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Downlink Channel Reconstruction

for Spatial Multiplexing in Massive MIMO Systems
Hyeongtaek Lee, Hyuckjin Choi, Hwanjin Kim, Sucheol Kim, Chulhee Jang, Yongyun Choi, and Junil Choi

Abstract—To get channel state information (CSI) at a base sta-
tion (BS), most of researches on massive multiple-input multiple-
output (MIMO) systems consider time division duplexing (TDD)
to get benefit from the uplink and downlink channel reciprocity.
Even in TDD, however, the BS still needs to transmit down-
link training signals, which are referred to as channel state
information reference signals (CSI-RSs) in the 3GPP standard,
to support spatial multiplexing in practice. This is because
there are many cases that the number of transmit antennas is
less than the number of receive antennas at a user equipment
(UE) due to power consumption and circuit complexity issues.
Because of this mismatch, uplink sounding reference signals
(SRSs) from the UE are not enough for the BS to obtain full
downlink MIMO CSI. Therefore, after receiving the downlink
CSI-RSs, the UE needs to feed back quantized CSI to the BS
using a pre-defined codebook to support spatial multiplexing.
In this paper, possible approaches to reconstruct full downlink
MIMO CSI at the BS are proposed by exploiting both the
SRS and quantized downlink CSI considering practical antenna
structures with reduced downlink CSI-RS overhead. Numerical
results show that the spectral efficiencies by spatial multiplexing
based on the proposed downlink MIMO CSI reconstruction
techniques outperform the conventional methods solely based on
the quantized CSI.

Index Terms—Massive MIMO systems, spatial multiplexing,
downlink MIMO channel reconstruction, CSI-RS, SRS, TDD

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) sys-

tems, which deploy tens or hundreds of antennas at

a base station (BS), have become one of the key features

of future wireless communication systems including the up-

coming fifth generation (5G) cellular networks [1]–[5]. It is

now well known that massive MIMO systems can effectively

mitigate inter-user interference with simple linear precoders

(for downlink) and receive combiners (for uplink) and achieve

high spectral efficiency by supporting a large number of users

simultaneously [4], [5].

All the benefits mentioned above are possible only when the

BS has accurate channel state information (CSI). Although fre-

quency division duplexing (FDD) dominates current wireless

communication systems, FDD massive MIMO suffers from

excessive downlink training and uplink feedback overheads

[3]–[7]. There has been much work on resolving these issues

[8]–[15]. Especially, [13]–[15] exploited spatial reciprocity
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between the downlink and uplink channels in FDD. Since both

channels experience the same environment and share some

dominant channel parameters, e.g., path delays and directions,

even in FDD, the proposed approaches could remove most

of the overheads in FDD massive MIMO. These works are,

however, restricted to a single antenna user equipment (UE)

case, and it is not straightforward to extend the techniques to

multiple antennas at the UE side. When the UE has multiple

antennas, [12], [16], [17] proposed to exploit the sparse nature

of channels and compressive sensing techniques to mitigate

the channel training overhead. Since not all channels would

experience the sparsity, however, it is difficult to extend these

approaches into more general environments.

The most common and direct approach to get rid of all

downlink training and uplink feedback issues is to adopt

time division duplexing (TDD) to exploit the downlink and

uplink channel reciprocity [1], [4], [5], [18]–[25]. In TDD,

exploiting the channel reciprocity is useful especially when

the BS supports multiple users simultaneously with a single

data stream per UE through multi-user MIMO, which have

been the main focus of most of massive MIMO researches.

However, single-user (SU) MIMO with spatial multiplexing,

which has been neglected from massive MIMO researches so

far, is still important in practice and must be optimized for

massive MIMO as well.

For spatial multiplexing at the BS, however, exploiting the

downlink and uplink channel reciprocity may be insufficient

even in TDD. It is common in practice, but has not been taken

into consideration in most of MIMO researches before, that

the UE is deployed with the number of transmit antennas

less than the number of receive antennas because of many

practical constraints including power consumption and circuit

complexity issues at the UE side [26], [27]. Therefore, the

uplink sounding reference signals (SRSs), which are only

transmitted from the transmit antennas at the UE, are not

enough for the BS to obtain full downlink MIMO CSI by

exploiting the channel reciprocity.1 This is why the 3GPP

standard defines downlink channel training using channel state

information reference signals (CSI-RSs) and CSI quantization

codebooks (or precoding matrix indicator (PMI) codebooks)

even for TDD [28].

It is critical to reduce the downlink CSI-RS overhead for

massive MIMO, and most effective way to reduce the overhead

is by grouping multiple antennas at the BS as a single antenna

port [29], [30]. Each antenna port transmits the same CSI-

1This problem also hinders from exploiting the proposed techniques in
[13]–[15] when the UE has multiple antennas since the number of transmit
antennas is less than that of receive antennas.
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RS while the antennas in a port can have different weights

to beamform the CSI-RS [31], [32]. Since each antenna port

transmits the same CSI-RS, the UE is not able to distinguish

the different antennas in one port and only sees a lower di-

mensional effective channel through CSI-RSs from the antenna

ports. The UE then quantizes this lower dimensional downlink

channel, which we will refer to as CSI-RS channel throughout

the paper, with a pre-defined PMI codebook and feeds back

the index of selected codeword to the BS.

The 3GPP standard has defined two kinds of codebooks

for efficient limited feedback, i.e., the Type 1 and Type 2

codebooks [28]. The Type 1 codebook is a standard PMI

codebook consists of precoding matrices while the Type 2

codebook is to quantize the CSI-RS channel itself or its

subspace.2 Although the Type 2 codebook gives better quan-

tization performance than the Type 1 codebook, its feedback

overhead increases significantly for higher layer transmission,

making it unsuitable to spatial multiplexing [34], [35].

In addition to PMI quantization error, there are two possible

factors that could result in performance degradation for spatial

multiplexing: 1) usually the same beamforming weights for

the CSI-RS transmissions are used for spatial multiplexing

without adapting to channel conditions, and 2) the dimension

of fed back PMI is usually much smaller than the dimension

of original MIMO channel between the BS and the UE,

which makes the BS only have very limited knowledge of

the downlink MIMO channel. These problems exist regardless

of the codebook types [28], [34], [35]. Therefore, there is

a demand on finding the full dimensional downlink MIMO

channel from the low dimensional effective CSI-RS channel

at the BS to maximize the performance of spatial multiplexing.

To the best of our knowledge, there has been no prior

work on downlink MIMO reconstruction to support spatial

multiplexing from uplink channel information.3 Since there is

no relevant prior work, in this paper, we propose and compare

several possible approaches for the BS to reconstruct the full

downlink MIMO channel when the number of transmit anten-

nas is less than the number of receive antennas at the UE. The

proposed techniques exploit both the downlink CSI-RS and

uplink SRS considering practical antenna structures to mitigate

the downlink CSI-RS overhead in massive MIMO systems.

The proposed techniques range from a very simple approach to

complex techniques based on convex optimization problems.

Among many possible approaches, we verify using the realistic

spatial channel model (SCM) [36], which is adopted in the

3GPP standard, that it is possible to reconstruct the downlink

MIMO channel quite well using only basic matrix operations.

The proposed techniques can be used for both uniform linear

arrays (ULAs) and uniform planar arrays (UPAs) in a unified

way. Numerical results show that the spectral efficiencies by

spatial multiplexing based on the proposed downlink MIMO

CSI reconstruction techniques outperform that of conventional

approach, which only exploits the fed back PMI from the UE.

2Uplink feedback using the Type 2 codebook is often referred to as explicit
feedback [33].

3Although [13]–[15] tackled similar problems, these works are limited to
single antenna UEs, and it is difficult to extend the techniques in [13]–[15]
to multiple antenna UEs as discussed before.

The remainder of this paper is organized as follows. System

model and key assumptions are discussed in Section II. In

Section III, the proposed downlink MIMO CSI reconstruc-

tion techniques using the low dimensional effective CSI-RS

channel and the uplink SRS are presented. Numerical results

that verify the performance of the proposed techniques are

presented in Section IV, and conclusion follows in Section V.

Notations: Lower and upper boldface letters represent col-

umn vectors and matrices. AT, AH, and A† denote the trans-

pose, conjugate transpose and pseudo-inverse of the matrix A.

A(:,m : n) denotes the submatrix consists of the m-th column

to the n-th column of the matrix A, A(m : n, :) denotes the

submatrix consists of the m-th row to the n-th row of the

matrix A, and a(m : n) denotes the vector consists of the

m-th element to the n-th element of the vector a. AH(:, k)
denotes the k-th column of AH, and AH(k, :) denotes the k-

th row of AH. |·| is used to denote the absolute value of a

complex number, ‖·‖ denotes the ℓ2-norm of a vector, and

‖·‖F denotes the Frobenius-norm of a matrix. 0m is used for

the m× 1 all zero vector, and Im denotes the m×m identity

matrix. CN (m,σ2) denotes the complex normal distribution

with mean m and variance σ2. O(·) denotes Big-O notation.

II. SYSTEM MODEL

We consider a TDD massive MIMO system, especially

SU-MIMO with spatial multiplexing. We further consider

a standard PMI codebook, e.g., the Type 1 codebook, for

CSI quantization. We assume the BS is equipped with NBS

antennas, and the UE is equipped with MUE antennas as

shown in Fig. 1. At the UE side, all MUE antennas are used for

reception while only one of them,4 indexed as mTx, is used for

transmission. The BS is deployed with either a ULA or a UPA

while the UE is deployed with a ULA. The overall procedure

of our full downlink MIMO CSI reconstruction framework in

Fig. 1 is first summarized as follows.

Step 1: The BS transmits beamformed CSI-RSs to the UE.

Since the BS groups multiple antennas as a single

port, the UE only sees low dimensional effective

CSI-RS channel HCSI−RS−uq.

Step 2: The UE quantizes HCSI−RS−uq using a pre-defined

PMI codebook and feeds back the index of selected

PMI, HCSI−RS, to the BS.

Step 3: The UE transmits uplink SRS, and the BS obtains

hSRS relying on the downlink and uplink channel

reciprocity in TDD.

Step 4: Using both HCSI−RS and hSRS, the BS recon-

structs full downlink MIMO CSI.

Step 5: Based on the reconstructed MIMO CSI, the BS

supports the UE through spatial multiplexing.

As a way of mitigating the downlink CSI-RS overhead,

several physical antenna elements can form a single antenna

port at the BS [37]. The same CSI-RS is transmitted from

each antenna port so that the UE considers one antenna

port as a single transmit antenna. To improve the quality of

CSI-RS at the UE, however, different antenna elements in

4It is possible to have more than one transmit antennas at the UE, and we
leave this extension as a possible future work.
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Fig. 1: Massive MIMO with (i) downlink channel training through CSI-RS and uplink limited feedback using a PMI codebook,

(ii) uplink channel training using SRS, (iii) downlink channel reconstruction. The uplink SRS channel is denoted by hSRS,

and the index of UE antenna, which is used for transmission, is denoted by mTx.

Fig. 2: An example of practical UPA structure with Nver

vertical antennas and Nhor horizontal antennas. Each antenna

port has J = Nver antenna elements in this example.

one antenna port can have different beamforming weights.

When each antenna port consists of J antenna elements,

K = NBS/J antenna ports are deployed as in Fig. 2. If

the BS has prior knowledge of channel, for example through

uplink SRS exploiting the channel reciprocity, the BS can

dynamically select appropriate CSI-RS beamforming weights,

otherwise, fixed CSI-RS beamforming weights can be applied

[29]. After constructing the CSI-RS beamforming weights, the

BS transmits known CSI-RS sequences successively to the UE

through the antenna ports as in Fig. 3. In general, the CSI-RS

sequences are based on pseudo-random sequences [38]. Since

the proposed downlink channel reconstruction techniques work

for arbitrary CSI-RS sequences, as long as the BS and the

UE share the same ones, we assume the CSI-RS transmitted

Fig. 3: An example of downlink CSI-RS procedure with the

antenna structure in Fig. 2. The CSI-RSs are transmitted

successively from Port 1 to Port K to the UE.

from the k-th antenna port is a scalar xk, not a sequence, for

simplicity in this paper.

Since the antenna ports transmit the CSI-RS successively,

the received signals at the UE from the k-th antenna port yk
is given as

yk = HHpkxk + nk, (1)

where H is the NBS × MUE downlink MIMO channel

matrix, xk is the CSI-RS satisfying |xk|2 = 1, nk ∼
CN (0MUE

, σ2
DLIMUE

) is the MUE × 1 noise vector, σ2
DL =

1/ρDL, and ρDL denotes the downlink signal-to-noise ratio

(SNR). The NBS × 1 CSI-RS beamforming vector pk is

given by

pk =
[

0T
(k−1)J ,w

T
k ,0

T
NBS−kJ

]T

, (2)
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where wk is the J × 1 CSI-RS beamforming weight vector

applied to the k-th antenna port such that ‖wk‖2 = 1. Note

that all other antenna ports except the k-th port are silent

during the k-th CSI-RS transmission. As discussed above, the

BS can dynamically adjust wk if it has prior knowledge of

channel, e.g., through the uplink SRS. If the BS has no prior

channel knowledge, it needs to fix wk to have a widebeam

shape to guarantee that the UE can experience a certain level of

quality of service regardless of its location on its serving cell.

The performance according to different CSI-RS beamforming

weight vectors will be compared in Section IV.

After receiving all K CSI-RS transmissions, the UE can

construct an MUE×K unquantized low dimensional effective

CSI-RS channel matrix HCSI−RS−uq. We set xk = 1 for

simplicity throughout the paper since the proposed techniques

do not rely on any CSI-RS structure. Then HCSI−RS−uq is

represented by

HCSI−RS−uq = [y1,y2, · · · ,yK ] , (3)

= HHPX+N, (4)

= HHP+N, (5)

where P = [p1,p2, · · · ,pK ] ,X = diag [x1, x2, · · · , xK ] =
IK , and N = [n1,n2, · · · ,nK ]. The UE then quantizes

HCSI−RS−uq using a pre-defined PMI codebook and feeds

back the index of selected PMI to the BS through limited

feedback. Assuming the selected PMI is for layer L transmis-

sion via spatial multiplexing, the selected PMI

HCSI−RS = Q(HCSI−RS−uq), (6)

is a K ×L matrix where Q(·) is a CSI quantization function.

We consider Q(·) as a function of maximizing the spectral

efficiency [6], which is given by

HCSI−RS =

argmax
H̃CSI−RS∈C

log2

(

det
(

IL +
ρDL

L
H̃H

CSI−RSH
H
CSI−RS−uq

HCSI−RS−uqH̃CSI−RS

))

, (7)

where C is the pre-defined PMI codebook. Since the UE

only sees the low dimensional effective channel HCSI−RS−uq,

the UE can find the codeword that maximizes (7) through

exhaustive search over C. Note that L is smaller than or equals

to MUE while the proposed downlink channel reconstruction

techniques can be applied to any values of L. We will show

numerical results with different values of L in Section IV.

In TDD, relying on the downlink and uplink channel reci-

procity, the BS can estimate the downlink channel from the

uplink SRSs transmitted by the UE. Since we assume the UE

has only one transmit antenna, the BS can estimate an NBS×1
uplink SRS channel vector hSRS that corresponds to one of

the columns of the downlink channel matrix H corrupted with

noise as

hSRS = H(:,mTx) + v, (8)

where v ∼ CN (0NBS
, σ2

ULINBS
) is the NBS × 1 noise vector,

σ2
UL = 1/ρUL, and ρUL denotes the uplink SNR.

Since the BS would not be able to know in advance which

antenna is used for transmission among MUE antennas at the

UE, the BS does not know which column of H corresponds

to the uplink SRS channel vector. In Section III, we first

assume mTx is known to the BS to develop downlink channel

reconstruction techniques using HCSI−RS and hSRS. Then, we

show that the effect of imperfect knowledge of mTx would be

negligible in terms of spectral efficiencies. We further verify

the effect of mTx numerically in Section IV.

III. PROPOSED DOWNLINK MIMO CHANNEL

RECONSTRUCTION TECHNIQUES

In this section, we propose and compare possible downlink

MIMO channel reconstruction techniques using the low di-

mensional effective CSI-RS channel and the uplink SRS. It

turns out that some of proposed approaches, even complex,

do not work well, i.e., even worse than the conventional

spatial multiplexing only using the quantized PMI. We will

still explain these approaches since there is no prior work

on this problem, and readers may not know whether these

approaches perform well or not.

We assume perfect knowledge of mTx at the BS. The UE

feeds back the quantized HCSI−RS, which is selected for

layer L spatial multiplexing, to the BS. Since the UE has

already decided that the layer L spatial multiplexing would

be the best for the current channel after receiving the CSI-

RSs, it is reasonable to assume that the BS would reconstruct

an NBS × L, not NBS ×MUE, downlink channel if the BS

obtains the layer L HCSI−RS from the UE. In this case, we

assume mTx is in between 1 and L. Note that we consider

the conjugate transpose on HCSI−RS, i.e., HH
CSI−RS, for the

downlink channel reconstruction since the original purpose of

the PMI codebook is to inform the BS of beamformer for

spatial multiplexing. Then, the BS needs to take the conjugate

transpose on the fed back PMI to consider it as a downlink

channel.

A. Ratio technique

Considering H = [h1,h2, · · · ,hMUE
], the unquantized

effective CSI-RS channel matrix HCSI−RS−uq in (5) can be

further represented by

HCSI−RS−uq =











hH
1 p1 hH

1 p2 · · · hH
1 pK

hH
2 p1 hH

2 p2 · · · hH
2 pK

...
...

. . .
...

hH
MUE

p1 hH
MUE

p2 · · · hH
MUE

pK











+
[

n1,n2, · · · ,nK
]

, (9)

where hm is the NBS×1 channel vector between the transmit

antennas at the BS and the m-th receive antenna at the UE

for m = 1, 2, · · · ,MUE. Without the noise in (9), the (m, k)-
th component of HCSI−RS−uq is the inner product between

hm and the CSI-RS beamforming vector pk, and the only

difference among components of HCSI−RS−uq in the same

column is hm with fixed pk. Using the knowledge of hSRS and
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mTx, the BS can simply reconstruct the downlink channel in a

block-wise manner with the ratio of components of HCSI−RS.

The reconstructed m′-th column of downlink channel based

on the ratio technique can be expressed as

Ĥratio(:,m
′) =

[

hT
SRS(1 : J)

HH
CSI−RS(m

′, 1)

HH
CSI−RS(mTx, 1)

,

hT
SRS(J + 1 : 2J)

HH
CSI−RS(m

′, 2)

HH
CSI−RS(mTx, 2)

, · · · ,

hT
SRS((K − 1)J + 1 : KJ)

HH
CSI−RS(m

′,K)

HH
CSI−RS(mTx,K)

]T

,

(10)

for m′ = 1, 2, · · · , L. Although this technique is quite simple,

it works well when the BS is deployed with the ULA as shown

in Section IV.

B. Inner product (IP) maximization technique

For the IP maximization technique, we set an optimization

problem to reconstruct the downlink channel based on the

knowledge of HCSI−RS and the CSI-RS beamforming matrix

P. This technique tries to maximize the IP between each row

of HCSI−RS and ĤHP, which is the beamformed version of

estimated downlink channel Ĥ, as the main objective, i.e.,

ĤIP(:,m
′) = argmax

Ĥ(:,m′)∈CNBS×1

∣

∣

∣
(ĤH(m′, :)P)HH

CSI−RS(:,m
′)
∣

∣

∣
,

(11)

where ĤIP represents the reconstructed channel based on the

IP maximization technique.

Since the optimization in (11) is non-convex, we consider

an equivalent convex problem as in [39], which is given by

ĤIP(:,m
′) =

argmin
Ĥ(:,m′)∈CNBS×1

min
α∈R

+

ω∈[0,2π)

∥

∥

∥
ĤH(m′, :)P− αejωHCSI−RS(m

′, :)
∥

∥

∥
.

(12)

After the optimization, the mTx-th column of ĤIP is replaced

by hSRS, i.e.,

ĤIP(:,mTx) = hSRS, (13)

since hSRS is, with sufficiently high uplink SNR, close to the

true channel relying on the downlink and uplink channel reci-

procity while the mTx-th column of ĤIP is the estimated one.

C. Element-wise technique

In the element-wise technique, we set a convex optimization

problem to minimize the error between ĤHP and HCSI−RS as

Ĥele = argmin
Ĥ∈CNBS×L

∥

∥

∥
ĤHP−HH

CSI−RS

∥

∥

∥

F

+ λ
∥

∥

∥
Ĥ(:,mTx)− hSRS

∥

∥

∥
, (14)

where λ ∈ R+ denotes the regularization factor, and Ĥele

represents the reconstructed downlink channel based on the

element-wise technique. Large λ implies large emphasis on

minimizing the difference between the mTx-th column of the

reconstructed downlink MIMO channel and the known hSRS.

It is not always better to have large λ, instead, it should be

properly adjusted to balance the two differences. Similar to

(13), the mTx-th column of Ĥele is replaced by hSRS after

the optimization.

Although the IP maximization technique and element-wise

technique exploit given information of HCSI−RS, hSRS, and

P, they do not exploit any physical structure, e.g., angle-of-

arrival (AoA) and angle-of-departure (AoD) of the channel H

or antenna array at the BS and UE, making them have poor

performance as shown in Section IV. In addition, the dimen-

sion of H is quite large in massive MIMO with large NBS,

resulting in high degree-of-freedom with only a few known

variables for the optimization problems. In what follows, we

impose physical structures on the optimization problems to

improve reconstruction performance and mitigate optimization

complexity.

D. Structure technique

In massive MIMO with a large number of antennas, the

downlink channel H is usually modeled as virtual channel

representation [40], [41], which is the weighted sum of the

outer products of AoA array response vectors at the UE side

and the AoD array response vectors at the BS side. The

modeled channel is given by

HH
v =

P
∑

p=1

Q
∑

q=1

cp,qar(ψp)a
H
t (µq), (15)

where cp,q ∈ C is the complex gain of the path with the

AoD µq and AoA ψp. Since the UE deploys the ULA, the

array response vector for AoA ψp, assuming half wavelength

antenna spacing, is represented by

ar(ψp) =
1√
L

[

1, ejπ sin(ψp), · · · , ej(L−1)π sin(ψp)
]T

. (16)

The UE deploys MUE physical receive antennas; however, we

model the antenna array of the UE as deploying L antennas to

reconstruct the NBS×L downlink channel at the BS. Similarly,

the array response vector for AoD µq , assuming the ULA at

the BS with half wavelength antenna spacing, is given as

at(µq) =
1√
NBS

[

1, ejπ sin(µq), · · · , ej(NBS−1)π sin(µq)
]T

.

(17)

Although the UPA is also possible, we only consider the ULA

at the BS for the structure technique, the reason will become

clear at the end of this subsection.

In a matrix form, the modeled channel in (15) can be

rewritten as

HH
str = ArCAH

t , (18)

where C is the P × Q matrix with cp,q as the (p, q)-th
element, Ar = [ar(ψ1), ar(ψ2), · · · , ar(ψP )], and At =
[at(µ1), at(µ2), · · · , at(µQ)]. Without any prior knowledge

of AoAs and AoDs of the channel, ψp and µq can be
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chosen randomly from [−π/2, π/2] considering practical cell

structures.

To reconstruct the downlink channel assuming the channel

structure expressed in (18) and randomly chosen AoAs and

AoDs, the convex optimization problem in (14) now becomes

Ĉstr = argmin
Ĉ∈CP×Q

∥

∥

∥
ArĈAH

t P−HH
CSI−RS

∥

∥

∥

F

+ λ
∥

∥

∥

[

AtĈ
HAH

r

]

(:,mTx)− hSRS

∥

∥

∥
, (19)

where λ ∈ R+ denotes the regularization factor as in (14). The

reconstructed channel based on the structure technique then is

given as

ĤH
str = ArĈstrA

H
t . (20)

Similar to (13), the mTx-th column of Ĥstr is replaced by

hSRS after the optimization.

The structure technique may suffer from randomly chosen

ψ’s and µ’s, which could be misaligned with the true AoAs and

AoDs. It is possible to resolve this problem by increasing the

size of P and Q but this would impose huge complexity on the

optimization in (19). With the UPA at the BS, the complexity

issue becomes even worse since the BS needs to take both

the horizontal and vertical angles into account. Therefore, we

only consider the ULA at the BS for the structure technique.

E. Pre-search technique

As a way of resolving the complexity issue in the structure

technique, we first estimate the dominant AoDs and AoAs

as preliminary information relying on the channel model (15)

in the pre-search technique. Since the BS has HCSI−RS by

limited feedback from the UE, the dominant AoAs can be

extracted by comparing the strengths χr(ψ̃i) of the arrival

angle ψ̃i as

χr(ψ̃i) =
∥

∥

∥
aHAoA(ψ̃i)H

H
CSI−RS

∥

∥

∥
, (21)

ψ̃i = −
π

2
+

π

RULA
(i− 1), (22)

where i = 1, 2, · · · , RULA + 1. Here, π/RULA represents the

resolution of ψ̃i, and aAoA(·) is the same as ar(·) in (16)

since the UE is assumed to deploy the ULA. To extract TAoA

dominant angles for AoAs, we need to find TAoA local maxima

of χr(ψ̃i) where a local maximum is defined as

χr(ψ̃i) ≥ χr(ψ̃i+1), χ
r(ψ̃i) ≥ χr(ψ̃i−1). (23)

We denote an angle that gives a local maximum of χr(ψ̃i)
as ψ̂u for u = 1, 2, · · · , TAoA. Note that the PMI codebook

is pre-defined; therefore, it is possible to construct a lookup

table that defines TAoA dominant AoAs for each HCSI−RS

in advance.

Estimating TAoD dominant AoDs can be conducted simi-

larly using hSRS. Different from the structure technique, now

it is possible to consider both the ULA and UPA for the BS

antenna structure. Assuming the ULA at the BS, the strength

χt(µ̃i) of the departure angle µ̃i is given by

χt(µ̃i) =
∣

∣aHAoD(µ̃i)hSRS

∣

∣ , (24)

µ̃i = −
π

2
+

π

RULA
(i − 1), (25)

where aAoD(·) is the same as at(·) in (17). If the UPA is

assumed at the BS, the strength χt(µ̃ℓver , µ̃ℓhor) of the vertical

departure angle µ̃ℓver and horizontal departure angle µ̃ℓhor are

written as

χt(µ̃ℓver , µ̃ℓhor) =
∣

∣aHAoD(µ̃ℓver , µ̃ℓhor)hSRS

∣

∣ , (26)

where the array response vector for the UPA, assuming half

wavelength spacing, is given as

aAoD(µ̃ℓver , µ̃ℓhor) =

1√
NBS

[

1, ejπ sin(µ̃ℓver ), · · · , ej(Nver−1)π sin(µ̃ℓver )
]T

⊗
[

1, ejπ sin(µ̃ℓhor
) cos(µ̃ℓver ), · · · ,

ej(Nhor−1)π sin(µ̃ℓhor
) cos(µ̃ℓver)

]T

. (27)

In (27), NBS = NverNhor, and ⊗ denotes the Kronecker

product. Further, µ̃ℓver and µ̃ℓhor are conditioned by

µ̃ℓver = −
π

2
+

π

RUPA,ver
(ℓver − 1), (28)

ℓver = 1, 2, · · · , RUPA,ver + 1, (29)

µ̃ℓhor = −
π

2
+

π

RUPA,hor
(ℓhor − 1), (30)

ℓhor = 1, 2, · · · , RUPA,hor + 1, (31)

where π/RUPA,ver and π/RUPA,hor represent the resolution

of µ̃ℓver and µ̃ℓhor .
Rather than just choosing the dominant TAoD departure

angles, it is possible to increase the AoD estimation accuracy

by the null space projection technique as in [42]. Once a

dominant AoD is found, we can exclude the component

corresponding to that angle from hSRS through the null space

projection technique before searching another dominant AoD.

The details are summarized in Algorithms 1 and 2 for the

ULA and UPA cases. We denote the sets of dominant AoDs

for the ULA and UPA cases as OULA and OUPA in those two

algorithms.

After obtaining the dominant AoAs and AoDs, we have the

L× TAoA matrix AAoA given as

AAoA =
[

aAoA(ψ̂1), aAoA(ψ̂2), · · · , aAoA(ψ̂TAoA
)
]

, (32)

and the NBS × TAoD matrix AAoD expressed as

AAoD =
[

aAoD(µ̂1), aAoD(µ̂2), · · · , aAoD(µ̂TAoD
)
]

, (33)

assuming the ULA at the BS or

AAoD =
[

aAoD(µ̂1,ver, µ̂1,hor), aAoD(µ̂2,ver, µ̂2,hor),

· · · , aAoD(µ̂TAoD,ver, µ̂TAoD,hor)
]

, (34)

assuming the UPA at the BS. To reconstruct the downlink

channel, we set a convex optimization problem to find the

path gain matrix Ĉpre with the given AAoA and AAoD as

Ĉpre = argmin
C̃∈CTAoA×TAoD

∥

∥

∥
AAoAC̃AH

AoDP−HH
CSI−RS

∥

∥

∥

F

+λ
∥

∥

∥

[

AAoDC̃
HAH

AoA

]

(:,mTx)− hSRS

∥

∥

∥
,

(35)
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Algorithm 1 Estimation of the dominant AoDs for the ULA

Initialize OULA as an empty set

h← hSRS

for v = 1, 2, · · · , TAoD do

Initialize imax

for i = 1, 2, · · · , RULA + 1 do

Calculate χt(µ̃i) in (24)

end for

Calculate imax = argmax
i

χt(µ̃i)

µ̂v ← µ̃imax

h← h− (hHaAoD(µ̂v))aAoD(µ̂v)
OULA ← {OULA, µ̂v}

end for

where λ ∈ R+ denotes the regularization factor as in (14). The

reconstructed channel Ĥpre based on the pre-search technique

is given as

ĤH
pre = AAoAĈpreA

H
AoD. (36)

Similar to (13), the mTx-th column of Ĥpre is replaced by

hSRS after the optimization. Note that the pre-search technique

has lower complexity for optimization than the structure

technique since TAoA and TAoD would be smaller than P
and Q to have the same performance in general. Even though

the size of optimization problem has become smaller, still it

might take much time to perform the pre-search technique

in practice, which could prevent its use when the channel

coherence time is insufficient.

F. Pseudo-inverse technique

All the above techniques except the ratio technique con-

sider certain convex optimization problems for which the

convergence is guaranteed. However, the overall complexity

to reconstruct the downlink channel through an optimization

problem can be quite severe especially in massive MIMO. We

propose another channel reconstruction technique that only

exploits basic matrix operations and does not rely on any

optimization to combat the complexity problem. This would

be especially beneficial when the channel coherence time is

not long enough to perform any complex optimization process.

Adopting the channel model as in (36), HCSI−RS−uq in (5)

can be represented by

HCSI−RS−uq = HHP+N, (37)

≈ AAoAC̃AH
AoDP+N, (38)

where AAoA and AAoD are obtained by the same way as in

the pre-search technique. Note that TAoA and TAoD for finding

the dominant AoAs and AoDs are design variables that the

BS can choose. By setting TAoA ≤ L and TAoD ≤ K , the

left pseudo-inverse of AAoA and the right pseudo-inverse of

AH
AoDP always exist. Then, the estimated Ĉpinv is given by

Ĉpinv = A
†
AoAH

H
CSI−RS(A

H
AoDP)†, (39)

and the reconstructed channel Ĥpinv based on the pseudo-

inverse technique is given as

Ĥpinv = AAoAĈpinvA
H
AoD. (40)

Algorithm 2 Estimation of the dominant AoDs for the UPA

Initialize OUPA as an empty set

h← hSRS

for v = 1, 2, · · · , TAoD do

Initialize ℓver,max, ℓhor,max

for ℓver = 1, 2, · · · , RUPA,ver + 1 do

for ℓhor = 1, 2, · · · , RUPA,hor + 1 do

Calculate χt(µ̃ℓver , µ̃ℓhor) in (26)

end for

end for

Calculate (ℓver,max, ℓhor,max) = argmax
ℓver,ℓhor

χt(µ̃ℓver , µ̃ℓhor)

µ̂v,ver ← µ̃ℓver,max

µ̂v,hor ← µ̃ℓhor,max

h← h− (hHaAoD(µ̂v,ver, µ̂v,hor))aAoD(µ̂v,ver, µ̂v,hor)
OUPA ← {OUPA, (µ̂v,ver, µ̂v,hor)}

end for

Similar to (13), the mTx-th column of Ĥpinv is replaced

by hSRS after the reconstruction.

G. Complexity analysis

Among the proposed techniques, the IP maximization,

element-wise, structure and pre-search techniques need to

solve the convex optimization problems. Although these prob-

lems can be efficiently solved using the interior-point method,

its complexity is incomparable to the complexity of ba-

sic matrix-vector operations. On the contrary, the ratio and

pseudo-inverse techniques solely rely on the basic matrix-

vector operations. Specifically, the complexity of ratio tech-

nique is O(NBSL) since it needs to obtain the inner product of

two vectors L times. The pseudo-inverse technique requires to

have the dominant AoA/AoD information where the complex-

ity of AoA estimation based on HCSI−RS is O(LKRULA),
and that of AoD estimation using hSRS is O(NBSRULA) for

the ULA and O(NBSRUPA,horRUPA,ver) for the UPA at the

BS. The complexity of channel gain matrix estimation in (39)

is O(LT 2
AoA +K3 + TAoDNBSK +LKTAoA). Although the

complexity of pseudo-inverse technique is higher than that of

ratio technique, it is only proportional to NBS and much lower

than the complexity of interior-point method.

H. Effect of imperfect knowledge of transmit antenna index of

UE at BS

Until now, we assumed the BS has the perfect knowledge of

mTx, i.e., the transmit antenna index of the UE, to reconstruct

the downlink channel. The BS, however, may have imperfect

knowledge about mTx in practice. To see the effect of imper-

fect knowledge of mTx on the spectral efficiency performance,

we first assume L is the same as MUE for simplicity. Then,

the spectral efficiency of channel is defined as [6]

R = log2

(

det

(

IMUE
+

ρDL

MUE
FHHHHF

))

, (41)

F = V(:, 1 :MUE), (42)

HH = UΣVH, (43)
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where (43) is the singular value decomposition (SVD) of the

true downlink channel HH, and F is the optimal data trans-

mission beamformer. Let T be an arbitrary row permutation

matrix. Then the SVD on the row permuted downlink channel

THH is given as

THH = (TU) ΣVH, (44)

where TU is still a unitary matrix. Since the right singular

matrix V is not altered by T, the spectral efficiency becomes

the same regardless of T.

In our downlink channel reconstruction problem, the im-

perfect knowledge of mTx works as the row permutation

matrix T. Of course incorrect knowledge of mTx would result

in a different reconstruction result in addition to the row per-

mutation effect. It is difficult, however, to analytically derive

the impact of imperfect knowledge of mTx on the downlink

MIMO CSI reconstruction. Therefore, we numerically study

this impact in Section IV where the result shows that the

imperfect knowledge of mTx has negligible impact on the

spectral efficiency performance. This information could be

important for practical implementation, e.g., symbol detection

at the UE, which could be an interesting future research topic.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

downlink channel reconstruction techniques. The downlink

channel H is generated based on the SCM channel that is

extensively used in the 3GPP standard [36]. Unless explicitly

stated, we adopt the scenario of urban micro (UMi) single cell

with carrier frequency 2.3 GHz for the SCM channel. Since the

SCM channel takes cell structures with path loss into account,

channel gains are usually very small. For numerical studies of

point-to-point communication using spatial multiplexing, we

normalize the average gain of all channel elements to one,

i.e., E
[

|hn,m|2
]

= 1 where hn,m is the (n,m)-th component

of H.

We set the number of transmit antennas at the BS NBS = 32
(for the UPA, Nver = 8, Nhor = 4), the number of receive

antennas at the UE MUE = 4, the number of antenna elements

for an antenna port J = 8, which gives the number of

antenna ports K = 4, and the number of PMI feedback

layer L = 2 or L = MUE = 4. The regularization factor is

numerically optimized and set as λ = 0.5 for all optimization

problems. We use CVX [43], a well established optimization

solver, for some of proposed approaches that need to solve

convex optimization problems. We also set the number of

randomly selected angles P = Q = 20 for the structure

technique, the number of dominant AoAs or AoDs TAoA =
L, TAoD = K and the resolution for finding dominant AoAs

or AoDs RULA = 3600, RUPA,ver = RUPA,hor = 200 for

the pre-search technique and pseudo-inverse technique. The

downlink SNR ρDL is assumed to be 20 dB since the spatial

multiplexing is intended to increase the spectral efficiency in

high SNR regimes.

For the CSI-RS beamforming weight vector wk in (2), we

consider a widebeam or dynamically selected beam based on

hSRS. Specially, for the case of dynamically selected beam,

we assume wjmax
is used where jmax is the column index of

J × J discrete Fourier transform (DFT) matrix D selected as

jmax = argmax
j

∣

∣

[

DH(j, :),0T
NBS−J

]

hSRS

∣

∣ . (45)

Then, wjmax
is defined by the jmax-th column of D. Note

that wk may vary depending on k in general; however, we

assume those are the same for all k. For the PMI codebook C,

the Type 1 Single-Panel Codebook in [28] is adopted. As a

performance metric, we consider the spectral efficiency of the

channel with reconstructed downlink channel replacing MUE

with L in (41). The data transmission beamformer F is set as

F = V̂(:, 1 : L), (46)

ĤH = ÛΣ̂V̂H, (47)

where (47) is the SVD of the reconstructed channel ĤH by

the downlink channel reconstruction techniques proposed in

Section III.

In the following figures, the term Pre-ULA (Pre-UPA) refers

to the pre-search technique explained in Section III-E with

the ULA (UPA) assumption at the BS, and Pinv-ULA (Pinv-

UPA) refers to the pseudo-inverse technique in Section III-F

with the ULA (UPA) assumption at the BS. The Random is

the case when all the channel elements, except the mTx-th

column replaced with hSRS, are randomly distributed follow-

ing CN (0, 1). As a baseline, we compare the conventional

scenario with F = PHCSI−RS. This baseline is denoted as

“Type 1” in the following figures. We also compare the upper

bound of conventional method without quantization loss as

F = PVCSI−RS−uq where VCSI−RS−uq is the right singular

matrix of HCSI−RS−uq. Since this is the upper bound of the

Type 2 codebook, we denote this as “Type 2” in the figures.

We also have the ideal case with F = VIdeal where VIdeal is

the right singular matrix of the true downlink channel HH.

In Figs. 4 and 5, we consider the case when the BS adopts

a fixed widebeam for wk without any prior information of

channel. We design the widebeam with boresight 0◦ and

beamwidth about 40◦ as in [44]. We consider L =MUE = 4
for the feedback layer and the NBS × MUE full MIMO

downlink channel reconstruction. Fig. 4 shows the average

spectral efficiency of proposed downlink channel reconstruc-

tion techniques according to the uplink SNR ρUL assuming

the ULA at the BS. It can be observed that the pre-search

technique and pseudo-inverse technique outperform the other

channel reconstruction techniques. It is better for these two

techniques to assume the ULA for the reconstruction since

the BS is deployed with the ULA in this scenario. Despite its

simplicity, the ratio technique shows quite good performance

because of the simple structure of the ULA. As we discussed

in Section III, the IP maximization, element-wise, and structure

techniques show poor performance, comparable to the Random

case, because of not considering any channel structure or too

much degree-of-freedom in the optimizations. Especially, the

performance difference between the structure and pre-search

techniques clearly shows that it is essential to have judicious

preprocessing before the optimization for downlink channel

reconstruction. Note that the Type 1 and Type 2 cases show
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Fig. 4: Average spectral efficiency of the different channel

reconstruction techniques according to ρUL with the ULA and

fixed widebeam at the BS. The NBS×MUE downlink channel

is reconstructed through L =MUE = 4 layer feedback.

Fig. 5: Average spectral efficiency of the different channel

reconstruction techniques according to ρUL with the UPA and

fixed widebeam at the BS. The NBS×MUE downlink channel

is reconstructed through L =MUE = 4 layer feedback.

the same performance since the codewords of PMI codebook

are unitary matrices when L =MUE.

In Fig. 5, we considered the UPA at the BS. The pre-

search technique and pseudo-inverse technique still outperform

the other channel reconstruction techniques, and the figure

shows that it now becomes better for these techniques to

assume the UPA for the reconstruction. Note that the pseudo-

inverse technique is much more practical than the pre-search

technique since it only requires basic matrix operations. Unlike

in Fig. 4, the ratio technique does not perform well since the

reconstruction procedure of the ratio technique is not suitable

to the UPA case. Through Figs. 4 and 5, it can be observed

that the structure technique has poor performance in spite of

its high complexity since it has no prior information about the

dominant AoAs/AoDs and just set those randomly.

In Figs. 6 and 7, we consider the case when the BS dynam-

Fig. 6: Average spectral efficiency of the different channel

reconstruction techniques according to ρUL with the ULA

and dynamically selected beam at the BS. The NBS ×MUE

downlink channel is reconstructed through L = MUE = 4
layer feedback.

Fig. 7: Average spectral efficiency of the different channel

reconstruction techniques according to ρUL with the UPA

and dynamically selected beam at the BS. The NBS ×MUE

downlink channel is reconstructed through L = MUE = 4
layer feedback.

ically selects wk as in (45). We set L = MUE = 4 feedback

layer for the NBS × MUE full MIMO downlink channel

reconstruction. Fig. 6 shows the average spectral efficiency

of proposed downlink channel reconstruction techniques ac-

cording to ρUL assuming the ULA at the BS. Although the

CSI-RS beamforming matrix P, which is a function of wk,

is now dynamically selected, the figure shows that there is

no noticeable difference on the performance of the proposed

techniques compared to Fig. 4 since the data transmission

beamformers of the proposed techniques are already adjusted

with the reconstructed channel and independent of P. The

Type 1 and Type 2 cases, however, become better than Fig. 4 as

ρUL increases. This is because the BS exploits the prior chan-

nel knowledge hSRS not only for the CSI-RS beamforming but
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Fig. 8: Average spectral efficiency of the different channel

reconstruction techniques according to ρUL with the ULA and

dynamically selected beam at the BS. The NBS×L downlink

channel is reconstructed through L = 2 layer feedback.

Fig. 9: Average spectral efficiency of the different channel

reconstruction techniques according to ρUL with the UPA and

dynamically selected beam at the BS. The NBS×L downlink

channel is reconstructed through L = 2 layer feedback.

also for the data transmission. Still, the proposed ratio, pre-

search and pseudo-inverse techniques outperform the Type 1

and Type 2 cases.

In Fig. 7, we plot the average spectral efficiency of proposed

downlink channel reconstruction techniques according to ρUL

assuming the UPA at the BS. Similar to Fig. 6, there is

spectral efficiency improvement of the Type 1 and Type 2

cases compared to that in Fig. 5 as ρUL increases; however, the

proposed techniques still experience no noticeable difference

in terms of their spectral efficiencies.

Figs. 8 and 9 consider the same scenario as in Figs. 6 and 7

except L = 2 for the PMI feedback layer. The BS then tries

to reconstruct the NBS × L MIMO downlink channel. The

figures show the average spectral efficiency of the proposed

downlink channel reconstruction techniques according to ρUL

assuming the ULA/UPA at the BS. Since the BS transmits

Fig. 10: Average spectral efficiency of the different channel

reconstruction techniques according to ρUL with the UPA and

dynamically selected beam at the BS. The UMa scenario was

considered for the SCM channel. The NBS × L downlink

channel is reconstructed through L = 2 layer feedback.

Fig. 11: Average spectral efficiency of the different channel

reconstruction techniques according to ρDL with the UPA and

dynamically selected beam at the BS. The UMa scenario was

considered for the SCM channel with the fixed uplink SNR

ρUL = 0 dB. The NBS×L downlink channel is reconstructed

through L = 2 layer feedback.

data only through L = 2 layer spatial multiplexing, it can

be observed that the spectral efficiencies are lower than the

previous cases of L = MUE = 4. The overall trends among

the proposed downlink channel reconstruction techniques,

however, are similar to those of Figs. 6 and 7. Since the

pre-search technique and pseudo-inverse technique perform

quite well with L = 2, we can conclude that the proposed

techniques are able to reconstruct the downlink channel even

when L is less than MUE. Note that, although the Type 2 case

does not assume any CSI quantization error, the pre-search

technique and pseudo-inverse technique outperform the Type 2

case when the BS is equipped with the UPA. This clearly

shows the loss of conventional methods by only using the low
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Fig. 12: Spectral efficiency CDF of the pseudo-inverse tech-

nique according to differently assumed mTx while the true

value is mTx = 1. The BS is deployed with the UPA

using the fixed widebeam for the CSI-RS beamforming, and

ρUL = 0 dB is assumed. The NBS ×MUE downlink channel

is reconstructed through L =MUE = 4 layer feedback.

dimensional effective CSI-RS channel for spatial multiplexing.

In Figs. 10 and 11, we adopt a different scenario of urban

macro (UMa) with the same carrier frequency for the SCM

channel. In Fig. 10, we plot the average spectral efficiency with

the same assumptions as in Fig. 9. It is clear from the figure

that the overall trends among the proposed downlink channel

reconstruction techniques are the same with the UMi scenario.

In Fig. 11, we plot the average spectral efficiency with the

downlink SNR ρDL with the fixed uplink SNR ρUL = 0 dB

while other assumptions are the same as in Fig. 10. The figure

shows the proposed techniques, especially the pre-search and

pseudo-inverse techniques, work well for all range of ρDL.

In Fig. 12, we plot the spectral efficiency cumulative

distribution function (CDF) of the pseudo-inverse technique

assuming the UMi scenario and the UPA at the BS to see

the effect of imperfect knowledge of mTx. We consider the

widebeam weight for wk and L = MUE = 4 layer feedback

as in Figs. 4 and 5. We set the true transmit antenna index

of the UE mTx as 1 while the BS assumes different values

of mTx for the downlink channel reconstruction. It is clear

from the figure that the knowledge of mTx does not affect

much on the spectral efficiency performance as discussed in

Section III-H.

V. CONCLUSION

In this paper, we proposed possible downlink massive

MIMO channel reconstruction techniques at the BS. Con-

sidering practical antenna structures to reduce the downlink

CSI-RS overhead, the proposed techniques work in TDD by

exploiting both the downlink CSI-RS and the uplink SRS.

The numerical results showed that the spectral efficiencies by

spatial multiplexing based on the proposed downlink chan-

nel reconstruction techniques outperformed the conventional

methods of using the fed back PMI directly in most cases.

Among the proposed techniques, the pre-search technique and

pseudo-inverse technique outperformed the other techniques

in terms of the spectral efficiency while the pseudo-inverse

technique is much more practical due to its low complexity. In

addition, we showed that the proposed channel reconstruction

techniques are not affected by the imperfect knowledge of the

transmit antenna index of the UE at the BS.

Possible future research directions would include practical

symbol detection techniques at the UE assuming the BS

may not have perfect knowledge of the transmit antenna

index of the UE, and downlink channel reconstruction for the

case when the UE has multiple transmit antennas. It is also

worth investigating the performance limit of downlink channel

reconstruction using the CSI-RS and SRS to analyze how close

the proposed techniques to the limit.
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