaussian-Bernoulli family in each ADT. However, dealing with the

distribution with Gaussian-Bernoulli form in the KL-divergence perspective is not straightforward.

The following proposition provide a reasonable alternative to handle this problem.

Proposition 1: We define q(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1) as the approximate posterior distribution of user de-

vice n in tth ADT, and p̃(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1) is the derived posterior distribution based on q(h
(t−1)
n , a

(t−1)
n |{φ(t)

n }t−1
t=1).

Then, the following inequality holds.

D[p̃(h(t)n , a
(t)
n |{φ(t)

n }tt=1)||q(h(t)n , a
(t)
n |{φ(t)

n }tt=1)] ≥ D[p̃(h(t+1)
n , a(t+1)

n |{φ(t)
n }tt=1)||q(h(t+1)

n , a(t+1)
n |{φ(t)

n }tt=1)]

≥ D[p̃(x(t+1)
n |{φ(t)

n }tt=1)||q(x(t+1)
n |{φ(t)

n }tt=1)],
(30)

where we have

q(h(t+1)
n , a(t+1)

n |{φ(t)
n }tt=1) ,

∫

h
(t)
n

∑

a
(t)
n

q(h(t)n , a
(t)
n |{φ(t)

n }tt=1)p(a
(t+1)
n |a(t)n )p(h(t+1)

n |h(t)n ), (31)

q(x(t+1)
n |{φ(t)

n }tt=1) ,
∫

h
(t+1)
n

∑

a
(t+1)
n

q(h(t+1)
n , a(t+1)

n |{φ(t)
n }tt=1)δ(x

(t+1)
n − h(t+1)

n a(t+1)
n ), (32)

p̃(h(t+1)
n , a(t+1)

n |{φ(t)
n }tt=1) ,

∫

h
(t)
n

∑

a
(t)
n

p̃(h(t)n , a
(t)
n |{φ(t)

n }tt=1)p(a
(t+1)
n |a(t)n )p(h(t+1)

n |h(t)n ), (33)

p̃(x(t+1)
n |{φ(t)

n }tt=1) ,
∫

h
(t+1)
n

∑

a
(t+1)
n

p̃(h(t+1)
n , a(t+1)

n |{φ(t)
n }tt=1)δ(x

(t+1)
n − h(t+1)

n a(t+1)
n ). (34)

Proof 1: Please see the Appendix A.

We can observe that the KL-divergence between the posterior distribution and its approximation

never increases by transition through the stochastic processes. This provides us an alternative to dealing

with the posterior distribution of h
(t)
n and a

(t)
n in each ADT instead of the prior of x

(t)
n . Thus, in

one ADT, after the generic AMP framework, we derive the corresponding posterior distribution of

p̃(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1) and find its optimal approximation from a restricted family in the perspective of

KL-divergence.
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In this paper, we choose to represent the approximation posterior q(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1) in tth ADT

using a parametric family that represents as a product of Gaussian and Bernoulli distributions. We

will observe that such a representation makes the approximate prior q(x
(t+1)
n |{φ(t)

n }tt=1) of x
(t+1)
n in

(t + 1)th ADT take the form of Gaussian-Bernoulli (11). Specifically, the parametric family can be

expressed as

q(h(t)n , a
(t)
n |{φ(t)

n }tt=1) = q(h(t)n |{φ(t)
n }tt=1)q(a

(t)
n |{φ(t)

n }tt=1), (35)

where we have q(h
(t)
n |{φ(t)

n }tt=1) = CN (h
(t)
n ; ξ̄n,t, ψ̄n,t), and q(a

(t)
n |{φ(t)

n }tt=1) = π̄a
(t)
n

n,t (1 − π̄n,t)
1−a

(t)
n ,

respectively. Note that the parametric family (35) is an exponential family, so that minimizing the KL-

divergence D[p̃(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1)||q(h(t)n , a
(t)
n |{φ(t)

n }tt=1)] is equivalent to adjusting parameters ξ̄n,t, ψ̄n,t

and π̄n,t such that the moments E[h
(t)
n ], E[|h(t)n |2] and E[a

(t)
n ] match for both distributions q(h

(t)
n , a

(t)
n |{φ(t)

n }tt=1)

and p̃(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1) [29]. The moment matching equations can be given as

π̄n,t = p̃(a(t)n = 1|{φ(t)
n }tt=1), (36)

ξ̄n,t =

∫

h
(t)
n

h(t)n p̃(h
(t)
n |{φ(t)

n }tt=1), (37)

ψ̄n,t =

∫

h
(t)
n

|h(t)n |2p̃(h(t)n |{φ(t)
n }tt=1)− |ξ̄n,t|2, (38)

where p̃(h
(t)
n |{φ(t)

n }tt=1), and p̃(a
(t)
n = 1|{φ(t)

n }tt=1) are the margins of p̃(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1).

B. Derivation of Historical Knowledge-Aided Prior

We can observe from (31) and (32) that deriving the historical knowledge-aided prior q(x
(t+1)
n |{φ(t)

n }tt=1)

in (t+1) is equivalent to deriving the approximate posterior distribution q(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1), requiring

to specify the corresponding margins in (36)-(38). Recursively, we then derive such margins with the

given approximation q(h
(t−1)
n , a

(t−1)
n |{φ(t)

n }t−1
t=1) in the previous ADT.

Recalling the factor graph representation of our model in Fig. 2, approximating the posterior

distribution p̃(h
(t−1)
n , a

(t−1)
n |{φ(t)

n }tt=1) by a family q(h
(t−1)
n , a

(t−1)
n |{φ(t)

n }t−1
t=1) represented as a product

factors is equivalent to disconnecting the link between node a
(t−1)
n , h

(t−1)
n . And, restricting the forms

of distributions q(h
(t−1)
n |{φ(t)

n }t−1
t=1) and q(a

(t−1)
n |{φ(t)

n }t−1
t=1) is equivalent to restricting forms of the mes-
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sages ν
a
(t−1)
n →q

(t)
n

(a
(t−1)
n ) and ν

h
(t−1)
n →d

(t)
n

(h
(t−1)
n ) that pass from (t−1)th ADT to the next. Specifically,

we have

ν
a
(t−1)
n →q

(t)
n

(a(t−1)
n ) = q(a(t−1)

n |{φ(t)
n }t−1

t=1) = π̄a
(t−1)
n

n,t−1 (1− π̄n,t−1)
1−a

(t−1)
n , (39)

ν
h
(t−1)
n →d

(t)
n

(h(t−1)
n ) = q(h(t−1)

n |{φ(t)
n }t−1

t=1) = CN (h(t−1)
n ; ξ̄n,t−1, ψ̄n,t−1). (40)

According to the structure of Fig. 2, the following two messages can be then specified via

ν
q
(t)
n →a

(t)
n

(a(t)n ) =
∑

a
(t−1)
n

q(t)n (a(t)n , a
(t−1)
n )ν

a
(t−1)
n →q

(t)
n

(a(t−1)
n ), (41)

ν
d
(t)
n →h

(t)
n

(h(t)n ) =

∫

h
(t−1)
n

d(t)n (h(t)n , h
(t−1)
n )ν

h
(t−1)
n →d

(t)
n

(h(t−1)
n ). (42)

We denote ν
q
(t)
n →a

(t)
n

(a
(t)
n = 1) , π̂n,t and ν

d
(t)
n →h

(t)
n

(h
(t)
n ) , CN (h

(t)
n ; ξ̂n,t, ψ̂n,t). Plugging (3), (39) into

(41), and substituting (5), (40) into (42), we obtain

π̂n,t = p10(1− π̄n,t−1) + (1− p01)π̄n,t−1,

ξ̂n,t = ηnξ̄n,t−1, ψ̂n,t = η2nψ̄n,t−1 + (1− η2n)ρn.
(43)

We emphasize again that we focus on a filtering-like problem, where only the knowledge of the

previous ADTS can be utilized in current ADT, and we can omit the links between nodes a
(t)
n , a

(t+1)
n

as well as h
(t)
n , h

(t+1)
n for each n when performing inference in the tth ADT. Then the corresponding

margins in (36)-(38) can be specified via

p̃(a(t)n |{φ(t)
n }tt=1) ∝ ν

f
(t)
n →a

(t)
n

(a(t)n )ν
q
(t)
n →a

(t)
n

(a(t)n ), (44)

p̃(h(t)n |{φ(t)
n }tt=1) ∝ ν

f
(t)
n →h

(t)
n

(h(t)n )ν
d
(t)
n →h

(t)
n

(h(t)n ). (45)

Specifically, the explicit expressions of the following messages can be obtained as

ν
f
(t)
n →a

(t)
n

(a(t)n ) ∝
∫

h
(t)
n

∫

x
(t)
n

f (t)
n (x(t)n , a

(t)
n , h

(t)
n ) · ν

x
(t)
n →f

(t)
n

(x(t)n ) · ν
h
(t)
n →f

(t)
n

(h(t)n ), (46)

ν
f
(t)
n →h

(t)
n

(h(t)n ) ∝
∑

a
(t)
n ={0,1}

∫

x
(t)
n

f (t)
n (x(t)n , a

(t)
n , h

(t)
n ) · ν

x
(t)
n →f

(t)
n

(x(t)n ) · ν
a
(t)
n →f

(t)
n

(a(t)n ). (47)

Under the structure of our factor graph, it is obvious that the following two relationships always

hold, e.g., ν
a
(t)
n →f

(t)
n

(a
(t)
n ) = ν

q
(t)
n →a

(t)
n

(a
(t)
n ) and ν

h
(t)
n →f

(t)
n

(h
(t)
n ) = ν

d
(t)
n →h

(t)
n

(h
(t)
n ). As a consequence, we

specify the posterior distributions (44) and (45) as

p̃(a(t)n |{φ(t)
n }tt=1) ∝ (π̂n,tπ̃n,t)

a
(t)
n [(1− π̂n,t)(1− π̃n,t)]

1−a
(t)
n , (48)

p̃(h(t)n |{φ(t)
n }tt=1) ∝ π̂n,tπ̃n,tCN (h(t)n ; τ̃n,t, κ̃n,t) + (1− π̂n,t)(1− π̃n,t)CN (h(t)n ; ξ̂n,t, ψ̂n,t), (49)
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where we define

π̃n,t ,

(

1 +

(

π̂n,t
1− π̂n,t

)

γn,t(φ
(t)
n , ct)

)−1

, (50)

κ̃n,t ,
ctψ̂n,t

ct + ψ̂n,t

, τ̃n,t , κ̃n,t ·
(

φ
(t)
n

ct
+
ξ̂n,t

ψ̂n,t

)

. (51)

After that, we can obtain the explicit expression of the approximation distribution q(h
(t)
n , a

(t)
n |{φ(t)

n }tt=1)

represented as the form (35) by combining the moment matching equations (36)-(38), and the marginal

expressions (48), (49). As a consequence, we have

π̄n,t =
π̂n,tπ̃n,t

π̂n,tπ̃n,t + (1− π̂n,t)(1− π̃n,t)
, ξ̄n,t = π̄n,tτ̃n,t + (1− π̄n,t)ξ̂n,t, (52)

ψ̄n,t = π̄n,t(|τ̃n,t|2 + κ̃n,t) + (1− π̄n,t)(|ξ̂n,t|2 + ψ̂n,t)− |ξ̄n,t|2. (53)

Then, the historical knowledge aided-prior can be formulated via (31) and (32). According to (39)

and (40), executing (31) is equivalent to implementing (41), (42) and further implementing

q(h(t+1)
n , a(t+1)

n |{φ(t)
n }tt=1) =q(a

(t+1)
n |{φ(t)

n }tt=1)q(h
(t+1)
n |{φ(t)

n }tt=1)

=ν
q
(t+1)
n →a

(t+1)
n

(a(t+1)
n )ν

d
(t+1)
n →h

(t+1)
n

(h(t+1)
n ).

(54)

In addition, we notice that the equation (32) is equivalent to (9) with index (t + 1). Observing (41)

and (42), the messages ν
q
(t)
n →a

(t)
n

(a
(t)
n = 1) and ν

d
(t)
n →h

(t)
n

(h
(t)
n ) are in the same forms as (10) assumed

in section IV-A1. Hence, the historical knowledge aided-prior of the sparse vector x(t) in each tth

ADT will maintain the consistent form of Gaussian-Bernoulli (11) with the corresponding parameters

specified by (43). This leads that the generic AMP update equations in each ADT are (12)-(15).

Somewhat differently, since the equation (15) is equivalent to the state evolution equation (23) only

when the exact prior distribution of x(t) is in the form of (11), the approximations in our proposed

method will cause the loss of accuracy. To be more accurate, we consider an empirical alternative of

(15), given as ci+1 = 1√
L
||zi+1||2, where zi+1 , [zi+1

1 , zi+1
2 , . . . , zi+1

L ]T ∈ CL, which can be used as

an efficient approximation of the state evolution [30].

We summary our proposed S-AMP in Algorithm 1. The main computational burden of the proposed

method is the generic AMP equations in section IV-A2, resulting the complexity in each iteration as

O(MN), which is equivalent to that of the algorithms proposed in [3], [10].
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Algorithm 1 Proposed S-AMP algorithm

Input: Received Signal: {y(t)}Tt=1;

Pilot matrix: S.

Output: Recovered sparse vector {x̂(t)}Tt=1.

1: for t ≤ T do

2: Initialization: µ0
n = 0, z0l = yl, and c0 ≫ σ2

w for all n and l (we drop the index of t).
3: for i ≤ I do

4: ∀n, calculate AMP equations with π̂n,t, ξ̂n,t and ψ̂n,t.

φi
n =

∑L

l=1
S∗
lnz

i
l + µi

n, µi+1
n = Fn(φ

i
n, c

i), vi+1
n = Gn(φ

i
n, c

i),

zi+1
l = yl −

∑N

n=1
Slnµ

i+1
n +

zil
L

∑N

n=1
F ′
n(φ

i
n, c

i), ci+1 =
1√
L
||zi+1||2,

5:

6: return x̂(t) = µI .

7: ∀n, calculate the following parameters:

π̃n,t ,

(

1 +

(

π̂n,t
1− π̂n,t

)

γn,t(φ
(t)
n , ct)

)−1

,

κ̃n,t ,
ctψ̂n,t

ct + ψ̂n,t

, τ̃n,t , κ̃n,t ·
(

φ
(t)
n

ct
+
ξ̂n,t

ψ̂n,t

)

,

π̄n,t =
π̂n,tπ̃n,t

π̂n,tπ̃n,t + (1− π̂n,t)(1− π̃n,t)
, ξ̄n,t = π̄n,tτ̃n,t + (1− π̄n,t)ξ̂n,t,

ψ̄n,t = π̄n,t(|τ̃n,t|2 + κ̃n,t) + (1− π̄n,t)(|ξ̂n,t|2 + ψ̂n,t)− |ξ̄n,t|2,
π̂n,t+1 = p10(1− π̄n,t) + (1− p01)π̄n,t,

ξ̂n,t+1 = ηnξ̄n,t, ψ̂n,t+1 = η2nψ̄n,t + (1− η2n)ρn.

So far, we have given all the derivations of our proposed S-AMP algorithm. In the following, we

will consider the concrete active user detection and channel estimation strategy. As we shall see, based

on our proposed S-AMP algorithm, the user detector and channel estimator can be designed directly.

VI. ACTIVE USER DETECTION AND CHANNEL ESTIMATION

After the generic AMP equations in the proposed S-AMP algorithm converges in each ADT, we

focus on the joint active user detection and channel estimation. The hypothesis testing to find out the

active device is given by
{

H1 : a
(t)
n = 1, active device;

H0 : a
(t)
n = 0, inactive device.

(55)
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Applying (42), the LLR test rule given decision threshold ln,t in the tth ADT is given by

LLR = log

(

p̃(φ
(t)
n |a(t)n = 1, {φ(t)

n }t−1
t=1)

p̃(φ
(t)
n |a(t)n = 0, {φ(t)

n }t−1
t=1)

)

H1

≷
H0

ln,t, (56)

where we define the approximate likelihood function as

p̃(φ(t)
n |a(t)n , {φ(t)

n }t−1
t=1) ,

∫

h
(t)
n

p(φ(t)
n |h(t)n , a

(t)
n )ν

d
(t)
n →h

(t)
n

(h(t)n ).

Specifically, we have

p̃(φ(t)
n |a(t)n = 0, {φ(t)

n }t−1
t=1) = CN (φ(t)

n ; 0, ct), (57)

p̃(φ(t)
n |a(t)n = 1, {φ(t)

n }t−1
t=1) = CN (φ(t)

n ; ξ̂n,t, ψ̂n,t + ct). (58)

We notice that this is a general Gaussian hypothesis testing problem [31]. As a consequence, the

sufficient statistic for the LLR detector in the tth ADT for each user n is given as

T (φ(t)
n ) = |φ(t)

n |2 + 2ctψ̂
−1
n,tR(ξ̂∗n,tφ

(t)
n ) + c2t ψ̂

−2
n,t |ξ̂n,t|2 = |φ(t)

n + ctψ̂
−1
n,t ξ̂n,t|2, (59)

which contains both the quadratic and linear term of variable φ
(t)
n . To examine the functional form of

the sufficient statistic T (φ
(t)
n ), we see that if we assume the zero mean of the local prior, i.e., ξ̂n,t = 0,

the proposed detector transforms to the traditional energy detector derived in [3], [10].

Another crucial issue for the detector is the design of decision criterion. In the detection literature,

the basic criteria are the Neyman-pearson and the Bayes criterion [31]. In this paper, we consider the

Bayes criterion for the following reasons. First, the Bayes criterion focuses on the prior knowledge,

which is neglected by the Neyman-pearson criterion. Second, we mainly concerned the detection

error probability in our scenario, which is defined as the sum of false alarm and missed detection

probabilities, and utilizing the Bayes criterion will achieve minimum detection error probability when

given the exact prior distribution. Further, we can observe that the sufficient statistic T (φ
(t)
n ) in (59)

is derived based on the parameters ξ̂n,t ,ψ̂n,t ,ct, which include the historical knowledge of {φ(t)
n }t−1

t=1

and cannot be predicted beforehand. Since the detection threshold under Neyman-Pearson criterion is

designed based on the map between performance metrics, which is not explicit because of the linear

term in T (φnt) [31], it is impractical to instantaneously design the threshold. On the contrary, under the

Bayes criterion, the LLR test is equivalent to computing the posterior probabilities of two hypotheses

and choose the large one. Note that under S-AMP framework, the acquisition of the approximation
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Fig. 3. Normalized fix point of state evolution function.

posterior probabilities is very straightforward, as we have derived in (48). Specifically, the detector

under Bayes criterion can be written as






H1, if
p̃(a

(t)
n =1|{φ(t)

n }t
t=1)

p̃(a
(t)
n =0|{φ(t)

n }t
t=1)

≥ 1,

H0, otherwise.
(60)

After active user detection, the channel estimation for the active users can be implemented directly

by applying the recovered sparse vector as the estimated channel, e.g., we consider ĥ
(t)
n = x̂

(t)
n for

each user device n, where x̂n is the corresponding element of x̂(t).

VII. NUMERICAL RESULTS

In this section, some numerical examples are provided to verify our theoretical results. We simulate

the mMTC system with N = 2000 devices. The user devices are randomly located in a cell with

distance dn for nth user. It is assumed that dn, n = 1, . . . , N are randomly distributed in the region

[0.05km, 1km]. The large-scale fading between each user and the BS is considered as βn = −128.1−
36.7 log10(dn) in dB. The power spectral density of the AWGN at the BS is set to be −169dBm/Hz

with the wireless channel bandwidth 10MHz. The duration of ADP is denoted as Ts, and the total

number of ADPs is set as 20. For simplification, we consider the same transmission power for each

user, i.e., Pn = P . The average speed for each user is supposed randomly distributed in [0, 50]km/h,

the carrier frequency is set as 3.5GHz. Since the temporal correlation of user indicator is specified

by λ and the transition probability p01, we assume p01 = r(1 − λ) and p10 = rλ, where r denote a
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Fig. 4. NMSE performance of sparse vector recovery.

scale factor that controls the specific value of transition probability. For the performance metrics, we

utilize the normalized mean squared error (NMSE) to illustrate the sparse vector recovery and channel

estimation performance. And, the active user detection performance is measured by detection error

probability (DEP). We first set the access probability of users in each ADT is assumed to be λ = 0.05,

the scale r = 0.1 and the duration of ADP is Ts = 100us.

To show the advantage of the proposed S-AMP algorithms, we compare our results with the

conventional CS-based algorithm. In the non-Bayesian framework, we consider the classical OMP

[32] algorithm, and the R-PIA-ASP [14], which is the most efficient existing method utilizes temporal

correlation of the user support. Further, we consider the oracle LS algorithm, which assumes the true

active user support set is exactly known at the BS. In the Bayesian literature, we consider the classical

AMP algorithm [33] and the AMP-MMSE algorithm [3], [10] as the counterparts of our proposed

S-AMP.

Fig. 3 depicts the normalized fix point of state evolution equation from t = 1 to t = 10 of

both S-AMP and AMP-MMSE algorithms under different settings. The normalized fix point of state

evolution equation in tthe ADT is defined as nor(ct) , P
P0
ct, where P0 = 13dBm is the reference

level of power. We can observe that in the first ADT, where each of two algorithms has the historical

knowledge, nor(ct) of the two algorithms are almost equal. On the contrary, with given historical

knowledge, nor(ct) of S-AMP is lower than that of AMP-MMSE. In addition, under low power level,
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Fig. 5. Performance comparisons with respect to the transmission power.

the performance gain provided by pilot length shrinks compared with that under high power level,

since the AMGN term in state evolution function is dominant in this case. Further, with the pilot length

increases, nor(ct) of both the two algorithms will converge to the normalized AWGN level, defined as

P
P0
σ2
w, which is the lower bound of state evolution fix point. Hence, as L increases, the performance

gain of the S-AMP compared with the AMP-MMSE will come more from the prior distribution.

Fig. 4 depicts effect of pilot length and power level on sparse vector recovery performance of

the AMP-MMSE and S-AMP algorithms. We can find that the S-AMP shows lower NMSE than

AMP-MMSE for all settings, verifying that the historical knowledge benefits the AMP framework.

We notice that in all the power levels, when length of pilot is relative large, increasing L will not

distinctly increase the NMSE performance. To explain, we compare the Fig. 4 with Fig. 3, and notice

that with the pilot length increases, nor(ct) in Fig. 3 of both the two algorithms will converge to

the normalized AWGN level, defined as P
P0
σ2
w, which is the lower bound of state evolution fix point.

Hence, as L increases, the performance gain of the S-AMP compared with the AMP-MMSE will come

more from the prior distribution. We turn to the Fig. 4 and we can observe that in the region of higher

number of pilot, the S-AMP algorithm achieves about 3dB NMSE performance gain compared with

its counterpart. This result indicates the clear advantage of prior with the aid of historical knowledge.

Next, we investigate the active user detection and channel estimation performance of the S-AMP.

Fig. 5 provides the user detection and channel estimation performances comparisons of the considered

baseline algorithms versus the power level of the user devices. The pilot length is set as L = 400.
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Fig. 6. Performance comparisons with respect to the pilot length.
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Fig. 7. Performance of S-AMP versus user state transition probability in different cases of ADP durations. Top: channel estimation

performance; Bottom: active user detection performance.
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We adopt the detector in [11] for AMP algorithm, and the detections for OMP and R-PIA-ASP are

based on their estimated support. For AMP-MMSE and S-AMP, we consider the Bayesian detector.

We see obviously that our proposed S-AMP outperforms its counterparts in the both detection and

channel estimation performances under all considered settings. With prior information, the Bayesian

CS algorithms, such as AMP-MMSE, S-AMP obtain distinct performances gain compared with the

non-Bayesian methods. And, with historical knowledge-aided prior, our S-AMP algorithm further

improves the performance compared with the AMP-MMSE algorithm. Specifically, for detection, the

DEP is reduced by half, and for channel estimation, about 3dB NMSE gain is achieved. Particularly,

the S-AMP even outperforms the Oracle LS method in channel estimation, which provides the lower

bound of any non-Bayesian method.

Fig. 6 investigate the detection and channel estimation performance with respect to the pilot length.

The transmission power is set as 33dBm. We can find that the user detection and channel estimation

performances are improved with the increase of the pilot length. In the region of lower pilot, the

DEP and NMSE reduce very fast, leading that the proposed S-AMP algorithm achieves significant

performance even with low pilot overhead. For channel estimation, there is a slight performance loss

of S-AMP compared with the Oracle LS, when L = 200, since the Oracle LS knows exactly the

support set. However, in all region, the proposed S-AMP algorithm achieves lower NMSE than any

other its achievable counterparts.

Fig. 7 demonstrates the performance of S-AMP under different settings of ADP durations versus

r0, which is specified by r = 1/2r0 , controlling the transition probability of the user state. We note

that the probability of the user switching state will decrease as r0 increases. We can observe from

Fig. 7 that with r0 increases, both the channel estimation error and detection error of the S-AMP

decrease. On the contrary, the variation of r0 has no impact on AMP-MMSE, since it does not utilize

the temporal structure. On the other hand, we note that the duration of ADP controls the temporal

correlation of user channel, and a large duration associates with a poor temporal correlation of user

channel. We can see from Fig. 7 that considering a small ADP duration will enhance the channel

estimation performance while having few impacts on the detection performance.

Fig. 8 investigate the channel estimation and detection performance of S-AMP under different

settings of access probabilities λ. We can see that in the same settings of pilot length and transmit
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Fig. 8. Performance of S-AMP in different cases of access probabilities.

power, increasing the sparsity level λ will decrease both the performances of channel estimation and

detection. However, our proposed S-AMP algorithm outperforms the AMP-MMSE in all settings,

indicating the scalability of the S-AMP in different sparsity levels. In addition, we can intuitively see

that the impacts of improving sparsity level will be compensated by increasing the length of pilot.

VIII. CONCLUSION

In this paper, we proposed a grant-free novel MRA strategy, which considered both the sporadic

traffic and short packet features of mMTC scenario. Such a strategy results in the temporal correlation

of the access state spare vector, leading to that the joint user detection and channel estimation formed

a dynamic CS problem. We therefore proposed a novel S-AMP algorithm to sequentially recover the

spare vector. Further, we derived the Bayes detector for active user detection and corresponding channel

estimator based on the S-AMP. We verified that the S-AMP outperforms the traditional AMP algorithms

and other non-Bayes methods in both active user detection and channel estimation performances under

our scenario, indicating the clear advantage of accounting for temporal correlation of the access state

spare vector in user activity detector and channel estimator design.
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APPENDIX

A. Proof of Proposition 1

Before proceeding, we define χ
(t)
n , {h(t)n , a

(t)
n } and φ

(t)
n , {φ(t)

n }tt=1, utilizing the definition of

KL-divergence, we have

D[p̃(χ(t)
n |φ(t)

n )||q(χ(t)
n |φ(t)

n )]

=

∫

χ
(t)
n

p̃(χ(t)
n |φ(t)

n ) log
p̃(χ

(t)
n |φ(t)

n )

q(χ
(t)
n |φ(t)

n )

=

∫∫

χ
(t)
n ,χ

(t+1)
n

p̃(χ(t)
n , χ

(t+1)
n |φ(t)

n ) log
p̃(χ

(t)
n |φ(t)

n )p(χ
(t+1)
n |χ(t)

n )

q(χ
(t)
n |φ(t)

n )p(χ
(t+1)
n |χ(t)

n )

=

∫∫

χ
(t)
n ,χ

(t+1)
n

p̃(χ(t)
n , χ

(t+1)
n |φ(t)

n )

(

log
p̃(χ

(t+1)
n |φ(t)

n )

q(χ
(t+1)
n |φ(t)

n )
+ log

p̃(χ
(t)
n |χ(t+1)

n ,φ
(t)
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q(χ
(t)
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n ,φ
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=D[p̃(χ(t+1)
n |φ(t)

n )||q(χ(t+1)
n |φ(t)

n )] +

∫

χ
(t+1)
n

p̃(χ(t+1)
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n )D[p̃(χ(t)
n |χ(t+1)

n ,φ(t)
n )||q(χ(t)

n |χ(t+1)
n ,φ(t)

n )]

≥D[p̃(χ(t+1)
n |φ(t)

n )||q(χ(t+1)
n |φ(t)

n )].
(61)

Note that the integration will be replaced by the summation if dealing with a
(t)
n . For concise, we omit

the proof of the second inequality, which can be proved in the same way. As a consequence, we obtain

the (30).
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