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Performance Analysis and Comparison of Clipped
and Filtered OFDM Systems With Iterative
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Abstract— A well-known drawback of orthogonal frequency-
division multiplexing (OFDM) is its signal with high peak-
to-average power ratio (PAPR). Among a number of PAPR
reduction techniques, clipping and filtering (CAF) is the simplest
approach, which effectively reduces the PAPR of band-limited
OFDM signals at the cost of increasing in-band distortion. In
order to mitigate the performance degradation caused by the in-
band distortion, several iterative distortion recovery techniques
have been proposed in the literature, and they are largely
classified into time-domain (TD) and frequency-domain (FD)
compensation approaches: The former and latter are repre-
sented by the decision-aided reconstruction (DAR) and clipping
noise cancellation (CNC), respectively. To date, however, their
theoretical performance limits have not been studied. In this
work, we revisit the performance limits of CAF and derive a
closed-form signal-to-distortion power ratio (SDR) expression.
Furthermore, we introduce a time-domain distortion model for
characterizing the OFDM signal with CAF, based on which we
make performance comparison between the two compensation
approaches. Theoretical analysis and simulations in terms of
their achievable symbol error rate (SER) reveal that, unlike
the FD counterpart, the TD compensation may suffer from
unrecoverable distortion when filtering after clipping is applied
at the transmitter.

Index Terms— Clipping and filtering (CAF), clipping noise can-
cellation (CNC), decision-aided reconstruction (DAR), orthogonal
frequency-division multiplexing (OFDM).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) signaling has been widely accepted due

to its significant advantages over conventional single-carrier
systems such as high bandwidth efficiency and robustness
against frequency-selective fading channels with low-
complexity receiver structure based on cyclic prefix (CP).
However, one of the critical disadvantages in view of
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its practical implementation is the resulting signal with
high peak-to-average power ratio (PAPR), which leads to
considerable penalty in terms of achievable power amplifier
efficiency at the transmitter.

A number of PAPR reduction techniques have been pro-
posed for OFDM systems, which are summarized in, e.g.,
[1], [2]. Among many approaches, this paper focuses on
clipping and filtering (CAF) [3], [4], as it is applicable to most
OFDM systems without major modification in principle. CAF
is the simplest and straightforward approach which causes
neither average power increase nor bandwidth expansion in
order to reduce PAPR. Furthermore, the increase in terms of
transmitter complexity may not be significant compared to
other schemes involving some optimization processes. Com-
pared to simple clipping of OFDM samples [5], by performing
clipping on the oversampled OFDM signals and then filtering
out the out-of band (OOB) distortion, it can not only reduce
PAPR effectively, but also increase the achievable signal-to-
distortion power ratio (SDR) [4]. Similar approaches include
peak cancellation [6], which trades off the distortion and OOB
radiation by intentionally adding the time-domain canceling
peaks, and its performance analysis can be found in [7].

Apparently, the most critical issue of CAF is its residual
clipping distortion that falls within the signal bandwidth. Since
the distortion (or clipping noise) caused by CAF depends
on the transmit signal waveform, the simple conventional
receiver that assumes the distortion to be Gaussian indepen-
dent of the input signal is sub-optimal. On the other hand,
the complexity of optimal receivers, such as those based on
maximum-likelihood detection principle [8]–[10] should be
prohibitive in practice. In the literature, several low-complexity
iterative distortion recovery techniques have been proposed,
and they are largely categorized into the two approaches:
time-domain (TD) and frequency-domain (FD) compensation.
The former is represented by the decision-aided reconstruc-
tion (DAR) [11], whereas the latter is well known as the
clipping noise cancellation (CNC) [12]. The TD approach
attempts to reconstruct the clipped signal based on the fact that
the original peak envelope may be above the clipping level,
whereas the FD approach attempts to cancel the clipping noise
on each subcarrier based on the signal model resulting from
Bussgang’s theorem [13].

In this work, we focus on comparing the achievable
performance of the above-mentioned two clipping recovery
approaches for OFDM systems. In particular, we introduce
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a new analytical model of OFDM systems with CAF suitable
for analyzing time-domain distortion compensation approach,
and theoretically derive a closed-form upper bound on
its achievable signal-to-noise plus distortion ratio (SNDR).
Recent studies on clipping recovery techniques for OFDM
include those based on compressed sensing [14]–[17], which
may offer a better trade-off in terms of complexity and
achievable performance compared to the pioneering work
[11], [12]. Our results may also serve as performance bounds
for these schemes depending on whether the compensation is
performed based on TD or FD model.

Throughout the paper, we focus on the fundamental perfor-
mance of the uncoded OFDM system over both additive white
Gaussian noise (AWGN) and frequency-selective Rayleigh
fading channels. Our analytical results on SNDR may be also
valid for coded OFDM systems (e.g., [18]–[21]), but their
precise analysis is beyond the scope of this work. We note
that most of the conventional TD compensation schemes such
as the original work of DAR [11] as well as [14], [16], [18],
[19], [21] have been focused on the clipped OFDM signal
(without filtering), but as mentioned above, clipping should be
applied to oversampled OFDM signals together with filtering
for lower PAPR and higher SDR. It will be shown that in the
presence of CAF, the TD reconstruction process fails to take
into account the effect of filtering on the resulting signals and
thus should lead to some degradation in terms of its achievable
performance.

The main contributions of this work are summarized as
follows: 1) We revisit the performance of OFDM system with
CAF and develop a simple closed-form SNDR expression
that can be approached by OFDM with a large number of
subcarriers and oversampling factor. An expression for symbol
error rate (SER) lower bound is also derived. 2) A new time-
domain analytical model for the distortion associated with
CAF is introduced, based on which the upper bound of SNDR
for the receiver with TD signal reconstruction is developed.
Furthermore, the upper bound of SNDR achieved by the ideal
FD distortion cancellation is also derived. 3) We make a com-
parative study on DAR (as a TD compensation representative)
and CNC (as a FD compensation representative) over AWGN
and Rayleigh fading channels through extensive simulations
and reveal the superiority of CNC compared to DAR in the
presence of CAF at the transmitter, which is supported by their
corresponding theoretical performance bounds.

The remainder of this paper is organized as follows.
Section II describes the OFDM transmission system with CAF
process as well as the two representative clipping distortion
recovery techniques (i.e., DAR and CNC) for later simulations.
A new closed-form SNDR expression as well as SER lower
bound for the OFDM system with CAF are developed in
Section III. An upper bound of the achievable SNDR per-
formance by the ideal TD compensation approach is derived
based on a new time-domain analytical distortion model in
Section IV, together with that by the ideal FD compensation
approach. Simulation results in terms of the achievable SER
with high-order modulations that justify our findings in this
work are presented in Section V. Finally, concluding remarks
are given in Section VI.

Notation: Since this paper frequently refers to the time-
domain samples as well as their frequency-domain counter-
parts, for the sake of readability, the capital letters such as
X and Y will be consistently used for the variables in the
frequency domain, whereas their lower-case counterparts such
as x and y are reserved for the time-domain variables. The
same rule applies to their vector representations given in the
bold-face letters.

II. SYSTEM DESCRIPTION

In this section, we first describe the OFDM system model
with CAF followed by the iterative distortion cancellation
receivers considered throughout this paper.

A. OFDM Transmitter With CAF

We consider an N -subcarrier OFDM system where each
subcarrier is modulated by M2-ary quadrature amplitude
modulation (QAM). Specifically, let X ⊂ R denote a set of
an M -ary pulse amplitude modulation (PAM) constellation
points. Then, the set of square M2-ary QAM constellation
points Z is expressed by Z = X 2 ⊂ C. A set of N QAM
symbols, denoted by Z = (Z0, Z1, . . . , ZN−1) ∈ ZN , is
carried by a single N -subcarrier OFDM symbol after clipping
and filtering (CAF). The QAM symbol on the kth subcarrier
is given by Zk = Xk + jYk with Xk, Yk ∈ X for k ∈
{0, 1, . . . , N − 1}. We also assume that {Xk} and {Yk} are
independent and identically distributed (i.i.d.) M -ary PAM
symbols with Pr(Xk = X) = Pr(Yk = X) = 1/M for
any X ∈ X and subcarrier index k. The average power
of the OFDM signal before CAF can be defined as Pin �
1
N E

{
‖Z‖2

}
, where E {·} denotes expectation.

In order to effectively reduce the peak power of OFDM
signals, the clipping operation should be performed on an
oversampled version of OFDM symbols [4]. Following [4],
we first generate the J-times oversampled time-domain OFDM
signal by JN -point inverse discrete Fourier transform (IDFT)
denoted by z = (z0, z1, . . . , zJN−1) ∈ CJN , where

z� =
1√
N

N−1∑
k=0

Zkej2π k
JN �, � = 0, 1, . . . , JN − 1. (1)

Provided that the product JN is chosen as an integer power
of 2, the above process can be efficiently implemented by
JN -point inverse fast Fourier transform (IFFT) after append-
ing (J − 1)N zeros to Z, i.e.,

z =
√

J IFFTJN (Z′) , Z′ �
(
Z,0(J−1)N

)
, (2)

where 0n denotes the all-zero vector of length n.1

The samples output from the IFFT process are then clipped
by soft-envelope limiter, and the resulting signal samples are
given by z̃ = (z̃0, z̃1, . . . , z̃JN−1) ∈ CJN , where

z̃� =

{
z�, for |z�| ≤ A,

Aej arg z� , for |z�| > A,
(3)

1The oversampling factor J need not be necessarily an integer, as long as
JN is an integer power of 2. However, in this work we restrict our attention
to the case with J = 2�, � = 1, 2, . . ., for simplicity.
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with A representing the maximum envelope level over which
the signal envelope is clipped. We define the clipping
ratio γ as [4]

γ =
A√
Pin

. (4)

Due to oversampling, the clipping process will gener-
ate OOB distortion components, which should be removed
by filtering operation. Specifically, after JN -point FFT of
clipped signal samples z̃, we have U′ � (U,UOOB)
with U = (U0, U1, . . . , UN−1) ∈ CN and UOOB =
(UN , UN+1, . . . , UJN−1) ∈ C(J−1)N representing the in-band
and out-of-band components, respectively, where

Uk =
1√
JN

JN−1∑
�=0

z̃�e
−j2π k

JN �, k = 0, 1, . . . , JN − 1. (5)

We define the corresponding output power as Pout �
1
N E

{
‖U′‖2

}
, and by the assumption of OFDM signal as

Gaussian, it follows that Pout = (1−e−γ2
)Pin [4]. Due to the

signal bandwidth constraint, UOOB should be removed before
transmission.

The resulting signal with J-times oversampling after CAF,
denoted by u ∈ CJN , is expressed, similar to (2), as

u =
√

J IFFTJN (U′′) , U′′ �
(
U,0(J−1)N

)
. (6)

Note that the average power of the transmitted signal is
reduced from the original input vector due to the clipping and
filtering process, and this reduction factor can be defined as

η �
E
{
‖U‖2

}
E
{
‖Z‖2

} =
E
{
‖U‖2

}
NPin

. (7)

The OFDM signal thus generated is then followed by
an addition of cyclic prefix (CP) and is transmitted over
frequency-selective Rayleigh fading channels. It should be
noted that the signal representation of (6) does not take into
account the appropriate frequency offset [4] that is required
in practice so as to make the power spectrum symmetric, as it
does not affect our subsequent analysis based on the baseband
signal model.

At the receiver, assuming that the CP length is larger
than or equal to the effective impulse response length of
channel such that the inter-symbol interference (ISI) can be
avoided, the received signal in the frequency domain obtained
by CP removal and N -point FFT will be expressed as V =
(V0, V1, . . . , VN−1) ∈ CN with

Vk = HkUk + Wk, (8)

where Hk ∈ C and Wk ∈ C are the frequency response
of the channel and AWGN term corresponding to the kth
subcarrier, respectively. Note that increasing CP length will
reduce spectral efficiency, but it does not affect our result on
SER performance. We may express

VT = HUT + WT , (9)

where H = diag (H0, H1, . . . , HN−1) ∈ CN×N is the
diagonal matrix formed by the channel coefficients Hk, and
W = (W0, W1, . . . , WN−1) ∈ CN is the AWGN vector with
each of the noise components Wk following the i.i.d. circularly
symmetric complex Gaussian distribution with zero mean and
variance Pn � E

{
|Wk|2

}
, i.e., Wk ∼ CN (0, Pn).

Assuming the perfect knowledge of H, after zero-
forcing (ZF) equalization at the receiver for fading channel
compensation, we obtain

Z̃T = H−1 VT = UT + H−1 WT︸ ︷︷ ︸
�W′T

, (10)

where Z̃ =
(
Z̃0, Z̃1, . . . , Z̃N−1

)
corresponds to the vector

representing the received (noisy) QAM symbol and the kth
element of W′ follows W ′

k ∼ CN (0, Pn/ζk) for ζk � |Hk|2.
Note that based on Bussgang’s theorem [13], the received

clipped and filtered symbol vector after ZF equalization may
be expressed as

Z̃ = αZ + D︸ ︷︷ ︸
� U

+W′, (11)

where, under the assumption of Gaussian process of OFDM
signals, the attenuation factor α ∈ R is expressed as [4], [13]

α = 1 − e−γ2
+

√
πγ
2 erfc(γ), (12)

and D = (D0, D1, . . . , DN−1) ∈ CN is the in-band distortion
component.

B. PAM Detection

At the receiver, the hard decision is made for real and
imaginary parts of Z̃ independently based on one-dimensional
PAM detection, considering the effect of the scaling factor
due to CAF. For a set of PAM points X ∈ X used at
the transmitter, the detector should replace it by αX , or the
received symbol should be scaled by 1/α before the hard
decision is made based on X . Let Ẑk = X̂k + jŶk denote
the estimated symbol for a given received symbol Z̃k =
X̃k + jỸk. The PAM detector will make hard decision on X̃k

according to:

X̂k = arg min
X∈X

∣∣∣X − X̃k/α
∣∣∣2 . (13)

The hard decision on Ŷk is performed in the same manner.

C. Signal-to-Noise Power Ratio

The average signal power after CAF can be expressed
using (7) as

Pav =
1
N

E
{
‖U‖2

}
= ηPin (14)

and the signal-to-noise power ratio (SNR) is defined as

SNR � Pav

Pn
= η

Pin

Pn
. (15)
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Fig. 1. Block diagrams of (a) DAR and (b) CNC.

D. Distortion Recovery Approaches

In principle, the in-band distortion components D generated
by the clipping process are statistically dependent on the
transmit symbols Z, and thus treating D as Gaussian noise
independent of Z, as assumed in [4], would result in sub-
optimal detection. The optimal maximum-likelihood detection
(see, e.g., [9], [10]), however, would lead to the receiver
complexity of exponential order with N . Therefore, sub-
optimal iterative recovery procedures are usually adopted. One
would apply either a time-domain approach that attempts to
reconstruct the unclipped signal z� from z̃� according to the
clipping process of (3), or a frequency-domain approach that
estimates the distortion term D observed in the QAM symbols
according to (11). The pioneering work based on the former
approach is the decision-aided reconstruction (DAR) [11],
whereas that based on the latter approach is the clipping noise
cancellation (CNC) [12]. The entire block diagrams of DAR
and CNC designed for our OFDM system model with CAF
are shown in Figs. 1 (a) and (b), respectively, which we briefly
review in what follows.

1) Decision-Aided Reconstruction: When CAF is applied
at the transmitter and the receiver performs sampling of the
received OFDM signal at Nyquist rate (i.e., without over-
sampling), DAR should regenerate the oversampled version
of the received signals: For a given received vector Z̃ after
ZF equalization by (10), the OFDM symbol is zero padded
and then converted to the time-domain symbols by JN -point
IFFT to reproduce the oversampled clipped and filtered
OFDM signal denoted by z̃ = (z̃0, z̃1, . . . , z̃JN−1) ∈ CJN ,
where

z̃ =
√

J IFFTJN

(
Z̃′
)

, Z̃′ �
(
Z̃,0(J−1)N

)
, (16)

= u + w′ (17)

with u given by (6) and w′ ∈ CJN representing an AWGN
vector after ZF equalization.

By assuming that the receiver has knowledge of clipping
ratio γ applied at the transmitter, the DAR algorithm for the
case of CAF may be described as follows:

i) From Z̃ in (11), generate an oversampled reference
signal z̃ according to (16).

ii) By applying hard decision to Z̃/α, obtain the ini-

tial estimate of Z, denoted by Ẑ(0) =
(
Ẑ

(0)
0 ,

Ẑ
(0)
1 , . . . , Ẑ

(0)
N−1

)
∈ ZN . Set the iteration counter by

i = 1.
iii) For the ith iteration, using the previously detected

symbol vector Ẑ(i−1) ∈ ZN , reproduce the
time-domain oversampled OFDM symbol through
JN -point IFFT, which is denoted by ẑ(i−1) =(
ẑ
(i−1)
0 , ẑ

(i−1)
1 , . . . , ẑ

(i−1)
JN−1

)
∈ C

JN .

iv) The DAR detector will output the OFDM samples ẑ(i) =(
ẑ
(i)
0 , ẑ

(i)
1 , . . . , ẑ

(i)
JN−1

)
∈ CJN according to

ẑ
(i)
� =

⎧⎨
⎩ z̃�, if

∣∣∣ẑ(i−1)
�

∣∣∣ ≤ A,

ẑ
(i−1)
� , if

∣∣∣ẑ(i−1)
�

∣∣∣ > A,
(18)

for � = 0, 1, . . . , JN −1. The time-domain samples ẑ(i)

are converted to the frequency domain samples by JN -
point FFT and then the first N in-band subcarriers are
selected as Z̃(i) =

(
Z̃

(i)
0 , Z̃

(i)
1 , . . . , Z̃

(i)
N−1

)
∈ CN .

v) By applying hard decision to Z̃(i) (without scal-
ing by 1/α), obtain the revised estimate Ẑ(i) =(
Ẑ

(i)
0 , Ẑ

(i)
1 , . . . , Ẑ

(i)
N−1

)
∈ ZN .
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vi) If i reaches the predetermined iteration limit Imax, out-
put Ẑ(Imax) and stop. Otherwise, increment the counter i
by 1 and go to Step iii).

2) Clipping Noise Cancellation: The CNC algorithm
of [12] is described as follows:

i) By applying hard decision to Z̃/α in (11), obtain
the initial estimate of Z, denoted by Ẑ(0) =(
Ẑ

(0)
0 , Ẑ

(0)
1 , . . . , Ẑ

(0)
N−1

)
∈ ZN . Set the iteration

counter by i = 1.
ii) For the ith iteration, using the previously detected

symbol vector Ẑ(i−1) ∈ ZN , perform the same
CAF process as in the transmitter side. Let U(i) =(
U

(i)
0 , U

(i)
1 , . . . , U

(i)
N−1

)
∈ CN denote the resulting

symbol vector.
iii) Estimate the distortion vector by

D̂(i) = U(i) − αẐ(i−1), (19)

and subtract this from the received vector. It generates

Z̃(i) = Z̃ − D̂(i). (20)

iv) By applying hard decision to Z̃(i)/α, obtain the revised

estimate Ẑ(i) =
(
Ẑ

(i)
0 , Ẑ

(i)
1 , . . . , Ẑ

(i)
N−1

)
∈ ZN .

v) If i reaches the predetermined iteration limit Imax, out-
put Ẑ(Imax) and stop. Otherwise, increment the counter
i by 1 and go to Step ii).

3) Complexity Comparison: From Fig. 1, we observe that
each iteration for clipping distortion estimation and recovery
process needs a pair of IFFT and FFT, and thus the complexity
order of both approaches is the same, i.e., O(JN log2 JN)
per iteration. In the case of DAR for the OFDM with CAF,
the initial reconstruction of the oversampled signal according
to (16) is necessary, which requires an additional operation of
IFFT as shown in Fig. 1(a). The overall complexity depends
largely on the number of iterations that would be required for
each scheme to achieve a target error performance. This will
be investigated in Section V.

III. ASYMPTOTIC SDR ANALYSIS OF CLIPPED

AND FILTERED OFDM SIGNALS

In this section, we revisit the performance analysis of
clipped and filtered OFDM signals. Specifically, we develop
an SDR expression of clipped and filtered OFDM signals
based on the classical analysis on nonlinear transformation
of Gaussian processes [22], assuming that OFDM signal is
modeled by a band-limited complex Gaussian random process
following [23], [24]. Furthermore, we derive a simple SER
lower bound that serves as a benchmark of the OFDM with
CAF (Theorem 1). To the best of the authors’ knowledge,
the application of such a theoretical framework to the SER
performance evaluation of the OFDM signals with CAF has
not been considered before.

In [4], a different analytical method has been developed that
can numerically calculate the distortion components of each
subcarrier for a given clipping ratio γ and oversampling fac-
tor J . The resulting SDR expression derived by this approach
is summarized in APPENDIX, where it is revealed that our
simpler analytical expression developed in this section may
serve as an asymptotic limit for clipped and filtered OFDM
signals with a large number of subcarriers and sufficiently high
oversampling factor.

A. Power Spectral Density of Complex Gaussian Process
With Soft-Envelope Limiter

With reference to (3), let z(t) denote a complex Gaussian
random process that will be input to the soft-envelope limiter
and z̃(t) denote its output. The power spectral density (PSD)
of z̃(t), Sz̃(f), can be expressed as [24, Eq.(19)]

Sz̃(f) = Pin

∞∑
n=0

Cn

P 2n+1
in

S�(2n+1)
z (f), (21)

where Sz(f) is the PSD of the input z(t) and S
�(m)
z (f) is the

m-fold convolution of Sz(f) with itself, i.e.,

S�(m)
z (f) = Sz(f) � · · · � Sz(f)︸ ︷︷ ︸

m

, (22)

for m > 1 and S
�(1)
z (f) = Sz(f), with � representing

convolution operation. By definition, the average power of the
output signal is given by

Pout =
∫ ∞

−∞
Sz̃(f)df, (23)

and the PSD of input signal should satisfy the following
relationship for any positive integer m:∫ ∞

−∞
S�(m)

z (f)df = Pm
in . (24)

The coefficient Cn in (21) depends on the nonlinear function
and in the case of soft-envelope limiter, it can be expressed
as2 (25), shown at the bottom of the page, where erfc(·) is the
complementary error function,

(x)l =
l−1∏
i=0

(x + i) (26)

is the Pochhammer symbol [25] defined for x ∈ R and l ∈ N,
and

Fk �
k∏

m=0

2m + 1
2m + 2

. (27)

2This expression is derived in [24, Eq.(27)] with some notational error,
which is corrected in this paper.

Cn = (n + 1)
∣∣∣∣ n∑

k=0

(
n

k

)
(−1)k

{
1 −
(

1 +
k+1∑
l=1

[
1
l!
− Fk

(1
2 )l

]
γ2l

)
e−γ2

+ Fk

√
πγerfc(γ)

}∣∣∣∣2, (25)
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TABLE I

NUMERICAL VALUES OF δn,in FOR n ∈ [5, 10]

From (25), Cn consists of linear combinations of terms
γ2le−γ2

and γerfc(γ) for positive integer l, with the first three
coefficients given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C0 =
∣∣∣∣1 − e−γ2

+
√

π

2
γerfc(γ)

∣∣∣∣2 = α2,

C1 =
1
8

∣∣∣∣γ2e−γ2
+

√
π

2
γerfc(γ)

∣∣∣∣2 ,

C2 =
1

768

∣∣∣6γ2 e−γ2 − 4γ4 e−γ2
+ 3

√
πγerfc(γ)

∣∣∣2 .

(28)

B. Input Signal With Rectangular Spectral Shape

Let us assume that the input signal z(t) is an ideally band-
limited Gaussian random process with normalized bandwidth
such that its PSD is given by

Sz(f) =

⎧⎨
⎩Pin, |f | <

1
2
,

0, otherwise.
(29)

Then, its self-convolution normalized by the input power
can be expressed as [26], [27]

ξn(f) � S
�(2n+1)
z (f)
P 2n+1

in

= (2n + 1)
n−l∑
p=0

(−1)p(n + 1
2 − |f | − p)2n

p!(2n + 1 − p)!
, (30)

for

max
(

0, l − 1
2

)
< |f | < l +

1
2
, (31)

where l = 0, 1, . . . , n. For example, in the case of n = 1 we
obtain

ξ1(f) =
S

�(3)
z (f)
P 3

in

=

⎧⎪⎪⎨
⎪⎪⎩
(

3
4
− |f |2

)
, |f | <

1
2
,

1
2

(
3
2
− |f |

)2

,
1
2

< |f | <
3
2
.

(32)

Furthermore, one can readily calculate ξn(f) at f = 0, e.g.,
ξ1(0) = 3

4 , ξ2(0) = 115
192 , and ξ3(0) = 5887

11520 .

C. Output Signal After Filtering

From the above results, the PSD of (21) can be
expressed as

Sz̃(f) = α2Sz(f) + Pin

∞∑
n=1

Cnξn(f)

︸ ︷︷ ︸
� Sd(f)

, (33)

where Sd(f) is the PSD of the distortion term. From
(23) and (29), the average power of the distortion term in
(33) can be expressed as

Pd =
∫ ∞

−∞
Sd(f)df = Pout − α2Pin. (34)

When the rectangular filtering is applied to the above
clipped signal, let u(t) denote its output. The resulting PSD
will be expressed from (33) as

Su(f) = α2Sz(f) + Sd̂(f), (35)

where Sd̂(f) is the PSD of the distortion term after filtering,
which is given by

Sd̂(f) =

⎧⎨
⎩Sd(f), |f | <

1
2
,

0, otherwise.
(36)

The average power of the distortion that falls within the
signal bandwidth is expressed as

Pd,in =
∫ ∞

−∞
Sd̂(f)df = Pin

∞∑
n=1

Cn

∫ 1
2

− 1
2

ξn(f)df︸ ︷︷ ︸
� δn,in

, (37)

where [24]

δn,in = 2
∫ 1

2

0

ξn(f)df

= 2
n∑

p=0

(−1)p (n − p + 1
2 )2n+1 − (n − p)2n+1

(2n − p + 1)!p!
. (38)

As an example, the first several terms of δn,in can be
calculated as δ0,in = 1, δ1,in = 2

3 , δ2,in = 11
20 , δ3,in = 151

315 ,
and δ4,in = 15 619

36 288 [24]. The numerical values of δn,in with
n ∈ [5, 10] are listed in Table I. As a consequence, we may
express the power reduction factor η of (7) as

η=
α2Pin+Pd,in

Pin
=α2+

∞∑
n=1

Cnδn,in =
∞∑

n=0

Cnδn,in. (39)

D. Distortion Analysis for OFDM Signals

We now model the PSD of input OFDM signal as defined
in (29), which becomes accurate as the number of subcarriers
increases and all the subcarriers are assigned with the same
input power.

Based on (37), let us define the average signal-to-distortion
power ratio (SDR) as

SDRav � α2Pin

Pd,in
=

α2∑∞
n=1 Cnδn,in

, (40)
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and the SDR observed at frequency f within the signal
bandwidth from (33) and (36) as

SDR(f) � α2Pin

Sd̂(f)
=

α2∑∞
n=1 Cnξn(f)

. (41)

Consequently, the signal-to-noise plus distortion
ratio (SNDR) observed at frequency f in the case of
fading channel with a given squared channel coefficient
ζ � |H |2 is expressed as

SNDR(f ; ζ) =
α2Pin

Pn/ζ + Sd̂(f)

=
α2

η
ζ SNR−1 +

∑∞
n=1 Cnξn(f)

. (42)

Likewise, we may define the average SNDR as

SNDRav(ζ) � α2Pin

Pn/ζ + Pd,in

=
α2

η
ζ SNR−1 +

∑∞
n=1 Cnδn,in

. (43)

E. Symbol Error Rate Analysis for OFDM Signals

Throughout this work, we evaluate the performance of
M -ary PAM for simplicity of analysis and evaluation, while
M2-ary QAM is always transmitted over all the subcarriers
as usual. Due to the independence of two PAM symbols, the
SER of M -ary PAM, SERPAM, can be converted to that of
the corresponding M2-ary QAM, SERQAM, as

SERQAM = 1 − (1 − SERPAM)2 (44)

for the same value of SNR defined in (15). Assuming that the
OFDM signal is modeled as in the previous subsection and
the distortion is Gaussian distributed as a result of the central
limit theorem, we have the following theorem:

Theorem 1: The symbol error rate (SER) of M -ary PAM
signal averaged over all the subcarriers is bounded by

SERav ≥ 2
(

1 − 1
M

)
Q

(√
3

M2 − 1
SNDRav(ζ)

)

� SERLB(ζ) (45)

with Q(x) � 1
2 erfc

(
x√
2

)
, provided that

SNDR(0; ζ) ≥ M2 − 1. (46)

Proof: The SER of M -ary PAM signal over an AWGN
channel is given by [28]

SER = 2
(

1 − 1
M

)
Q

(√
3

M2 − 1
SNR

)

=
(

1 − 1
M

)
erfc

(√
3

2(M2 − 1)
SNR

)
. (47)

The assumption that the distortion follows Gaussian distrib-
ution allows us to substitute SNDR of (42) into SNR of (47),

and the SER of the subcarrier observed at frequency f is
given by

SER(f)

=
(

1 − 1
M

)
erfc

⎛
⎜⎜⎜⎜⎝
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(M2 − 1)
3

·
Pn/ζ + Sd̂(f)

α2Pin︸ ︷︷ ︸
� g(f)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

− 1
2
⎞
⎟⎟⎟⎟⎠

=
(

1 − 1
M

)
h (g (f)) (48)

where

h(x) � erfc
(
x− 1

2

)
. (49)

The SER averaged over the entire bandwidth can be
expressed as

SERav =
∫ 1

2

− 1
2

SER(f)df =
(

1 − 1
M

)∫ 1
2

− 1
2

h (g (f)) df.

(50)

Since h(x) is convex for x ≤ 2
3 , we may apply Jensen’s

inequality to obtain

SERav ≥
(

1 − 1
M

)
h

(∫ 1
2

− 1
2

g (f)df

)
(51)

where ∫ 1
2

− 1
2

g (f) df =
2(M2 − 1)

3
· Pn/ζ + Pd,in

α2Pin

=
2(M2 − 1)

3
1

SNDRav(ζ)
, (52)

provided that g(f) ≤ 2
3 , i.e.,

SNDR(f ; ζ) =
α2Pin

Pn/ζ + Sd̂(f)
≥ M2 − 1. (53)

Rearranging (51) with (49) and (52) results in (45). Also,
noticing that the left hand side of (53) becomes minimal at
f = 0, we have the condition (46).

We refer to the lower bound of (45) as CAF lower bound
in what follows. It can be extended to the fading channels as

SERLB = Eζ {SERLB(ζ)} , (54)

where the expectation is over the fading coefficient ζ = |H |2.
For a Rayleigh fading channel, the probability density func-
tion (pdf) of ζ is given by fζ(ζ) = e−ζ . Note that the condition
(46) may not strictly hold as ζ becomes small, since the
condition is equivalent to

ζ ≥
(

α2

M2 − 1
−

∞∑
n=1

Cnξn(0)

)−1
η

SNR
. (55)

Nevertheless, the probability that the above condition holds
increases as SNR increases, and thus the bound is expected to
be valid even for fading channels as SNR increases.
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Fig. 2. Comparison of CAF lower bounds and simulated SER performances
for 8-PAM over (a) AWGN channel and (b) frequency-selective Rayleigh
fading channel. (Modulation is 64-QAM and the number of paths is Np = 4
for fading channels.) The marks on each curve represent the simulated points.

F. Numerical Results

We compare the CAF lower bounds derived above with
the SER obtained by Monte-Carlo simulations. Here, OFDM
signal is modulated by 64-QAM, and we evaluate the SER
performance of one-dimensional case (based on 8-PAM) with-
out loss of generality. Both AWGN and frequency-selective
channels are evaluated, where we model an Np-path equal
power i.i.d. Rayleigh fading with the CP length equal to
the length of simulated channel impulse response in the
latter case. For simplicity, we assume perfect channel state
information (CSI), i.e., H is known at the receiver. The results
are shown in Fig. 2 for several different values of N and J
with γ = 1.5 and 1.8. In all the numerical results for the
theoretical bounds, we have truncated the series corresponding
to the distortion power associated with (37) at nmax = 10.
(We have numerically confirmed that increasing nmax more
than eight would lead to negligible difference.) In the case
of fading channels, only the results with Np = 4 are shown,
but we note that the value of Np does not affect the SER
performance of the OFDM with CAF without any distortion

Fig. 3. Example envelopes of OFDM signal and resulting distortion after
CAF with clipping ratio γ = 1.8. The average power of the OFDM envelope
is normalized such that the clipping ratio corresponds to the envelope level in
the figure. The vertical ticks represent the corresponding Nyquist interval T .

compensation. (Later, in Section V-C, we will observe that the
performance of iterative clipping recovery schemes depends
on Np.) As the number of subcarriers N and oversampling
factor J increase, the modeling of OFDM signals as a band-
limited Gaussian process becomes more accurate (see also
Fig. 10 in Appendix for the effect of increasing J). Therefore,
we observe that the simulated SER performances approach
the corresponding CAF lower bounds as N and J increase.
(It appears that doubling N would contribute more effectively
than doubling J to their convergence toward the corresponding
bounds.) The results thus confirm that the derived bounds
should well serve as a reference of the estimated OFDM
performance with CAF.

IV. PERFORMANCE ANALYSIS OF DISTORTION

RECOVERY TECHNIQUES

The previous section has demonstrated the asymptotic per-
formance of clipped and filtered OFDM signals as the number
of subcarriers increases with an ideal band-pass filtering.
In this section, we extend our analysis and derive upper
bounds of SNDR achieved by ideal TD and FD compensation
techniques, which may serve as reference performance bounds
for DAR and CNC.

A. Time-Domain Signal Reconstruction

1) Motivation: Let z(t) denote a band-limited OFDM signal
and u(t) denote its clipped and filtered version. Let us define
the distortion waveform d(t) as

d(t) = z(t) − u(t). (56)

Fig. 3 illustrates example envelopes of z(t) and d(t) gen-
erated by simulations, where u(t) is obtained by CAF with
γ = 1.8. We observe that the distortion waveform is a sum
of the peaks that correspond to those above the clipping
level. Furthermore, due to the filtering operation, each pulse
caused by the clipped peak can be characterized by a sinc-like
function, which indicates that the distortion caused by clipping
each peak will span over a wide range in the time domain.



SUN AND OCHIAI: PERFORMANCE ANALYSIS AND COMPARISON OF CLIPPED AND FILTERED OFDM SYSTEMS 7397

Consequently, some of the distortion power will be observed
below the clipping threshold. On the other hand, the TD
reconstruction process applies only to the missing signal above
the envelope threshold. As such, even if it could ideally
reconstruct all the pulses above the threshold, it may not be
able to eliminate the distortion that falls below the threshold.
In what follows, in order to capture the effect of the distortion
after filtering, we develop a new TD analytical model for
clipped and filtered OFDM signals.

2) A New Time-Domain Distortion Model: For convenience
of analysis, we consider a continuous-time expression for the
TD recovery process. Let z̃(t) denote the received signal after
ZF equalization corresponding to (10) as

z̃(t) = u(t) + w′(t), (57)

where u(t) is the output signal after CAF and w′(t) is the
AWGN term in the time domain. Based on the observation
made in Fig. 3, for a given OFDM signal z(t) prior to clipping,
we propose to define the distortion after CAF as

d(t) �
L∑

l=1

ρl sinc
(

t − τl

T

)
︸ ︷︷ ︸

� dl(t)

, (58)

where ρl ∈ C is the distortion value associated with the lth
peak to be clipped, τl is the corresponding time instant, L is
the number of the total peaks observed, and T is the Nyquist
interval. Note that the sinc function is defined as

sinc (x) =
sin (πx)

πx
. (59)

To be more precise, if one takes into account the fact
that the OFDM symbol period is finite, then the above sinc
function should be replaced by the periodic sinc function [29].
Nevertheless, the numerical difference between them will
become negligible as N increases.

In the subsequent analysis based on the mathematical model
of (58), all the complex-valued peaks {ρl} are assumed to
be zero-mean and mutually independent, which may be a
reasonable assumption as discussed in [30].

3) SNDR Analysis for Ideal TD Compensation: We con-
sider an ideal model where the OFDM signal with CAF is
reconstructed perfectly, but only in the vicinity of the positions
where each signal peak envelope exceeds the threshold A.
Specifically, we define the reconstructed signal as

ẑ(t) �
{

u(t) + w′(t), for |z(t)| ≤ A,

z(t) + w′(t), for |z(t)| > A,
(60)

where u(t) = z(t) − d(t) from (56). In other words, even
after ideal compensation, the distortion that falls outside the
peak areas will still remain in addition to the Gaussian noise.
Therefore, unlike the case with J = 1 (i.e., Nyquist-rate
clipping without filtering) where the perfect recovery of clip-
ping distortion might be possible, the distortion components
of OFDM signal with CAF may not be completely removed.

Let Tl denote the bounded interval of its size equal to the
two consecutive Nyquist intervals and its midpoint specified
by the lth peak position τl, i.e.,

Tl � {t : |t − τl| < T } . (61)

Furthermore, let T̂l denote the subinterval of Tl, i.e.,
T̂l ⊂ Tl, where the signal envelope associated with the lth
peak exceeds the threshold A, i.e.,

T̂l �
{

t : |z(τl)| sinc
(

t − τl

T

)
> A, |t − τl| < T

}
. (62)

Since the size of T̂l depends on the peak amplitude |z(τl)|,
it should be regarded as a random variable. On the other hand,
the size of Tl is constant (equal to 2T ), which is easier to deal
with.

From (58) and (60), we may express the ideally recon-
structed signal as

ẑ(t) = z(t) + w′(t) −
L∑

l=1

dl(t) IT̂ c
l

(t)

︸ ︷︷ ︸
� dTD(t)

(63)

where Ac denotes the complementary set of A, and IA(x)
is the indicator function that takes 1 if x ∈ A and
0 otherwise.

By the assumption that the peaks are statistically indepen-
dent, we may alternatively express the average power of the
in-band distortion Pd,in based on (58) as

Pd,in = E
{
|d(t)|2

}
=
∫ ∞

−∞
E

⎧⎨
⎩
∣∣∣∣∣

L∑
l=1

dl(t)

∣∣∣∣∣
2
⎫⎬
⎭ dt

=
L∑

l=1

∫ ∞

−∞
E
{
|dl(t)|2

}
dt

=
L∑

l=1

E
{
|ρl(t)|2

}∫ ∞

−∞
sinc2

(
t − τl

T

)
dt

= T
L∑

l=1

E
{
|ρl(t)|2

}
. (64)

On the other hand, the average power of the residual
distortion dTD(t) in (63) may be expressed as

Pd,TD �
∫ ∞

−∞
E
{
|dTD(t)|2

}
dt =

L∑
l=1

∫
t∈T̂ c

l

E
{
|dl(t)|2

}
dt

≥
L∑

l=1

∫
t∈T c

l

E
{
|dl(t)|2

}
dt

=
L∑

l=1

E
{
|ρl(t)|2

}
× 2
∫ ∞

T

sinc2

(
t

T

)
dt

=
L∑

l=1

E
{
|ρl(t)|2

}
T

(
1 − 2

Si(2π)
π

)

=
(

1 − 2
Si(2π)

π

)
︸ ︷︷ ︸

� κ

Pd,in, (65)

where the above inequality is due to the fact that T̂l ⊂ Tl and
thus T c

l ⊂ T̂ c
l , and Si(x) is the sine integral defined as

Si(x) =
∫ x

0

sin(t)
t

dt. (66)
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Note that we can numerically calculate the parameter κ in
(65) as κ ≈ 0.0971767.

Consequently, from (63), the kth subcarrier can be
expressed as

Ẑk = Zk +
Wk

Hk
+ DTD,k, (67)

where DTD,k is the residual distortion term dTD(t) that falls
on the kth subcarrier. As a result, similar to (43), the average
SNDR can be upper bounded as

SNDRTD(ζ) � Pin

Pn/ζ + Pd,TD

≤ Pin

Pn/ζ + κPd,in

=
1

η
ζ SNR−1 + κ

∑∞
n=1 Cnδn,in

� SNDRTD,UB(ζ). (68)

The corresponding SER lower bound can be obtained by
substituting SNDRTD,UB(ζ) of (68) into SNDRav(ζ) of (45),
which may serve as a reference for TD reconstruction schemes.
We refer to this SER bound as TD lower bound in what
follows.

B. Frequency-Domain Signal Reconstruction

Next, we discuss the achievable performance when the
perfect FD distortion cancellation can be performed at the
receiver for CAF. By assuming that all the distortion terms
are correctly canceled, the received signal of (11) will be
replaced by

Z̃/α = Z + W′/α, (69)

and thus the SNDR upper bound of the subcarrier with its
squared channel coefficient ζ = |H |2 is expressed, similar
to (43), as

SNDRFD(ζ) =
α2Pin

Pn/ζ
=

α2

η
ζ SNR. (70)

Similar to the TD reconstruction case, the SER lower bound
can be obtained by substituting SNDRFD(ζ) of (70) into
SNDRav(ζ) of (45). We refer to the corresponding SER lower
bound as FD lower bound in what follows, which may serve
as a lower SER limit in the case of CNC.

From (70), we observe that there is always a penalty in
terms of SNR by a factor of Δ � α2/η for the case of FD
distortion cancellation compared to the unclipped case even
if the distortion is completely canceled. This SNR reduction
factor can be seen from (39) as

Δ =
α2

α2 +
∑∞

n=1 Cnδn,in
. (71)

The above factor Δ is plotted in Fig. 4 as a function of γ,
where the distortion power is calculated based on the series
expression of (37) truncated at nmax = 10. We observe that
the penalty is less than 0.2 dB for γ ≥ 1 and it becomes
negligible as γ increases.

Fig. 4. The SNR reduction factor Δ due to CAF with FD distortion
cancellation as a function of clipping ratio γ.

Fig. 5. Comparison of SER performances achieved by DAR for
2048-subcarrier OFDM signals over an AWGN channel where CAF is
performed with (a) γ = 1.4 and (b) γ = 1.8. The marks on each curve
represent the simulated points.

V. SIMULATION RESULTS

In this section, we evaluate the theoretical SER lower
bounds of TD signal recovery and FD distortion cancellation
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Fig. 6. Comparison of SER performances achieved by DAR for 256 and
2048-subcarrier OFDM signals over (a) AWGN channel and (b) frequency-
selective Rayleigh fading channel, where CAF is performed with γ = 1.6.
The marks on each curve represent the simulated points.

schemes, and compare them with the corresponding simulation
results based on DAR and CNC described in Section II. Each
subcarrier is modulated by 64-QAM, and we evaluate the
SER with 8-PAM (i.e., M = 8) throughout this section.
Also, the oversampling factor is set as J = 2. In the case of
frequency-selective fading channels, we assume an i.i.d. equal
power Rayleigh fading channel model with Np = 4 paths,
unless stated otherwise. The CP length is chosen to be equal
to the delay spread such that the ISI is negligible, and the CSI
H is assumed to be available at the receiver.

A. SER Performance of TD Recovery Schemes

Figs. 5(a) and (b) show the SER performances of DAR
applied to 2048-subcarrier OFDM signals after CAF with
γ = 1.4 and γ = 1.8, respectively, with the maximum
iterations Imax = 12. Also shown in the figures are the
corresponding theoretical references, i.e., the TD lower bound
based on (68), the CAF lower bound of (45), and the ideal
SER performance without CAF. From Fig. 5(a), we observe
that in the case of γ = 1.4, the performance almost saturates
after iterations of i = 4. (Note that the performance with

Fig. 7. Comparison of SER performances achieved by CNC for OFDM
signals with (a) N = 256 and (b) N = 2048, both over an AWGN channel,
where CAF is performed with γ = 1.0. The marks on each curve represent
the simulated points. The SNR reduction factor is −0.17 dB in this case.

i = 0 corresponds to the case without any compensation
and thus should be bounded by the CAF lower bound.)
We also observe that the gap of the achievable performance
with i = Imax = 12 and the TD lower bound is still noticeable.
In the case of γ = 1.8, we observe from Fig. 5(b) that the
performance almost saturates even with the first iteration, and
the gap from the TD lower bound becomes smaller. From
these results, we clearly observe that DAR cannot achieve the
performance comparable to the case without CAF due to the
residual distortion as discussed in the previous section.

Note that in the case of Fig. 5(a), we also observe that
the SER corresponding to the TD lower bound is even lower
than that without clipping in the low SNR region. This
is due to the fact that clipping of OFDM signal leads to
reduction of the transmit power. Therefore, if the OFDM signal
were successfully reconstructed from its clipped and filtered
signal, it would improve the SER performance even over the
unclipped case. In practice, however, successful reconstruction
cannot be achieved in such low SNR region by simulation with
DAR, thus leading to a significant gap from the corresponding
theoretical bound.
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Fig. 8. Comparison of SER performances achieved by CNC for OFDM
signals with (a) N = 256 and (b) N = 2048 both over frequency-selective
Rayleigh fading channel, where CAF is performed with γ = 1.0. The marks
on each curve represent the simulated points. The SNR reduction factor in
this case is −0.17 dB.

Next, in Figs. 6(a) and (b), we compare the DAR perfor-
mances with γ = 1.6 over AWGN and frequency-selective
fading channels, respectively. For each figure, we compare
the two different subcarrier numbers: N = 256 and 2048.
From these results, for both channels we observe that as the
number of subcarriers increases, the performance improvement
per iteration becomes more significant until its saturation.
Furthermore, from Fig. 6(b), we also observe that the relative
gap from the case without clipping becomes smaller for
Rayleigh fading channels. This stems from the fact that the
negative effect of signal fluctuation caused by Rayleigh fading
on SER is more severe than that of residual distortion.

B. SER Performance of FD Distortion Cancellation Schemes

In Figs. 7(a) and (b), we show the SER performances
of OFDM with N = 256 and 2048, respectively, where
CAF is applied with γ = 1.0 and the receiver employs
CNC with Imax = 12. Also shown in the figures are the

Fig. 9. Comparison of SER performances achieved by the two recovery
schemes over frequency-selective fading channels with a different number
of paths Np. (a) DAR with γ = 1.4. (b) CNC with γ = 1.0, both with
Imax = 5. The marks on each curve represent the simulated points.

corresponding theoretical references, i.e., the FD lower bound
based on (70), the CAF lower bound of (45), and the ideal SER
performance without CAF. Note that SNR reduction factor is
about −0.17 dB according to Fig. 4.

From Fig. 7(a), we observe that even after i = Imax =
12 iterations, there is a performance gap from the FD lower
bound based on the ideal distortion cancellation. Nevertheless,
as we increase the number of subcarriers, it eventually con-
verges to the lower bound as observed in Fig. 7(b), especially
in the high SNR region. Therefore, we may conclude that
increasing subcarriers will help improve the performance of
clipping recovery techniques in general. We conjecture that
increasing N not only contributes to make the OFDM signal
more Gaussian, which justifies the use of the model based
on Bussgang’s theorem for the FD approaches, but also helps
reducing the variance of error in estimating clipped signal or
distortion components as the distortion induced in the time
domain clipping is shared by all the subcarriers.
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Figs. 8(a) and (b) show the SER performances of the same
OFDM system over Rayleigh fading channels. Similar to the
case with DAR, the gap from the FD lower bound is negligible
even for the case with N = 256, as the effect of signal fading
becomes dominant compared to the residual distortion that
has not been canceled by CNC. Furthermore, comparing the
two figures, we clearly observe that increasing the number of
subcarriers may accelerate the performance convergence to the
theoretical limit.

Comparing the performances of CNC with DAR, it is clear
that CNC is more effective if CAF with similar clipping
ratio is applied at the transmitter, despite its lower complexity
compared to DAR.

C. SER Performance Comparison Over Frequency
Selective Rayleigh Fading Channels

Finally, we compare the performances of DAR and CNC
with several different cases with respect to the numbers
of paths in an i.i.d. equal power Rayleigh fading channel.
Figs. 9(a) and (b) show the SER results of 2048-subcarrier
OFDM signals in the cases of DAR for CAF with γ = 1.4
and CNC for CAF with γ = 1.0, respectively, where the
number of paths Np is chosen from {1, 2, 8} and Imax = 5.
(Note that due to the difference in clipping ratio applied to the
two results, the effect of distortion should be more dominant
for CNC.) It is interesting to observe that, for the case of
Np = 1, there is some degradation in achievable SER in
high SNR region for both cases. We particularly observe from
Fig. 9(b) that the convergence of SER to the theoretical limit
becomes faster as the number of paths increases in the case
of CNC. This is because the frequency diversity effect can be
partially exploited upon estimation of distortion terms even
for the uncoded cases. Note that since the final decision is
made on symbol by symbol basis, the diversity effect cannot
be exploited for the SER performance, which is in contrast
to the maximum-likelihood-based detectors (e.g., [9], [10]).
Similar to the conventional OFDM systems, combination with
channel coding may further improve the performance as it
helps achieving the diversity effect offered by the frequency-
selective nature of fading channels. The detailed analysis for
the coded OFDM cases is left as future work.

VI. CONCLUSION

In this work, we have analyzed the performance of CAF
on OFDM signals with emphasis on the TD and FD iterative
clipping compensation techniques applied at the receiver. We
have derived a closed-form SDR expression for OFDM with
CAF based on the conventional analysis of band-limited com-
plex Gaussian signals with nonlinearity. We also introduced
a new time-domain distortion model, based on which we
have analyzed the SNDR upper bound for the case of CAF
with ideal TD recovery technique. We have also derived
the achievable performance loss over unclipped system in
the case of ideal FD distortion cancellation approach, which
becomes negligibly small as the clipping ratio increases. We
have revealed that in the case of CAF, the TD approach
suffers from the unrecoverable distortion that falls below

the clipping threshold, and thus the achievable performance
will be degraded. Our simulation results based CNC (for a
practical FD approach) and DAR (for a practical TD approach)
have confirmed the validity of our theoretical modeling and
analysis. Therefore, if we compare CNC and DAR which share
almost the same complexity, CNC will be preferable compared
to DAR both over AWGN and Rayleigh fading channels in
the case of CAF. In other words, more complex additional
recovery structures that precisely capture the property of the
band-limited distortion pulses should be incorporated in its TD
reconstruction process.

APPENDIX

We derive the average SDR expression based on the
approach proposed in [4], which in general leads to a more
complex formula than the one derived in Section III.

We first note that the discrete-frequency (subcarrier-wise)
power spectrum of the input OFDM symbol modulated with
i.i.d. QAM symbols can be expressed from (2) as

PZ = Pin

(
1N , 0(J−1)N

)
, (72)

where 1n denotes the all-one vector of length n. The corre-
sponding discrete-time autocorrelation function is expressed
as RZ = (RZ,0, RZ,1, · · · , RZ,JN−1) defined for m ∈
{0, 1, · · · , JN − 1} where

RZ,m =
N−1∑
k=0

Pinej2π k
JN m. (73)

Let us introduce a frequency offset to make the power
spectrum symmetric at the origin, and let RZ′,m denote the
resulting autocorrelation function, which is expressed as [4]

RZ′,m = ejϕJ,mRZ,m, (74)

where ϕJ,m � m(1−N)
JN π. The corresponding correlation

coefficient can be expressed as

ρZ′,m � RZ′,m

RZ′,0
=

⎧⎪⎨
⎪⎩

1, m = 0,

1
N

sin
(
π m

J

)
sin
(
π m

JN

) , 0 < m < JN.
(75)

Note that ρZ′,m satisfies the symmetric property that
ρZ′,m = −ρZ′,JN−m for 0 < m ≤ JN

2 − 1. In the case
of soft-envelope limiter, let RZ̃′ denote a vector representing
the autocorrelation of the clipped signal, whose mth element
can be expressed from [4, eq.(B9)] as

RZ̃′,m = NPoutLm (76)

with L0 � 1 and for m > 0

Lm

�
ρZ′,m(1 − ρ2

Z′,m)2

1 − e−γ2

∞∑
n=0

ρ2n
Z′,m(n + 1)

×

⎧⎨
⎩ γ√

1−ρ2
Z′,m

Γ
(
n+ 3

2

)
Γ (n+2)

[
1−P

(
n+

3
2
,

γ2

1 − ρ2
Z′,m

)]

+P

(
n + 2,

γ2

1 − ρ2
Z′,m

)}2

, (77)
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Fig. 10. Comparison of the average SDR based on (86) and its asymptotic
limit (40).

where Γ(a) is the gamma function and P (a, x) is the incom-
plete gamma function defined as

P (a, x) � 1
Γ(a)

∫ x

0

e−tta−1dt. (78)

Let RZ̃ denote a vector after the inverse frequency offset,
whose mth element is

RZ̃,m = e−jϕJ,mRZ̃′,m. (79)

The discrete-frequency power spectrum corresponding to
the output is given by

PZ̃ =
(
PZ̃,0, PZ̃,1, · · · , PZ̃,JN−1

)
, (80)

where

PZ̃,k =
1

JN

JN−1∑
m=0

RZ̃,me−j2π k
JN m. (81)

Under the assumption that N is an even integer, substi-
tuting (79) into (81) and noticing the symmetry RZ̃′,m =
−RZ̃′,JN−m, we obtain

PZ̃,k =
Pout

J

⎧⎨
⎩1+2

JN
2 −1∑
m=1

cos
( π

JN
m (N − 1 − 2k)

)
Lm

⎫⎬
⎭ .

(82)

The SDR on the kth subcarrier is then expressed as

SDRk =
α2Pin

PZ̃,k − α2Pin
. (83)

Analogous to (40), we may define the average SDR as

SDRav � α2Pin

1
N

∑N−1
k=0

{
PZ̃,k − α2Pin

} . (84)

Since

N−1∑
k=0

PZ̃,k =
Pout

J

⎧⎨
⎩N + 2

JN
2 −1∑
m=1

sin
(

mπ
J

)
sin
(

mπ
JN

)Lm

⎫⎬
⎭ , (85)

we have

SDRav =
Kγ

1
J

{
1 + 2

N

∑JN
2 −1

m=1

sin(mπ
J )

sin(mπ
JN )Lm

}
− Kγ

, (86)

where Kγ � α2/(1 − e−γ2
) as defined in [4].

In Fig. 10, we compare the numerical results based on (86)
for several values of N and J , as well as the asymptotic
limit (40) derived in Section III with the series truncated at
nmax = 10. It is observed that increasing N in (86) does
not make any noticeable difference as the theoretical model
already assumes Gaussian signaling. As expected, however,
by increasing J we observe that the curves approach the
asymptotic limit.
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