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Abstract—Millimeter-wave (mmWave) hybrid analog-digital
beamforming is a promising approach to satisfy the low-latency
constraint in multiple unmanned aerial vehicles (UAVs) systems,
which serve as network infrastructure for flexible deployment.
However, in highly dynamic multi-UAV environments, analog
beam tracking becomes a critical challenge. The overhead of
additional pilot transmission at the price of spectral efficiency
is shown necessary to achieve high resilience in operation. An
efficient method to deal with high dynamics of UAVs applies
machine learning, particularly Q-learning, to analog beam track-
ing. The proposed Q-learning-based beam tracking scheme uses
current/past observations to design rewards from environments to
facilitate prediction, which significantly increases the efficiency
of data transmission and beam switching. Given the selected
analog beams, the goal of digital beamforming is to maximize
the SINR. The received pilot signals are utilized to approximate
the desired signal and interference power, which yield the SINR
measurements as well as the optimal digital weights. Since the
selected analog beams based on the received power do not
guarantee the hybrid beamforming achieving the maximization
SINR, we therefore reserve additional analog beams as candidates
during the beam tracking. The combination of analog beams with
their digital weights achieving the maximum SINR consequently
provides the optimal solution to the hybrid beamforming.

Index Terms—UAV communication, mmWave, machine learn-
ing, Q-learning, beam tracking, hybrid beamforming, weight
optimization, highly dynamic environment.

I. INTRODUCTION

Applications of unmanned aerial vehicles (UAVs) in civil

uses become popular in recent years. For example, post-

disaster use. A UAV is capable of carrying a network device as

an access point that uses an intelligent reflecting surface with

beamforming to reflect incident signals [1]. A group of UAVs

forms an aerial radio access network (aerial-RAN), which

serves short-term network infrastructure as an independent

wireless network or a long-term extension of existing mobile

communication networks [2], [3]. An aerial-RAN can perform

tasks such as (i) the UAVs together transmit or receive signals

from different directions to detect weak signals from victims

and (ii) the UAVs separately serve as independent wireless

networks to provide a wide range of services, see Fig. 1. In

this example, two followers collect data from ground users

and then report the information to the lead UAV, which will

pass the data to a remote ground anchor node [4], [5], [6].
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Fig. 1. An example of multi-UAV scenarios. The UAVs are deployed in an
area of interest for search and rescue works, where the lead UAV transmits
the users’ data collected from the followers to the ground anchor node.

Such an operation is often characterized by low-latency and

high-resilience constraints. The former is defined as the time

to get a response to information sent, while the latter is the

ability that provides and maintains an acceptable link quality

of services in highly dynamic operations.

Millimeter-wave (mmWave) communication is one of the

candidates to satisfy the low-latency requirement due to avail-

ability of large chunks of spectrum in unlicensed mmWave

frequency bands [7], [8]. Compared with sub-6 GHz com-

munications, mmWave propagation suffers from more severe

environmental conditions, such as path loss and a small

number of scattering events [9], [10]. In order to improve

the data rates and quality of service, beamforming technology

for large antenna arrays seems to be a promising approach.

At mmWave frequencies, analog beamforming via a passive

phased array is taken into account due to cost and power con-

sumption concerns [11], [12], [13]. With more than one analog

beamforming vector, linear combinations of multiple analog

beamforming vectors with weights of digital beamformers as

coefficients provide more degrees of freedom for beamforming

designs. Such a beamforming architecture is called hybrid

analog-digital beamforming [14], [15].

In hybrid beamforming systems, although both analog and

digital beamforming matrices use the same word beamform-

ing, only the former has a specific geometrical meaning in

the sense of transmitting or receiving signals towards specific

directions in the 3-D space using antenna arrays. In contrast,

the digital weights act in the sense of optimum linear com-

bining, given some cost criterion. According to the functions

of analog and digital beamforming, hybrid beamforming can

be viewed as first converting a MIMO channel matrix (in

the spatial domain) into an effective channel (in the angular
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domain) using analog beamforming vectors [16], [17]. Then,

one can further design the weights of the digital beamformers

to linearly combine the analog beamforming vectors based on

some optimality criteria. Clearly, the performance of hybrid

beamforming is dominated by the analog beam search. In

highly dynamic UAV environments with speed up to 100 m/s

[18], this challenge (or specifically speaking, analog beam

tracking) will be a critical problem.

One of the key performance indicators for dynamic beam

tracking could be network resilience [19]. In dynamic environ-

ments, the UAVs may have to switch the analog beams rapidly

in order to stably provide the acceptable link quality. Given

codebooks that consist of candidates for the analog beams,

the work in [20] presented a gradient-based algorithm to find

a better beam next to the currently used beam, and in [21],

the beam tracking problem is formulated as a multi-armed

bandit problem. One can also use the extended Kalman filter

to recursively track the beams based on the estimated angles

of departure and arrival (AoDs/AoAs) [22]. In addition, a con-

ventional object tracking method using reinforcement learning

in computer vision [23] has attracted attention and been

used in beam tracking [24], [25], [26]. All above-mentioned

methods try to find the beam which can achieve an acceptable

link quality. However, implementing beam tracking for highly

dynamic channels needs a large number of observations (that

is, received pilot signals) by sacrificing the spectral efficiency.

When we pursue a high-resilient multi-UAV communication,

the transmission overhead of pilots is another issue. In this

paper, we attempt to strike the balance between the system

resilience and efficiency.

To handle the beamforming problem for a time-varying

channel, we let the UAVs learn how to interact with the highly

dynamic environment during the beam tracking using Q-

learning [27], [28]. Q-learning is a model-free reinforcement

learning algorithm that uses experience, current measurements,

and rewards from the environments to solve the prediction

problem without knowing a model of the environment. When

applying Q-learning to beam tracking, the crucial problem

is to design the reward function based on the noisy obser-

vations. Please note that the reward function also influences

the experience in Q-learning. Some prior works in [24], [29]

used true values of the signal to interference plus noise ratio

(SINR) or true values of the received power to define the

reward function, which cannot faithfully show the performance

of Q-learning-based beam tracking in practical cases. In the

proposed method, we use the noisy observations to design

the reward function and take current/past observations as

arguments in such a way to reduce the pilot overhead.

In the analog beam tracking, the analog beams are selected

according to the power of observations.1 These beams together

yield (nearly) the maximum received power. However, the

spatial-domain interference from different UAVs could seri-

ously degrade the throughput. Essentially, what really matters

to multi-UAV hybrid beamforming is the SINR maximization

[30], [31]. To this end, given the selected analog beams, one

1Precisely, the power of observations determines the rewards from environ-
ments in Q-learning, and then we use the rewards to find favorable beams.

can design the corresponding digital weights to maximize

the SINR. To obtain the measurements of SINR, we use

the received coupling coefficients2 (associated with the beams

assigned to difference UAVs) to approximate the desired signal

and interference power, which facilitates the design of the

digital weights. Moreover, it is worth noting that the analog

beams leading to the maximum received power may not

lead to the maximum SINR [17]. We therefore reserve more

candidates for analog beams during the beam tracking. It turns

out that the analog beams have to be determined after linear

combinations of analog beamforming vectors with the digital

weights.

The contributions of the proposed method are summarized

as follows:

• The proposed method only requires the received coupling

coefficients as observations to implement both the analog

beam tracking and digital weight optimization. Compared

with prior works in the literature which need detailed

knowledge, such as channel, we provide a more feasible

solution to connect multiple UAVs with low complexity.

• We formulate the beam tracking problem using a Q-

learning model and introduce how to use the coupling

coefficients to design the rewards. The proposed method

can stably track the beams in highly dynamic environ-

ments.

• To track the beams in highly dynamic UAV environ-

ments, the burden of pilot transmission is inevitable. The

proposed beam tracking method uses current and past

observations to solve the prediction problem. In such

a way, it significantly increases the efficiency of data

transmission and beam switching.

• The selected analog beams based on the received power

do not ensure that hybrid beamforming achieves the

maximization SINR. We manage to reserve additional

analog beams as candidates during the beam tracking

and then determine which combination of analog beams

with their digital weights achieves the maximum SINR.

This idea can be simply implemented given the coupling

coefficients.

The rest of this paper is organized as follows: Section

II describes the multi-UAV beamforming system and time-

varying AoDs/AoAs. Section III states the objectives and

challenges of the hybrid beamforming problem in highly

dynamic environments. To efficiently track the analog beams

with limited number of observations, Q-learning is applied

to the beam tracking problem for one and multiple links

presented in Section IV. Given selected beam pairs, we pursue

the corresponding optimal digital weights and the solution

is provided in Section V. Simulation results are presented in

Section VI, and we conclude our work in Section VII.

We use the following notations throughout this paper.

2A coupling coefficient is a measure of a pair of analog beamforming
vectors selected on both sides of the channel [17].
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Fig. 2. A multi-UAV hybrid beamforming system has a lead with a
hybrid analog-digital beamformer and U followers equipped with analog
beamformers.

a A scalar.

a A column vector.

A A matrix.

A A set.

[a]n The nth entry of a.

A
∗ The complex conjugate of A.

A
H The Hermitian transpose of A.

IN The N ×N identity matrix.

II. SYSTEM MODEL

A clustered multi-UAV beamforming system shown in Fig.

2 has one lead and U followers. We assume that these UAVs

are perfectly synchronized in time and frequency, and the

lead communicates U data streams to U followers at the

same time and frequency. That is, we consider space-division

multiple access (SDMA) with beamforming to enable data

transmission/reception for multiple UAVs [32], [33], and let

each UAV be equipped with a uniform rectangular array

(URA) of N = NXNY antennas.

The goal of multi-UAV beamforming in a highly dynamic

environment is to maximize the system throughput in a discrete

time interval t = 0, · · · , T . At the cluster lead, the signals are

received from specific directions using U analog beamformers

at time t, denoted by fP,u,t ∈ CN×1, u = 1, · · · , U . The ana-

log beamformers are implemented in the passband as part of

the RF front end. Due to the concerns of high implementation

costs and power consumption, they have some limitations, e.g.,

the weights of analog beamformers have unit magnitude be-

cause analog beamformers are typically implemented by phase

shifters [12]. The U analog beamforming vectors together are

denoted by the matrix FP,t = [fP,1,t, · · · , fP,U,t] ∈ CN×U ,

and these vectors can be further combined with the weights

of the baseband digital beamformer FB,t ∈ CU×U .

Given a pre-defined codebook F = {f̃nf
∈ CN×1, nf =

1, · · · , NF , NF > U}, the U analog beamforming vectors at

the lead are selected from the set F . Beam f̃nf
of the URA,

i.e., the nth
f member of F can be represented by the Kronecker

product (denoted by ⊗) of the beamforming vectors f̃X,nf
∈

x

y

z

d

d

Fig. 3. An array geometry of the URA.

CNX×1 and f̃Y,nf
∈ CNY ×1 in x- and y-direction respectively

[34]:

f̃nf
= f̃X,nf

⊗ f̃Y,nf
, (1)

and the element of f̃X,nf
and f̃Y,nf

can be represented by

[f̃X,nf
]nx =

exp
(

−j 2π
λ0

cos(φnf
) sin(θnf

)(nx − 1)∆d

)

√

NX

,

[f̃Y,nf
]ny =

exp
(

−j 2π
λ0

sin(φnf
) sin(θnf

)(ny − 1)∆d

)

√

NY

, (2)

where nx = 1, · · · , NX and ny = 1, · · · , NY are the indices

of antenna elements in x- and y-direction respectively. Also,

φnf
and θnf

are respectively the nth
f candidate for the azimuth

and elevation steering angles at the lead (see Fig. 3), ∆d =
λ0/2 is the distance between neighboring antenna elements,

and λ0 is the wavelength at the carrier frequency.

For the U followers, each only uses a single analog beam-

former wP,u,t ∈ CN×1 with N phase shifters to commu-

nicate with the lead.3 Similar to the analog beams at the

lead, each follower selects an analog beam from codebook

W = {w̃nw
∈ C

N×1, nw = 1, · · · , NW , NW > U}.4

Via a time-varying channel Hu,t ∈ C
N×N between the

lead and follower u, the received signal at the lead after the

hybrid beamformer is the superposition of the desired signal,

interference from other UAVs, and combined noise [30], [31]:

ru,t = f
H
B,u,tF

H
P,tHu,twP,u,tsu,t

︸ ︷︷ ︸

desired signal

+ f
H
B,u,tF

H
P,t

U∑

i=1,i6=u

Hi,twP,i,tsi,t

︸ ︷︷ ︸

interference

+ f
H
B,u,tF

H
P,tnt

︸ ︷︷ ︸

combined noise

, (3)

where su,t ∈ C is the pilot signal satisfying |su,t|2 = 1
and E[su,ts

∗
i,t] = 0, nt ∈ CN×1 is an N -dimensional

circularly symmetric complex Gaussian (CSCG) random noise

vector with mean 0N×1 and covariance matrix σ2
nIN , i.e.,

3We assume that all the UAVs are equipped with a hybrid beamforming
architecture since the leading UAV may change over time. The lead is
randomly selected from U + 1 UAVs at the beginning.

4Essentially, these two codebooks are the same, i.e., W = F . We specify
the beamforming problem in terms of two different notations of codebooks
for generality.
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nt ∼ CN (0N×1, σ
2
nIN ), and fB,u,t ∈ CU×1 is the uth column

of FB,t.

The link between the lead and follower u is modeled as a

line-of-sight (LoS) path. According to the relative position and

orientation between the transmitter and receiver, the MIMO

channel matrix can be determined by the complex path gain

ρu ∈ C and the outer product of two array response vectors

aA,u,t ∈ CN×1 and aD,u,t ∈ CN×1, which are functions

of AoA and AoD [15], [35]. Thus, the channel matrix is

expressed by

Hu,t = ρu · aA,u,t · a
H
D,u,t. (4)

In a manner similar to the steering vector in (1), the array

response vectors can be represented by the Kronecker product

of the array response vectors in x- and y-direction. Take aD,u,t

as an example:

aD,u,t = aD,X,u,t ⊗ aD,Y,u,t, (5)

and the entries of aD,X,u,t and aD,Y,u,t are given by

[aD,X,u,t]nx =
exp

(

−j2π

λ0
cos(φD,u,t) sin(θD,u,t)(nx − 1)∆d

)

√

NX

,

[aD,Y,u,t]ny =
exp

(

−j2π

λ0
sin(φD,u,t) sin(θD,u,t)(ny − 1)∆d

)

√

NY

,

(6)

where the random variables φD,u,t and θD,u,t stand for the

azimuth and elevation angles of departure at time t. Given the

azimuth and elevation angles of arrival (denoted by φA,u,t,

θA,u,t), the array response vector at the receiver (i.e., aA,u,t)

has a similar form as (5).

To model a highly dynamic environment for the angles

under an observed LoS path, a Gaussian random walk is used

to generate the time-varying angles φA,u,t, θA,u,t, φD,u,t, and

θD,u,t. For instance, the azimuth angle of arrival φA,u,t can

be defined by

φA,u,t = φA,u,0 +

t∑

i=1

λi, (7)

where φA,u,0 ∼ U(0, 2π) is a randomly selected initial angle

of φA,u,t and follows a uniform distribution, and λi ∼
N (0, σ2

λ) is the disturbance (or white noise) following a

normal distribution. The other three time-varying angles are

generated in a similar way.

III. PROBLEM STATEMENT

The goal of hybrid beamforming in the multi-UAV system is

to maximize the SINR (or system throughput) during the time

interval [0, T ]. Meanwhile, after the combiner FP,tFB,t, the

variance of the combined noise signal is enforced to remain

constant, i.e.,

E
[(
f
H
B,u,tF

H
P,tnt

) (
f
H
B,u,tF

H
P,tnt

)H
]

= σ2
n ∀u, t, (8)

which leads to a power constraint on the combiner as

f
H
B,u,tF

H
P,tFP,tfB,u,t = 1 ∀u, t. (9)

Then, by introducing two sets IF,t and IW,t that include

promising candidates for the analog beamforming matrices, we

seek FP,t, FB,t, and WP,t that together achieve the maximum

SINR and satisfy the power constraint from t = 0 to t = T :

T∑

t=0

max
FP,t∈IF,t,WP,t∈IW,t

{

max
FB,t

U∑

u=1

PS,u,t

PI,u,t + σ2
n

}

(10)

s.t. fHB,u,tF
H
P,tFP,tfB,u,t = 1 ∀u, t,

where PS,u,t and PI,u,t are the power of the desired and

interference signals given by

PS,u,t =
∣
∣f

H
B,u,tF

H
P,tHu,twP,u,t

∣
∣
2
, (11)

PI,u,t =

U∑

i=1,i6=u

∣
∣f

H
B,u,tF

H
P,tHi,twP,i,t

∣
∣
2
. (12)

In the paper, we do not assume the channel state information

or any knowledge of AoAs/AoDs is known to the lead.

Instead, the required observations are the estimates of coupling

coefficients associated with a beam pair (f̃nf
, w̃nw

), where

f̃nf
∈ F and w̃nw

∈ W . By correlating the received pilot

signals with the known transmitted ones, we can obtain such

observations given by5

yu,t(nf , nw)

= s∗u,t



f̃
H
nf
Hu,tw̃nw

su,t + f̃
H
nf

U∑

i=1,i6=u

Hi,tw̃nw
si,t + f̃

H
nf
nt





︸ ︷︷ ︸

received polit signal

= f̃
H
nf
Hu,tw̃nw

+



f̃
H
nf

U∑

i=1,i6=u

Hi,tw̃nw
s∗u,tsi,t + s∗u,tf̃

H
nf
nt





︸ ︷︷ ︸

,zt

= f̃
H
nf
Hu,tw̃nw

︸ ︷︷ ︸

coupling coefficient

+ zt, (13)

where zt denotes the superposition of the combined interfer-

ence and noise, and we assume that it follows a complex

normal distribution, i.e., zt ∼ CN (0, σ2
z).

Given the observations {yu,t(nf , nw)∀u, t}, the strategy of

solving the problem (10) could be, first, using the observations

to find the sets IF,t and IW,t that ideally consist of the optimal

analog beamforming matrices. However, due to the hardware

constraint on the analog beamformer, the beam probing is

time-consuming. When the channel is highly dynamic, the

observations acquired early may become unreliable. How to

use the observations to interact with the highly dynamic

environment during the beam probing becomes a crucial

problem. As a result, the idea of Q-learning algorithm [28]

is borrowed to find appropriate beams (i.e., the members of

IF,t and IW,t) for time-varying channels. The concept of Q-

learning is to let the UAVs learn the optimal behavior directly

from the interaction with the environment. Once we determine

the candidate sets IF,t and IW,t, the observations associated

5The notation of observation yu,t(nf , nw) is simplified from its formal ex-
pression given by yu,t(nf = nf (u, t) ∈ {1, · · · , NF }, nw = nw(u, t) ∈
{1, · · · , NW }).
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Fig. 4. All the candidates for the beam pairs {(f̃nf
, w̃nw ) ∀nf , nw} are

represented by the grid map, where the red ones are trained during the initial
beam search. An example of the Q-learning-based beam selection is given in
Example 1. According to the updated Q-values, see Table I, it will converge

to beam pair (f̃3, w̃3) after few iterations.

with the members of IF,t and IW,t are used to generate the

corresponding digital weights and the SINR measurement.

IV. ANALOG BEAM TRACKING USING Q-LEARNING

In this section, we introduce an analog beam tracking

algorithm for highly dynamic environments. Starting from a

single link between the lead and a follower, we adopt Q-

learning to deal with the beam tracking problem. The idea can

be easily extended to multiple links with additional constraints.

A. Beam Selection Using Q-Learning for One Link

To begin with, let us focus on the link between the lead

and follower u. That is, we seek the candidates for fP,u,t

and wP,u,t. When the codebook size is large, the efficient

way of beam tracking is to start from some specific directions

that cover the 3-D environment. This phase is called initial

beam search. For example, Fig. 4 shows NFNW = 6 × 6
candidates for the analog beam pair, where NF and NW are

the numbers of elements in codebooks F andW respectively.

In the example, the four beam pairs highlighted in red are

initially explored. To be formal, we define two sets that consist

of the beams used in the initial search by FI = {f̃1, f̃4}
and WI = {w̃1, w̃4} and assume that both the lead and

follower have the same initial beam search pattern. After the

beam probing using these four beam pairs, the one having the

maximum received power will be selected as a starting point

of beam tracking in the next phase.

The beam tracking is conventionally implemented by

searching a better choice next to the currently used beam pair

[20], [36]. Both the initial beam search and beam tracking in

the above-mentioned work only explore the environment rather

than interact with the environment. The concept of “interaction

with the environment” can be viewed as a beam selection

algorithm that can explore uncharted territory and, meanwhile,

exploit the searching experience. Concerning a highly dynamic

environment, the exploration-exploitation balance becomes

more important to the beam tracking. The idea of Q-learning

is to let an agent (e.g., a UAV) learn to strike the balance

between exploration and exploitation.

TABLE I
THE Q-VALUES ARE UPDATED ACCORDING TO THE STATES AND ACTIONS

GIVEN IN EXAMPLE 1 AND FIG. 4. HERE WE LET THE Q-VALUES BE

UPDATED BY EITHER 0 OR 1 FOR SIMPLICITY.

Time (t) Episode
Step State Action At

(NS = 4) St ↑ ↓ → ←

0

0

0 (f̃1, w̃1) 1 0 0 0

1 1 (f̃1, w̃2) 0 0 1 0

2 2 (f̃2, w̃2) 0 0 1 0

3 3 (f̃3, w̃2) 1 0 0 0

4

1

0 (f̃1, w̃4) 0 0 1 0

5 1 (f̃2, w̃4) 0 1 0 0

6 2 (f̃2, w̃3) 0 1 0 0

7 3 (f̃2, w̃2) 0 0 2 0

.

.

.

In Q-learning, the experience is recorded in a Q-learning

table (or Q-table), see Table I, which is updated according

to the current measurements. The Q-table is constructed ac-

cording to three components: states, actions, and state-action

values (also known as Q-values). Before the learning begins,

the state-action values in the Q-table are initialized to zero.

In a state St at time t, the UAV always implements the

following four steps: select an action At from the action set

A = {up, down, right, left}, go to the next state St+1, observe

a reward Rt+1, and update the Q-value, given by [28, Ch. 6]

Q(St, At)← (1−α)Q(St, At)
︸ ︷︷ ︸

old value

+α

[

Rt+1 + γmax
a∈A

Q(St+1, a)

]

︸ ︷︷ ︸

new information

,

(14)

where 0 < α < 1 is the learning rate (or step size), 0 < γ < 1
is the discount factor determining the importance of future

rewards. The Q-value update can be described as a weighted

average between the old value and new information.

The reward can be regarded as the feedback from the en-

vironment given an action. In terms of maximizing the SINR,

the reward is supposed to be a function of SINR. Nevertheless,

we only have the coupling coefficients as measurements which

suffer from noise and interference. We therefore define the

reward function as follows. According to the received power

of the coupling coefficients corresponding to the trained beam

pairs at time t and t + 1, the reward is defined, in terms of

thresholds, by functions of the received power

Rt+1 =







1, if
|yu,t+1(n

′
f ,n

′
w)|2

|yu,t(nf ,nw)|2 > cu

0, if cl <
|yu,t+1(n

′
f ,n

′
w)|2

|yu,t(nf ,nw)|2 ≤ cu

−1, otherwise

(15)

where (n′
f , n

′
w) is the beam index pair used at time t+1. Due

to the noise and interference, the observations, yu,t+1(n
′
f , n

′
w)

and yu,t(nf , nw), may be unreliable for determining the

reward. To reduce the uncertainty, we define a lower threshold

cl and an upper threshold cu. If the ratio of |yu,t+1(n
′
f , n

′
w)|

2

to |yu,t(nf , nw)|2 is between cl and cu, the measurement is

treated as ambiguity so that the reward is equal to zero. A

more detailed discussion about the upper and lower thresholds

is provided in Appendix A.
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To elaborate the Q-learning-based beam selection, let us

take an example by Fig. 4 and Table I.

Example 1. When starting from a state S0 =
(f̃1, w̃1), one of the neighboring beam pairs

{(f̃1, w̃2), (f̃1, w̃6), (f̃2, w̃1), (f̃6, w̃1)} will be explored

by choosing an action from A according to the state-action

values, i.e., maxa∈A Q(S0, a). Since all the Q-values at S0

are initialized to zero, an action will be selected randomly

(or according to some predefined criteria). We assume that

the action “up” is selected so that the next state becomes

S1 = (f̃1, w̃2). The corresponding reward and Q-value

Q(S0, A0 = up) will be updated accordingly, see Table I.

In the example, we simply let the Q-values be updated by

either 0 or 1, where a value of 1 implies that the agent

chooses the action and gets a positive reward. In Q-learning,

a sequence of NS = 4 time slots (also called steps) is defined

as an episode. Each episode starts from a state, which could

be pre-defined or determined by the received power. Fig.

4 shows that the initial beam search needs in total four

episodes with starting states at (f̃1, w̃1), (f̃1, w̃4), (f̃4, w̃1),
and (f̃4, w̃4) respectively. In each episode, the beam probing

takes NS time slots to update the Q-values. When finishing

the first episode, the agent starts the next episode using beam

pair (f̃1, w̃4). With a sufficiently large number of significant

Q-values, Q-learning will converge to the beam pair (f̃3, w̃3)
corresponding to the maximum received power.

After the initial beam search, some beam pairs have been

explored and the beam tracking will start from the beam pair

with the maximum received power during the initial beam

search, which is denoted by SMP (i.e., the state or beam pair

with respect to the maximum power).

According to the updated Q-values, an agent exploits what

it has already experienced in order to obtain a positive reward,

but it also has to explore the uncharted or changed environment

to see if it can make better action selections in the future.

One of the challenges in reinforcement learning is the trade-

off between the exploration and exploitation. By introducing a

parameter 0 < ε < 1, an ε-greedy action is obtained to better

balance the exploration and exploitation:

At =

{

argmaxa∈A Q(St, a), with prob. 1− ε

a random action, with prob. ε
(16)

The agent chooses the action as it believes that the action

yields the best long-term effect with probability 1− ε. Or the

agent chooses an action uniformly at random with probability

ε.

The pseudocode of the Q-learning-based beam tracking al-

gorithm is shown in Algorithm 1, which includes two phases:

the initial beam search and beam tracking. The difference

between these two phases is the decision of the starting state

of each episode. During the initial beam search, the starting

state is selected from the pre-defined sets FI and WI . In

Example 1, FI = {f̃1, f̃4} and WI = {w̃1, w̃4}. During the

beam tracking, the starting state is selected according to the

maximum received power. Moreover, the selected beam pair

at time t is denoted by (f̂P,u,t, ŵP,u,t). We assume that the

Algorithm 1 Q-learning beam tracking for a single link.

Input: Observations {yu,t(nf , nw), t = 0, · · · , T }
Output: Selected beam pairs {(f̂P,u,t, ŵP,u,t), t = 0, · · · , T }

1: Initialize Q-table

2: t = 0
3: for i = 1 : number of episodes

4: if initial beam search

5: St ∈ {(f̃nf
, w̃nw

) | f̃nf
∈ FI , w̃nw

∈ WI}
6: else if beam tracking

7: St = SMP

8: end if

9: for j = 1 : number NS of steps

10: choose At and go to St+1 ≡ (f̂P,u,t+1, ŵP,u,t+1)
11: obtain Rt+1 according to observations

12: update Q(St, At)
13: update SMP according to observations

14: t = t+ 1
15: end step

16: end episode

analog beam pairs are determined at the UAV lead, and time

division duplex (TDD) technique that separates the transmit

and receive signals in the time domain can be used to inform

the followers to update their beams.

B. Overhead Reduction Using Offline Q-Learning

In Algorithm 1, the observations are available at each

time slot t. This implies that the beam switching and pilot

transmission/reception are executed in every time slot, which

is not a well-designed manner in the sense of system efficiency.

To reduce the overhead, we reserve all observations so that the

Q-learning can execute offline. When using past observations

to obtain the rewards and update the Q-values, we name the

Q-learning algorithm offline Q-learning. Otherwise, it is called

online Q-learning.

For the offline Q-learning, only the observations associated

with large received power have to be updated regularly.

Therefore, at the end of each episode, the beam pairs with

respect to the maximum received power (i.e., SMP ) will be

chosen and employed at the beginning of each episode in order

to update the corresponding observations. For other steps in

an episode, the pilot transmission and beam switching are not

necessary unless a specific state has not been explored.

C. Beam Selection Using Q-Learning for Multiple Links

The idea of Q-learning-based beam tracking for one link

can be easily extended to the case of multiple links, similar to

multi-agent systems [37], [38]. For multi-UAV beam probing,

the lead receives the observations from different followers

simultaneously in an SDMA manner. In this case, the members

of F at the lead UAV’s side should not be selected repeatedly.

As a result, the action set in (16) has to be updated in real

time.

In each beam probing, which could be in the stage of initial

beam search or beam tracking, the Q-learning-based beam

selection starts from a follower corresponding to the maximum
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received power at the moment. We further define a set A′ that

includes the actions which will make different followers go to

the same states. Thus, the action selection given in (16) can

be reformulated as

At =

{

argmaxa∈A\A′ Q(St, a), with prob. 1− ε

randomly selected from A\A′
, with prob. ε

(17)

After making the decision about the next state for a follower,

the lead has to update A′ accordingly.

V. DIGITAL BEAMFORMING

In the previous section, we use Q-learning to find the

members of sets IF,t and IW,tin the problem (10). However,

the selected beam pairs may not be the optimal solution

to the problem for the reasons that (i) Q-learning usually

only provides a good enough solution6 and (ii) the digital

beamformer weights are not taken into account during the

procedure of analog beam selection. In the sense of hybrid

beamforming, a better solution should be the one whose linear

combination with the digital weights leading to the maximum

SINR. This issue can be solved by keeping more than one

promising members with large received power in IF,t and

IW,t [17]. We use Example 2 to explain the idea.

Example 2. Two selected beam pairs with large received

power for each follower are collected in the following two

sets:

{[f̃P,1, f̃P,2, f̃P,3], [f̃P,1, f̃P,3, f̃P,4]}

and

{[w̃P,1, w̃P,1, w̃P,2], [w̃P,2, w̃P,3, w̃P,4]}.

Given these two sets, we can generate all the members of IF,t

and IW,t, given by

IF,t = {[f̃P,1, f̃P,2, f̃P,3]
︸ ︷︷ ︸

the 1st candiate
for FP,t

, [f̃P,1, f̃P,2, f̃P,4], [f̃P,1, f̃P,3, f̃P,4]}

which has a cardinality of 3 because the members of F at lead

UAV should not be selected repeatedly, and the other set can

be represented by

IW,t = {[w̃P,1, w̃P,1, w̃P,2]
︸ ︷︷ ︸

the 1st candiate
for WP,t

, [w̃P,1, w̃P,1, w̃P,4], · · · ,

[w̃P,2, w̃P,3, w̃P,4]}

which has a cardinality of 8. In this example, given the above

IF,t and IW,t, we have to evaluate a total of 24 combinations

with their digital weights to maximize the SINR.

The above-mentioned idea is different from the work rep-

resented in [25] that keeps candidates in subspace. In our

opinion, the better solution is supposed to keep candidates with

large received power because the idea in [25] only takes into

account the main lobes of analog beams, while the proposed

method considers both the main and side lobes.

6Q-learning uses experience to solve a prediction problem, which can be
viewed as a Monte Carlo method.

A. Digital Weight Optimization

To simplify the following descriptions of digital beamform-

ing, we assume that IF,t and IW,t only include one member

respectively, i.e.,

IF,t = {F̂P,t = [f̂P,1,t, · · · , f̂P,U,t]}

IW,t = {ŴP,t = [ŵP,1,t, · · · , ŵP,U,t]}. (18)

In the numerical results, we will provide more discussion

about the idea. Given F̂P,t and ŴP,t, the hybrid beamforming

problem (10) becomes a digital beamforming problem subject

to the power constraint, which can be formulate as

U∑

u=1

max
fB,u,t

P̂S,u,t

P̂I,u,t + σ2
n

s.t. fHB,u,tF̂
H
P,tF̂P,tfB,u,t = 1 ∀u

(19)

where t = 1, · · · , T . The signal and interference power are

subject to the selected analog beams

P̂S,u,t , PS,u,t FP,t=F̂P,t,WP,t=ŴP,t
, (20)

P̂I,u,t , PI,u,t FP,t=F̂P,t,WP,t=ŴP,t
. (21)

To satisfy the power constraint on the combiner, one can

define U unit vectors {xu | ‖xu‖2 = 1, u = 1, · · · , U} that

obey the relation [17]

fB,u,t = (F̂H
P,tF̂P,t)

−0.5
xu. (22)

Upon replacing fB,u,t with (F̂H
P,tF̂P,t)

−0.5
xu in the problem,

the received signal and interference power can be written by

P̂S,u,t =
∣
∣
∣x

H
u (F̂H

P,tF̂P,t)
−0.5

F̂
H
P,tHu,tŵP,u,t

∣
∣
∣

2

, (23)

P̂I,u,t =
U∑

i=1,i6=u

∣
∣
∣x

H
u (F̂H

P,tF̂P,t)
−0.5

F̂
H
P,tHi,tŵP,i,t

∣
∣
∣

2

. (24)

Then, we can find that the problem (19) is equivalent to

seeking vectors x1, · · · ,xU that maximize the SINR for U
followers. As a result, the maximization problem (19) can be

reformulated as

U∑

u=1

max
xu

P̂S,u,t

P̂I,u,t + σ2
n

. (25)

B. SINR Approximation Using Coupling Coefficients

In (23) and (24), the couplings of the channel and analog

beams, such as F̂
H
P,tHu,tŵP,u,t and F̂

H
P,tHi,tŵP,i,t, can be

viewed as effective channel vectors. Since the observations,

given in (13), are the coupling of the channel and one analog

beam pair, we can use them to construct the estimates of

effective channel vectors, defined by

ĥE,u,t = F̂
H
P,tHu,tŵP,u,t + zt

=






f̂
H
P,1,tHu,tŵP,u,t + zt

...

f̂
H
P,U,tHu,tŵP,u,t + zt






︸ ︷︷ ︸

The entries of ĥE,u,t can be
obtained from {yu,t(nf , nw) ∀u}

, (26)
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and

ĥE,i,t = F̂
H
P,tHi,tŵP,i,t + zt, (27)

where the entries of ĥE,i,t can be obtained from

{yu,t(nf , nw) ∀u} as well. The collected observations suffice

to generate the estimates of P̂S,u,t and P̂I,u,t+σ2
n represented

by

P̂S,u,t ≈
∣
∣
∣x

H
u (F̂H

P,tF̂P,t)
−0.5

ĥE,u,t

∣
∣
∣

2

= x
H
u (F̂H

P,tF̂P,t)
−0.5

ĥE,u,tĥ
H
E,u,t(F̂

H
P,tF̂P,t)

−0.5

︸ ︷︷ ︸

,Au,t

xu

= x
H
u Au,txu (28)

and

P̂I,u,t + σ
2

n

≈

U∑

i=1,i6=u

∣
∣
∣x

H
u (F̂H

P,tF̂P,t)
−0.5

ĥE,i,t

∣
∣
∣
2

+ σ
2

n

= x
H
u





U∑

i=1,i6=u

(F̂H
P,tF̂P,t)

−0.5
ĥE,i,tĥ

H
E,i,t(F̂

H
P,tF̂P,t)

−0.5 + σ
2

nIU





︸ ︷︷ ︸

,Bu,t

xu

= x
H
u Bu,txu (29)

Using (28) and (29), the SINR for follower u conditional

on WP,t = ŴP,t and FP,t = F̂P,t can be approximated by

the following equation

P̂S,u,t

P̂I,u,t + σ2
n

≈
x
H
u Au,txu

xH
u Bu,txu

. (30)

Using the property that Bu,t is a positive definite matrix, the

optimal solution of xu that attains the maximum SINR can be

stated as follows (also see Appendix B):

x
⋆
u = arg max

xu

x
H
u Au,txu

xH
u Bu,txu

=
B

−0.5
u,t emax(B

−0.5
u,t Au,tB

−0.5
u,t )

∥
∥B

−0.5
u,t emax(B

−0.5
u,t Au,tB

−0.5
u,t )

∥
∥
2

, (31)

where emax(B
−0.5
u,t Au,tB

−0.5
u,t ) is the eigenvector of

B
−0.5
u,t Au,tB

−0.5
u,t corresponding to the maximum eigenvalue.

In the same manner, given Au,t and Bu,t for all u, we have

the optimal solution of xu, u = 1, · · · , U . The corresponding

estimated digital beamformer weights are therefore given by

F̂B,t = [f̂B,1,t, · · · , f̂B,U,t]

= (F̂H
P,tF̂P,t)

−0.5[x⋆
1, · · · ,x

⋆
U ]. (32)

The digital weights represented in (32) are derived from the

constraint that the variance of the combined noise signal is still

AWGN. When concerning FB,t acting as part of the precoder

for data transmission (i.e., sending signals from the lead to

followers), the power constraint could be ||FP,tFB,t||F = U
[30], which leads to zero-forcing (ZF) digital beamforming.
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Fig. 5. An typical example of the received SNR using the Q-learning-based
and gradient-based beam tracking methods for one link (U = 1) with σ2

λ
=

16. In this example, we assume fixed elevation angles θA,u,t = θD,u,t =
15◦∀t. Compared with the gradient-based method, the Q-learning-based beam
tracking is robust to the large variance of angle.

VI. SIMULATION RESULTS

In this section, we numerically illustrate the multi-UAV

beamforming performance in highly dynamic environments,

while each result at a time slot averages 1000 trials. The

system parameters in the simulations are listed as follows.

• The lead connects to U = 3 followers using SDMA at the

same time and same frequency. The number of antennas

N = 16 (4×4), and the SINR = 20 dB in the simulations

for each follower is given by
|ρu|

2

σ2
z

, where |ρu|2 is the

average receive power for follower u and ΣU
u=1|ρu|

2 = 1.

• In the codebooks, the candidates for azimuth angles φnf

and φnw
are {15◦ + n · 30◦}11n=0, and the candidates for

elevation angles θnf
and θnw

are {15◦ + n · 30◦}2n=0.

• The Q-learning parameters include the learning rate α =
0.5, discount factor γ = 0.5, probability of ε-greedy

action ε = 0.1, upper threshold cu = 1.1, and lower

threshold cl = 0.9.

• The random walk channel model has normally distributed

disturbance λi ∼ N (0, σ2
λ), where σ2

λ = 4, 16.

According to the number of all potential steering angles, the

size of codebook F at the lead should be 36. To alleviate the

loading at the lead and speed up the convergence and learning

rate, we group the followers into three zones in elevation

angle (i.e., 0◦ − 30◦, 30◦ − 60◦, and 60◦ − 90◦), and each

zone has three followers. Due to the space limitation, we only

show the simulation results with three followers in the zone

of elevation angle between 0◦ and 30◦, and the codebook size

of F becomes NF = 12, where the 12 candidates all have the

same elevation angle θnf
= 15◦.

A. Q-Learning and Gradient-Based Beam Tracking Methods

The first numerical result of the beam tracking in Fig. 5

is described by an example of the performance comparison of

the proposed Q-learning and reference gradient-based tracking

methods [20]. We use one realization of the time-varying AoA
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Fig. 6. Time frame defined by the episode and step. In the Q-learning-based beam tracking, we can use offline Q-learning in some steps for the purpose of
overhead reduction (introduced in Subsections VI-B and VI-C).

30 60 90 120 150 180 210 240 270 300
11.8

12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

Episode (time)

R
ec

ei
ve

d 
po

w
er

 to
 n

oi
se

 r
at

io
 (

dB
)

 

 

Online Q−learning, var = 4
Online Q−learning, var = 16
Gradient−based, var = 4
Gradient−based, var = 16

Fig. 7. Sum of the received power from U = 3 followers to noise ratio
using the proposed Q-learning and reference gradient-based beam tracking
methods with the variance of AoAs and AoDs σ2

λ
= 4, 16. Compared with

the gradient-based method, the Q-learning-based beam tracking can provide
stable link quality over time.

and AoD with σ2
λ = 16 to explain the difference between these

two methods.

At the beginning, both methods implement the initial beam

search in the first 30 episodes or time slots7, where the time

frame is sketched in Fig. 6. In the time frame, we assume

that each episode includes 4 steps so that the gradient-based

approach can evaluate the 4 neighboring beam pairs in an

episode during the beam tracking. The gradient-based method

uses 30 time slots to implement the initial beam search, while

Q-learning method uses 30 episodes to implement the initial

beam search and update the Q-values at each step. After the

initial beam search, the beam tracking starts from Episode

30 with the state corresponding to the maximum received

power obtained during the previous 30 episodes. The Q-

learning method during the beam tracking may adopt online

or offline Q-learning. To fairly compare with the reference

method which gets the latest observations at each time slot,

7The 30 beam pairs for the initial beam search are uniformly chosen from
a total of NF ×NW = 12 × 36 = 432 potential beam pairs.

we use online Q-learning for all the steps in each episode to

evaluate the proposed method in Fig. 5.

In Fig. 5, from Episode 30 to 80, the Q-learning-based

beam tracking explored the range of AoA within [60◦, 120◦]
and the range of AoD within [90◦, 170◦] using the beams

steering to φnf
= 75◦, 105◦ and φnw

= 105◦, 135◦, 165◦,

respectively.8 Q-learning records all the experience acquired

during this time in the Q-table so that the agent uses current

observations and the experience to predict the next beam pair.

In such a way, it can stably track the appropriate beams. After

Episode 80, there are probably not many data corresponding

to the beam pairs with φnf
= 135◦, 165◦ or φnw

= 45◦, 75◦;

therefore, it needs some time to update the Q-values as

reference in the future. Next, let us look at the performance of

the reference gradient-based scheme. The delimma of gradient-

based scheme is that it may get trapped into a local optimum

and could only get out from it when AoA or AoD changes

significantly. Q-learning method also finds the local optimal

solution sometimes, but appropriate ε-greedy random actions

can solve this problem. Moreover, compared with the gradient-

based method, Q-learning has a global map (i.e., the Q-table),

which provides useful information for beam tracking.

The performance comparison of the proposed and reference

methods that support U = 3 followers simultaneously is

shown in Fig. 7, where the received power is captured at

the end of each episode as described in Fig. 6. Compared

with the gradient-based method, the Q-learning-based scheme

works stable over time, even when the variance σ2
λ of AoAs

and AoDs is large. In terms of high-resilience demand for

the multi-UAV system, the numerical results of the proposed

method show that balancing the exploration and exploitation

can outperform the one using exploration only. Although Q-

learning needs some space and efforts to record the experience

in the Q-table, it makes actions depending on not only current

observations but also the experience and rewards so that

the performance is not completely dominated by the current

observations, while the gradient-based method totally relies on

them.

8The beamwidth is around 30◦; ideally the beam switching occurs when
AoA/AoD changes at 30◦, 60◦, · · · , 180◦ in Fig. 5.
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Fig. 8. Sum of the received power from U = 3 followers to noise ratio using
the online and online/offline Q-learning-based beam tracking methods with
σ2

λ
= 4, 16. The curves of online Q-learning in this figure and Fig. 7 are

identical. According to the results of overhead reduction in Fig. 9, using one
or at most two steps per episode to track the beams is enough to maintain
the link quality.

30 60 90 120 150 180 210 240 270 300
0

10

20

30

40

50

60

70

80

Episode (time)

O
ve

rh
ea

d 
re

du
ct

io
n 

(%
)

 

 
Upper bound = 75%

Var = 4
Var = 16

Fig. 9. Reduced overhead of pilot transmission using the online/offline Q-
learning-based beam tracking with σ2

λ
= 4, 16. In an episode, the first step is

always used for pilot transmission so that the upper bound is 75%, while the
other three steps may or may not be used for pilot transmission, depending
on whether the corresponding states are explored or not.

B. Resilience and Efficiency of Offline Q-learning-Based

Beam Tracking

In the previous subsection, we use online Q-learning to

implement the beam tracking at all the steps in each episode

in order to compare with the reference method. From the

results shown in Fig. 7, we observe that online Q-learning

provides stable link quality that can meet the high-resilience

requirement for highly dynamic multi-UAV environments, but

it also means that all the resources are used as pilot signals.

From the perspective of system efficiency, it is inefficient

design. Essentially, the trade-off between system efficiency

and resilience has to be considered together. As a result,

we introduce offline Q-learning that uses past observations to
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Fig. 10. Achievable SINR that uses equal gain or optimal weights to combine
U = 3 analog beam pairs with σ2

λ
= 4, 16. With and without the optimal

digital weights, the difference in received SINR is 6.5 dB. With more than
one candidate for the analog beam pairs, the received SINR can be further
improved by at least 2 dB.

implement the beam tracking.

At the first step in each episode during the beam tracking,

we let the followers transmit the pilot signals using the selected

beam pairs, determined in the previous episodes, to update the

observations. Therefore, the first step always adopts online Q-

learning. In the rest three steps, the next state St+1 (decided

by Q-learning) may or may not be explored in the previous

episodes. If the state was not explored, the agent still adopts

online Q-learning in order to get the corresponding reward as

well as Q-value. Instead, if the state was explored, Q-learning

can use past observations to implement the beam tracking,

which is offline Q-learning. However, we are not sure whether

the next states in the rest three steps were explored. Therefore,

the agent may adopt online or offline Q-learning, i.e., the case

online/offline Q-learning in Figs. 6 and 8. In such a design,

the upper bound of the reduced overhead of pilot transmission

is 75%, see Fig. 9, since one of the four steps in an episode

is dedicated to pilot transmission.

Figs. 8 and 9 show the comparison of the online and

online/offline Q-learning-based beam tracking methods. The

simulations results provide some interesting insights. After a

certain time of exploration, the overhead of pilot transmission

could be reduced up to 72% without any loss of performance.

This implies that the experience stored in the Q-table provides

enough information to solve the prediction problem, which is

an advantage of machine learning.

C. SINR Maximization Using Digital Weights

We use SDMA to support multi-UAV communications at

the price of spatial-domain interference. The goal of the digital

beamforming is to minimize the interference plus noise given

the selected analog beams. The performance is shown in Fig.

10, where the received SINR is obtained using F̂P,t, ŴP,t,

and F̂B,t.
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First, the curves equal gain combination do not take into

account more than one candidate for the analog beam pairs

(i.e., both IF,t and IW,t have only one member respectively),

and we let the digital beamforming equal to the U×U identity

matrix (i.e., let F̂B,t = IU ). Without trying to minimize the

interference, the achievable SINR is only around 4 dB. When

we design the digital weights to minimize the interference plus

noise, see curves w/o more candidates, the SINR gain can be

increased by around 6.5 dB. If we keep more candidates for

the analog beams after the beam selection at the end of each

episode (see Example 2), the SINR can be further improved.

In curves w/ more candidates, reserving two candidates for

each beam pair after the beam selection can have 2 dB gain

in SINR. The reason is that the selected analog beams based on

the received power do not ensure that the hybrid beamforming

achieves the maximization SINR, even with the corresponding

optimal digital weights.

Comparing the curves with low and high changes of the

angle variables corresponding to low and high speeds of the

UAVs in Fig. 10, we can see that the maximum difference

in SINR is less than 0.5 dB. It shows that the proposed Q-

learning-based hybrid beamforming is quite robust to the large

variance of AoAs and AoDs.

VII. CONCLUSION

This paper solved a highly dynamic multi-UAV hybrid

beamforming problem that is usually characterized by a high-

resilience constraint. To meet the constraint, we apply Q-

learning method to mmWave hybrid beamforming systems.

Moreover, in a dynamic environment, how to efficiently obtain

and use the observations matters to the beamforming perfor-

mance. In the proposed analog beam tracking approach, we

use current and past observations together with the designed

rewards to solve the prediction problem. The numerical results

show that the proposed method significantly increases the effi-

ciency of data transmission and beam switching. To optimally

combine the analog beams in a manner of SINR maximization,

we present the solution of digital weights using the coupling

coefficients given the selected beams. The solution can be

simply extended to the case with more candidates for analog

beams to further improve the received SINR.

APPENDIX A

DESIGN OF UPPER AND LOWER THRESHOLDS (cu, cl)

In the observation equation (13), given a channel matrix,

the estimate of the power of signal yu,t(nf , nw) can be

represented by

|yu,t(nf , nw)|
2
=

∣
∣
∣f̃

H
nf
Hu,tw̃nw

+ zt

∣
∣
∣

2

=
∣
∣
∣f̃

H
nf
Hu,tw̃nw

∣
∣
∣

2

+ εu(nw, nf ) + ζ, (33)

where |f̃Hnf
Hu,tw̃nw

|2 is a constant based on the given channel

state, and the other two terms are given as follows. First,

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

X

P
ro

b(
Y

 >
 c

u)

 

 

P(Y > 1), SINR = 20 dB
P(Y > 1.1), SINR = 20 dB 
P(Y > 1.2), SINR = 20 dB
P(Y > 1), SINR = 50 dB 

c
u
 = 1

c
u
 = 1.1

c
u
 = 1.2

Fig. 11. The probabilities that the estimate of X is greater than the upper
threshold cu. Increasing the value of the upper threshold cu can reduce the
probability that the agent get a fail reward at SINR = 20 dB.

εu(nw, nf ) follows a normal distribution with mean zero and

variance 2σ2
z |f̃

H
nf
Hu,tw̃nw

|2 given by

εu(nw, nf)

= 2R
(

f̃
H
nf
Hu,tw̃nw

)

R (zt) + 2 I
(

f̃
H
nf
Hu,tw̃nw

)

I (zt)

∼ N

(

0, 2σ2
z

∣
∣
∣f̃

H
nf
Hu,tw̃nw

∣
∣
∣

2
)

, (34)

and ζ follows a gamma distribution with shape parameter 1
and scale parameter σ2

z :

ζ = R (zt)
2
+ I (zt)

2 ∼ Γ
(
1, σ2

z

)
. (35)

Due to the fact that it is not able to obtain a closed-form

expression for the density function of εu(nw, nf ) + ζ, we

use a Monte Carlo method to find appropriate upper and

lower thresholds. First, let us define the ratio of the power

of coupling coefficients at time t+ 1 and t by

X =
|f̃H
n′
f
Hu,t+1w̃n′

w
|2

|f̃Hnf
Hu,tw̃nw

|2
, (36)

where (n′
f , n

′
w) is the beam index pair used at time t+ 1. In

addition, the ratio of the received power at time t+1 and t is

given by

Y =
|yu,t+1(n

′
f , n

′
w)|

2

|yu,t(nf , nw)|2

=
|f̃Hn′

f
Hu,t+1w̃n′

w
|2 + εu(n

′
w, n

′
f ) + ζ1

|f̃Hnf
Hu,tw̃nw

|2 + εu(nw, nf ) + ζ2
, (37)

where ζ1 and ζ2 follow the same Gamma distribution

Γ
(
1, σ2

z

)
.

When SINR = 50 dB, the noise variance σ2
z is pretty small

so that we have X ≈ Y , and the reward from the environment

could be either positive (+1) or negative (−1). Therefore, it

is fine to let cu = cl = 1. Ideally, X < 1 should lead to a

negative reward, that is, Prob(Y > cu = 1) = 0, as shown in

the curve SINR = 50 dB in Fig. 11
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In the case of SINR = 20 dB, the noise effect on the

received power becomes serious. If we still assume that cu = 1
at SINR = 20 dB, we can find that the probability that the

agent get a positive reward when X < 1 is greater than

0. For example, when X = 0.9, the probability that the

agent get a positive reward is Prob(Y > cu = 1) = 0.35.

The objective of the upper and lower thresholds are used to

limit the reward from the environment when the values of the

received power are unreliable. Increasing the value of cu can

effectively decrease this kind of error probability. However, it

does not make sense to let cu be very large because it will

make the reward equal to zero even when X > 1, which is not

beneficial for Q-learning. In the same manner, we can adjust

the value of the other threshold cl to reduce the probability of

getting the fail reward.

APPENDIX B

DERIVATION OF (31)

The objective function of the problem (31) is the generalized

Rayleigh quotient [39]. To convert the problem of maximizing

SINR to a simpler one of maximizing a normalized quadratic

form, we define a vector x̃u = B
0.5
u,txu, which is equivalent

to xu = B
−0.5
u,t x̃u. Replacing xu with B

−0.5
u,t x̃u, the objective

function of the problem becomes

x̃
H
u B

−0.5
u,t Au,tB

−0.5
u,t x̃u

‖x̃u‖
2
2

. (38)

To maximize (38) is equivalent to maximize the numerator.

Let x̃u be the eigenvector of B−0.5
u,t Au,tB

−0.5
u,t corresponding

to the maximum eigenvalue, the maximum value of (38) is

therefore given by

max
x̃u

x̃
H
u B

−0.5
u,t Au,tB

−0.5
u x̃u

‖x̃u‖
2
2

= λmax(B
−0.5
u,t Au,tB

−0.5
u,t ),

(39)

where λmax(B
−0.5
u,t Au,tB

−0.5
u,t ) is the maximum eigenvalue of

B
−0.5
u,t Au,tB

−0.5
u,t . As a result, we have the optimal solution

of xu subject to the constraint ‖xu‖2 = 1:

x
⋆
u =

B
−0.5
u,t x̃u

∥
∥B

−0.5
u,t x̃u

∥
∥
2

=
B

−0.5
u,t emax(B

−0.5
u,t Au,tB

−0.5
u,t )

∥
∥B

−0.5
u,t emax(B

−0.5
u,t Au,tB

−0.5
u,t )

∥
∥
2

, (40)

where emax(B
−0.5
u,t Au,tB

−0.5
u,t ) is the dominant eigenvector of

B
−0.5
u,t Au,tB

−0.5
u,t .
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