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Abstract—Accurate channel parameter estimation is challeng-
ing for wideband millimeter-wave (mmWave) large-scale hybrid
arrays, due to beam squint and much fewer radio frequency
(RF) chains than antennas. This paper presents a novel joint
delay and angle estimation approach for wideband mmWave
fully-connected hybrid uniform cylindrical arrays. We first design
a new hybrid beamformer to reduce the dimension of received
signals on the horizontal plane by exploiting the convergence
of the Bessel function, and to reduce the active beams in the
vertical direction through preselection. The important recurrence
relationship of the received signals needed for subspace-based
angle and delay estimation is preserved, even with substantially
fewer RF chains than antennas. Then, linear interpolation is
generalized to reconstruct the received signals of the hybrid
beamformer, so that the signals can be coherently combined
across the whole band to suppress the beam squint. As a result,
efficient subspace-based algorithm algorithms can be developed
to estimate the angles and delays of multipath components. The
estimated delays and angles are further matched and correctly
associated with different paths in the presence of non-negligible
noises, by putting forth perturbation operations. Simulations
show that the proposed approach can approach the Cramér-
Rao lower bound (CRLB) of the estimation with a significantly
lower computational complexity than existing techniques.

Index Terms—Millimeter-wave, large-scale antenna array, de-
lay and angle estimation, hybrid beamforming.

I. INTRODUCTION

Millimeter-wave (mmWave) large-scale antenna arrays,

standardized for the fifth-generation (5G) communication net-

works, have the potential to estimate channel parameters with

unprecedented accuracy, due to the excellent directivity of

large antenna arrays and the high temporal resolution provided

by mmWave systems [1]–[3]. Accurate channel parameter

information plays an important role in mmWave systems for

forming beams with fine accuracy, combating severe signal

attenuation, and suppressing inter-user interference [4], [5].

Most existing techniques, such as [3], [5] and [6], are only
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suitable for uniform linear arrays (ULAs) and uniform rectan-

gular arrays (URAs), whose array steering vectors have linear

recurrence relations. The techniques cannot be directly applied

to arrays with circular layouts, e.g., uniform circular arrays

(UCAs) and uniform cylindrical arrays (UCyAs), as nonlinear

recurrence relations exist between the array steering vectors.

However, compared to linear and rectangular arrays, circular

arrays are more compact, have stronger immunity to mutual

coupling, and have stronger immunity to mutual coupling.

They can also provide 360 degrees of angular coverage on

the azimuth plane [7], [8].

Channel parameter estimation techniques have been well

studied in mmWave systems, but limited results are available

for large-scale mmWave antenna arrays using hybrid front-end

[9]–[11]. A key challenge is that conventional channel param-

eter estimation algorithms are inapplicable in mmWave hybrid

arrays. Current hybrid beamforming schemes, typically based

on compressed sensing (CS) techniques, need to discretize

channel coefficients and would suffer from accuracy losses

[12], [13]. The state-of-the-art spatial spectrum estimation

algorithms, such as maximum likelihood (ML) estimators [14]

and subspace-based algorithms [2], [15]–[17], were designed

to estimate continuous channel parameters using digital arrays,

where each baseband observation is directly sampled from

the signal received at an antenna. In particular, subspace-

based algorithms, e.g., generalized beamspace method (GBM)

[2], multiple signal classification (MUSIC) [15], estimation

of signal parameters via rotational invariance techniques (ES-

PRIT) [16], and quadric rotational invariance property-based

method (QRIPM) [17], capitalize on a multiple-invariance

structure [18] of array response vectors to estimate the channel

parameters accurately with dramatically lower complexities

than the ML estimator. The structure exists in digital arrays,

as the received signal of every antenna is available at the

baseband. With a hybrid front-end, the received signals of

multiple antennas are combined via a radio frequency (RF)

phase-shifting network. The multiple-invariance structure is

often obscured or even lost, and the subspace-based algorithms

cannot directly apply.

Challenges also arise from beam squint [19], due to typ-

ically wide bandwidths of mmWave signals; in other words,

the beam directions can change markedly over the different

frequencies of a signal bandwidth. The beam squint can lead

http://arxiv.org/abs/2102.10746v1


to channel dispersion in a spatial angle across the bandwidth

[19]. Most existing channel parameter estimation methods,

e.g., tensor-based subspace angle estimation (TSAE) [20] and

Quasi-Maximum-Likelihood estimator (Q-MLE) [21], were

designed for narrowband signals, and hence, do not address

the beam squint. One existing solution which does support

wideband operations is incoherent signal-subspace processing

(ISSP) [22]. It divides a wide band into non-overlapping

narrow bands. By assuming consistent channel parameters

within each narrowband, channel parameter estimation and

localization are applied repeatedly to the narrow bands, includ-

ing forming focusing matrices. Extra steps are also required

to combine the results of all the narrow bands [23]. The

complexity of the solution is high.

In this paper, we propose a novel joint delay and angle

estimation approach, which enables a hybrid UCyA to estimate

the delay and the azimuth and elevation angles-of-arrival

(AOAs) of every impinging path. Different from any existing

works using (typically digital, narrowband) cylindrical arrays

for angle estimation, such as [17], [24]–[26], our approach

is designed for wideband mmWave hybrid antenna arrays,

addressing the problem of beam squint and requiring far fewer

RF chains than antennas. As depicted in Fig. 1, a series of

novel steps are developed in the proposed approach with the

following key contributions.

• We propose a novel three-dimensional (3D) hybrid beam-

former to reduce the number of required RF chains

while preserving the multiple-invariance structure in array

response vectors. As a result, subspace-based algorithms

remain effective for parameter estimation. Specifically,

we first form a small number of vertical beams to pick up

significant energy of received signals. The quasi-discrete

Fourier transform (Q-DFT)1, is then conducted on the

horizontal plane to convert the received signals to a small

dimension by exploiting the convergence of the Bessel

function.

• We generalize linear interpolation to the 3D space, to re-

construct the output signals of the hybrid beamformer. By

this means, we achieve consistent array responses across

the wideband and suppress the beam squint effect. The

wideband signals can be coherently combined, and the

high temporal resolution offered by wideband mmWave

systems can be utilized to improve the delay estimation

accuracy.

• We jointly estimate the delay and AOAs of each path,

and match the estimated parameters for different paths.

Specifically, the elevation AOAs and delays are estimated

by utilizing ESPRIT to exploit the multiple-invariance

structure, followed by the azimuth AOAs estimated by

using MUSIC. Perturbation matrices are introduced to

mitigate the mismatch between the estimated delays and

angles in the presence of non-negligible noises. As a

1Different from DFT which converts a finite sequence of equally-spaced
samples into a sequence of the same length, Q-DFT can transform the samples
to a sequence of a different length [27].

result, different paths can be correctly detected.

The rest of this paper is organized as follows. The system

model is presented in Section II. In Section III, we develop

the two-step hybrid beamforming strategy. The proposed wide-

band channel parameter estimation approach is introduced and

analyzed in Section IV. In Section V, simulation results are

provided to illustrate the performance improvements of the

approach. Finally, conclusions are drawn in Section VI.

Notation: a, a and A stand for scalar, column vector, and

matrix, respectively; IK represents a K ×K identity matrix,

and 0M×K represents an M ×K zero matrix; 1K denotes a

K × 1vector of ones; [A]i,j is the (i, j)-th entry of A; [A]i,:
denotes the i-th row of A; the inverse, transpose and conjugate

transpose of A are A−1, AT and AH , respectively; ‖A‖F

and vec(A) denote the Frobenius norm and vectorization of

A, respectively; ⊗, ⊕ and ⋄ denote the Kronecker product,

Kronecker sum, and Khatri–Rao product, respectively; the

expectation of a random variable is denoted by E {·}; and

O(·) denotes the computational complexity.

II. SYSTEM MODEL

We consider a mmWave multi-antenna orthogonal frequency

division multiplexing (OFDM) system, where a base station

(BS) with NR antennas receives signals from a mobile station

(MS)2. We assume that the directions and delays of the paths

remain unchanged during parameter estimation. The received

signal at subcarrier m (m = 0, 1, . . . ,M − 1) is given by [3]

rm = Hmxm + nm, (1)

where Hm ∈ C
NR×1, nm ∈ C

NR×1, and xm denote the

channel matrix, the Gaussian noise, and the transmitted signal

for subcarrier m, respectively; and Np is the number of paths.

The channel matrix, Hm, can be expressed as

Hm =

Np
∑

l=1

βle
−j2πfmτlam(φR,l, θR,l), (2)

where βl is the complex amplitude of the l-th path;

am(φR,l, θR,l) is the array response vector with φR,l and θR,l

being the azimuth and elevation AOAs of the l-th path. τl is

the time delay of the l-th path. fm is the frequency at the

m-th subcarrier. fm = f0 + m∆F, where f0 is the carrier

frequency at the lower end of the band and ∆F is the subcarrier

spacing. If the signal bandwidth is much smaller than the

carrier frequency, then fm ≈ f0 and (2) reverts to the standard

narrowband channel model.

The BS uses a hybrid UCyA antenna array. It consists of

NV horizontal layers of UCAs, each having NH antennas, i.e.,

NR = NVNH. The radius of each UCA is r. The vertical

2An omnidirectional antenna is deployed at the MSs to maintain connectiv-
ity irrespective of the orientation and posture of the MSs. One of the antenna
elements at the BS is set to be the reference, so that the estimation of the
MS would not rotate with respect to the BS. In the case where a directional
antenna is installed at the MSs, the received signal-to-noise ratio (SNR) at
BS could increase if the BS is inside the mainlobes of the MSs, or decrease
otherwise. This could affect the accuracy of the proposed method in either
way, while the operation of the method is unchanged.
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distance between any two adjacent UCAs is h. Therefore, the

array response vector is given by

am(φR,l, θR,l) = aV,m(θR,l)⊗ aH,m(φR,l, θR,l), (3)

where

[aV,m(θR,l)]nV,1

=
1√
NV

exp

(

−j
2π

c
fmh(nV − NV + 1

2
) cos(θR,l)

)

and

[aH,m(φR,l, θR,l)]nH,1

=
1√
NH

exp

(

j
2π

c
fmr sin(θR,l) cos(φR,l − ϕnH

)

)

are the array response vectors on the vertical and horizontal

planes, respectively, with nV = 1, 2, . . . , NV and nH =
1, 2, . . . , NH. c is the speed of light. Here, ϕnH = 2π(nH −
1)/NH is the difference between the central angles of the nH-

th antenna and the first antenna of each UCA, as shown in

Fig. 2(a).

We consider a hybrid front-end architecture [28], as shown

in Fig. 2(b). By applying a hybrid beamformer, W ∈
C

NR×NDS , to the received signal, rm, the output signal after

beamforming can be expressed as

ym = WHrm = WHHmxm +WHnm, (4)

where the hybrid beamformer, W = WRFWBB, is composed

of an analog combiner, WRF ∈ CNR×NRF , and a digital

combiner, WBB ∈ CNRF×NDS . NRF and NDS are the numbers

of RF chains and data streams, respectively.

We further divide the analog combiner, WRF, into an

array combiner set, GAC ∈ CNAC×NRF , and a phase shifter

set, GPS ∈ CNR×NAS , i.e., WRF = GPSGAC. NAC is the

number of the combiners deployed in the array combiner

set. NR ≥ NAC ≥ NRF ≥ NDS. As illustrated in Fig.

2, GPS is a phase shifter matrix with elements given by

[GPS]nR,nAS
= exp(jξ) (ξ ∈ R, nR = 1, 2, . . . , NR, and

nAC = 1, 2, . . . , NAC). GAC is a binary matrix, and its entry

[GAC]nAC,nRF
∈ {0, 1}(nRF = 1, 2, . . . , NRF). Here, the role of

WBB is to guarantee the power constraint.

III. PROPOSED TWO-STEP WIDEBAND HYBRID

BEAMFORMING STRATEGY

In this section, new hybrid beamformers are designed to

select the meaningful beams needed vertically for angle and

delay estimation, and transform the received high-dimensional

signals of horizontal UCAs to be low-dimensional by taking

Q-DFT and the convergence property of the Bessel function.

We prove that the number of low dimensions does not grow

with the number of antennas per UCA. The minimal number

of required RF chains is the product of the number of vertical

beams and the number of low dimensions.

It is worth mentioning that all the beamformers we design

here are linear transforms. Therefore, the critical invariance

structure for the validity of ESPRIT for the angle and delay

estimation, can be recovered losslessly between respective sub-

matrices of the space-time response matrix for the subsequent

angle and delay estimation.

A. Step 1: Vertical Beam Selection

We first propose a new hybrid beamformer, denoted by Ws1,

in the vertical beamspace. By exploiting the sparsity (or low

rank) nature of mmWave multi-antenna channels, the vertical

beams can be selected: i) to estimate the number of paths; and

ii) to determine the number of vertical beams needed for the

joint angle and delay estimation (JADE) (to be developed in

Section IV-A).

The output signal after the vertical beamforming is ys1,m =
WH

s1 rm ∈ CNDS,1×1. The hybrid beamformer conducts ver-

tical beamspace transforming and can be constructed as

Ws1 = GPS,s1GAC,s1WBB,s1, where WBB,s1 = 1√
NV

INV
∈

CNV×NV , GPS,s1 = Ud ⊗ INH
∈ CNR×NR , and GAC,s1 =

[

INV
⊗ 1T

NH

]T ∈ CNR×NV . Here, Ud contains NV orthogonal

array response vectors corresponding to NV vertically, angu-

larly evenly spaced beams. Ud = [Ud,1,Ud,2, . . . ,Ud,NV
] ∈

CNV×NV , where

Ud,i = [exp(−j
2π

NV

(−NV − 1

2
)i), exp(−j

2π

NV

(−NV − 3

2
)i),

. . . , exp(−j
2π

NV

(
NV − 1

2
)i)]T , i = 1, 2, . . . , NV. (5)

Thus at this step, the numbers of both data streams and RF

chains are equal to that of beams, i.e., NDS,1 = NRF,1 = NV.

The number of array combiners is equal to that of receive

antennas, i.e., NAC,1 = NR. The i-th element of ys1,m can be

written as

[ys1,m]i,1 =
[

(GPS,s1GAC,s1WBB,s1)
H
rm

]

i

=
1√
NV

UH
d,i(INV

⊗ 1T
NH

)rm. (6)

The total beam power at the m-th subcarrier is given by

σ2
m = yH

s1,mys1,m =

NV
∑

i=1

σ2
m,i, (7)

where σ2
m,i =

∣

∣

∣
[ys1,m]i,1

∣

∣

∣

2

is the power of the i-th beam which

depends on the AOA of the impinging signal inside the beam.

Given the sparsity of mmWave multi-antenna channels, the
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Fig. 2. (a) The geometric model of the UCyA; (b) The block diagram of hybrid beamforming architecture.

signal power is concentrated in a small number of beams. We

select the dominant beams at the m-th subcarrier by defining

an index selection set Um, as given by

Um , {η(1), η(2), . . . , η(NB,m)} , (8)

where NB,m is the number of selected beams, and η(um) is

the index for σ2
m,η(um) with um = 1, 2, . . . , NB,m. η(um) can

be obtained as






















η(1) = argmaxi∈{1,...,NV} σ
2
m,i,

η(2) = argmaxi∈{1,...,NV}\{η(1)} σ
2
m,i,

...

η(NB,m) = argmaxi∈{1,...,NV}\{η(1),...,η(NB,m−1)} σ
2
m,i.

The following criterion can be used to decide NB,m and select

the NB,m strongest beams:

NB,m
∑

um=1

σ2
m,η(um) ≥ ησ2

m, (9)

where η is a power threshold which can be empirically

specified. η can be selected close to 1, e.g., η = 0.9, as paths

reflected more than once, and diffuse scattering, account for

less than 10% of the total energy, as found in [29]3. Moreover,

mmWave signals fade rapidly when reflecting off a surface

[30], and become barely distinguishable from noises after two

reflections [10], [29], [31].

There is dispersion in the angular domain across the band-

width in multi-antenna wireless systems [19]. We first assume

that the transmission channel at each subcarrier is narrow-

band. Because of small dispersion in narrowband systems,

the number of orthogonal beams in the vertical beamspace is

equal to the number of received paths, i.e., NB,m = Np [19].

However, the dispersion can have a non-negligible effect in

3It is shown in [29] that for mmWave systems, the contributions of paths
reflected more than once, and the diffuse scattering components are weak,
only accounting for less than 10% of the total energy.

broadband systems, such as the one considered in this paper,

where a point source spreads across spatial angle and time. A

strong dispersion would result in severe power loss and pulse

distortion, if not addressed properly, and affect the follow-

on angle and delay estimation. The dispersion effect can be

characterized by the channel dispersion factor, γ, as specified

by [19]

γ =
1

Np

Np
∑

l=1

γl =
1

Np

Np
∑

l=1

NVα |χc,l| , (10)

where α = W/fc is the fractional bandwidth, χc,l =
fch cos(θR,l)/c is the normalized beam angle, W is the signal

bandwidth, and fc is the center frequency.

To illustrate the impact of the dispersion, we assume that

the system operates at fc =30 GHz and the transmitted signal

has unit amplitude. For simplicity, it is assumed that only one

path with βl = 1 and θR,l = 60◦, and the number of beams

is NV = 60. We have χc,l ≈ 0.25, which corresponds to

the i0 = 15-th beam. Fig. 3(a) shows the normalized power,

|ys1,i(f)|2 /NV, of the 14-th, 15-th, and 16-th beams versus the

normalized frequency, fnormal = f/fc, for f ∈ [−W/2,W/2]4.

We can see that, if the normalized frequency fnormal < 0.033,
i.e., the channel dispersion factor γ < 1, the beams in Fig.

3(a) do not affect one another within the bandwidth, W . If

γ > 1, power loss and interference may occur. To prevent this

from happening, the γ adjacent beams centered at i0 need to

be taken into consideration. In the case of γ = 3, Fig. 3(b)

plots the normalized power of the three beams combined, i.e.,

the 14-th, 15-th, and 16-th beams. It can be seen that, by

combining the three beams, the normalized power becomes

approximately flat across the operating band.

Because of the dispersion, we have to jointly consider NB =
γNp vertically spaced beams to include all possible beams,

4For convenience, here we only plot the beam power as a function of
continuous frequency for illustration.
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Algorithm 1 Beam selection algorithm

• Input: The processed signals, ys1,m,(m = 0, 1, . . . ,M −
1), the beam number, NV, and the threshold, η.

• Output: The overall selection set, U , and the estimated

number of significant beams, NB.

• Initialization: U = U0 = U1 = . . . = UM−1 = ∅,

• For m = 0 to M − 1 do

– Set V = ∅.
– For i = 1 to NV do

∗ σ2
m,i = |ys1,m,i|2, and updateV = V ∪ {σ2

m,i}.

– End for

– σ2
m =

∑NV

i=1 σ
2
m,i.

– While
∑

η(um)∈Um
σ2
m,η(um) < ησ2

m do

∗ Find the largest σ2
m,i from V , and update Um =

Um ∪ {i} and V = V \ {σ2
m,i}.

– End while

– Update U = U ∪ Um.

• End for

• NB =Card(U).

as the normalized beam angle, χc,l, is unknown. The overall

index selection set U is given by

U = U0 ∪ U1 ∪ . . . ∪ UM−1, (11)

where the elements of U are η(u) with u = 1, 2, . . . , NB. It is

possible that the same indices are picked up at different subcar-

riers because of the dispersion, e.g., η(um) = η(um′) for m′ ∈
{0, . . . ,M − 1} \ {m}. We have NB = γNp ≤∑M−1

m=0 NB,m

to avoid overlooking significant paths in the subsequent joint

delay and angle estimation process. Algorithm 1 summarizes

the procedure of the beam selection at this step5.

B. Step 2: Horizontal Q-DFT Beamforming

We proceed to design a new hybrid beamformer to transform

the high-dimensional signals of each UCA to a low dimension

requiring much fewer RF chains than array elements. This

is achieved by first applying Q-DFT to the signals and then

5Card(U) in Algorithm 1 denotes the cardinality of the set U .

exploiting the convergence property of the Bessel function to

remove insignificant dimensions.

We first derive an approximate expression for the array

response vector to explain the design rationale of this step.

According to the Jacobi-Anger expansion [32], the nH-th array

response vector on the horizontal plane can be written as

[aH,m(φR,l, θR,l)]nH,1 =
1√
NH

ej̟m,l cos(φR,l−ϕnH
)

=
1√
NH

∞
∑

q=−∞
jqJq(̟m,l)e

jq(φR,l−ϕnH
), (12)

where ̟m,l = 2π
c fmr sin(θR,l) and Jq(̟m,l) is the Bessel

function of the first kind of order q.

We notice that the last multiplier in (12), i.e.,

ejq(φR,l−ϕnH
) = ejqφR,l−j2πq(nH−1)/NH , is of strong

resemblance to the weight vectors in the DFT. We take

the Q-DFT [33] to transform the horizontal array response

vectors (12) to offset ϕnH
. The p-th order Q-DFT of (12) can

be expressed as

APM,p =

NH
∑

nH=1

([aH,m(φR,l, θR,l)]nH,1) e
−j

2π(nH−1)

NH
p

=
1√
NH

NH
∑

nH=1

∞
∑

q=−∞
jqJq(̟m,l)e

jq(φR,l−ϕnH
)−jpϕnH

=
1√
NH

NH
∑

nH=1

( ∞
∑

q=−∞
jqJq(̟m,l)e

−jϕnH
(p+q)ejqφR,l

)

.

(13)

Let p + q = QNH, i.e., q = QNH − p. Then, (13) can be

rewritten as

APM,p =
1√
NH

∞
∑

Q=−∞
NHj

(QNH−p)

× J(QNH−p)(̟m,l)e
j(QNH−p)φR,l

(⋆)
=
√

NH



jpJp(̟m,l)e
−jpφR,l

+

∞
∑

Q=−∞,Q6=0

εp,Q(̟m,l, φR,l)



 , (14)



where

εp,Q(̟m,l, φR,l) = j(QNH−p)J(QNH−p)(̟m,l)e
j(QNH−p)φR,l .

(⋆) is obtained by the property of the Bessel function

J−v(x) = (−1)vJv(x) [32].

Lemma 1. For the Bessel function Jv(x), when its order v
is larger than its argument x, i.e., |v| > |x|, the amplitude of

Jv(x) is so small and negligible, i.e., |Jv(x)| ≈ 0.

Proof. See Appendix I.

From Lemma 1, we can derive the following theorem on

the approximation of the horizontal array response vector.

Theorem 1. If NH ≥ 2P , the NH-dimensional array re-

sponse vectors on the horizontal plane can be transformed

to a much smaller (2P + 1)-dimensional space with negli-

gible loss, i.e., p ∈ [−P, P ] ∩ Z, where P = ⌊2πf0r/c⌋
is the highest order. The p-th order of the (2P + 1)-
dimensional vector, APM,p, can be approximated as APM,p ≈√
NHj

pJp(̟m,l) exp (−jpφR,l) .

Proof. See Appendix II.

According to Theorem 1, we see that, by using the Q-DFT,

the NH-dimensional array response vectors of the horizontal

UCA can be transformed to only (2P + 1) dimensions, and

each element of the vector can be approximately expressed

as an exponential function weighted by a Bessel function of

the same order, as long as the conditions in Theorem 1, i.e.,

NH ≥ 2P , is met6.

We note that Q-DFT is a linear transform and hence can

preserve the multiple-invariance structure of the array response

vectors for the subsequent angle and delay estimation, as will

be elaborated on in Section IV-A; see (29) and (36). Thus,

combining with the beams selected at Step 1, we can design

the values of the phase shifters based on the Q-DFT and the

beamspace transform to convert the array response vectors to a

low dimension. Only a small number of RF chains are needed

for the delay and angle estimation.

At this step, the hybrid beamformer is Ws2 =
GPS,s2GAC,s2WBB,s2. Then we have

ys2,m = WH
s2 rm = (GPS,s2GAC,s2WBB,s2)

Hrm ∈ C
NDS,2×1,

(15)

where WBB,s2 =
√

NV/NHI(2P+1)NB
∈

C
(2P+1)NB×(2P+1)NB , JB = [JB,1,JB,2, . . . ,JB,NB

] ∈
RNV×NB , and GAC,s2 = JB⊗I(2P+1) ∈ R(2P+1)NV×(2P+1)NB .

The elements of JB,u ∈ RNV×1 are given by

[JB,u]nV,1
=

{

1, if nV = η(u);

0, otherwise.

We design the phase shifter set of the analog part of the

hybrid array, as GPS,s2 = Ud ⊗UsH ∈ CNR×(2P+1)NV , where

Ud is given in (5) and the element of UsH ∈ C
NH×(2P+1) can

6In general, this condition can be met in large-scale antenna array systems,
where a large number of antennas are deployed.

be expressed as [UsH]nH,p+P+1 = ej2π(nH−1)p/NH . Hence, the

analog combiner of the hybrid array can be constructed as

WRF,s2 = GPS,s2GAC,s2 = (Ud ⊗UsH)(JB ⊗ I(2P+1))

(⋆)
= (UdJB)⊗ (UsH1I(2P+1)) = UsV ⊗UsH, (16)

where (⋆) follows a property of the Khatri-Rao product, i.e.,

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. The element of UsV ∈
CNV×NB can be calculated as [UsV]nV,u

= exp(−j 2π
NV

(NV+1
2 −

nV)η(u)). As a result, at this step we have NDS,2 = NRF,2 =
(2P +1)NB data streams and RF chains, and NAC,2 = (2P +
1)NV array combiners. The processed received signal in (15)

can be written as

ys2,m = WH
s2 rm

= (Gs2WRF,s2WBB,s2)
HHmxm +WH

s2,mnm

=

√

NV

NH

(UsV ⊗UsH)
H

Np
∑

l=1

βlxme−j2πfmτl

× am(φR,l, θR,l) +WH
s2,mnm

(⋆)
=

√

NV

NH

Np
∑

l=1

βlxme−j2πfmτl(UH
sV ⊗UH

sH)

× (aV,m(θR,l)⊗ aH,m(φR,l, θR,l)) +WH
s2,mnm

=

Np
∑

l=1

βlxme−j2πfmτl(
√

NVU
H
sVaV,m(θR,l))

⊗ (
1√
NH

UH
sHaH,m(φR,l, θR,l)) +WH

s2,mnm

=

Np
∑

l=1

βlxme−j2πfmτl(ãV,m(θR,l)

⊗ ãH,m(φR,l, θR,l)) +WH
s2,mnm, (17)

where (⋆) stems from another property of the Khatri-Rao

product, i.e., (A⊗B)H = AH ⊗BH . According to Theorem

1, the elements of the resulting vertical and horizontal array

response vectors ãV,m(θR,l) and ãH,m(φR,l, θR,l) are given by

[ãV,m(θR,l)]u,1 =
√

NVU
H
sVaV,m(θR,l)

=

NV
∑

nV=1

exp

(

−j
2π

c
fmh(nV − NV + 1

2
) cos(θR,l)

)

× exp

(

j
2π

NV

(
NV + 1

2
− nV)η(u)

)

=
sin (NV(2πfmh cos(θR,l)/c− 2πη(u)/NV)/2)

sin ((2πfmh cos(θR,l)/c− 2πη(u)/NV)/2)
(18)

and

[ãH,m(φR,l, θR,l)]p+P+1,1 =
1√
NH

UH
sHaH,m(φR,l, θR,l)

=
1√
NH

APM,p ≈ jpJp(̟m,l)e
−jpφR,l . (19)

Steps 1 and 2 are indispensable, reducing the number of

required RF chains substantially from NR to (2P + 1)NB.



C. Multidimensional Spatial Interpolation (MDSI)

When the fractional bandwidth or the scale of the antenna

array is large, the aforementioned beam squint effect arises

[19]. This is because the array response vectors (18) and (19)

depend on the frequency of the specific subcarrier fm. The

beam squint effect would compromise the capability of jointly

utilizing the received signals at all frequency bands to estimate

the path parameters. As a result, the high temporal resolution

of wideband mmWave systems could not be effectively ex-

ploited.

One could keep the array response matrices consistent

across all frequencies, by transforming the array response

vectors (18) and (19) associated with the frequency fm,

∀m = 0, 1, . . . ,M − 1, into the corresponding array response

vectors at the reference frequency f0 [23]. For continuous sig-

nals, this could be ideally achieved by the Shannon-Whittaker

interpolation [34], which sets different vertical distances and

radii at different frequencies, i.e., hvi,m = f0h/fm and

rvi,m = f0r/fm. Then, from (18) and (19), the virtual vertical

and horizontal response vectors, ȧV,m(θR,l) and ȧH,m(θR,l),
can be constructed as

[ȧV,m(θR,l)]u,1

=
sin (NV(2πfmhvi,m cos(θR,l)/c− 2πη(u)/NV)/2)

sin ((2πfmhvi,m cos(θR,l)/c− 2πη(u)/NV)/2)

=
sin (NV(2πf0h cos(θR,l)/c− 2πη(u)/NV)/2)

sin ((2πf0h cos(θR,l)/c− 2πη(u)/NV)/2)

= [ãV,0(θR,l)]u,1 (20)

and

[ȧH,m(φR,l, θR,l)]p+P+1,1

= jpJp(
2π

c
fmrvi,m sin(θR,l))e

−jpφR,l

= jpJp(
2π

c
f0r sin(θR,l))e

−jpφR,l

= [ãH,0(φR,l, θR,l)]p+P+1,1. (21)

The signal reconstructed by using (20) and (21) can be

expressed as

ẏs2,m =

Np
∑

l=1

βlxme−j2πfmτl(ȧV,m(θR,l)

⊗ ȧH,m(φR,l, θR,l)) +WH
s2,mnm

=

Np
∑

l=1

βlxme−j2πfmτl(ãV,0(θR,l)⊗ ãH,0(φR,l, θR,l))

+WH
s2,mnm

=

Np
∑

l=1

βlxme−j2πfmτl ã0(φR,l, θR,l) +WH
s2,mnm. (22)

In practice, the Shannon-Whittaker interpolation could hardly

achieve perfect signal reconstruction for time-limited signals,

and it also has a high computational complexity [34].

In this paper, we extend linear interpolation [35] (which

is a low-complexity and effective method for data point

construction) to the multidimensional spatial interpolation. The

multidimensional array response matrices consistent across all

frequencies can be constructed by using the received time-

limited signals. By applying the linear interpolation in both

the vertical and horizontal spatial domains, we can reconstruct

the signal in (17) and obtain an approximation of (22). The

reconstructed signal is calculated as

[ỹs2,m]nDS,2,1
= [ys2,m]nDS,2,1

+
rvi,m

r
∆ys2,H,m

+
hvi,m

h
∆ys2,V,m

,

(23)

where nDS,2 = (2P + 1)(u − 1) + p. If nDS,2 ≤
(2P + 1)(NB − 1), ∆ys2,H,m

and ∆ys2,V,m
are constructed as

∆ys2,H,m
= [ys2,m](nDS,2+1),1 − [ys2,m]nS,1

and ∆ys2,V,m
=

[ys2,m](nDS,2+2P+1),1 − [ys2,m]nDS,2,1
, respectively. Otherwise,

∆ys2,H,m
= [ys2,m]nDS,2,1

− [ys2,m](nDS,2−1),1 and ∆ys2,V,m
=

[ys2,m]nDS,2,1
− [ys2,m](nDS,2−2P−1),1 .

IV. PROPOSED WIDEBAND CHANNEL PARAMETER

ESTIMATION

In this section, we estimate the path parameters and the

3D position of the MS based on the processed signals in

Sections III and III-C. Since the beamformers developed

in Section III are linear transforms, the multiple-invariance

structure required for ESPRIT can be recovered losslessly

between respective submatrices of the space-time response

matrix. By exploiting the recurrence relations in the multiple-

invariance structure, the delay and elevation angle of each

path can be estimated using ESPRIT. For the azimuth angles,

the expression for the horizontal array response vectors (19)

does not exhibit any recurrence. Hence the azimuth angles are

estimated by using MUSIC after obtaining the corresponding

elevation angles. The hardware and software complexities of

the proposed joint delay and angle estimation approach are

analyzed in the end.

A. Wideband JADE Algorithm

Collecting the received signals at all frequencies, we have

ỹ = [ỹs2,1, ỹs2,2, . . . , ỹs2,M ] . Assume that the same signals are

transmitted at all subcarriers. We can vectorize ỹ as

ỹvec = vec(ỹ) =
[

Γ ⋄ Ã
]

d+ vec(ñ) = Ud+ ñv, (24)

where Ã =
[

ã0(φR,1, θR,1), . . . , ã0(φR,Np
, θR,Np

)
]

, ñ =
WH

s2 [n1, . . . ,nM ] , [Γ]m,l = e−j2πfmτl , and d =

x
[

β1, β2, . . . , βNp

]T
. Here, U ∈ CNDS,2M×Np , also known

as the space-time response matrix in [36], collects the set of

AOAs and path delays. The covariance matrix of ỹvec can be

calculated as

Rỹvec
= E

{

ỹvecỹ
H
vec

}

= UΛdU
H + σ2

n I(NDS,2M), (25)

where Λd = E

{

ddH
}

is a diagonal matrix. The eigenvalue-

decomposition (EVD) of Rỹvec
can be obtained by

Rỹvec
= [Es,En]

[

Σs 0Np×(NDS,2M−Np)

0(NDS,2M−Np)×Np
σ2

n INDS,2M−Np

]

× [Es,En]
H = EsΣsE

H
s + σ2

nEnE
H
n , (26)



where Es ∈ CNDS,2M×Np and En ∈ C
NDS,2M×(NDS,2M−Np)

correspond to the signal subspace and noise subspace, respec-

tively. Σs ∈ RNp×Np is a diagonal matrix whose elements are

the Np largest eigenvalues of Rh̄. Based on EnE
H
n +EsE

H
s =

INDS,2M , (26) can be rewritten as

Rỹvec
= Es(Σs − σ2

n INp
)EH

s + σ2
n INDS,2M . (27)

By setting (25) and (27) equal, we obtain

Es = UT, (28)

where T ∈ CNp×Np is a full rank matrix.

As discussed below, U in (28) has a multiple-invariance

structure with a linear recurrence relationship. The relationship

allows the use of the ESPRIT method to estimate the delay

and elevation angle of each path.

1) Delay Estimation: Define the delay-selection matrix

as JD = diag (JD,1, . . . ,JD,M ) ∈ RM×NDS,2M , where

JD,m = 1T
NDS,2

. We can obtain the delay-related submatrix

UD = JDU ∈ C
M×Np . By defining J̃D,m = [01×(m−1), 1,

01×(M−m)] ∈ R1×M , the delay-related submatrix associ-

ated with the frequency fm can be calculated as UD,m =
J̃D,mUD ∈ C1×Np . Thus, we obtain a linear recurrence rela-

tion between the delay-related submatrices of each frequency

as

UD,m̃+1 = UD,m̃ΘD, (29)

where ΘD = diag
(

e−j2π∆Fτ1 , . . . , e−j2π∆FτNp

)

∈ CNp×Np

and m̃ = 1, 2, . . . ,M − 1.
According to (28), the delay-related submatrix of the signal

subspace matrix at the frequency fm can be given by

ED,m = J̃D,mJDEs = UD,mT. (30)

Substituting (29) into (30), we obtain

ED,m̃+1 = ED,m̃T−1ΘDT = ED,m̃ΨD. (31)

By using the total least-squares (TLS) criterion [15], we

estimate ΨD = T−1ΘDT = E
†
D,m̃ED,m̃+1 as Ψ̂D,m̃, each of

which has a total of Np sorted eigenvalues, i.e., λD,m̃,Np
. Due

to the fact that the eigenvalues of an upper triangular matrix are

also diagonal elements of the matrix, we can obtain (M − 1)
different estimates for each ΘD. As a result, the delay of the

np-th path, τnp
, can be estimated as

τ̂l =
1

M − 1

M−1
∑

m̃

[j ln(λD,m̃,l)/2π∆F] . (32)

2) Angle Estimation: We first use the processed vertical

array response vector (20) to estimate the elevation angle.

According to (18), the (u+1)-th element of ãV,0(θR,l) can be

given by

[ãV,0(θR,l)]u+1,1

=
sin (NV(2πf0h cos(θR,l)/c− 2πη(u+ 1)/NV)/2)

sin ((2πf0h cos(θR,l)/c− 2πη(u+ 1)/NV)/2)
. (33)

Comparing [ãV,0(θR,l)]u+1,1 with the u-th element in (20), we

see that two successive components of the processed vertical

array response vector, [ãV,0(θR,l)]u,1 and [ãV,0(θR,l)]u+1,1, are

related as follows.

(−1)η(u) sin ((g(θR,l)− 2πη(u)/NV)/2) [ãV,0(θR,l)]u,1

= (−1)η(u+1) sin ((g(θR,l)− 2πη(u + 1)/NV)/2)

× [ãV,0(θR,l)]u+1,1, (34)

where g(θR,l) =
2π
c f0h cos(θR,l). By trigonometric manipula-

tions, we rewrite (34) as

(−1)η(u) sin

(

η(u)
π

NV

)

[ãV,0(θR,l)]u,1

+ (−1)η(u+1)+1 sin

(

η(u+ 1)
π

NV

)

[ãV,0(θR,l)]u+1,1

= tan

(

g(θR,l)

2

)[

(−1)η(u) cos

(

η(u)
π

NV

)

[ãV,0(θR,l)]u,1

+(−1)η(u+1)+1 cos

(

η(u+ 1)
π

NV

)

[ãV,0(θR,l)]u+1,1

]

.

(35)

Stacking all (NB − 1) equations together yields

tan

(

g(θR,l)

2

)

F0ãV,0(θR,l) = F1ãV,0(θR,l), (36)

where

[F0]ũ,u =










(−1)η(ũ) cos(2πη(ũ)/NV), if u = η(ũ);

(−1)η(ũ+1)+1 cos(2πη(ũ + 1)/NV), if u = η(ũ+ 1);

0, otherwise.

[F1]ũ,u =










(−1)η(ũ) sin(2πη(ũ)/NV), if u = η(ũ);

(−1)η(ũ+1)+1 sin(2πη(ũ+ 1)/NV), if u = η(ũ + 1);

0, otherwise.

with ũ = 1, 2, . . . , NB − 1.

The processes of selecting the angle-related submatrices

are similar to that of selecting the delay-related submatrices.

Define the angle selection matrix as JA = 1T
M ⊗ INDS,2 ∈

RNDS,2×NDS,2M . Then the angle-related submatrix can be for-

mulated as UA = JAU ∈ CNDS,2×Np . Based on the recurrence

relation in (36), we can construct

F0UVΘV = F1UV, (37)

where ΘV = diag
(

tan(g(θR,1)/2), . . . , tan(g(θR,Np
)/2)

)

and

UV = JVUA ∈ CNB×Np is a submatrix of UA, where JV =
I(2P+1)⊗1T

NB
∈ RNB×NDS,2 . Thus, the vertical array response-

related submatrix can be calculated as

EV = JVJAEs = JVJAUT = UVT. (38)

Substituting (38) into (37), we can obtain

F0EVT
−1ΘVT = F0EVΨV = F1EV. (39)



With reference to the delay estimation in Section IV-A1, the

elevation angle of the l-th path, θ̂l, can be estimated as

θ̂R,l = arccos (arctan(λV,l)/πf0h) , (40)

where λV,l is the l-th eigenvalue of Ψ̂V, and Ψ̂V is the

estimated matrix of ΨV = T−1ΘVT.

According to (19), the expression for each horizontal re-

sponse vector, which does not have the invariance structure,

is an exponential function weighted by the Bessel function.

There is no recursive relationship for the azimuth angle esti-

mation. After obtaining the elevation angles, we use MUSIC

to estimate their corresponding azimuth angles.

Define JH = JHAJA ∈ R(2P+1)×NDS,2M , where JHA,u =
[

I(2P+1),0(2P+1)×(2P+1)(NB−1)

]

∈ R(2P+1)×NDS,2 . We can

obtain the corresponding horizontal signal ỹvec,H = JHỹvec ∈
C(2P+1)×1. As done in (26), the covariance matrix of ỹvec,H

can be calculated as Rỹvec,H
= Es,HΣs,HE

H
s,H + σ2

nEn,HE
H
n,H,

where Es,H and En,H are the signal and noise subspaces of

ỹvec,H, respectively.

By substituting the estimate of the l-th path, θ̂R,l, in the

MUSIC estimator, the azimuth angle of the path can be

estimated by

φ̂R,l = argmax
Φ

∥

∥

∥
EH

n,HãH,0(Φ, θ̂R,l)
∥

∥

∥

−2

F
, (41)

where Φ is the azimuth of the AOA, and can be estimated by

1D search.

B. Multipath Parameter Matching

As described above, the estimated channel parameters of

each path can be matched automatically in the absence of

noises. This is because they have the common factor T,

as shown in (28). In the presence of non-negligible noises,

there can be a mismatch between the estimated parameters.

We take the delay and the elevation AOA for an example.

According to (31) and (39), we have ΨD = T−1
D ΘDTD

and ΨV = T−1
V ΘVTV, but TV 6= TD 6= T because

of the noise. Most existing pair matching methods would

require the approximate values of the estimates first, and then

use exhaustive search to match all possible parameter pairs

[37]. Such methods would incur a prohibitive computational

complexity if the numbers of paths and parameters are large.

We note that in our approach, the estimated elevation

angles, θ̂R,l, are used for the estimation of the azimuth angles,

φ̂R,l, so that the azimuth and elevation angles of each path

always match; see (41). However, there is a mismatch between

the estimated delays and angles, primarily caused by the

noises. The mismatch between the estimated delays and angles

can be mitigated by suppressing misalignment between the

eigenvalues of the two matrices ΨD and ΨV. To achieve

this, we introduce two perturbation terms, PD and PV, to

address the potential misalignment (resulting from the non-

negligible receive noises) between the eigenvalues of the two

matrices ΨD and ΨV, hence pairing the estimated delays and

angles for every path. PD denotes the difference between

the estimated delay eigenvalue matrix in the presence of the

noises, ΨD, and the actual delay eigenvalue matrix in the

absence of the noises, Ψ̃D. Therefore, Ψ̃D = ΨD + PD.

Likewise, PV denotes the difference between the estimated

angle eigenvalue matrix in the presence of the noises, ΨV, and

its noise-free counterpart, Ψ̃V. Therefore, Ψ̃V = ΨV + PV.

From (31) and (39), Ψ̃D = ΨD + PD = T̃−1
D ΘDT̃D and

Ψ̃V = ΨV +PV = T̃−1
V ΘVT̃V. As discussed at the beginning

of this subsection, the eigenvalues of Ψ̃D and Ψ̃V match

perfectly under the ideal, noise-free situation. Therefore, by

evaluating PD and PV to minimize the mismatch between

the eigenvalues of ΨD + PD and ΨV + PV, we can obtain

T̃D = T̃V = T̃. The estimated delays and angles can

be correctly paired for different paths; in other words, the

parameter pair matching in (31) and (39) can be achieved. The

perturbation matrices PD and PV can be obtained by solving

the following problem [38]:

min
PD,PV

‖PD‖2F + ‖PV‖2F (42)

s.t. (ΨD +PD) (ΨV +PV) = (ΨD +PV) (ΨV +PD) ,
(43)

where (42) is formulated due to the fact that PD and PV need

to obey the minimum Frobenius norm constraint [38]. The

exact solution to this non-linearly constrained problem (42) is

hard to find. To solve the problem, we rewrite (43) as

PDPV −PVPD

= ΨDΨV +PVΨV +ΨDPD −ΨDΨV −ΨDPV −PDΨV.
(44)

We assume that the perturbations are much smaller than ΨD

and ΨV, then the term (PDPV − PVPD) in (44) can be

suppressed [39].

We can fix one of the two eigenvalue matrices (e.g., PV)

and match the other (e.g., PD) against it. To this end, we set

PV = 0 and focus our evaluation on PD. By setting PV = 0,

PD can be obtained as

vec(PD) = [ΨT
V ⊕ (−ΨV)]

†vec(ΨVΨD −ΨDΨV). (45)

By adding the perturbation matrix PD to the elevation angle

eigenvalue matrix ΨD, the delay and the elevation angles can

be matched. The parameters of each path can be associated

correctly. It is worth pointing out that it is dramatically simpler

to only evaluate PD in problem (45) than it is to evaluate both

PD and PV in problem (42). This is because (42) is a non-

linearly constrained problem.

C. 3D Localization Based on Estimated Channel Parameters

Given the estimates of the azimuth and elevation AOAs,

and the propagation delay of every path, we can specify the

3D direction and the (relative) length of the path. With the

knowledge of the physical environments7, the MS can be

accordingly located. In the case that the time offset between

7This knowledge can be acquired by using existing techniques, such as
coded structured light-based 3D reconstruction [40] and multi-viewpoint cloud
matching [41]. The parameters of reflection/refraction paths from static objects
can also be extracted from long-term estimates.
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Fig. 4. Variation of the computational complexity vs. the number of antennas.

the BS and the MS, τof, is known to the BS, a single line-of-

sight (LOS) or non-LOS (NLOS) path suffices to locate the

MS by retrospectively tracing along the estimated direction

of the path (starting from the BS) for the estimated signal

propagation distance. In the case that τof is unknown, the

distance over which an impinging signal propagates along a

path before reaching the BS may not be accurate. At least

two paths are needed. In the ideal (noise-free) scenario, the

two paths intersect twice. One of the intersections is the

BS, and the other indicates the location of the MS. In the

more practical scenario with non-negligible noises, the two

estimated paths may not intersect, except at the BS. The MS

can be estimated to be at such a position that: its projections

on the two paths account for the least squared difference from

the estimated delay difference of the paths while the total of

its squared distances to the projections is the minimum (e.g.,

by minimizing the (weighted) sum of the squared difference

and distances).

D. Complexity Analysis

We proceed to analyze the hardware and software com-

plexities of the proposed joint delay and angle estimation

approach. For a large-scale antenna array system using fully

digital beamforming, its hardware complexity is O(NR). In

our proposed approach, the use of the hybrid beamformer

allows for a dramatic reduction of the hardware complexity

from O(NR) to O(NRF), where NRF = max(NV, (2P+1)NB).
In terms of signal processing complexity, we compare

the proposed approach with the state-of-the-art techniques,

namely, GBM [2], QRIPM [17], and Q-MLE [21]. For the

proposed approach, after hybrid beamforming, the dimension

of the received signal is reduced to NDS,2, so the computational

complexity of MDSL processing is O(NDS,2M) = O((2P +
1)NBM) = O(γPNpM). The computational complexities of

calculating the covariance matrix, Rỹvec
, in (25) and perform-

ing the EVD on Rỹvec
according to (26) are O(γ2P 2N2

p M
2Ts)

and O(γ3P 3N3
p M

3), respectively, where Ts is the number of

snapshots. The complexities of computing the delay τ̂l and

the elevation angle, θ̂R,l, are O(MN3
p ) and O(γ2N2

p + N3
p ),

respectively. When estimating φ̂R,l with 1D search using

(41), the computational complexity is O(γ2N2
p D), where D

is the size of the search dimension. For the pair matching

operation, the computational complexity is O(N3
p ). Thus, the

overall computational complexity of our proposed approach is

O(γPNpM+γ2P 2N2
p M

2Ts+γ3P 3N3
p M

3+MN3
p +γ2N2

p +
N3

p + γ2N2
p D +N3

p ), which does not depend on the number

of receive antennas NR. The computational complexities of

QRIPM and GBM increase rapidly, as the number of receive

antennas increases. When the number of receive antennas NR

is large, the computational complexities of QRIPM and GBM

are O(N3
RM

4) and O(P 3N3
VM

4), respectively. The compu-

tational complexity of Q-MLE is O(N2
RM

2NAZINELENDEL +
(NpNRM)3.5), where NAZI, NELE, and NDEL are the search

grids of azimuth angle, elevation angle, and delay, respectively.

Fig. 4 compares the computational complexities of the four

methods with the growing number of antennas NR = NHNV,

where γ = 2, Np = 3, M = 20, and P = 12. We set

D = NAZI = NELE = NDEL = 100. The figure shows that,

compared with the existing methods, the proposed approach

has a substantially lower computational complexity. The gaps

between the proposed algorithm and the existing alternatives

are increasingly significant with the growing number of receive

antennas at the BS.

V. SIMULATION RESULTS

In this section, we present simulation results to demonstrate

the performance of the proposed approach under different

parameters. We set f0 = 30 GHz and B = 2 GHz8, and

assume that there are a total of Np = 3 NLOS paths and

M = 20 consecutive subcarriers. The distance, h, between

adjacent receiving UCAs and the radius, r, of each UCA are

0.5λ0 and 2λ0, respectively.

Fig. 5 plots the root mean square errors (RMSEs) of the

estimated angle, delay, and MS position with the increasing

number of receive antennas, under different SNR conditions.

The proposed algorithm is compared with GBM [2], QRIPM

[17], Q-MLE [21], and the Cramér-Rao lower bound (CRLB)9.

Note that GBM [2], QRIPM [17], and Q-MLE [21] are the

state of the art for solving the considered parameter estimation

problem for UCyAs, and act as the benchmarks in this paper.

In particular, the sparsity of the channel is exploited in [2],

where the angular space is first discretized and then discrete

directions with significant incoming powers are picked up to

estimate the channel parameters.

Despite sparse representation techniques were also devel-

oped to exploit the sparsity of mmWave multi-antenna systems

for channel estimation in [3] and [6], the techniques are not

8The beam squint depends on both the fractional bandwidth and the scale of
the deployed antenna array [19]. In the case of 30 GHz carrier frequency and
2 GHz bandwidth, the fractional bandwidth is 0.067, which is non-negligible
and can result in a noticeable beam squint, especially when the size of the
array is large.

9The CRLB is calculated according to [42].
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Fig. 5. The RMSE vs. the number of BS antennas for the estimation of different parameters. (a) Azimuth AOA; (b) Elevation AOA; (c) Path delay; and (d)
MS position.

applicable to the problem considered in this paper. One reason

is that the sparse representation techniques developed in [3]

and [6], based on the DFT of the array steering vectors, are

only suitable for ULAs and URAs, where linear recurrence re-

lations exist between the array steering vectors; see [3, eq. (5)]

and [6, eq. (3)]. Another reason is that the method developed

in [6] only estimates the so-called channel component which

is the product of channel parameters (including the channel

gain and signal direction), and does not estimate explicitly

the channel parameters, e.g., the angle and delay. The method

in [3] uses the ML-based algorithms to estimate the channel

parameters (i.e., angle and delay) in the same way as Q-MLE

[21], which is one of the benchmarks used in our performance

evaluation.

As shown in Figs. 5(a) and 5(b), the proposed method and

GBM are worse than QRIPM in terms of angle estimation,

when the number of antennas is small, i.e., less than 100.

The reason is that the proposed algorithm may suffer from

an inaccurate approximation in (19), due to the unsatisfied

conditions in Theorem 1. However, as the number of antennas

increases, the accuracies of the proposed approach and GBM

improve faster than that of QRIPM. The proposed method

quickly outperforms both QRIPM and GBM, and approaches

the CRLB. The improvement slows down with the increasing

number of antennas. When the number of antennas is large

(e.g., more than 300), the estimation accuracies of the AOAs

improve marginally, resulting from the increasingly negligible

relative growth of the array aperture of the circular arrays. As

also shown in Figs. 5(a) and 5(b), Q-MLE outperforms the

other three approaches, including the proposed approach, in

terms of angle estimation. However, Q-MLE has a significantly

higher computational complexity than the proposed approach,

as discussed in Section IV-D.

As shown in Fig. 5(c), the proposed approach achieves the

best delay estimation accuracy, attributing to the high temporal

resolution of the wideband mmWave signals offered by the

MDSI method in the proposed approach. The RMSE curves

of the estimated delay appear to be constant. The reason is

because the delay estimation precision depends primarily on

the signal bandwidth, and is less affected by the number of

antennas at the BS (as opposed to the angle estimation). Given

its superiority in the angle and delay estimation, the proposed

approach outperforms QRIPM, GBM, and Q-MLE in terms of

localization, as corroborated in Fig. 5(d).

In order to validate Theorem 1, Fig. 6 plots the RMSE of the

angle estimation versus the value of the highest order, P , under



different numbers of horizontal array response vectors. We see

that when the highest order P ≤ 11, our proposed approach

cannot perform satisfactorily, since the number of phase-

mode vectors is not sufficient to represent the transformed

array response vectors in Section III-B. Fig. 6 also shows

that, if P ≥ 12, for any number of array response vectors,

increasing the phase-mode vectors has little influence on the

angle estimation performance. This means that the number of

phase-mode vectors needed in our approach does not depend

on the number of array response vectors, which is important

for complexity reduction, as discussed in Section IV-D. In

addition, we also see that because the condition in Theorem

1, NH ≥ 2P , is unlikely to be satisfied when NH = 10,

the RMSE is much poorer than those applying more array

response vectors.

Fig. 7 assesses statistically the proposed approach by plot-

ting the cumulative distribution function (CDF) of the local-

ization error. We assume that the time offset τof obeys a zero-

mean Gaussian distribution with the standard deviation of 4

ns, and τof is unknown to the BS in the simulation. In Fig.

7(a), we observe that although the performance of the proposed

approach decreases with the decline of the average received

SNR, the statistical localization error remains small even for

SNR = 0 dB, as long as a sufficient number of receive antennas

are deployed. In addition, we see that the proposed approach

is able to achieve a centimeter-level localization accuracy

with a probability of over 60%, when the number of receive

antennas is 200. Fig. 7(b) shows the relationship between the

localization accuracy and the number of received paths. It

can be seen that the proposed approach cannot provide high-

accuracy localization with high probability if only a single

path is received, since the time offset τof is unknown to the

BS, as discussed in Section IV-C. In Fig. 7(b), we also see that

when the number of received paths is more than three, more

paths lead to limited improvement in localization accuracy.

VI. CONCLUSION

In this paper, a novel joint delay and angle estimation

approach was proposed for wideband mmWave large-scale

hybrid arrays. We proposed a new 3D hybrid beamformer to

reduce the number of required RF chains while maintaining the

critical recursive property of the space-time response matrix

for angle and delay estimation. We also generalized linear

interpolation to reconstruct the output signals of the 3D hybrid

beamformer and to achieve consistent array response across

the wideband and suppress the beam squint effect. As a result,

the delay and the azimuth and elevation angles of every

multi-path component can be estimated. Simulation results

showed that, when a large number of antennas is deployed,

our proposed approach is capable of precisely estimating the

channel parameters even in low SNR regimes. Potential future

extensions of this work include simultaneous localization and

environment mapping, performance evaluation of the proposed

approach in real-world scenarios, and new techniques to ac-

celerate parameter matching.

APPENDIX I

PROOF OF LEMMA 1

According to the property of Bessel function, i.e., J−v(x) =
(−1)vJv(x), we have |J−v(x)| = |Jv(x)|, so here we only

use Jv(x) with v ∈ Z+ for illustration convenience. Let x =
vρ, ρ ∈ (0, 1]. The Bessel function, Jv(x), whose order v
exceeds its argument, x, can be written in the following form

[32]

Jv(vρ) =
1

π

∫ π

0

exp (−vF (ϑ, ρ)) dϑ, (46)

where

F (ϑ, ρ) = log

(

ϑ+
√

ϑ2 − ρ2 sin2 ϑ

ρ sinϑ

)

− cotϑ

√

ϑ2 − ρ2 sin2 ϑ.

The partial derivative of (46) with respect to ρ is calculated

as

∂

∂ρ
Jv(vρ) = − v

π

∫ π

0

∂F (ϑ, ρ)

∂ρ
exp (−vF (ϑ, ρ)) dϑ

=
v

πρ

∫ π

0

g(ϑ, ρ) exp (−vF (ϑ, ρ)) dϑ, (47)

where g(ϑ, ρ) =
(

ϑ− ρ2 sinϑ cosϑ
)

/
√

ϑ2 − ρ2 sin2 ϑ. Con-

sidering that

g(ϑ, ρ) =
ϑ− ρ2 sinϑ cosϑ
√

ϑ2 − ρ2 sin2 ϑ
≥ ϑ− sinϑ cosϑ
√

ϑ2 − ρ2 sin2 ϑ

≥ ϑ− sinϑ
√

ϑ2 − ρ2 sin2 ϑ
≥ 0, (48)

we have ∂Jv(vρ)/∂ρ > 0, and conclude that Jv(vρ) is a

positive increasing function of ρ. Thus, Jv(vρ) < Jv(v).

On the other hand, the partial derivative of (46) with respect

to v is calculated as

∂

∂v
Jv(vρ) = − 1

π

∫ π

0

F (ϑ, ρ) exp (−vF (ϑ, ρ)) dϑ. (49)

Because

∂

∂ϑ
F (ϑ, ρ) =

(1− ρ cotϑ)2
√

ϑ2 − ρ2 sin2 ϑ
+

√

ϑ2 − ρ2 sin2 ϑ ≥ 0 (50)

and ∂F (0, ρ)/∂ρ = −
√

1− ρ2/ρ ≤ 0, we have F (ϑ, ρ) ≥
F (0, ρ) ≥ F (0, 1) = 0, and hence ∂Jv(vρ)/∂v < 0. This

means that Jv(vρ) is a positive decreasing function of v, i.e.,

Jv(vρ) ≤ J1(ρ). Therefore, we have Jv(vρ) < Jv(v) ≤
J1(1) ≈ 0.44 with ρ ∈ (0, 1] and v ∈ Z+. When |v| > |x|,
|Jv(x)| ≈ 0, v ∈ Z.
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APPENDIX II

PROOF OF THEOREM 1

According to Lemma 1, we observe that Jp(̟m,l) cannot

be omitted if |p| ≤ |̟m,l| = |2πfmr sin(θR,l)/c| ≤ 2πfmr/c.
Because f0 ≤ fm and p ∈ Z, we set the highest order P =
max(|p|) = ⌊2πf0r/c⌋.

On the other hand, in the case of Q 6= 0, because p ∈
[−P, P ] ∩ Z and NH ≥ 2P , we have |p−QNH| ≥ |̟m,l|.
According to Lemma 1, we obtain

|εp,Q(̟m,l, φR,l)|
=
∣

∣

∣
j(QNH−p)J(QNH−p)(̟m,l) exp (j(QNH − p)φR,l)

∣

∣

∣

=
∣

∣J(p−QNH)(̟m,l)
∣

∣ ≈ 0. (51)

In this case, (14) can be approximated by

APM,p =
√

NH



jpJp(̟m,l)e
−jpφR,l

+

∞
∑

Q=−∞,Q6=0

εp,Q(̟m,l, φR,l)





≈
√

NHj
pJp(̟m,l)e

−jpφR,l . (52)

This concludes the proof of Theorem 1.
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