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Abstract—This paper presents a novel and effective deep
reinforcement learning (DRL)-based approach to addressing joint
resource management (JRM) in a practical multi-carrier non-
orthogonal multiple access (MC-NOMA) system, where hardware
sensitivity and imperfect successive interference cancellation
(SIC) are considered. We first formulate the JRM problem to
maximize the weighted-sum system throughput. Then, the JRM
problem is decoupled into two iterative subtasks: subcarrier
assignment (SA, including user grouping) and power allocation
(PA). Each subtask is a sequential decision process. Invoking
a deep deterministic policy gradient algorithm, our proposed
DRL-based JRM (DRL-JRM) approach jointly performs the two
subtasks, where the optimization objective and constraints of the
subtasks are addressed by a new joint reward and internal reward
mechanism. A multi-agent structure and a convolutional neural
network are adopted to reduce the complexity of the PA subtask.
We also tailor the neural network structure for the stability and
convergence of DRL-JRM. Corroborated by extensive experi-
ments, the proposed DRL-JRM scheme is superior to existing
alternatives in terms of system throughput and resistance to
interference, especially in the presence of many users and strong
inter-cell interference. DRL-JRM can flexibly meet individual
service requirements of users.

Index Terms—Hardware sensitivity, deep reinforcement learn-
ing (DRL), imperfect successive interference cancellation (SIC),
joint resource management (JRM), multi-carrier non-orthogonal
multiple access (MC-NOMA)

I. INTRODUCTION

Owing to enhanced multi-user diversity and high flexibility

in resource allocation, multi-carrier (MC) multi-access tech-

niques have been widely applied in wireless systems [1].

Recently, non-orthogonal multi-access (NOMA) has attracted

significant attention. It can improve spectral efficiency, by

adopting superposition coding at the transmitter and successive

interference cancellation (SIC) at the receiver. Combining MC
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and NOMA techniques, MC-NOMA extends the technical

legacy of orthogonal frequency-division multi-access [2].

The design and deployment of resource management play a

crucial role in power-domain MC-NOMA (or “MC-NOMA”

for short) systems [3]. The resource management involves

user grouping, subcarrier scheduling, and power allocation.

Generally, the optimal joint resource management (JRM) al-

gorithms require solving mixed integer nonlinear programming

problems. Because MC-NOMA systems involve a much larger

number of discrete and/or continuous optimization variables,

most existing solvers become computationally prohibitive.

For MC-NOMA with perfect SIC, a variety of optimal

and suboptimal JRM algorithms have been proposed, typically

using optimization theory. Lei et al. [4] employed Lagrangian

duality and dynamic programming to obtain suboptimal solu-

tions for power and channel allocation in a downlink (DL)

MC-NOMA system. For spectrum and energy efficient re-

source allocation, Song et al. [5] formulated a multi-objective

optimization problem solved by convex programming. Fu et al.

[6] also utilized convex programming and heuristic greedy al-

gorithms to solve the subcarrier and power allocation problem,

and designed a three-step resource allocation framework. Di et

al. [7] investigated the power allocation and user scheduling

to maximize the weighted-sum rate by designing a matching

game. Zheng et al. [8] considered an uplink (UL) MC-NOMA

system, and designed a Nash bargaining game for power

allocation and user clustering. For the simpler UL power

allocation problem, Fang et al. [9] used Lagrangian dual

decomposition and Dinkelbach algorithm to derive closed-

form expressions for the optimal power allocation. Moreover,

Sun et al. [10] studied the joint power and subcarrier allocation

in a full-duplex MC-NOMA system, and a successive convex

approximation (SCA)-based suboptimal iterative scheme was

presented. All the above studies assumed perfect SIC.

In practice, MC-NOMA is susceptible to imperfect SIC and

subsequent error propagation. It is of significance to study

the JRM of MC-NOMA systems in the presence of imperfect

SIC (also known as imperfect NOMA). Wei et al. [11] con-

sidered an MC-NOMA system under imperfect channel state

information CSI, and employed the branch-and-bound (B&B)

and difference of convex (DC) programming to maximize the

power efficiency of the system. Cheng et al. [12] modeled

the channel estimation error as a complex Gaussian random

variable and proposed a low-complexity user scheduling and

power allocation algorithm in a DL MC-NOMA system. The

results of [11] and [12] are only applicable in the case with

at most two users multiplexed per subcarrier. To reduce the

http://arxiv.org/abs/2103.15371v1
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power consumption of a delay-sensitive UL transmission, Xu

et al. [13] presented an approximate algorithm to minimize

the transmit power of imperfect NOMA. Zamani et al. [14]

formulated the power allocation into a fractional programming

problem, and obtained the optimal solution by using the

Karush-Kuhn-Tucker conditions and DC programming. While

power allocation has been studied in [13] and [14], user

grouping and subcarrier scheduling have not been well in-

vestigated. Adopting heuristics user scheduling, the authors of

[15] focused on the power allocation under imperfect SIC with

no consideration of the quality of service (QoS). Cellik et al.

[16] considered the power disparity and sensitivity of the SIC

receiver, and formulated a joint cluster formation and resource

allocation problem. The subproblem of cluster formation was

solved by the blossom algorithm. The subproblem of resource

allocation was solved by geometric programming. The focus

of [16] was on the UL, which however is distinctively different

from the DL NOMA systems considered in this paper.

The above existing works typically have the following two

limitations: 1) deriving optimal JRM schemes is intractable

for MC-NOMA under imperfect SIC, and 2) assuming that

the same number of users are multiplexed on each subcarrier.

In addition, the operation of an SIC receiver requires that the

power difference between the signal and noise to exceed a

threshold (referred to as “hardware sensitivity requirement”,

which has been overlooked in the existing literature).

Reinforcement learning (RL) allows an agent to maximize

a long-term discount reward and derive a solution on its own

[17]. Yang et al. [18] utilized Q-learning to design a NOMA-

based mobile edge computing framework. By integrating deep

learning into RL, deep RL (DRL) addresses the challenges of

Q-learning in the storage and look-up of the Q table. Yang

et al. [19] employed a deep Q-network (DQN) to model the

offloading problem for multi-user NOMA. Doan et al. [20]

applied DRL to implement the power allocation in cache-aided

NOMA systems. By employing the actor-critic RL, Zhang et

al. [21] proposed a dynamic power allocation scheme. Zhang

et al. [22] and Giang et al. [23] used DRL to obtain suboptimal

solutions to the power allocation of UL MC-NOMA systems.

He et al. [24] used a DRL framework solve to the joint

power allocation and channel assignment problem in a perfect

two-user NOMA system. An attention-based neural network

was applied to capture the sequential relations between the

input and output of channel assignment problem. In our recent

works, we studied multi-channel access in fast-changing chan-

nels [25], joint virtual network function placement-and-routing

[26], and user grouping of NOMA systems [27], by utilizing

a new policy gradient-based DRL technique. In this paper,

we are interested in a different problem of joint subcarrier

assignment and power allocation in an MC-NOMA system

with imperfect SIC. Although the above existing studies have

revealed the potential of RL/DRL in the resource management,

there is still paucity of research for applying DRL to the

JRM of MC-NOMA, especially in the presence of hardware

sensitivity requirements and imperfect SIC.

This paper optimizes the subcarrier assignment and power

allocation of a DL MC-NOMA system, under imperfect chan-

nel station information (CSI), non-negligible SIC errors, and

given hardware sensitivity. These practical factors have yet to

be considered in the literature. We propose a novel DRL-based

JRM (DRL-JRM) framework with the following contributions:

• A practical DL MC-NOMA system is studied, where: 1)

the number of users multiplexed on different subcarriers

can differ; 2) the hardware sensitivity and imperfect

SIC cannot be overlooked; and 3) subcarrier assignment

(including user grouping) and power allocation are jointly

optimized. We maximize the weighted-sum throughput of

the DL MC-NOMA system, by decoupling the JRM of

the system into two RL subtasks.

• A novel DRL-RM framework is designed for the two RL

subtasks, where there are two modules: an SA module

responsible for subcarrier assignment and a PA module

responsible for power allocation. Both the SA and PA

modules are implemented with a deep deterministic pol-

icy gradient (DDPG) algorithm. The optimization objec-

tive and constraints of the two subtasks are constructed

as a new joint reward and internal reward mechanism.

• A novel centralized action-value function is designed to

measure the reward in the PA module. In the centralized

action-value function, we employ a convolutional neural

network (CNN) to guarantee that an agent can effectively

utilize its own information by condensing the information

of other agents into lower dimensions. Several new de-

signs on the neural network are also proposed.

Extensive experiments verify that the proposed DRL-JRM

scheme provides close-to-optimal results in the case of small-

scale problems. In the case of large-scale problems, DRL-JRM

is superior to existing benchmarks in terms of weighted-sum

system throughput and resistance to interference.

The rest of this paper is organized as follows. In Section II,

we present the system model and formulate the JRM problem.

The problem is transformed into an RL task in Section III.

In Section IV, the new DRL-JRM framework is developed.

Experiments are shown in Section V, followed by conclusions

in Section VI. Notations used are collected in Table I.

II. PROBLEM STATEMENT

A. System Model

Consider a classical cellular DL MC-NOMA system, where

a base station (BS) serves M users. The frequency band is W
(Hertz) with NF orthogonal subcarriers. The BS and the users

are all equipped with a single antenna1. In this paper, user

m (m ∈ {1, . . . ,M}) may occupy multiple subcarriers, and

subcarrier i (i ∈ {1, . . . , NF}) may be occupied by multiple

users. Let Ji denote the number of users multiplexed on

subcarrier i and Nmax be the maximum number of users per

subcarrier. Different from most existing studies which assumed

at most two users per subcarrier, we allow more and different

numbers of users to be assigned per subcarrier2.

1This paper studies the classical single-cell multi-user scenario, and the
research under the multi-cell multi-user scenario will be our next work.

2The complexity of the SIC decoding at the users grows linearly with the
number of users (or in other words, streams) multiplexed per subcarrier. Such
(linear) complexity is in general scalable.
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Table I The key notations used in this paper.
Section II W bandwidth

M the number of users NF number of subcarriers

Ji number of users multiplexed on subcarrier i Nmax maximum number of users per subcarrier

hi,j the channel gain of the j-th user on subcarrier i h̃i,m channel gain of user m on subcarrier i
ϑm
i,j indicator of whether the j-th user on subcarrier i is user m p∆ hardware sensitivity requirement

pi,j the power allocated to the j-th user on subcarrier i ai,j symbol of the j-th user on subcarrier i

ε average estimation error of modulated symbol Ri,j achievable rate the j-th user on subcarrier i

R̃i,m the achievable rate the user m on subcarrier i Rmin
m minimum data rate requested by user m

̟m the priority weight of user m dm distance form user m to the BS

Section III a
u
t the SA action at the decision step t

TPA
max the maximum number of steps for the PA subtask a

u
m the final SA action of agent m

a
p
m,t the PA action of user m at the decision step t sut the SA state at the decision step t

oi,m indicator of whether user m is assigned to subcarrier i s
p
m,t the PA state of user m at the decision step t

s
p
self,m,t the self-state of agent m at the decision step t γ discounted factor of reward

s
p
other,m,t state of the other agents for agent m at the decision step t r

u,int
t the internal reward of SA subtask

Q(st, at) the action-value function r
u,jo
t the joint reward of SA subtask

r
p,int
m,t the internal reward of SA subtask for agent m r

p,jo
m,t the joint reward of SA subtask for agent m

Fig. 1. An simple example of our MC-NOMA system. Four users are
multiplexed on two subcarriers, where users 1, 2 and 3 are multiplexed on
subcarrier 1; and user 1 and user 4 are multiplexed on subcarrier 2.

Assume that the channel gains of the users on subcarrier

i satisfy: |hi,1| ≥ . . . ≥ |hi,j | ≥ . . . ≥ |hi,Ji
|, where hi,j

is the channel gain of the j-th user on subcarrier i. Let a

binary variable ϑm
i,j ∈ {0, 1} indicate whether the j-th user

multiplexed at subcarrier i is user m. If the j-th user (j ∈
{1, . . . , Ji}) on subcarrier i is user m ∈ {1, . . . ,M}, ϑm

i,j =

1; otherwise, ϑm
i,j = 0. So,

∑M

m=1

∑Ji

j=1 ϑ
m
i,j = Ji, ∀i. The

transmit signal of the BS at the i-th subcarrier is given by

xi =

M
∑

m=1

Ji
∑

j=1

(

ϑm
i,j

√
pi,jai,j

)

, ∀i (1)

where ai,j ∈ C is the modulated symbol of the j-th user on

subcarrier i and E
[

| ai,j |2
]

= 1. pi,j is the power allocated

to the j-th user on subcarrier i. The received signal of user m
at the i-th subcarrier is given by

yi,m = h̃i,m

M
∑

m=1

Ji
∑

j=1

(

ϑm
i,j

√
pi,jai,j

)

+ zi,m (2)

where zi,j ∈ C is the additive white Gaussian noise at the j-th

user on subcarrier i, and zi,j ∼ CN
(

0, σ2
i,j

)

. h̃i,m =
gi,m
PLm

∈
C is the channel gain of user m on subcarrier i, accounting

for both the path loss (PLm) and small-scale fading (gi,m ∼

CN (0, 1)) [11]. As show in Fig. 1,

h̃i,m =

Ji
∑

j=1

ϑm
i,jhi,j . (3)

The SIC receiver first detects the strongest interference, and

subtracts it from the received signal, then the second strongest,

so on and so forth, until the user detects its intended signal.

Generally, the operation of the receiver requires that the dif-

ference between the signal power and the noise power exceeds

a threshold, depending on the hardware sensitivity, referred to

as power disparity and sensitivity constraint (PDSC) [28].

Definition 1. For the j-th user on subcarrier i, PDSC is

| hi,j |2
(

pi,j−
j−1
∑

k=1

pi,k

)

≥ p∆, ∀i, j (4)

where p∆ is a specific hardware sensitivity requirement.

Imperfect SIC suffers from residual interference after SIC,

mainly due to imperfect amplitude and phase estimation [13].

Define the original signal of the j-th user on subcarrier i as

xi,j =
√
pi,jai,j and the estimated signal as x̂i,j . The residual

interference Irei,j to the j-th user on subcarrier i after SIC is

Irei,j =
Ji
∑

k=j+1

| hi,k |2| xi,k − x̂i,k |2=
Ji
∑

k=j+1

pi,k | hi,k |2| ai,k − âi,k |2 . (5)

Let εi,k = E{|ai,k− ãi,k|2} be the fractional error after can-

celling the k-th user at subcarrier i. As suggested in [29], εi,k
can be approximated by a Gaussian distribution. Assume that

the channel estimation errors are independent and identically

distributed among different users at different subcarriers [30],

and thus εi,k = ε, as assumed in [15], [31], [32]. Hence, the

residual error is Irei,j=ε2
∑Ji

k=j+1 pi,k | hi,k |2.

The achievable rate Ri,j of the j-th user on subcarrier i is

Ri,j =
W

NF
log2











1 +
pi,j | hi,j |2

j−1
∑

k=1

pi,k | hi,j |2 +Irei,j + σ2
i,j











(6)
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where
∑j−1

k=1 pi,k | hi,j |2 is the interference from the users

with lower powers than the j-th user on subcarrier i. Let R̃i,m

be the achievable rate of user m on subcarrier i. Then, R̃i,m =
∑Ji

j=1 ϑ
m
i,jRi,j by (3).

B. Optimization Problem Formulation

We aim to jointly optimize the subcarrier assignment and

power allocation to maximize the weighted-sum throughput.

The joint resource management can be formulated as:

maximize
pi,j ,ϑ

m
i,j

M
∑

m=1

̟m





NF
∑

i=1

Ji
∑

j=1

ϑm
i,jRi,j



 (OP1)

s.t. C1 :
M
∑

m=1

NF
∑

i=1

Ji
∑

j=1

ϑm
i,jpi,j ≤ Ptotal, ∀i, j,m,

C2 : |hi,j |2
(

p̄i,j−
j−1
∑

k=1

pi,k

)

≥ p∆, ∀i, j,

C3 :

Ji
∑

j=1

ϑm
i,jpi,j ≥ 0, ∀i, j,m,

C4 :

M
∑

m=1

Ji
∑

j=1

ϑm
i,j ≤ Nmax,

C5 :

NF
∑

i=1

Ji
∑

j=1

ϑm
i,jRi,j ≥ Rmin

m , ∀i, j,m,

C6 :

Ji
∑

j=1

ϑm
i,j ∈ {0, 1} , ∀i, j,m,

where 0 < ̟m < 1 is the weight of user m accounting for

its priority. As in [10], we set ̟m = dm/ (maxi (di)). dm is

the distance from user m to the BS. Constraint C1 specifies

the maximum transmit power of the BS, Ptotal. Constraint C2

ensures that the SIC receiver can successfully perform SIC.

Constraint C3 ensures that non-negative powers. Constraint

C4 limits the number of users per subcarrier. Constraint C5

specifies the minimum rate constraint of user m, Rmin
m , which

is part of the QoS requirement of the user. Constraint C6

indicates that a user can only be allocated to a subcarrier once.

Theorem 1. The optimization problem OP1 is NP-complete.

Proof: The joint power and subcarrier allocation problem

under perfect SIC is a special case (i.e., ε2=0 and p∆=0) of

OP1. The latter is proved to be an NP-complete problem [4].

Thus, the NP-completeness of OP1 can be also proved.

To solve OP1, we design a novel DRL-JRM framework.

Given the channel gain, QoS constraint and user priority,

the framework, including subcarrier assignment and power

allocation, is conducted at every slot.

III. TRANSFORMATION TO RL TASK

In order to transform OP1 into an RL task, we decompose

OP1 into two iterative subtasks which run in an alternating

manner: an SA subtask and a PA subtask, as shown in Fig.

2. The SA subtask is responsible for subcarrier assignment,

and the PA subtask is responsible for power allocation. When

solving the OP1, the SA subtask is executed first and the SA

result is obtained. Based on the SA result, the PA subtask

is executed to obtain the PA result. The optimal solution is

achieved after several iterations of the SA and PA subtasks.

Fig. 2. Transformation of optimization problem OP1.

To efficiently solve the SA and PA subtasks, RL is em-

ployed. A standard RL process is defined as a Markov decision

process. At each decision step t, an agent observes state

st ∈ S, executes action at ∈ A, and receives a scalar reward

rt. Based on the selected actions from the target policy π, the

agent continuously interacts with a system environment E to

maximize the expected future rewards. The future discounted

reward at step t is Rt =
∑T

t
′=t γ

(t
′

−t)rt′ , where T is the total

number of steps of the RL task, and γ is the discounted factor.

We transform the two subtasks into two sequential decision

processes. The SA subtask is an M -step decision process. At

each decision step, the agent outputs the SA result of a user.

The process terminates after all users are assigned, and thus M
users need M steps. Different from the SA subtask, the PA

subtask is a TPA
max-step sequential decision process. At each

step, the PA results of all users are output simultaneously.

The outputs are the power change value of each user on each

subcarrier, rather than the actual power value to be allocated.

The process terminates after TPA
max steps.

Since each decision step in the PA subtask needs to output

the PA results of all users at the same time, a multi-agent

technology can be utilized. Each user corresponds to an agent,

thus, a total of M agents are needed.

A. Action

In the SA subtask, the action of each step is the SA result

for a user. The action a
u
t is defined as a

u
t =[πu

1,t, . . . , π
u
NF,t

]T,

πu
i,t ∈ {0, 1} , ∀i. If subcarrier i is assigned to the designated

user of the t-th step, then πu
i,t = 1; otherwise, πu

i,t = 0.

In the PA subtask, the action of agent m a
p
m,t =

[̺1,m,t, . . . , ̺i,m,t, . . . , ̺NF,m,t]
T, and ̺i,m,t∈{−1, 0, 1} , ∀i.

̺i,m,t=1 means power should be increased; ̺i,m,t=0 means

power remains unchanged; ̺i,m,t =−1 means power should

be reduced. Define ϑ as the magnitude of the power change

at each step and vm,t as the power indicator (rather than an

actual power value). vm,t = [v1,m,t, . . . , vNF,m,t]
T, and vi,m,t

evaluates the actual power value of user m on subcarrier i
at the decision step t. Based on the PA action a

p
m,t, vm,t+1

in the next PA indicator state is vm,t+1 = vm,t + ϑapm,t. If

vi,m,t+1 < 0, then vi,m,t+1 is reset to 0. The actual allocated

power for user m on subcarrier i at step t is given by

pi,m,t = Ptotalvi,m,t/

(

M
∑

m=1

NF
∑

i=1

vi,m,t

)

. (7)
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B. State

In the SA subtask, sut includes user priorities W, QoS

constraints R
min, channel gains H̃ and the current state of

subcarriers being occupied Ot, i.e., sut = {W,Rmin,H,Ot},
where W = [̟1, . . . , ̟M ]; Rmin = [Rmin

1 , . . . , Rmin
M ]; H̃ =

[h̃1, . . . , h̃M ], h̃m = [h̃1,m, . . . , h̃i,m, . . . , h̃NF,m]T; and Ot=
[o1,t, . . . ,oM,t] and om,t= [o1,m,t, . . . , oi,m,t, . . . , oNF,m,t]

T.

oi,m,t ∈ {0, 1} indicates whether user m is assigned to

subcarrier i at step t. If user m is assigned to the subcarrier i,
then oi,m,t=1; otherwise, oi,m,t=0. Based on the definition

of ϑm
i,j , we have oi,m =

∑Ji

j=1 ϑ
m
i,j . In sut , all of W, Rmin

and H̃ are fixed, while Ot changes with the SA action.

In the PA subtask, the M users are M agents. For

each agent m, state spm,t includes the information (e.g.,

user priority, QoS constraint, channel gain, and SA re-

sult) of other agents in addition to its own informa-

tion. Thus, spm,t = {spself,m,t, s
p
other,m,t}, where s

p
self,m,t =

[̟m, Rmin
m , (h̃m)T, (aum)

T
, (vm,t)

T
], spother,m,t

= [(spself,1,t)
T, · · · , (spself,k,t)T, · · · , (s

p
self,M,t)

T]T, and k 6=m.

C. Reward Function Design

A new joint reward and internal reward mechanism is

designed. The optimization objective is satisfied by a joint

reward, while constraints are satisfied by an internal reward.

We refer to a complete SA and PA iteration as an “epoch”.

At the end of each epoch (iteration), we substitute the SA

and PA results in OP1, evaluate the objective value, and use

it as the joint reward. The internal reward is the reward of

environmental feedback when a non-suitable SA result (non-

SSAR, not satisfy constraints C4 and C6) or non-suitable PA

result (non-SPAR, not satisfy C1–C3 and C5) is created.

1) Reward of the SA Subtask: The internal reward ru,intt in

the SA subtask is to encourage the agent to generate a suitable

SA result (SSAR, satisfying C4 and C6). In the design of the

SA action, constraint C6 is met. Only constraint C4 needs to

be ensured. ru,intt is given by

ru,intt = ωu,intΓ (C4) (8)

where ωu,int is the penalty coefficient. If constraint Cx is

satisfied, Γ(Cx) = 0; otherwise, Γ(Cx) = 1. For the joint

reward ru,jot , the objective of OP1 can be directly applied,

ru,jot = ωu,jo exp

(

ωjo
M
∑

m=1

̟m

(

NF
∑

i=1

R̃i,m

))

(9)

where ωu,jo > 0 is the excitation coefficient, and ωjo > 0 is

the adjustable factor. The final reward rut of the SA-agent is

rut =ru,intt +ru,jot . The reward using an exponential function is

in light of a “reward shaping” technique [33].

2) Reward of the PA Subtask: The internal reward rp,intm,t of

agent m is to motivate the generation of SPAR (i.e., satisfying

constraints C1–C3 and C5). The way in which the actual

power value is calculated, i.e., (7), ensures that constraint C1

is satisfied, and the update algorithm of vm,t ensures C3 is

satisfied. Accordingly, rp,intm,t can be written as

rp,intm,t = ωp,int
I Γ (C2) + ωp,int

II

(

NF
∑

i=1

R̃i,m −Rmin
m

)

(10)

where ωp,int
I < 0 is the penalty coefficient, and ωp,int

II > 0 is

an excitation coefficient.

In this paper, we decouple the reward in light of a “differ-

ence reward” technique [34], where the joint reward rp,jom,t of

PA-agent m is defined as

rp,jom,t =(Θm) /
M
∑

m=1
(Θm)ωp,jo

m exp

(

ωjo
m

M
∑

m=1

(

̟m

NF
∑

i=1

R̃i,m

))

, (11)

where Θm =̟m

∑NF

m=1 R̃i,m; and ωp,jo
m and ωjo

m adjust the

magnitude of rp,jom,t . In (11), the total optimization objective

value is divided between different agents proportionally, de-

pending the throughput and weight of each individual agent.

In contrast, a total optimization objective value cannot be

directly applied as the joint reward rp,jom,t of each PA-agent

for two reasons: 1) A global reward makes it difficult for

each agent to deduce its individual contribution. The gradient

computed for each actor does not explicitly reason about how

the agent’s actions contribute to the global reward [35]; and 2)

different users (i.e., different agents) can have different weights

to account for different priorities. The final reward rpm,t of PA-

agent m is rpm,t=rp,intm,t +rp,jom,t .

As discussed, having individual per-agent rewards can be

better than having a single global reward. However, in the case

where we do not have a-priori knowledge on the contribution

of per-agent, existing algorithms, such as QMIX [36], can be

used to train the agents only with the global reward.

D. Updating Algorithm Derivation of Neural Network in DRL

The action-value function Q(st, at) describes the ex-

pected return of an action at taken in state st. Following

the target policy π, Q(st, at) is written as Qπ(st, at) =
Ert,st∼E,at∼π[Rt|st, at], where E is the environment state

distribution and π is the target policy distribution. Policy π
may be either stochastic or deterministic. Let µ represent the

deterministic target policy. Then, µ can be described as a

function µ: S ← A. By utilizing the recursive relationship

(i.e., the Bellman equation), Q(st, at) can be transformed into

Qµ (st, at) = Ert,st+1∼E [rt + γQµ (st+1, µ (st+1))]. (12)

DQN is a popular type of DRL, and applies experience

relay and target network techniques [37]. However, DQN

only supports control problems with a relatively small set of

low-dimensional and discrete actions [38]. By integrating the

advantages of DQN and actor-critic (AC) architecture, DDPG

can support continuous or high-dimensional action spaces [39].

The AC structure consists of an actor network (i.e., the policy

network) and a critic network (i.e., the Q-network) [40].

DDPG also adopts copy network, which creates a copy

for each critic and actor network to improve stability and

convergence. The original network is referred to as online

network, and the copy network is referred to as target network.
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The target network is updated by using a “soft update”

algorithm [38]. Fig. 3 shows the flow diagram of DDPG, where

I is the size of the “experience replay” pool.
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Fig. 3. DDPG diagram. ↑ indicates the update of the network parameters.
The green box is the “experience replay” pool.

Define θQt as the network parameters of the critic net-

work. Based on the gradient update, the network can be

trained by minimizing the loss functions Lt(θ
Q
t ). At each

step t, Lt(θ
Q
t ) = Eat∼π,st∼E [(yt−Qµ(st, at|θQt ))2], where

yt = Est+1∼E [rt+γmaxa′ Qµ(st+1, a
′

)|θQt−1)]. The gradient

of the critic network is calculated by differentiating Lt(θ
Q
t )

with respect to θQt giving:

∇
θ
Q
t
Lt(θ

Q
t )=Ea∼π,s∼E [∇θ

Q
t
Qµ(st, at)|θQt )(rt+γmaxa′ Qµ(st+1, a

′

)|θQt−1)−Qµ(st, at)|θQt ))]). (13)

The policy gradient of the actor network is calculated by

employing the chain rule of differentiation to the expected

future return from the initial distribution J with respect to θµt
[39], where θµt is the actor parameters. This gives

∇θ
µ
t
J ≈ Es∼E [∇θ

µ
t
Qµ(s, a|θQt )|s=st,a=µ(st|θ

µ
t )
] (14)

= Es∼E [∇aQ
µ(s, a|θQt )|s=st,a=µ(st)∇θ

µ
t
µ(s|θµt )|s=st ]

where J = Ert,st∼E,at∼π[R1]. Degris et al. [41] have proved

that this is a good approximation since it can preserve the set

of local optima to which gradient ascent converges.

IV. PROPOSED DRL-JRM FRAMEWORK

A. Global DRL-JRM Framework

The DRL-JRM framework consists of an SA module and a

PA module, as shown in Fig. 4. The SA module adopts the

single-agent technique and is responsible for the SA subtask.

The input of the SA module includes the channel gains H, user

priorities W, and QoS constraints Rmin. The output is the SA

result {au1 , . . . , auM}. The PA module employs the multi-agent

technique and is responsible for the PA subtask. The input of

the PA module includes the SA result {au1 , . . . , auM}, H, W

and R
min. The output is the PA result {ap1 , . . . , apM}.

Given the ability of CNN in feature extraction and data

compression, we design an state-CNN to extract other agents

information s
p
other,m,t for information compression. The de-

tails of the state-CNN are provided in Section IV-C.

Operation mechanism of DRL-JRM framework: In each

epoch (iteration), after M steps, the SA actor network (SA-

AN) outputs the SA action. If the SA action fails to meet

constraints C4 or C6 (i.e., non-SSAR), a small internal reward

is generated and will be input to the SA critic network (SA-

CN) to update the action-value function Qµ(st, at). According

to Qµ(st, at), SA-AN can be improved by the policy gradient

method based on (14). The process repeats until the SA-agent

can generate the SA action that meets constraints C4 and C6

(i.e., SSAR). Based on SSAR, after executing TPA
max steps, the

PA results can be obtained by the M PA-agents. Non-SPAR

would lead to a small internal reward and, in turn, further

learning of the PA-agents until the generation of SPAR. Note

that SSAR and SPAR may not be optimal or convergent. We

substitute the SSAR and SPAR into OP1 to calculate the

objective value and obtain the joint reward, which are fed

back to the SA-CN and PA critic network (PA-CN) to further

improve the SSAR and SPAR, respectively. This repeats until

the network converges with the JRM results.

B. SA Module

Fig. 5 provides the detailed network composition of the

SA module. Three improvements are developed to improve

efficiency and convergence, as will be shown in Section V-G.

Improvement 1. Input Design: Different from the traditional

method of flattening all user information directly into a fully

connected neural network, we design a hierarchical input

method. In this method, the inputs of the neural network

associated with an individual user are forwarded to a separate,

localized, smaller neural network between the input and hidden

layers of the overall neural network. All the localized, smaller

neural networks output their results to a hidden layer to

produce the results of the overall neural network.

Improvement 2. ResNet: In general, we can obtain stronger

network expression ability by increasing the number of layers.

When the number of network layers is large, gradient disper-

sion becomes an inevitable problem. Since the residual net-

work (ResNet) can effectively solve the problem, we leverage

ResNet to replace the fully connected neural network (FCNN)

to improve the number of neural network layers.

Improvement 3. Output Design: The output layer is jointly

implemented by two networks: “A” and “B” networks, which

have the same network structure and input format. The “A”

network is used to determine the number of subcarriers oc-

cupied by each user, and the “B” network generates a final

(actual) SA result based on the output of the “A” network.

C. PA Module

Fig. 6 shows the network composition of the m-th PA-agent

in the PA module, where the detailed structures of PA-AN and

PA-CN are similar to SA-AN and SA-CN.

In the PA module, we use a standard multi-agent learning

paradigm: centralized training and decentralized execution

[42]. A centralized action-value function method is applied,

where the critic is augmented with extra information of other

agents [43]. Different from [43], our centralized action-value

function of the m-th agent is given by

Qm

(

s
p
self,m,t, I

p
m,t, a

p
1,t, · · · , apM,t

)

(15)
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Fig. 4. The DRL-JRM framework.

Fig. 5. The network detail structure of the SA actor network and the SA critic network.
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Fig. 6. A pair of PA actor network and PA critic network in the PA module.

=Qm(spself,m,t, s
p
self,1,t, . . . , s

p
self,k,t, . . . s

p
self,M,t, a

p
1,t, . . . , a

p
M,t),

where k 6= m,, by using the state-CNN, the observations of the

other agents (i.e., s
p
self,1,t, . . . , s

p
self,k,t, . . . , s

p
self,M,t) are com-

pressed in I
p
m,t which has the same dimension as the obser-

vation of the m-th agent s
p
self,m,t. By this means, we increase

the proportion of the observation of the m-th agent in the

observations of all agents. Specifically, the information of the

other agents s
p
other,m,t with size (M −1)× (3NF+2) is input

into the state-CNN and converted to I
p
m,t with size (3NF+2).

So, spm,t can be rewritten as spm,t = {spself,m,t, (I
p
m,t)

T}.
According to centralized action-value function, for PA actor

network (PA-AN) with parameter θp,µm,t of PA-agent m, policy

gradient can be calculated by (16). The gradient of PA-CN

with parameter θp,Qm,t of PA-agent m can be expressed by (17).

An agent may not have all observations of the others. We

define an information perception degree (IPD) to measure the

observations of the other PA-agents obtained by PA-agent m.

Definition 2. The IPD of PA-agent m is defined as

ζm =
(

∑M
k=1

∑Ncate

l=1 I(x̂k,l,m)
)

/
(

∑M
k=1

∑Ncate

l=1 I(xk,l)
)

, k 6= m, (18)

where Ncate is the number of different types of observations

and Ncate = 5 (i.e., user priority, QoS constraint, channel

gain, SA result and the PA result of the current decision

step). I(xk,l) is the number of observations of the l-th (l ∈
{1, · · · , Ncate}) type for user k, i.e., the number of elements in

matrix s
p
other,m,t. For example, the number of the observations

on the channel gain (i.e., the third type of observation) is NF

for user k, then I(xk,3)=NF. I(x̂k,l,m) indicates that the PA-

agent m can obtain the number of observations of the l-th type

for user k, that is, the number of non-zero entries in s
p
other,m,t.

If the observation cannot be obtained, the corresponding entry

in s
p
other,m,t is 0; otherwise, the entry is 1.

D. Model Training

The training is summarized in Algorithms 1 and 2. EMu

and EMp
m are the experience pools for the SA- and PA-agents.

As describe in Fig. 4, the DRL-JRM algorithm consists of

five modules: SA-CN, SA-AN, state-CNN, PA-CN and PA-

AN. We first define the following hyper-parameters of the

network: Nfull is the number of neurons in the fully connected

layer; dRes is the number of the ResNet blocks; dcnn is the

number of flattened layers in state-CNN; D is the number of

all convolutional layers; l is the l-th convolutional layer; Ml

is the side length of the output feature map of convolution

kernel in the l-th convolution layer; Kl is the side length of

each convolution kernel in the l-th convolution layer; and Cl is

the number of output channels of the l-th convolutional layer.

The time- and space-complexities are provided in Theorem 2.

Theorem 2. The time-complexity of DRL-JRM training is

O(NepN
SA
maxNfullM (4dResNfull +Nfull + 4NF)

+NepN
PA
maxT

PA
max(

D
∑

l=1

(

M2
l K

2
l Cl−1Cl

)

+ (dnetNfull + 14NF)Nfull)), , (19)
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∇θ
p,µ
m,t

Jp
m ≈ Es

p
m∼E

[

∇θ
p,µ
m,t

Qp
m(spm, ap1 , . . . , a

p
M |θ

p,Q
m,t )|spm=s

p
m,t,a

p
m=µ(spm,t|θ

p,µ
m,t)

]

(16)

= Es
p
m∼E [∇a

p
m,t

Qp
m(spm, ap1 , . . . , a

p
M |θp,Qm,t )|spm=s

p
m,t,a

p
m=µ(spm,t)

∇θ
p,µ
m,t

µp
m(spm|θp,µm,t)|spm=s

p
m,t

].

∇
θ
p,Q
m,t

Lt(θ
p,Q
m,t ) = E

a
p
m∼π,s

p
m∼E [(r

p
m,t + γ max

a
p

m,t+1

Qp
m(spm,t+1, µ(s

p
1,t+1), . . . , µ(s

p
M,t+1)|θp,Qm,t−1) (17)

−Qp
m(spm,t, µ(s

p
1,t), . . . , µ(s

p
M,t)|θ

p,Q
m,t ))∇θ

p,Q
m,t

Qp
m(spm,t, µ(s

p
1,t), . . . , µ(s

p
M,t)|θ

p,Q
m,t )].

The space-complexity of DRL-JRM training algorithm is

O(Nfull (4dResNfull +Nfull + 4NF) + 18M ·NF · EMu

+
D
∑

l=1

(

K2
l Cl−1Cl

)

+
D
∑

l=1

(

M2Cl

)

+ (dnetNfull + 14NF)Nfull), (20)

where dnet = 4dRes + 1 + dcnn.

Proof: Please refer to Appendix A.

V. EXPERIMENTAL RESULTS

For comparison purposes, the following benchmarks are

tested: 1) DUCPA [44], which first groups users into clusters

and then optimizes their respective powers, where SA is not

considered and we use the greedy search method is used

for SA for fair comparison; 2) CFJPBA [45], which first

transforms cluster formation into a multi-partite matching

problem and then solves the joint power-bandwidth allocation

into a convex form by geometric programming. To make

CFJPMA comparable with the proposed DRL-JRM, we first

perform SA by greedy search, and then set the bandwidth

to be evenly divided; 3) Random user grouping and power

allocation (RUSPA), which first performs random SA and

then applies the optimal PA algorithm proposed by Yang

et al. [46]; 4) JPCA [47], which utilizes the Lagrangian

duality to relax the individual power constraint and constructs

the subproblem of Lagrangian relaxation. Then, a two-phase

dynamic programming-based approach is applied; 5) JPSA

[48], which runs an SCA-based algorithm to generate feasible

solutions; 6) JPCA-DRL [24], which alternately solves the PA

problem given a channel assignment, and runs the DRL to

assign channels under the given PA results; and 7) JUSPA [15],

which solves the PA problem with fractional quadratic trans-

formation, and schedules users with a heuristic method in an

alternating manner until convergence. When the optimization

problem is small-scale, we can also employ the Gurobi solver

supporting the B&B method to obtain the optimal solutions.

A. Simulation Setup

Taking the BS location as the center, the users are distributed

inside a concentric circle with the radius ranging from 30

m to 300 m, and follow the spatial Poisson point process

Φ(λ) with density λ = 2. 3GPP urban path loss model is

adopted with the path loss exponent of 3.6. The noise power is

σ2
m= BN0

NF
, where B=5 MHz, NF=64, and the noise power

spectral density N0=−173 dBm. The different requirements

Rmin
m ∼ N (80 kbits/s, 10). IPD ζm = 1.00, ∀m, unless

otherwise specified. Both the SA-AN and SA-CN contain

Algorithm 1 Training the DRL-JRM.

1: Initialize network parameters
2: for Epoch = 1,2,...,Nep do
3: Initialize a random process for the exploration of SA action

and PA action
4: Receive initial state sut and s

p
m,t for all m

5: Execute SA-AN in SA module with a total of M steps
6: Get a complete SA policy au

t

7: if au
t is suitable SA policy then

8: Execute PA-AN in PA module
9: Get a complete PA policy a

p
m,t

10: if a
p
m,t is suitable PA policy then

11: Calculate the OP1, and produce joint reward r
u,jo
t and

r
p,jo
m,t

12: Calculate total reward rut and r
p
m,t

13: Observe the next SA state sut+1 and PA state s
p
m,t+1

14: Store (sut , a
u
t , r

u
t , s

u
t+1) to EMu, and store

(spm,t,a
p
m,t, r

p
m,t, s

p
m,t + 1) to the m-th experience

replay pool EMp
m

15: if EMu is full then
16: Procedure 1: Training SA network
17: Procedure 2: Training PA network
18: end if
19: else
20: Run PA-agents in Algorithm 2
21: end if
22: else
23: Run SA-agent in Algorithm 2
24: end if
25: end for
26:

27: Procedure 1: Training SA network
28: Sample a random mini-batch of transitions from EMu

29: Update SA-CN and SA-AN based on update algorithms (e.g.,
(13) and (14))

30: “Soft update” the target networks

three ResNet blocks. As shown in Fig. 5, each ResNet block

is composed of two FCNN layers, where each FCNN layer

has 128 neurons, and the corresponding activation function is

ReLU (i.e., max (0, x)). The output layer of the SA-AN is

as described in Section IV-B, and the last layer has only a

single neuron and has no activation function. The penultimate

layer has 64 neurons, and the activation function is also ReLU.

Similarly, all PA-ANs and PA-CNs of the PA-agents have the

same hidden and output layers structures as the SA-AN and

SA-CN. For the state-CNN, the hidden layers are convolution

(ReLU)+max pooling, convolution (ReLU)+max pooling, fully

connection (ReLU), or fully connection (ReLU). The output

layer of the state-CNN has 3NF+2 neurons, and the activation

function is the Sigmoid function (i.e., 1/ (1 + e−x)). The
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Algorithm 2 Network update algorithms.

1: Run SA-agent:
2: for Episode = 1,2,...,NSA

max do
3: for t = 1,2,...,M do
4: Input sut to SA-AN and output au

t .

5: Acquire internal reward r
u,int
t and calculate total reward

rut+1

6: Observe the next SA state sut+1

7: Store (sut , a
u
t , r

u
t , s

u
t+1) to EMu

8: end for
9: if EMu is full then

10: Procedure 1: Training SA network
11: end if
12: end for
13:

14: Run PA-agents:
15: for Episode = 1,2,...,NPA

max do
16: for t = 1,2,...,TPA

max do
17: For each agent m, input s

p
m,t to RAN and output a

p
m,t

18: Acquire internal reward r
p,int
m,t and calculate total reward

r
p
m,t+1

19: Observe the next PA state s
p
m,t+1

20: Store (spm,t,a
p
m,t, r

p
m,t, s

p
m,t + 1) to the m-th experience

replay pool EMp
m.

21: if EMp
m is full then

22: Procedure 2: Training PA network
23: end if
24: end for
25: end for
26:

27: Procedure 2: Training PA network
28: for agent m = 1,...,M do
29: Sample a random mini-batch of transitions from EMp

m

30: Update PA-AN and PA-CN of PA-agent m by the update
algorithms (e.g., (16) and (17))

31: “Soft update” the target networks
32: end for

RMSProp algorithm is used to conduct gradient descent. Both

EMu and EMp
m are set to 5,000 and 4,000. The batch size

is 128. The learning rates of SA-AN and SA-CN are 0.001

and 0.003. The learning rate of PA-AN and PA-CN of PA-

agent m are 0.002 and 0.005. Other hyper-parameters are set

as follows: ωu,int =−5, ωp,int
I =−8, ωp,int

II = 3, ωu,jo = 1.5,

ωjo = 0.25, ωp,jo
m = 16, and ωjo

m = 0.45. NSA
max = 20, 000,

NPA
max=35, 000, Nep=15, 000, TPA

max=100, γu= γp
m=0.99,

and ϑ = 10−5. These hyper-parameters are set up based on

extensive simulation tests and actual accuracy requirements.

Table II compares the proposed approach with the existing

works which are the most relevant. The average throughput

(AT) results are simulated and compared between the proposed

approach and those works, where the number of users is 44,

the total transmit power is 42 dBm, the hardware sensitivity

requirement is 0.08 dBm, and the SIC error factor is 10−4.

More detailed comparisons are provided in the following.

B. Average System Throughput Versus Total Number of Users

Fig. 7(a) compares the AT of the considered algorithms in a

small-scale problem (2 ≤M ≤ 20). The proposed DRL-JRM

method is better than the existing alternatives and very close

to the optimal result obtained by the B&B method. Fig. 7(b)

compares the AT under a much larger problem setting, and

DRL-JRM performs the best in all methods. Since Nmax=2
in Fig. 7(b), JPSA and JPCA-DRL serve as the baseline.

In Fig. 7(b), the proposed DRL-JRM method is better

than JPSA and JPCA-DRL in terms of AT. This is because

despite the CSI is imperfect at the base station, JPCA-DRL

treats it as the perfect CSI for user selection, subcarrier and

power allocation (as done in [24]). On the other hand, the

AT of the resulting user selection and resource allocation

is evaluated under the actual CSI. Moreover, the number of

users multiplexed per subcarrier is the same across subcarriers

in JUSPA [15], reducing flexibility. OMA achieves a lower

throughput due to its less efficient use of the spectrum.

C. Sensitivity to User Priority

̟m accounts for the priority of different personalized

requests. Fig. 7(c) shows the changes of the allocated power

for the first user (i.e., m = 1) and the AT under different ̟1,

where the priorities of the other users are randomly generated

and remain unchanged. As ̟1 increases, the powers allocated

to the first user by DRL-JRM, JPCA, DUCPA and CFJPBA

increase significantly. The slope of DRL-JRM is the largest,

which means that DRL-JRM is more sensitive to the change

of ̟m and has stronger personalized service ability.

D. Average System Throughput Vs. Maximum Transmit Power

Figs. 8(a) and (b) plot the AT versus Ptotal when Nmax=2
and 4. When Ptotal is small, DRL-JRM exhibits a considerable

gap over the other techniques. The gap decreases with the

increase of Ptotal, and the impact of co-subcarrier interference

and PDSC diminishes. This reveals the benefit of DRL-JRM in

resource allocation under imperfect SIC and PDSC, especially

in the presence of strong co-subcarrier interference. In Fig.

8(b), MC-NOMA schemes perform worse than the MC-OMA

schemes when Ptotal =20 dBm. This is because of: 1) the

strong co-subcarrier interference (Nmax = 4) and SIC error

(ε2 =10−2); and 2) the limit of PDSC (i.e., higher power is

required to ensure the basic requirements of SIC). The AT of

DRL-JRM is higher than the other algorithms under different

Ptotal. Not only does this confirm the adaptability of DRL-

JRM to PDSC and imperfect SIC, but also indicates that a

higher Ptotal is required when Nmax is large. From Figs. 7(a),

7(b), 8(a) and 8(b), despite RUSPA utilizes the optimal PA,

AT is low. This indicates the importance of a proper SA.

E. Effective System Throughput Versus User Demand Rate

The QoS satisfaction of users is also an important indicator.

We define effective system throughput Qeff to measure the

system throughput that meets the QoS requirements:

Qeff =
M
∑

m=1

(

1
2

NF
∑

i=1

R̃i,m(sgn(
NF
∑

i=1

R̃i,m −Rmin
m ) + 1)

)

(21)

where sgn (·) is an extended signum function. If x ≥ 0,

sgn (x) = 1; otherwise, sgn (x) = −1. In addition, the QoS

satisfaction rate ̺QoS, is defined as

̺QoS =

M
∑

m=1

(

1

2
(sgn(

NF
∑

i=1

R̃i,m −Rmin
m ) + 1)

)

/M. (22)
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Table II A comprehensive comparison between the proposed algorithm and existing studies. The results of AT are provided for those with
the same objective as and similar settings to the proposed algorithms, and not applicable (n.a.) for the rest of the existing studies.

List Assumption Objective Methodology AT(bit/s/Hz)

This

paper

imperfect SIC, multi-carrier, DL, multiple users per

cluster, hardware sensitivity requirement considered

power allocation, user pair-

ing, subcarrier scheduling
deep reinforcement learning 8.9419

[4], 2016

perfect SIC,

multi-carrier,

DL,

multiple users per cluster,

hardware sensitivity requirement not considered

power and channel allocation
Lagrangian duality,

dynamic programming
n.a.

[5], 2018
power and subcarrier all-

ocation, user clustering,

Lagrangian dual, sequenti-

al convex programming
n.a.

[47], 2015 power and channel allocation
Lagrangian duality,

dynamic programming
8.6588

[44], 2016
power allocation,

user clustering

Karush-Kuhn-Tucker

optimality conditions
7.8928

[11], 2017
imperfect SIC, multi-carrier, DL, two users per

cluster, hardware sensitivity requirement not considered

power and rate allocation,

user scheduling

B&B approach, difference

of convex programming
n.a.

[14], 2019

imperfect SIC, multi-carrier,

DL, multiple users per cluster,

hardware sensitivity requirement not considered

power allocation
fractional quadratic

transformation
n.a.

[15], 2019
power allocation,

user scheduling

fractional quadratic trans-

formation, heuristic
8.6145

[45], 2017
power allocation,

user clustering

multi-partite matching,

geometric programming
7.5795

[24], 2019
perfect SIC, multi-carrier, DL, two users per

cluster, hardware sensitivity requirement not considered

power allocation,

user pairing

water-filling algorithm,

deep reinforcement learning
8.7405

[48], 2016
perfect SIC, multi-carrier, DL, two users per

cluster, hardware sensitivity requirement not considered

power allocation

subcarrier allocation
monotonic optimization 8.7648
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Fig. 7. (a)–(b): Comparison of AT versus user number. (a) NF=8, Ptotal=40 dBm, Nmax=4, p∆=0.05 dBm and ε2=10−4. (b) NF=64, Ptotal=42

dBm, Nmax =2, p∆ =0.08 dBm and ε2 =10
−4 . (c): NF =20, M =60, Nmax = 4, Ptotal =46 dBm, p∆ =0.05 dBm and ε2 =10

−3. ̟1 =0.1 is
selected as the reference time. we linearly fit the allocated power values, and the fitting results are marked with the label “linear”.

Fig. 8(c)–(f) compares the average effective system throughput

and ̺QoS with the growth of Rmin
m . In the presence of weak

interference, as shown in Figs. 8(c) and (d), DRL-JRM de-

clines the slowest. DRL-JRM can effectively balance user QoS

constraints while maintaining high system throughput, and

hence achieve adequate resource allocation. In the presence of

strong interference, as shown in Figs. 8(e) and (f), DRL-JRM

declines the slowest, indicating its efficient use of resources.

F. Impact of Imperfect SIC

From Fig. 7 to Fig. 8, we show that JPCA is better than

DUCPA, JUSPA, CFJPBA and RUSPA. We compare the AT of

DRL-JRM and JPCA in different scenarios. In Fig. 9(a), when

Nmax ≥ 10, the increase of Nmax does not result in a growth

of the AT. This is because multiplexing gain by increasing

Nmax could be offset by the increasingly interference.

In other words, the interference caused by multi-user mul-

tiplexing can seriously compromise the performance of MC-

NOMA. When ε2 = 10−1, with the growth of Nmax, the

AT of DRL-JRM and JPCA is increasingly surpassed by that

of MC-OMA. Different from what in shown in Fig. 9(a),

Ptotal decreases in Fig. 9(b). The AT of DRL-JRM and JPCA

declines under different ε2 values, and the corresponding

critical points are moved forward. The same conclusions are

drawn from Figs. 9(c) and (d).

G. Convergence and Effectiveness of Different Improvements

Fig. 10(a) shows the training process of the SA-agent and

PA-agents (only three PA-agents are shown due to the limited

space). All agents exhibit good convergence. In Fig. 10(b), by

adopting ResNet or CNN, the convergence of the network is

improved. Although CNN has better convergence than ResNet,

its convergent network performance is lower. The input de-

sign can also improve the performance and convergence. In

Fig. 10(c), the PID only affects the convergence rate and has

no impact on the network performance. Fig. 10(d) shows the

AT of the three improvements developed in Section IV-B. The

improvements help enhance the throughput and convergence.

CNN contributes more to the convergence, while ResNet

contributes more to the effectiveness.

VI. CONCLUSION

In this paper, we proposed the new DRL-JRM technique

for MC-NOMA under hardware sensitivity requirement and

imperfect SIC. We evaluated the impact of SIC errors, PDSC,

the number of users and the transmit power on resource
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Fig. 8. (a)–(b):Comparison of AT versus total transmit power under different methods. (a) NF = 40, M = 60, Nmax = 2, p∆ = 0.05 dBm and ε2 = 10
−2.

(b) NF = 20, M = 60, Nmax = 4, p∆ = 0.08 dBm and ε2 = 10−2 . (c)–(f):Comparison of Qeff and ̺QoS versus user demand rate Rmin
m under different

methods. The abscissa is the average of demand rates (i.e., R̄m=
1
M

∑M
m=1 R

min
m ). (c) with (d) NF=20, M=60, Nmax=4, Ptotal=42 dBm, p∆=0.05

dBm and ε2=10−3. (e) with (f) NF=20, M=60, Nmax=4, Ptotal=30 dBm, p∆=0.08 dBm and ε2=10−2.
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Fig. 9. AT versus Nmax under different interference conditions. (a) NF =40, M = 60, Ptotal =46 dBm, and p∆ = 0.05 dBm; (b) NF = 40, M = 60,
Ptotal = 30 dBm, and p∆ = 0.05 dBm; (c) NF = 40, M = 60, Ptotal = 46 dBm, and p∆ = 0.15 dBm; (d) NF = 40, M = 60, Ptotal = 30 dBm, and
p∆=0.15 dBm.

management, and evaluated the multiplexing capability of

MC-NOMA under different interference conditions. Extensive

experiments confirmed that DRL-JRM scheme is responsive

to different demands of users, and offers good scalability for

large-scale problems. DRL-JRM can be potentially extended

to allocate contiguous subcarriers (as specified in the 3GPP)

by imposing new subcarrier continuity constraints through the

output of the “A” and “B” networks in the SA actor network.

APPENDIX A

PROOF OF THEOREM 2

The total time-complexity is given by

Nep[N
SA
max (M (O (SA− CN) +O (SA− CN)))

+NPA
max

(

TPA
max ×maxm {O (state− CNNm) +O (SA− CNm) +O (SA− CNm)}

)

]. (23)

In the PA module, the agents operate in parallel. In our

considered scenario, NF ≤M ≪Nfull. We also approximate

the number of neurons NRes in each layer of ResNet with

Nfull, i.e., Nfull≈NRes. Then, we have

O (SA−AN) ≈ O
(

2dResN
2
full + 2NFNfull

)

, (24)

O (SA− CN) ≈ O
(

(2dRes + 1)N2
full + 2NFNfull

)

, (25)

O (PA−ANm) ≈ O
(

2dResN
2
full + 7NFNfull

)

, (26)

O (PA− CNm) ≈ O
(

(2dRes + 1)N2
full + 7NFNfull

)

, (27)

O (state− CNNm) ≈ O

(

D
∑

l=1

(

M2
l K

2
l Cl−1Cl

)

+ dcnnN
2
full

)

. (28)

Based on (24)–(28), the time-complexity of the SA module is

O1

(

NepN
SA
maxNfullM (4dResNfull +Nfull + 4NF)

)

, (29)
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Fig. 10. (a) Training process for SA- and PA-agents; (b) Convergence of improvements; (c) Convergence of different PIDs. (d) The impact of different
improvements on AT under different scenarios, where 1&2 NF = 20, M = 60, Ptotal = 30 dBm, p∆ = 0.05 dBm, ε2 = 10

−4; 3&4 NF = 20, M = 60,
Nmax=4, p∆=0.03 dBm, ε2=10−3; 5&6 NF=20, M=60, Nmax=4, Ptotal=46 dBm, ε2=10−4; 7&8 NF=15, M=60, Nmax=6, Ptotal=43

dBm, p∆=0.05 dBm.

and the time-complexity of the PA module is given by

O2

(

NepN
PA
maxT

PA
max

(

D
∑

l=1

(

M2
l K

2
l Cl−1Cl

)

+ (dnetNfull + 14NF)Nfull

))

, (30)

where dnet = 4dRes + 1 + dcnn. The overall time-complexity

sums up (29) and (30).

The total space-complexity is given by

O (SA−AN) +O (SA− CN) +O (pool) (31)

+M × (O (state− CNNm) +O (PA−ANm) +O (PA− CNm)) .

where O (pool) is the space-complexity of the “experience

replay pool”. Compared with the “experience replay pool”,

the space-complexity of the state and action spaces is com-

paratively negligible. With reference to the time-complexity,

the space-complexity of the SA module is

O1 (Nfull (4dResNfull +Nfull + 4NF)) . (32)

The space-complexity of the PA module is given by

O2

(

D
∑

l=1

(

K2
l Cl−1Cl

)

+
D
∑

l=1

(

M2Cl

)

+ (dnetNfull + 14NF)Nfull

)

. (33)

The space-complexity of the “experience replay pool” is

O3 (pool) = O3 (EMu × (2 (2NF + 2) +NF + 1) +M ·EMp
m × (2 (6NF + 4) +NF + 1))

≈ O3 (18M ·NF · EMu) , (34)

where EMu ≈ EMp
m. The overall space-complexity is the

sum of (32)–(34).
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