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Abstract— Robust channel estimation in time-varying channels
is used to guarantee the quality of communication services,
especially for Vehicle-to-Everything (V2X) scenarios. To improve
the channel estimation accuracy and reduce the pilot overhead,
multi-input multi-output (MIMO) radar is deployed to assist
millimeter wave (mmWave) channel estimation. In this paper,
we propose a MIMO radar aided channel estimation scheme
using deep learning (DL) for the uplink mmWave multiuser
(MU)-MIMO communications. To allocate pilot resources rea-
sonably, we design a transmission frame structure of joint
radar module and communication module, which divides the
estimation scheme into two stages, i.e., the arrival/departure
(AoA/AoDs) estimation stage and the gain estimation stage.
In view of the imperfections of array elements in practice,
we propose an AoA/AoDs estimation algorithm based on subspace
reconstruction in the AoA/AoDs estimation stage named two-step
angle estimation (TSAE) algorithm. In the gain estimation stage,
a DL based channel gain estimator is designed. An autoencoder
combined with residual structure named residual denoising
autoencoder (RDAE) is proposed to eliminate the noise on wire-
less signals, which is passed into the least square (LS) estimation
module to obtain gains. Simulation results demonstrate that the
MIMO radar aided and DL-based channel estimator provides the
efficient estimation performance of the high-mobility mmWave
channel with fewer training resources.

Index Terms— Deep learning (DL), millimeter wave
(mmWave) communications, multiuser multi-input multi-output
(MU-MIMO), MIMO radar, vehicle-to-everything (V2X).
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I. INTRODUCTION

W ITH the advent of 5G information era, intelligent termi-
nal devices are showing explosive growth. Applications

such as intelligent traffic system (ITS), virtual reality (VR) and
ultra-High Definition (HD) video emerge in an endless stream.
The increasing demand for various multimedia services leads
to a substantial increase in the capacity of the global mobile
system, while the scarcity of spectrum resources becomes
increasingly apparent [1]. Especially, Vehicle-to-Everything
(V2X), as a crucial part of ITS, will face the challenge
of user random mobility, i.e., the time-varying channel. The
performance of channel estimation technique in physical layer
is the premise of the reliable data transmission. Multiple poten-
tial technologies have been proposed to meet the challenges
in 5G communication scenarios such as the higher data rates
and larger bandwidth requirements [2], [3], where millimeter
wave (mmWave) and massive multiple-input multiple-output
(MIMO) are considered to be promising technologies.

Recently, mmWave communication [4]–[6] has become one
of the critical technologies in 5G cellular systems deployment
with its ultra-wide (30-300GHz) spectrum resources, which
provides Gbps data rates and improves the spectrum efficiency.
However, due to its high attenuation and weak penetration,
massive MIMO [7]–[9] is required to achieve high-gain direc-
tional beamforming. Larger antenna gain through beamform-
ing can be obtained to alleviate the propagation loss and realize
sufficient link margin. Beam width decreases with the number
of antennas and then the interference among users reduces.
Therefore, beamforming is the key to the combination of
mmWave and massive MIMO.

Currently, MIMO system is mainly equipped with analog
precoder [10], digital precoder [11] and hybrid precoder [12].
Analog precoding only supports single-channel transmission
of a single user. Digital precoding can realize multiple channel
transmission for multiple users under the premise of high
hardware complexity. Hybrid precoding which combines the
digital precoders with small number of radio frequency (RF)
chains and analog precoders with multiple analog phase
shifters (APSs), striking the tradeoff between hardware con-
sumption and system performance requirements, is proposed
as a compromised solution in the mmWave system.

The prerequisite of optimal beamforming is to obtain
complete channel state information (CSI), thus mmWave
channel estimation is necessary, especially for the massive
MIMO system. CSI estimation methods for mmWave
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communications include least squares method (LS), linear
minimum mean square error (LMMSE), compressed
sensing (CS) and the emerging deep learning (DL) based
channel estimation methods. The advantage of LS lies in its
low complexity, while it has large estimation error. LMMSE
performs high estimation accuracy, but it requires channel
statistics and noise variance as prior information, which limits
its applications in practice. Under the sparse assumption
of angle domain in the mmWave band, plentiful CS-based
methods have been proposed [12]–[15]. To alleviate the
grid mismatch phenomenon of the quantized angle grids
in CS-based methods, an ultra-high resolution estimation
algorithm with high complexity is proposed in [12]. The
adaptive CS scheme proposed in [15] utilizes hierarchical
codebooks and approaches the favorable coverage probability,
but only for the channel estimation in single-user scenario.
A non-orthogonal pilot design scheme is proposed for
frequency division duplex (FDD) system, and a distributed
sparse adaptive matching pursuit algorithm (SAMP) is
presented in [14] to jointly estimate the multiple subcarriers.
However, the schemes in [14], [15] need feedback, which
increases the training overhead and estimation latency.

With the rapid development of high mobility communi-
cation fields such as unmanned aerial vehicles (UAVs) [16]
and high-speed trains (HSTs) [17], the demand for channel
estimation algorithms under mobile conditions is gradually
increasing. Q. Qin et al. in [18] propose a novel transmis-
sion frame structure, which divides the estimation of the
time-varying channel into two stages. The angles are estimated
by an adaptive algorithm as a block-sparse recovery problem,
while the quantization error exists due to CS and the training
overhead is also large. DL has received widespread attention
due to its feature self-learning ability and the enhancement of
hardware computing power. On this base, DL has penetrated
into wireless communications [19], such as channel coding
and decoding [20], channel information feedback [21], beam
search [22], beamforming [23], modulation recognition [24],
channel estimation, and etc [25]–[27]. Aiming at the highly
dynamic vehicle scene, deep neural network (DNN) is used for
k-step channel prediction of space-time block codes, and then
a decision-oriented channel estimation algorithm is proposed
to eliminate the need for channel Doppler frequency shift
estimation in [25]. X. Wang et al. in [26] proposes two
different channel estimation schemes, one is a data-driven
end-to-end channel estimator, and the other is a model-driven
channel estimator combined with communication knowledge
and a small amount of training parameters. In view of the
characteristics of rayleigh fading channels, an estimator named
SBGRU is proposed in [27], combining RNN structure with
sliding window. However, the large amount of training data
required for the two schemes leads to the additional training
cost. Notably, only the channel matrix without both the esti-
mation of AoA/AoDs and channel gains is obtained according
to the mmWave channel model in [27].

Moreover, signal optimization by denoising is also an effec-
tive way to improve the estimation accuracy. An end-to-end
Super-resolution convolution neural network (SRCNN) [28]
is proposed to learn the map between LR/HR images and
optimize all layers. Residual learning is widely adopted in the

field of image classification and recognition. Different from
the general CNN, the residual network only needs to learn the
difference between input and output directly through ’shortcut’
structure, which keeps the integrity of input information and
reduces the difficulty of model learning. In addition, it alle-
viates the gradient disappearance caused by the increase of
CNN depth. For image restoration, a feed forward denoising
convolution neural network (CNN) called DnCNN is designed
in [29], where residual learning and batch normalization is uti-
lized to improve the denoising performance. With the evolution
of CNN, residual learning also shows similar performance in
text and speech processing.

MIMO radar [30] detects and locates targets in all-weather,
all-day and long distance. Compared with the traditional
phased array radar (PAR), MIMO radar obtains information
through parallel multi-channels in space and achieves para-
meter estimation for multiple targets. Due to the mobility of
the receiver, the state of the channel continuously changes in
the time domain. In this case, MIMO radar’s rapid detection
characteristics can play to its advantage, which takes up less
overhead. The antenna aperture and spatial diversity gain
increases by diversity processing, thus the parameter estima-
tion accuracy improves. For MIMO radar, various direction
of arrival (DoA) estimation methods exist such as Capon,
MUSIC, ESPRIT, sparse Bayesian learning and etc. [31]–[35].
Array models in aforementioned works are under the assump-
tion that the array elements are accurately calibrated. However,
various array imperfections, such as mutual coupling [36],
gain and phase errors [37] and location errors [38] exist in
practice, resulting the degradation in estimation performance
[39]. Works have focused on eliminating or mitigating the
estimation error caused by the sensor uncertainties [40]–[44].

Inspired by the above channel estimation algorithms,
we propose a MIMO radar aided channel estimation scheme
based on DL for the uplink mmWave MU-MIMO commu-
nications for a time-varying channel. We focus on multiuser
V2X scenarios and only a small number of pilots is utilized to
achieve higher estimation accuracy while minimizing training
difficulty. The estimation scheme is divided into two parts:
angle estimation and gain estimation, in which the latter
works with the prior information of the former. The main
contributions of the paper can be summarized as follows:

• We design a novel frame structure for the uplink transmis-
sion that takes both radar and communication modules
into consideration. In each transmission frame, we use
the MIMO radar deployed on the road side unit (RSU)
to measure the azimuth information of moving vehicles in
the first stage. In the second stage, a DL-based complex
gain estimator is designed to obtain the channel gain
information based on prior angle information.

• MIMO radar is applied to AoA/AoDs estimation in
the considered high-mobility communication scenarios.
Considering the uncertain deviation of sensors, includ-
ing several types of error, we propose an AoA/AoDs
estimation algorithm based on subspace reconstruction,
which is robust to the quantization error. The target UEs’
number is derived from the signal covariance matrix and
angles are obtained from the new covariance matrix after
subspace reconstruction. This stage involves no angle
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TABLE I

THE NOTATIONS OF THIS PAPER

quantization. Benefit from the powerful detection per-
formance of MIMO radar, the algorithm achieves higher
estimation accuracy.

• We design a supervised DL-based channel gain estimator,
which is composed of a denoising autoencoder (DAE) and
LS estimator. The DAE introduces a residual structure
and Gaussian noise layers to filter part of the complex
noise with a smaller amount of data and iterations, which
improves the anti-noise and anti-movement robustness.
Under the condition of a limited number of pilots,
beamforming is implemented obeying the principle of
maximizing the pilot signal to noise ratio. Finally, results
of the channel gain estimation are obtained.

• We derive the Cramer-Rao Lower bound (CRLB) of
the estimation performance and analyze the algorithm
complexity of the channel estimation scheme under a
single path for each UE. Finally, the performance of
the proposed estimation algorithm is evaluated through
simulations.

The rest of the paper is organized as follows. In Section II,
we present the system model and main assumptions used in
the paper. In Section III, we formulate the channel estimation
problem and present the idea of the proposed two-stage
training scheme. The proposed AoA/AoDs algorithm and
path gains estimation algorithm are presented and discussed
in Section IV. The performance of proposed algorithms are
analyzed in Section V. In Section VI, simulation results
demonstrating the performance of the proposed algorithms are
given. Section VII concludes the paper.

Notations: A summary of the notation used throughout this
manuscript can be found in Table I.

II. SYSTEM MODEL

In this section, we consider a MIMO radar aided multiuser
mmWave massive MIMO communication system, as shown
in Fig. 1. The MIMO radar is deployed at RSU to assist in

Fig. 1. Radar aided multiuser V2X communication scenario in mmWave
system.

channel estimation in V2X scenarios, where the user equip-
ments (UE) in the system are high-speed moving vehicles. It is
assumed that the far-field condition is satisfied between the tar-
get UEs and the radar. The RSU is equipped with the uniform
linear array (ULA) of N antennas to simultaneously serve K
UEs, where the antenna array is split into two modules: one
for MIMO radar and one for the uplink communications.

Specially, we first introduce the signal model for communi-
cation and radar modules respectively with hybrid precoding
architectures [45] as shown in Fig. 2. There are the RSU
with the wireless communication module and the MIMO radar
module on the left and the K vehicles are on the right. Then
the mmWave channel model is presented to further formulate
a mmWave time-varying channel estimation problem.

A. Signal Model for the Uplink Communications

For the uplink communication module, we consider the RSU
with NBS antennas and NRF chains communicates with K
UEs simultaneously, where each UE is equipped with NUE

antennas and Nu RF chains [11], as shown in Fig. 2. The
RSU receives a total of Ns streams sent by each UE, such
that Ns = K . Without loss of generality, we assume that
Ns ≤ NRF ≤ NBS and 1 ≤ Nu ≤ NUE .

The hybrid precoder for the k-th UE at the n-th time slot is
denoted by Fn,k = F(n)

RF,k
F(n)

BB,k
∈ CNUE×Nu , where F(n)

BB,k
∈

CNu×Nu is the baseband precoder and F(n)
RF,k

∈ CNUE×Nu is
the RF precoder. Hence, the transmitted signal vector from the
k-th UE can be written as

xk [n] = F(n)
RF,k

F(n)
BB,k

sk [n] (1)

where sk [n] ∈ CNu×1 is the transmitted training sequence.
We further apply a hybrid combiner at the RSU side as

Wn,k = W(n)
RF,kW

(n)
BB,k ∈ CNBS×Ns , where W(n)

RF,k ∈
CNBS×NRF and W(n)

BB,k ∈ CNRF ×Ns denote the RF combiner
and baseband combiner respectively. The received signal can
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Fig. 2. MIMO radar aided hybrid precoding architectures for multiuser mmWave system.

be given by

yk
c [n] = WH

n,kHk [n]
K∑

k=1

F(n)
RF,k

F(n)
BB,k

sk [n] +WH
n,knk [n]

(2)

where Hk [n] ∈ CNBS×NUE is the mmWave channel from the
k-th UE to the RSU and nk [n] is the Gaussian noise vector
obeying CN (

0NBS×1, σ
2
nINBS

)
.

B. Signal Model for the MIMO Radar
For the MIMO radar module, we consider a monostatic

radar application containing NT and NR array elements for
transmitting and receiving respectively, where NT = NR =
M . The matrix form of transmitted signals for entire NT

elements is presented as

r (l) = [r1 (l) , r2 (l) , . . . , rM (l)]T , l = 1, 2, . . . , L (3)

where L is the length of transmitted waveforms, i.e., snapshots.
Thus, we acquire the correlation matrix of r (l) as

Rr =
1
L

L∑
l=1

r (l)rH (l) (4)

We assume the transmitted signals are mutually orthogonal
such that the correlation coefficient of different signals equals
to zero. The correlation matrix can be reduced to an unit matrix
as IM , which means the energy is evenly dispersed throughout
the spatial domain.

For K target UEs, the corresponding echo signal received
by NR antennas is obtained as

yr (l) =
K∑

k=1

βkbr (θk)b∗
t (θk) r (l) + ω (l) , l = 1, 2, . . . , L

(5)

where yr(l) = [y1(l), y2(l), . . . , yNR(l)]T , yn(l) is the
echo signal received by the n-th receiving element, βk ∼
CN

(
0, σ2

βk

)
denotes the reflection coefficient of the k-th UE

and ω (l) ∼ CN (
0, σ2

ωIM

)
represents the noise. Moreover,

br (θk) and bt (θk) are the steering vectors for the transmitting
and receiving antennas respectively, satisfying

bt (θk) =
[
ej2πf0τ1(θk), ej2πf0τ2(θk), . . . , ej2πf0τNT

(θk)
]T
(6a)

br (θk) =
[
ej2πf0 τ̃1(θk), ej2πf0 τ̃2(θk), . . . , ej2πf0 τ̃NT

(θk)
]T
(6b)

where f0 is the carrier frequency of radar signals, τm (θk) and
τ̃m (θk) indicate the time to reach and return form the target
respectively and θk denotes the azimuth angle of the k-th UE.

C. Channel Model

In view of the Doppler effect in V2X communications,
we adopt a time-varying geometric channel model consisting
of NL paths. The mmWave channel model Hk [n] can be
expressed as

Hk [n] =
1√
NL

NL∑
nl=1

αk,nl
e2πfdnTsaBS

(
φr

k,nl

)
aH

UE

(
φt

k,nl

)
(7)

where αk,nl
is the complex channel gain, which obeys

Rayleigh distribution, fd is the Doppler frequency, Ts rep-
resents the system sampling period, φr

k,nl
∈ [0, π] and

φt
k,nl

∈ [0, π] denote the angle of arrival (AoA) and angle

of departure (AoD), respectively. Furthermore, aBS

(
φr

k,nl

)
and aH

UE

(
φt

k,nl

)
are the steering vector at the RSU and UE

in the form of ULA, which are given as

aBS

(
φr

k,nl

)
=

1√
NBS

[
1, ejξr , . . . , ej(NBS−1)ξr

]T
(8a)

aUE

(
φt

k,nl

)
=

1√
NUE

[
1, ejξr , . . . , ej(NUE−1)ξt

]T
(8b)

where ξr = 2π
λmW

d cos
(
φr

k,nl

)
, ξt = 2π

λmW
d cos

(
φt

k,nl

)
,

λmW is the wavelength and d is the inter-element spacing,
generally set as λmW /2. Then the carrier frequency of the
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Fig. 3. The structure of uplink transmission frame.

uplink mmWave communications fmW is fmW = c/λmW ,
where c is the speed of the light.

We then rewrite the mmWave channel model in (7) in a
matrix form as

Hk [n] = ΛBS,kdiag (An,k)ΛH
UE,k (9)

where ΛBS,k ∈ CNBS×NL , ΛH
UE,k ∈ CNUE×NL and An,k ∈

CNL×1 merges the path gain and Doppler effect, satisfying

ΛBS,k =
[
aBS

(
φr

k,1

)
,aBS

(
φr

k,2

)
, . . . ,aBS

(
φr

k,NL

)]
(10a)

ΛUE,k =
[
aBS

(
φt

k,1

)
,aBS

(
φt

k,2

)
, . . . ,aBS

(
φt

k,NL

)]
(10b)

An,k =
[
A1

n,k,A2
n,k, . . . ,ANL

n,k

]T
(10c)

III. PROBLEM FORMULATION

In this section, we design a novel frame structure of
uplink transmission for MIMO radar aided communication
system, which consists of two stages, as shown in Fig. 3.
The duration of each frame is Te, which includes multiple
pilots. For the first stage, the transmission frame of the radar
module consists of two parts, i.e., AoA/AoDs training and
AoA/AoDs tracking denoted by P1Ts and P2Ts, respectively.
AoA/AoDs Training corresponds to the total time consumption
of AoA/AoDs estimation algorithm with MIMO radar. Ts is
the duration of a single pilot and P1, P2 are the number of
pilots used by the MIMO radar for angle training and tracking,
respectively. For the communication module, initialization is
performed in the first CI pilots, followed by several time slots
in the second stage. Assume that P1 = CI equals to the
number of snapshots. Moreover, each time slot is composed
of path gains training and data transmission, corresponding to
CG and CD pilots respectively. We perform the channel gains
estimation during the Gain Training. Note that AoA/AoDs
Tracking and Gain Tracking are conducted to predict the cur-
rent and subsequent channel parameters based on the previous
sequence.

In the highly dynamic V2X scenarios, the channel coef-
ficients mainly vary in the UEs’ angles and the channel
gains according to Equ. (2). The angles are subject to the
large-scale characteristics of the scattering environment and
the corresponding change is relatively slow, which can be
regarded as constant within a certain period of time. The

channel gains are affected by factors such as Doppler fre-
quency offset and their changes are relatively rapid. Therefore,
the time-varying channel estimation problem can be divided
into a static angle estimation problem and a time-varying gain
estimation problem. The relevant proofs and rationality of
using MIMO radar are given in Appendix A.

In the V2X scenarios, the antenna of the RSU is gener-
ally taller than the moving vehicles. It is obvious that the
transmission path between the UEs and RSU are mostly the
line-of-sight (LoS). This is suitable for the narrow beams’
less scattering and sparseness millimeter wave communica-
tions. During the communication occurs between the moving
vehicles and the RSU, the radar quickly detects the direction
of the targets and then informs RSU separated. Furthermore,
due to the sparsity of the mmWave channel, all the paths can
be regarded as separate and only one path will be the main
beam. In addition, the path gain of the LoS is generally higher
than the none-line-of-sight (NLoS) in the outdoor environment
[46]. Therefore, we assume the LoS path as the main lobe
direction, while other NLoS paths falling into the side lobe
directions can be treated as noise and are neglected. In this
paper, we assume that RSU transmits signals along the AoAs
obtained from the MIMO radar. Hence AoDs and AoAs are
equal in value within a transmission frame.

A. AoA/AoDs Estimation With MIMO Radar

As shown in Fig. 4, the workflow of the entire estimation
scheme is performed in two main phases: AoA/AoDs estima-
tion phase at the radar module and path gains estimation phase
at the communication module, each of which also includes
its own sub-phases. Firstly, the latest angle information data
is obtained after the radar echo signals are received and
processed by the radar module and is the input of the mmWave
MIMO system as auxiliary information for the subsequent
path gain estimation. Buffers in the mmWave MIMO system
hold a large number of previous transmitted signals and are
continuously stored in real-time communication signals. In the
AoA/AoDs estimation phase, some assumptions are made and
three specific types of errors are considered.

We rewrite Equ. (5) as

Yr = BRdiag(β1, β2, . . . , βK)BT
HR + W (11)

where Yr = [yr(1),yr(2), . . . ,yr(L)] ∈ CM×L

and W = [ω(1), ω(2), . . . , ω(L)] ∈ CM×L indi-
cate the echo signal matrix and noise matrix. BR =
[br(θ1),br(θ2), . . . ,br(θK)] ∈ CM×K and BT = [bt(θ1),
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bt(θ2), . . . ,bt(θK)] ∈ CM×K denote the transmitting and
receiving steering vector matrix, respectively.

In the considered model, some assumptions are made as
follows.

Assumption 1: The azimuth angles of UEs are distinct and
randomly distributed in

[−π
2 , π

2

]
.

Assumption 2: The additive white Gaussian noise is unre-
lated from the transmitted signal of the radar. In order to
present the subspace, we obtain the covariance matrix of the
received signal, which is given as

RYr M×M =
1
L

L∑
l=1

yr (l)yH
r (l) = ΘRrΘH + σ2

�
ω
I (12)

where Θ = BR diag(β1, β2, . . . , βK)BT
H . Moreover, B̃R,

B̃T indicate the perturbed array model and the general per-
turbed covariance, which can be expressed as

R̃Yr =
(
Θ + Θ̃

)
Rr

(
Θ + Θ̃

)
H + σ2

�
ω
I (13)

where Θ̃ = B̃R diag(β1, β2, . . . , βK)B̃H
T , which contains gain

errors, phase errors, sensor location errors or even mutual
coupling.

According to the above assumptions, we consider the fol-
lowing specific types of errors.

Type 1 (Gain Errors and Phase Errors): The array response
with gain and phase uncertainties Δφk , Δbt are given as
follows.

b̃t (φk) = (|bt| + |Δbt|) exp {j (φk + Δφk)}
= |bt| ejφk (1 + |Δbt|/|bt|) ejΔφk

= bt (φk) + ηkbt (φk) (14)

where the interference between each element is random and
independent. In the same way, the received array response is
b̃r (φk) = br (φk) + ηkb̃r (φk), where φk = 2πf0τ1 (θk) and
ηk = (1 + |Δbt|/|bt|) exp {jΔφk} − 1.

Type 2 (Mutual Coupling Errors): If spacing between
antenna elements is too small or the carrier frequency is high,
electromagnetic coupling effect will occur due to the inter-
action of space electromagnetic field. Due to the multi-input
and multi-output characteristics of the MIMO radar, the mutual
coupling effect between array elements cannot be ignored. For
simplicity, we use the strip symmetric Toeplitz matrix Cr and
Ct with nonzero entries to model the mutual coupling effect,
which is shown as follows.

b̃r (θk) = Crbr (θk) (15a)

b̃t (θk) = Ctbt (θk) (15b)

Type 3 (Sensor Location Errors): The array response with
uncertainties caused by the deviation of the array location is
indicated in the following equations.

b̃t (θk) =
[
e−jϕ1

k , · · · , e−jϕM
k

]T
(16a)

b̃t (θk) =
[
e−jϕ1

k , · · · , e−jϕM
k

]T
(16b)

where (xm, ym) indicates the actual sensor position
and (Δxm, Δym) represents the error term. Moreover,

ϕm
k = 2π

λ [x̃m sin (θk) + ỹm cos (θk)], x̃m = xm + Δxm

and ỹm = ym + Δym. In this case, we make an additional
assumption.

Assumption 3: The sensor location error is smaller than the
inter-element spacing.

All the above array disturbances will weaken the perfor-
mance of AoA/AoDs estimation. To reduce the components
of those disturbances, we reconstruct the received signal and
estimate the number of UEs and the AoA/AoDs values in turn.

B. Path Gain Estimation With mmWave Transmitted Signals

In Equ. (2), the received signal at each time slot has a
complex gain for each UE, which can be transformed to

yk
c [n] = WH

n,kHk [n]
K∑

k=1

xk [n] +WH
n,knk [n]

=
(
xT [n] ⊗ WH

n,k

)
Λvec (An,k) + Ψk [n] (17)

where Λ =
(
Λ∗

UE,k ⊗ ΛBS,k

)
. We aim to estimate the

CSI of the multiuser with shorter training overhead while
maintain the estimation accuracy. Path gains estimation in
MIMO system starts when the UEs angle information arrives.
However, orthogonal matching pursuit (OMP) based methods
cannot satisfy the estimation accuracy due to the lack of
measurements. Generally speaking, the estimation accuracy
of LS estimator is greatly affected by noise [47]. Thus,
the intelligent algorithms are applied for signal preprocessing
to denoise the received signals in this paper.

Specifically, the path gain estimation process contains three
sub-stages: offline training, online prediction and LS estima-
tion, as shown in Fig. 4. In the offline training stage, a large
number of previous transmitted signals and corresponding
gains in the RSU buffer are used as training samples, which are
used to learn the mapping function between raw and noiseless
signals and to obtain the model with certain generalization
performance. When the following wireless signal is received,
preprocessed signals can be predicted in real time using the
well-trained denoising model in the online predication stage.
Finally, the complex gains can be obtained by LS algorithm.
The detailed structure of the neural network in Fig. 4 is shown
in Fig. 5. The specific principle and the detailed introduction
of which are given in Section IV B. Hence, time-varying
mmWave channel matrix is obtained with AoA/AoDs and path
gain in Equ. (9).

Note that the training and deployment of the DL estimator
is at the RSU for the uplink channel conditions and the
proposed channel estimation scheme can also be utilized
for the downlink channel estimation with enough computing
power. RSU will design the optimal beamforming vector for
each user according to the prior angle information obtained by
the radar module. On this base, we adopt a codebook-based
beamforming scheme. For the precoder and combiner, we use
the following quantized set as the candidate set Ω with Q
being the quantization resolution.

Ω =
{
a
(

2πi

2Q

)
, i = 0, 1, . . . , 2Q − 1

}
(18)
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Fig. 4. Proposed scheme workflow for channel estimation.

Considering the tradeoff between performance and complexity,
elements of the array response matrix are selected as the
candidate set, i.e., a is the steer vector. Then the beamforming
vector Wn,k and Fn,k are chosen from Ω to maximize the
uplink channel gain:

arg max
WH

n,k

Fn,k

∣∣∣∣∣WH
n,kHk [n]

K∑
k=1

Fn,ksk [n]

∣∣∣∣∣
s.t. [Fn,k]i,j =

1√
NUE

ϑf , ϑf ∈ Ω, ∀i, j, ∀k

[Wn,k]i,j =
1√

NBS

ϑw, ϑw ∈ Ω, ∀i, j, ∀k (19)

For the uplink channel, RSU’s beamforming is to maximize
the array gains for the incoming angles, while UEs’ beamform-
ing is to maximize the array gains for the transmitted angles.
Thus, the problem can be simplified as

arg max
Fn,k

∣∣∣FH
n,kaUE

(
φ̂t

k,nl

)∣∣∣ , ∀k

s.t.
[
FH

n,k

]
i,j

=
1√

NUE

ςf , ςf ∈
{
aUE

(
φ̂t

k,nl

)}
, ∀k

(20)

Similarly, for the RSU’s combiner, we can get

arg max
Wn,k

∣∣∣WH
n,kaBS

(
φ̂r

k,nl

)∣∣∣ , ∀k

s.t.
[
WH

n,k

]
i,j

=
1√

NBS

ςw, ςw ∈
{
aBS

(
φ̂r

k,nl

)}
, ∀k

(21)

In summary, the optimal precoding vectors will be found by
searching in all possible cases of the array response.

IV. MIMO RADAR AIDED TIME-VARYING MMWAVE

CHANNEL ESTIMATION ALGORITHM

A. Subspace Reconstruction Based AoA/AoDs Estimation

As shown in Equ. (13), the covariance matrix of the signal
is no longer a standard form due to the considered errors
of the arrays. The classic MUSIC algorithm [48] works by
constructing spatial spectral function and finding the angles
at peaks with perfect arrays. However, the actual array man-
ifold inevitably deviates from the nominal one due to array

uncertainties in practical applications, which will result in not
strictly orthogonal relationship between the signal subspace
of the actual received data and the nominal array manifold.
When the deviation is large, the angle estimation performance
of the subspace algorithms like MUSIC may be unavailable.
Therefore, a novel subspace decomposition based AoA/AoDs
estimation method named two-step angle estimation (TSAE)
algorithm is proposed in this subsection.

In Equ. (13), the eigenvalue decomposition of the perturbed
covariance R̃Yr is performed as follows.

R̃YrM×M =
M∑
i=1

λiui(ui)
H

= UrVr(Ur)
H + σ2

�
ω
Un(Un)H (22)

where the eigenvalues in descending order is λ1 ≥ · · · ≥
λK ≥ λK+1 ≥ · · · ≥ λM ≥ σ2

�
ω

. Ur= [u1,u2, . . . ,uK ]
and Un= [uK+1,uK+2, . . . ,uM ] denote the eigenvectors that
constitute the subspace of signal and noise, respectively. The
degree of difference between adjacent eigenvalues can be
expressed as a ratio variable as follows.

μk = λk/λk+1, k = 1, 2, . . . , M − 1 (23)

Obviously, when the variable reach the maximum, the corre-
sponding k is the number of the main eigenvalues. Therefore,
we can get the estimated number of targets K̂ at

K̂ = arg max
k=1,2,...,M−1

[μk] (24)

Through (24), the eigenvectors with the largest eigenvalues
are taken as the dominant features and the retained data will
have no correlation in each orthogonal direction. We project
the perturbed signal Ỹ into a transformed space with NP

(NP < M ) vectors UP =[u1,u2, . . . ,uNP ]M×NP
through

YP = ỸUP , retaining the main components and discarding
the parts with noise and array errors to a certain extent. The
new covariance matrix can be expressed as

RP = YPYH
P

/
NP (25)

This completes the subspace reconstruction of the signal.
Note that K̂ and equation (25) can be regarded as known
parameters and the vehicle azimuth angles can be obtained
by finding roots. Specifically, we get the new eigenvalues
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Algorithm 1 Two-Step Angle Estimation (TSAE) Algo-
rithm for mmWave AoA/AoDs Estimation in MU-MIMO V2X
Communications
Input: Received signal of MIMO radar R̃Yr , number of

primary features reserved NP .
Output: Number of UEs K̂ , AoA/AoDs: φt and φr.
1: Perform eigenvalue decomposition of R̃Yr as Equ. (22).
2: Sort the eigenvalues in descending order as λ1 ≥ · · · ≥

λK ≥ λK+1 ≥ · · · ≥ λM ≥ σ2
�
ω

.
3: Calculate the ratio variable according to Equ. (23).
4: Obtain K̂ according to Equ. (24).
5: Obtain UP = [u1,u2, . . . ,uNP ].
6: Project the signal into a transformed space by YP =

ỸUP .
7: Perform the second eigenvalue decomposition as Equ. (26).
8: Construct the polynomial and find roots according to Equ.

(27)(28).
9: return K̂, the roots φt and φr .

η1 ≥ · · · ≥ ηK ≥ ηK+1 ≥ · · · ≥ ηM and the eigenvectors
U =

[
Ür , Ün

]
through the second eigenvalue decomposition

of RP , which is indicated as follows.

RP =
M∑
i=1

ηiüi(üi)
H = ÜrV̈r

(
Ür

)H

+ σ̈2
�
ω
Ün

(
Ün

)H

(26)

We can express the signal space in this way [49].

c = Un1(Un2)
−1[1, 0, · · · , 0]T ∈ C(M−K̂)×1 (27)

where c =
[
c1, c2, . . . , cM−K̂

]
. After recombining the poly-

nomial referring to [49], the polynomial can be constructed as

f (z) =
K̂+1∑
i=1

cizi−1, cK̂+1 = 1 (28a)

zi = exp (jωi) , 1 ≤ i ≤ K̂ (28b)

Then we can get the roots of Equ. (28), which are the
estimated AoA/AoDs φt and φr . Obviously, our algorithm
calculate the angle value by rooting instead of the angle
quantization and grid matching. Hence, no quantization error
will be introduced.

B. DL Based Path Gains Estimation

The RSU conducts beamforming according to the estimated
AoA/AoDs, and thereby the signal can be simplified by
ignoring the combiner temporarily, which is given by

Zk
c [n] = Wn,kyk

c [n]
/
Wn,kWH

n,k

= Hk [n]
K∑

k=1

xk [n] +nk [n]

=
(
xT [n] ⊗ I

)
Λvec (An,k) + nk [n] (29)

which will be denoised by the neural network.

1) Main Idea: The gain estimation consists of offline train-
ing and online estimation as shown in Fig. 4. For the sake of
saving pilot overhead, model training will be executed offline.
The vehicles transmit pilot signals to the RSU. Simultaneously,
the MIMO radar continuously sends detection signals within a
certain range. When the radar receives the echo reflected from
the target vehicle, the angle estimation is conducted and the
angle information is transmitted to the communication module,
which determines the optimal beamforming to prepare for the
downlink transmission. During this phase, RSU buffer stores
a large amount of wireless signals Ynoised and Ydenoised as
the training set for RDAE training. After the derivation of
Equ. (29), we obtain the input data Z of the training stage.
Benefit from the AoA/AoDs from MIMO radar, the data in
training set has the known angle information, which means the
steer vectors Λ are known. The well-trained model “RDAE”
can be obtained by limited iterations. In the online estimation
stage, the mmWave MIMO system inputs real-time signals
into the model and the network output Ẑ is the denoised
data. Assuming that the weight vector of RDAE is w and the
mapping relation between input and output can be expressed
as

Ẑ = F (Z;w) = F (n−1)
(
F (n−2)

(
· · · F (1) (Z)

))
(30)

The network is trained end-to-end according to the loss
function, which is given by

loss =
1

Nsa

Nsa∑
i=1

∥∥∥Ẑi − Zi

∥∥∥2

2
(31)

where ‖·‖2 means the euclidean norm and Nsa is the number
of the training data.

The network will stop training when the loss function stops
falling and then a well-trained denoising model is constructed.
The well-trained model can accomplish online denoising
within fewer pilots and further achieve gain calculation using
LS algorithm, which is given by(

Ân,k

)
i

= argmin
(An,k)

i

∥∥∥Ẑk
c [n] − Γn,ivec

(
Ân,k

)
i

∥∥∥2

2

=
(
ΓH

n,iΓn,i

)−1

ΓH
n,i

(
Ẑk

c [n]
)

i
(32)

where Zk
c after removing noise is Ẑk

c and Γn =(
xT [n] ⊗ I

)
Λ.

2) RDAE Model: The core idea of DAE is to encode and
decode the original data corrupted by the noise, and finally
the network outputs the recovered data without noise. The
initial DAE first adds noise to input data satisfying a certain
distribution as training data.

In this subsection, we propose a path gains estimation
method based on angle priori. We introduce residual learning
into DAE and propose a learning framework with residual
structure for wireless gain estimation, named RDAE. The
stucture of RDAE is shown in Fig. 5. The size of Zk

c [n] is
NBS × 1 and the total data matrix size is 2×K ×NBS ×CG

(complex value is split into real and imaginary part), which
can be written as

Zc = [Re (Zc) , Im (Zc)] (33)
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Fig. 5. Proposed RDAE learning framework design.

To adjust to the input size of the network, we transform the
dimension of the data matrix as 2×K×NBSCG, which is the
input size of the network. The size of all convolution kernels
used in RDAE is 3 × 3. Furthermore, the activation function
of each convolutional layer is “Leaky ReLU”, and the fully
connected layer exists without nonlinear activation. RDAE can
be coarsely divided into the encoder and decoder part. In the
encoder, the first layer is a convolutional layer with 2 filters,
which maps the input to output of size 2 × K × NBSCG.
In particular, we have added a layer of Gaussian noise as
a scrambling to the training signal. Then we vectorize the
signal through “Reshape”. The following layer is the fully
connected layer, which encodes the data to 256 bits as the
input of the decoder. In the decoder part, the first layer of the
decoder is a dense layer, which converts the encoded vector
to the previous length. The dense layer can be regarded as
the first layer decoding of the codebook. Next to the dense
layer is the Residual blocks, where each block consists of 4
convolutional layers. The last layer has 2 filters and the size of
the whole output is the same as the input. Except for the first
layer, there is a Gaussian layer after each layer, which is used
to descramble the data’s own noise and the artificially added
noise. Note that the Gaussian Noise layer also plays a role of
regularization, which is beneficial to avoid overfitting problem.

Assuming that the noise follows the complex Gaussian
distribution, we choose “RandomNormal” for the weight ini-
tialization to assist the Gaussian noise layer and guide the
network to converge faster.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the pro-
posed channel estimation scheme, including the derivation
of Cramer-Rao lower bounds of channel estimation and the
computational complexity of each algorithm.

A. Cramer-Rao Lower Bound Analysis

CRLB theoretically provides the maximum estimation accu-
racy available for the unbiased estimation, which acts as

Algorithm 2 DL Based Path Gain Estimation Algorithm in
MU-MIMO V2X Communications
Input: Transmitted signals yc from UEs, estimated

AoA/AoDs and well-trained RDAE.
Output: Path gains Â and channel matrix Ĥ.
1: Load the RDAE which has been well trained.
2: Preprocess the signals by Equ. (29)(33).
3: Process the RDAE.
4: Update the output Ẑ by Equ. (30).
5: Calculate the output Ân,k according to Equ. (32).
6: Obtain Ĥk [n] according to Equ. (9).
7: return Â and Ĥ.

an upper bound for the performance of the estimation
method.

In the stage of path gains estimation, we derive the lower
bound of estimation error with the signal model given in Equ.
(17). The noise nk [n] follows the complex Gaussian distribu-

tion CN (
0NBS×1, σ

2
nINBS

)
. Let Ξk =

(
xT [n] ⊗ WH

n,k

)
Λ.

Thus, the conditional probability density function [50] of yc

with the given path gains matrix A is

pyc|A (yc;A) =
1

(2πσ2
n)NL/2

exp
{
− 1

2σ2
n

‖yc − ΞA‖2
2

}
(34)

For simplicity, we neglected the number of UEs. Then we
obtain the CRLB of path gain estimation [18], which is given
as follows.

E
[∥∥∥Â − A

∥∥∥2

2

]
≥ σ2

n · N2
L

/
tr
{(

ΞHΞ
)}

= CRLB(A)

(35)

Based on (35), we give the performance upper bound of chan-
nel matrix estimation with known targets angle information.
The MSE of the channel estimation can be expressed as

E
[∥∥∥Ĥ− H

∥∥∥2

F

]
≥ ξminσ2

nN2
L

tr
{(

ΞHΞ
)} = CRLB (H) (36)

where ξmin denotes the minimum eigenvalue of matrix BHB.
B equals to Λ∗

UE,k 
 ΛBS,k, where 
 means Khatri-Rao
product. The derivation is given in Appendix B in detail.

B. Computational Complexity Analysis

The computational complexity in the entire channel estima-
tion scheme comes from the following two stages:

• For the stage of AoA/AoDs estimation, the computa-
tional complexity mainly comes from the EVD and
polynomial rooting. In this stage, Oc (·) indicates the
number of complex multiplications. Calculating the
covariance matrix of the signal requires Oc

(
M2L

)
complex multiplications. The complexity of EVD is
Oc

(
M3
)

and it takes Oc (M − 1) complex divisions
to search the number of targets. Then, subspace recon-
struction requires Oc (MLNP ) complex multiplications
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(M > NP ). Similarly, to obtain the transformed covari-
ance matrix needs Oc

(
M2NP

)
complex multiplications.

The complexity of the final EVD and root finding is
Oc

(
M3
)

and Oc

(
(M − 1)3

)
, respectively. Therefore,

the total computational complexity of angle estimation is
Oc

(
M3 + M2L

)
.

• For the stage of path gains estimation, the computational
originates from the CNN processing for signal denoising
and the complexity of the LS, which can be negligible
compared to the former. Note that Of (·) in this stage
represents the time complexity, i.e., floating-point oper-
ations. If the size of the output feature map is ho × ho,
the size of the convolution kernel is hk × hk, and the
number of input and output channels is nin and nout,
then the time complexity of a single convolutional layer
is Of

(
h2

o · h2
k · nin · nout

)
without bias. The complexity

of a single dense layer is Of

(
h2

in · nin · nout

)
, where hin

is the input feature size. Hence, the complexity of the

entire RDAE is Of

(
D∑

i=1

ho
2
i · hk

2
i · ni−1 · ni

)
, where D

is the depth of the CNN and ni is the output channels
of the i th layer. Specifically, hoi = 1 and hki = ho(i−1)

for dense layers.

VI. SIMULATIONS

In this section, we will further analyze the previous dis-
cussion through simulations and compare the performance of
the proposed scheme under different conditions. This section
contains three parts: the AoA/AoDs estimation, the path gains
estimation and the channel estimation. The simulation settings
are set as follows.

Uplink transmission frame structure: Ts = 1μs and the
number of pilots are P1 = CI = L = 100, CG = 5 and
CD = 65, respectively.

MIMO radar module: The transmitting and receiving arrays
of the radar are equipped with M = 24. There are four
uncorrelated UEs with θ1 = −π/6 rad, θ2 = −π/18 rad,
θ3 = π/9 rad and θ4 = 2π/9 rad in the current channel,
respectively.

Communication module:fmW = 90 GHz and NBS = 16.
The proposed DL-based algorithm is implemented on a

computer with an Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz CPU, a NVIDIA GeForce GTX 1080 GPU and
16GB memory. Tensorflow 1.5.0 and python 3.5 are used for
the estimation.

A. AoA/AoDs Estimation Performance

In this subsection, we show the performance of subspace
reconstruction based angle estimation algorithm with MIMO
radar in time-varying mmWave channels in detail. We take
NP = M − 2 in the simulation. Fig. 6 and Fig. 7 are experi-
mented under the conditions of Δφk = N (

0,
√

0.1
)
, Δbt =

N (
1.0,

√
0.1
)

and (Δxm, Δym) = N (
0,
√

0.01dmW

)
. The

resolution probability of AoA/AoDs under strict condition1

1In the case that two UEs are θ1 = −δ deg and θ2 = δ deg respectively,
it is regarded as a successful resolution if −δ ≤ θ2 < 0 and 0 < θ2 ≤ δ.

Fig. 6. Resolution probability of AoA/AoDs.

in Fig. 6, which requires the estimated angles are reasonably
close to the correct ones. As the number of antennas increases,
the resolution probability of the algorithm becomes more
precise and reaches 100% when source separation is 2.9 degree
equipped with 32 elements.

We define the RMSE to measure the AoA/AoDs estimation
performance

RMSEAoA/AoDs = 10 lg

√√√√ 1
K

1
Nmc

E

[
Nmc∑
n=1

K∑
k=1

∥∥∥θk − θ̂k

∥∥∥2

2

]

(37)

where Nmc is the number of Monte-Carlo experiments and it
equals to 3000. The curves in Fig. 7 show the RMSE of sparse
recovery, ESPRIT, MVDR, root MUSIC and the proposed
algorithm. It can be seen that the estimation performance
fluctuates slightly with the change of SNR due to the signal
subspace is reconstructed twice and most of the noise compo-
nents are removed. Therefore the increase of SNR performs
slight impact on the accuracy of the estimation algorithms.
However, the performance differences between the algorithms
are significant. Root MUSIC and the proposed scheme have
the better performance than the other three experiments. Espe-
cially, our proposed algorithm is more superior because other
algorithms have a sharp deterioration in performance due to
severe non-orthogonality.

Compared with other array errors, the correction of array
mutual coupling errors is more complex. From Fig. 8, we can
find that our approach has about 0.6dB improvement over
conventional root MUSIC with 16 elements and pM = 3 due
to the enhancement of the orthogonality, where the mutual
coefficient is [1, 0.4146 + 0.4537j, 0.4489 + 0.4167j].

B. Path Gains Estimation Performance

In the following simulations, 35000 wireless signals are
generated, 25000 for training, 5000 for validation and 5000 for
testing. Moreover, the training batch size is set as 256.

The proposed RDAE gain estimator is compared with
LS estimator, Refined estimator [51], and DAE estimator.
The performance comparison without the Doppler frequency
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Fig. 7. RMSE performance of AoA/AoDs against SNR.

Fig. 8. RMSE performance of AoA/AoDs of mutual coupling against SNR.

shift is illustrated in Fig. 9. The transmitter and receiver
are equipped with 8 × 16 array elements respectively. The
angle values in the samples are the results of the previous
MIMO radar angle estimation scheme, rather than relying
on the assumed perfect angle. Refer to the CRLB derived
above, it is obvious that RDAE achieves the best performance
within the testing SNR range. LS is the worst when SNR
is lower than 5dB due to not considering the influence of
the noise. For the same problem, different network structures
may also cause differences in estimated performance. Clearly,
DAE greatly reduces its learning ability and it basically has
no ability to denoise due to the lack of residual learning
module.

Compared with the other two comparison methods,
the “Refined” has a certain performance improvement, its main
idea is that rough channel gains are calculated by LS and then
used as input to obtain more accurate gains through further
optimization of RDAE. However, the difference between the
low-resolution complex gains directly estimated by LS and
the more accurate high-resolution gains is not simple noise
interference, the learning difficulty of which is undoubtedly
higher than the denoising operation of the signal for the
DL estimator. The above results can prove that RDAE is
more adaptable to high-mobility time-varying channels and
has higher estimation accuracy.

Fig. 9. NMSE performance comparison of path gains estimation against
SNR.

Fig. 10. Comparison of algorithm convergence under different number of
training pilots.

The fast convergence of the proposed RDAE within different
training lengths CG = 10, 15, 25 is illustrated in Fig. 10. It is
shown that the network has basically completed convergence
at the 60-th epoch and the loss of the network at this point is
close to zero for all CG values due to the low difficulty for the
network to learn the mapping between the input and the output.
From the beginning to the 40-th epoch, the loss decreases more
rapidly when the CG is larger, which is indicated that it has
more information to guide learning.

In order to visualize the impact of vehicle speed on the
performance of the algorithm, we give the estimated error
curves of the algorithm in Fig. 11 with the normalized Doppler
frequency shift from 0 to 0.2, that is, the moving speed of the
vehicle ranges from 0 km/h to 144 km/h. The SNR is set from
−5dB to 15dB. In Fig. 11, it is shown that the NMSE increases
monotonically with the frequency shift and this trend becomes
more obvious as the SNR increases. However, the curve rises
very slowly, which means that our gain estimator is robust to
Doppler frequency shift.

C. Channel Estimation Performance

To confirm the performance of our proposed channel estima-
tion scheme based on angle prior, Fig. 12 depicts the channel
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Fig. 11. NMSE performance of path gains estimation against normalized
Doppler frequency shift.

Fig. 12. NMSE performance of channel estimation against SNR.

estimation performance curves and CRLB under static condi-
tions. When the SNR is above −5dB, the user mobility causes
the curves to gradually deviate from the CRLB. However,
the result indicates that the NMSE deviation is only about
5dB even when the vehicle is driving at the highest speed,
which proves that the proposed scheme is highly adaptable to
frequency shift once again.

VII. CONCLUSION

In this paper, a novel uplink channel estimation scheme for
the mmWave MU-MIMO system over a time-varying channel
is proposed. Specially, we proposed a novel transmission
frame structure including communication and radar modules,
where the channel estimation is decomposed into AoA/AoDs
estimation with MIMO radar and channel gain estimation.
In the first stage, MIMO radar are equipped for channel
angle estimation, where the echo signal was reconstructed
and the reconstructed covariance matrix was used for channel
angle estimation with short training resources. On the basis
of the estimated AoA/AoDs, a DL-based path gain estimator
were leveraged to learn the mapping relationship between
the raw data and the noised data, which was leveraged to
optimize the performance of gain estimation. The performance
of the proposed algorithms is evaluated and analyzed under the

single-path MU-MIMO channel case in high-mobility V2X
scenarios. The simulation results demonstrated that our pro-
posed scheme estimated the time-varying mmWave channels
effectively when vehicles are moving at high speed.

APPENDIX A
PROOF OF THE RATIONALITY OF USING MIMO RADAR

For monostatic radar, if the distance between the target and
the radar is RLoS, the time required for the radar detection
wave to travel back and forth between the radar and the target
is TLoS, where c is the speed of light.

TLoS = 2RLoS/c (38)

Assuming that the maximum LoS distance RLoS is 600 meters
and the RSU’s height Rh is 100 meters, the upper limit of the
time required for radar detection is 4 μs. As shown in Fig. 1,
the change in angle for vehicle k during the observation
interval ΔT is Δθk is

Δθk =
∣∣θ2

k − θ1
k

∣∣ ≤ arctan (RΔ/Rh) (39)

where RΔ is the vehicle moving distance during the obser-
vation period, and Rh is the vertical height of the RSU.
Therefore, if the vehicle moving speed is VUE , then

RΔ = VUEΔT (40)

We set the target angle to be constant when the angle dif-
ference is less than 2◦. Then the following inequality can be
obtained.

Δθk ≤ arctan (RΔ/Rh) = arctan (VUEΔT /Rh) ≤ π/180
(41)

According to tan ξ ≈ ξ when ξ ≈ 0◦, it can be derived that

ΔT ≤ πRh/180VUE (42)

If the vehicle speed is 120 km/h, then ΔT ≈ 0.0524 s,
i.e., 5.24 × 104 pilots. Obviously, ΔT > P1Ts, which is
indicated that the target angle can be regarded as unchanged
during the radar detection of the target position and the
AoA/AoDs training period.

APPENDIX B
PROOF OF THE CRLB

The fisher information matrix (FIM) [50] can be denoted as

F (A)
def
= −E

{
∂2 ln pyc|A (yc;A)

∂Ai∂Aj

}
=

1
σn

2

[
ΞHΞ

]
i,j

(43)

According to the vector estimation theory [18], we have

CRLB(A) = tr
{
F(A)−1

}
= σ2

ntr
{(

ΞHΞ
)−1

}
, where

tr

{(
ΞHΞ

)−1
}

=
NL∑

nl=1

λ
−1

nl
= NL

[
1

NL

NL∑
nl=1

λ
−1

nl

]

(q)

≥ NL

(
NL

/
NL∑

nl=1

λnl

)

= N2
L

/
tr
{(

ΞHΞ
)}

(44)
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λnl
denotes the nl th eigenvalue of ΞHΞ and the basis of

(q) is arithmetic-harmonic means inequality. Based on this,
we can further obtain the CRLB of the channel matrix [18],
which is given as follows.

E
[∥∥∥Ĥ− H

∥∥∥2

F

]
= E

[∥∥∥(Λ∗
UE 
 ΛBS)

(
Â− A

)∥∥∥2

2

]

≥ ξminE
[∥∥∥Â − A

∥∥∥2

2

]

=
ξminσ2

nN2
L

tr
{(

ΞHΞ
)} (45)
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