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Abstract— Virtualization and network slicing offer an unprece-
dented opportunity to mobile network operators: open their
physical network infrastructure platform to the concurrent
deployment of multiple logical self-contained networks, namely
network slices. In this paper, we propose and analyze ONETS,
an Online NETwork Slicing solution that i) builds on the budgeted
lock-up multi-armed bandit mathematical model and properties,
ii) derives its analytical bounds in our proposed extension
for network slicing, iii) seamlessly integrates into the 3GPP
architecture, iv) proves its feasibility through a proof-of-concept
implementation on commercial hardware considering three net-
work slices and v) allows for the design of a low-complexity online
network slice brokering solution that maximizes multiplexing
gains.

Index Terms— 5G, network slicing, brokering, virtualization,
online algorithm, RAN.

I. INTRODUCTION

W IRELESS and mobile networks are the key-elements
of today’s society, enabling communication, access

and instantaneous information sharing. However, as cellular
networks make a move from being voice-centric to data-
centric, operators revenues are not able to keep pace with
the upcoming increase of traffic volume resulting in profit
reduction. Such pressure on operators return on investment
has pushed research efforts towards designing novel mobile
network solutions able to open the door for new revenue
sources.

The emerging network slicing paradigm provides new busi-
ness opportunities by enabling mobile operators to open their
network infrastructure to multiple tenants, which may own
a single slice with very diverse requirements. This potential

Manuscript received November 6, 2020; revised March 22, 2021 and June 4,
2021; accepted June 17, 2021. Date of publication July 26, 2021; date of
current version January 10, 2022. This work was supported by the H2020
MonB5G Project under Agreement 871780. The associate editor coordinating
the review of this article and approving it for publication was N. Yang.
(Corresponding author: Lanfranco Zanzi.)

Vincenzo Sciancalepore and Lanfranco Zanzi are with the NEC
Laboratories Europe GmbH, 69115 Heidelberg, Germany (e-mail:
vincenzo.sciancalepore@neclab.eu; lanfranco.zanzi@neclab.eu).

Xavier Costa-Pérez is with the NEC Laboratories Europe GmbH, 69115
Heidelberg, Germany, also with the i2CAT Foundation, 08034 Barcelona,
Spain, and also with the Catalan Institution for Research and Advanced
Studies (ICREA), 08010 Barcelona, Spain (e-mail: xavier.costa@ieee.org).

Antonio Capone is with the Dipartimento di Elettronica, Informazione
e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy (e-mail:
antonio.capone@polimi.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3094116.

Digital Object Identifier 10.1109/TWC.2021.3094116

new vertical market multiplies the monetization opportunities
of the network infrastructure as i) new business players may
be involved (e.g., automotive industry, e-health, etc.) bringing
in new economic opportunities, and ii) a higher infrastructure
capacity utilization (i.e., resource efficiency that in turn trans-
lates into additional return of investment) can be achieved by
admitting as many network slice requests as possible while
exploiting stochastic multiplexing gains obtained from such
a multi-tenant shared infrastructure. Network slicing unlocks
the concurrent running of diverse services: each network
slice instance consists of a set of virtual network functions—
selected to provide given service requirements—while running
on the same infrastructure equipped with a tailored orches-
tration layer. The novel paradigm comes with new technical
challenges that need to be addressed in order to be adopted
in practice. When deploying a network-slicing-enabled archi-
tecture, the trade-off between a fully shared mobile network
among tenants (with shared functions and resources) and an
isolated slices one (with dedicated functions and resources
only) calls for new effective solutions. Therefore, a network
slice broker component is desirable, which may act as an
arbitration entity in charge of satisfying heterogeneous slice
requirements as required by active tenants while at the same
time guaranteeing the most efficient use of the infrastructure
resources, as pointed out by [1]. An architectural proposal
of a network slice broker has been previously considered
in [2] where the authors directly plug the novel component
into the 3GPP-compliant architecture. However, most of the
existing works consider a-posteriori approaches efficiently
orchestrating wireless resources only as a response to unex-
pected network changes.

The objective of our proposal, namely ONETS, is to design
an efficient online broker that maximizes future revenues
deriving from the satisfaction of upcoming network slice
requests by analyzing past network slicing information while
exploiting multiplexing gains coming from the overbooking
of resources: this would directly translate into an overall
system utilization increase. In particular, we provide i) a novel
decisional model addressing the “exploration vs exploitation”
dilemma, dubbed as Budgeted Lock-up Multi Armed Problem
(BLMAB), ii) a detailed analysis of such a class of problems,
including specific exploitable features to design an efficient
solution maximizing multiplexing gains, iii) multiple vari-
ants of the proposed solution accounting for complexity and
optimality properties along with performance upper bounds,
iv) an exhaustive simulation campaign with synthetic traces
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Fig. 1. 3GPP network slicing architecture.

to determine the expected benefits in large-scale scenarios
and v) a proof-of-concept implementation using commercial
hardware to prove the feasibility of our solution considering
three network slices: enhanced Mobile BroadBand (eMBB)
for Guaranteed Bit Rate (GBR), eMBB for Best Effort (BE),
and Public Safety.

The reminder of the paper is organized as follows. Sect. II
shows the architectural requirements of our solution. Sect. III
lists the state-of-the-art. Sect. IV presents the class of deci-
sional problems by deriving tight bounds and insightful prop-
erties. Sect. V proposes different online algorithms trading-off
between complexity and sub-optimality. Sect. VI shows exper-
imental results to prove our findings with synthetic network
scenarios. Sect. VII presents our proof-of-concept built on top
of commercial equipment and corresponding results. Finally,
Sect. VIII provides our conclusions.

II. NETWORK SLICING IN 3GPP

3GPP has defined a novel network architecture for network
slicing support. In particular, the 3GPP working group SA2 [3]
has already defined the basis for building an evolved core
network infrastructure managing multiple slices on the same
network infrastructure. The envisioned architecture is depicted
in Fig. 1 which clearly differentiates between control plane
(C-Plane) and user plane (U-Plane). In the control plane,
new components are introduced to manage user authentication
and registration (AMF), support multiple connection sessions
(SMF), and instruct different routing policies (PCF). On the
other hand, the traditional core user plane functionalities are
decentralized towards multiple dedicated User Plane Func-
tions (UPFs) managing distinct data networks (DNs) through
the next-generation Radio Access Network (ngRAN), there-
fore allowing for packet processing and traffic aggregation at
the network edge. This new architecture builds on network
functions virtualization and also enables flexible multi-tenant
deployments. In fact, RAN resources can be virtualized and
dynamically chained to provision end-to-end slices with a
dedicated SMF [4]. Interestingly, AMF (and PCF) can be
still be shared among multiple slices when presenting service
requirements commonalities. Based on this architecture, the
Network Exposure Function (NEF) can be used as a direct

interface between the mobile network operator and the network
slice tenants to access the virtualized network functions. NEF
is envisioned to expose a list of available slice templates
defining specific functions to be instantiated for given service
requirements. Network slice request coming through the NP8
interface will then indicate the requested slice template based
on the available ones. At this point, an arbitration entity
is needed to grant (or deny) network slice requests. Once
a network slice request is granted, a Network Slice Selec-
tion Assistance Information (NSSAI) indicator is propagated
through all network components and advertised to incoming
UEs through the RAN [5]. Based on the NSSAI, the AMF
will select the SMF and a network slice will be successfully
installed. Associated UEs might then indicate in the RRC
signaling the NSSAI to be used for serving its traffic.

In Fig. 1 we depict the proposed location of the arbitration
entity in charge of granting or denying network slice requests,
referred in the paper as Network Slice Broker. In the following
we review the state-of-the-art of network slicing solutions
available in the literature to meet the functionality required
by an online network slice broker.

III. RELATED WORK

Network slicing is an emerging topic of 5G (and beyond)
research community given its business relevance [6] and the
recent definition of the architecture by 3GPP [7]. Related work
in the field can be split into two main categories.

Admission Control: The goal of a network slice broker
is to coordinate slice requests as well as to ensure the
dynamic provisioning of networking resources in an efficient
way. In [8], the slicing admission control and scheduling
tasks are introduced by means of an NP-hard optimization
problem formulation. The authors suggest a reinforcement
learning-based approach, which exploits resource utilization
and traffic predictions to improve the overall admission control
decision process. Their analysis details on the achievable
benefits regarding the number of admitted network slice
requests and the system capacity utilization. [9] suggests a
heuristic-based prioritized admission control mechanism. The
novelty here stands in the possibility to adapt the algorithm
to both inter- and intra-cell admission control problem. The
admission procedure of a new UE belonging to the same
slice is done taking in account the current traffic load and
the available resources. Only if there are enough resources to
guarantee and satisfy at least the requirements on a predefined
minimum data rate, the procedure will be successfully ended.
[10] presents a framework for enabling negotiation, selection
and assignment of network slices for requesting applications
in future 5G networks. Based on different QoS Class Indica-
tors (QCIs), different virtualized networks or network slices
are selected and assigned to users demanding for a specific
service. Subsequently, static or dynamic routing mechanisms
are used to treat data packets according to the QCI and
security requirements and to flexibly select network functions
and service function paths through a NS. A similar approach
can be found in [11]. In the same context, [12] introduces a
practical admission control solution for network slicing pur-
suing at maximizing the overall network revenues following
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a simple pricing model for RAN slices. [13] mathematically
analyses the admission control issue for network slicing and
proposes an algorithmic solution by applying machine learning
concepts. However, it relies on offline approach, which gathers
several network slice requests within a fixed time window
while selecting (some of) them as so to maximizing the
overall network utilization. As pointed out in [14], network
slicing implies each slice instance to have a dedicated set
of allocated network resource, therefore introducing novel
challenges in the management of mobile systems. Indeed,
in previous generations of mobile networks, the resources
to be assigned were mainly radio resources, while in 5G
(and future) networks it is commonly accepted that this will
impact also on the core network resources splitting. This
easily matches with the research effort in Network Function
Virtualization (NFV) and Software Defined Network (SDN)
fields toward the deployment of a modular and flexible 5G
network, as discussed in [15].

Resource Orchestration: Several solutions supporting vir-
tualization of network resources have been already designed
to optimize network resource orchestration in slicing-enabled
scenarios and improve QoE. The authors of [16] focus on
the RAN domain, and propose an efficient sharing of the
radio resources which performs adaptive provisioning and
isolation of network slices by means of a bi-level schedul-
ing approach. Similarly, in [17], the authors present a rein-
forcement learning-based RAN orchestration solution focusing
on latency constraints. Their framework allows for adap-
tive resource slicing decisions without prior knowledge of
slice-specific traffic demands or channel statistics. A slice
selection function is a key element in the future core net-
work architecture. [18] attempts to fill the gap between the
emerging new service requirements in terms of performance
and efficiency and the possible realization of the concept
by proposing a new slice selection mechanism allowing the
UE to connect to multiple slices based on service types.
The authors of [19] come up with a set of requirements to
guide the design of the 5G RAN network and to support
service provisioning. In particular, they model the three-fold
relationship among end-users, base station and the network
slice, and investigate user admissibility, slice association and
bandwidth allocation aspects for diversified use cases with
various quality of service (QoS) requirements in an offline
optimization manner.

Differently from above-mentioned solutions, to the best
of our knowledge, the work presented in this paper is the
first of its kind that aims at designing and evaluating an
automated online network slice broker that instantaneously
decides which set of slices to be accepted while oppor-
tunistically pursuing the network slicing multiplexing gain
maximization.

IV. SYSTEM DESIGN

We consider a telecom service provider (hereafter dubbed
Operator) making available its own infrastructure to external
network tenants, for e.g. vertical industries. The operator
owns the entire access infrastructure with a fixed transmission

capacity C.1 The available tenants set I is known a-priori,
as each external domain must subscribe beforehand to submit
network slice requests and get access to the infrastructure.
Each tenant i ∈ I can request a network slice s ∈ S
best matching the network characteristics required amongst
available network slice templates (NSTs). Such templates are
considered as fixed based on the operator’s business model [6].
Each network slice request s = {R(s); L(s)} comprises an
amount of physical wireless resources, R(s), to be assigned to
tenant users within the network slice s, and a time duration
L(s) expressed in seconds. Such parameters might be tailored
to particular services and might be modified according to
new service requirements. Indeed, the network slice require-
ments define the Service Level Agreement (SLA) between the
operator and the infrastructure tenant. Any failure to comply
with such SLA might result in undesired penalties from the
operator side. Moreover, we assume a two-layer scheduling
approach as commonly adopted within the network slicing
context [16], [17]. On the one side, an inter-slice scheduler
is in charge of defining the best radio allocation strategy
pursuing the satisfaction of networking and isolation require-
ments. On the other side, a lower layer intra-slice scheduler
enforces the assignment of the pre-allocated radio resources
to connected slice end-users. A correct sizing of the allocated
resources would benefit slice isolation and energy consump-
tion. Nevertheless, its dimensioning depends on unknown
traffic statistics and real-time stochastic variables, such as
wireless channel quality and end-user mobility. Therefore,
we tackle this challenging scenario by focusing our work
on the higher-level inter-slice resource allocation, leaving the
definition of standard intra-slice scheduling strategies open to
address tenant-specific requirements.

In the next subsection, we first introduce the objective of
the operator to increase its revenue opportunities while keeping
SLA violations negligible, and then we detail the system model
behind such problem as well as our proposed solution.

A. System Model

Let us consider a set of T time instants denoted by T =
{1, . . . , T}. Each tenant i ∈ I asks for a network slice
template s at time instant t ∈ T , modeled with the variable
r
(s)
i (t). The requests distribution is obtained from an i.i.d.

random variable, namely inter-arrival time Δt, exponentially
distributed with rate φi. Inter-arrival rates, φi, are drawn from
a Pareto distribution with mean ρ and standard deviation ζ,
determining the level of heterogeneity.2

The tenant selects a network slice template s = {R(s); L(s)}
to be issued with the network slice request. In our analysis, this
choice is taken based on tenants network slice requirements
to efficiently drive the slice selection process. We also assume
that each tenant can only ask for a single network slice at a
given time and, tenants can be granted only a single network

1In our work, we consider the network slicing paradigm uniformly applied
across the network, as currently stated by 3GPP [7].

2Note that this assumption relies on the traffic flow behavior, as suggested
in [20]. However, as shown in Section V-A.2, it might be relaxed to bring
interesting findings.
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slice request, i.e., multiple network slices assigned to the same
tenant cannot overlap in time, t ≥ t−1 + L(s), where t−1

denotes the previous decision interval, if the slice template s

has been granted in the previous request r
(s)
i (t−1).3 However,

it can be easily extended by assuming tenants asking for
multiple slices at the same time as distinct virtual tenants.

Without loss of generality, we express network slice request
as r

(s)
i,t = {R(s)

i,t ; L(s)
i,t } and the problem as follows: Upon

receiving a network slice request, the operator decides whether
to accept or reject it in an online fashion, pursuing the
objective of network slicing multiplexing maximization while
still honouring the agreed guarantees (SLAs) for previously
granted network slice requests.

B. Online Decisions: Exploration vs Exploitation Dilemma

Once a network slice request is received, the operator might
decide (at runtime) to accept or reject it, based on different
factors: i) deterministic aspects and ii) stochastic components.
The former group includes the set of requirements for network
slices currently running and the total available system capacity.
The latter comprises random tenant choices when issuing the
slice request, upcoming network slice requests and real net-
work utilization within an allocated network slice. The oper-
ator can decide to allocate an incoming network slice request
fitting into available network resources. However, this might
prevent future network slice requests from being accepted,
though they can further boosting the network utilization.
This may negatively affect the overall online process, as the
current selection decision is strongly tied to future admissions.
While deterministic considerations can be efficiently taken
into account, stochastic features need advanced mechanisms
to drive the system towards a near-optimal system behavior.

Multi-Armed Bandit Model: When dealing with an online
decision process, a plethora of mathematical tools and practical
schemes helps to bound the space of solutions and provides
affordable and sub-optimal results [21]–[23]. We focus in
this dissertation on a subset of online algorithms considering
sequential decisions with limited information. In particular,
we envisage a gambler facing diverse game options to play,
resulting in different gains. The player must sequentially select
the best option (i.e., the tenant slice request) in order to
maximize the profit (i.e., overall system utilization). This
results in the fundamental exploration vs exploitation lemma
during sequential experiments: The gambler needs to balance
the exploitation of known tenant slice requests that paid well in
the past and the exploration of upcoming tenant slice requests
that might pay even more.

Sequential allocation problems fully match Multi-Armed
Bandit models (MABs) [24]. In particular, the fundamental
problem formulation is obtained from a casino use-case, where
a gambler faces with multiple slot machines (i.e., bandits).
Slot machine return unpredictable revenues obtained through
unknown statistical functions. The gambler can play one coin
at once to i) observe the profit behavior of unexplored slot
machines or ii) keep playing with the one providing (in the

3This assumption makes tractable the analysis in Section IV-C.

previous rounds) the best profit. The final objective is to
maximize the overall profit after playing a finite number of
rounds. While this model has been fully investigated, our
problem needs substantial improvements to be treated as a
novel variation of MAB.

C. A Budgeted Lock-Up Multi-Armed Bandit Problem
(BLMAB)

We build on top of the basic MAB our problem formulation
by introducing three fundamental MAB variations: i) multi-
plays, ii) limited budget and iii) lock-up periods.

Let us consider each tenant i as a bandit that, if pulled
at round t, returns a certain reward ηi,t. Multiple tenants
can ask (simultaneously) a network slice request, hence
the gambler may play multiple bandits at the same round,
i.e., she may select multiple tenants to be granted at the same
time. To avoid a trivial solution pulling down all arms to
maximize the total revenue, our formulation introduces a cost
function for selecting those bandits: At every round, the player
needs to select a batch (K ≥ 1) of arms whose cost lies within
the available budget.

We define a cost function λi,t as the number of resource
blocks (PRBs) used within the round t. The total budget avail-
able for selecting slice requests is C, that is the total available
system capacity. This defines our admissibility region, as more
than available PRBs cannot be allocated.

Since different network slice requests might come at dif-
ferent times and occupy the resources for fixed time inter-
vals, we need to modify our model accordingly. Basically,
we account for the case when a pulled-down arm does not
return any payoff, as it directly translates into the case of
a tenant selected to be granted at time t but not interested
in issuing network slice requests at that time. Although
this behavior looks counter-intuitive, it provides the effective
means for deeply learning the tenant behaviors (by considering
the frequency of network slice requests and the real slice
utilization) and predict future requests.

On the other side, a network slice request r
(s)
i,t granted for

tenant i at time t must be considered active for the next rounds
t until L(s) expires. Both features are taken into consideration
by introducing the concept of lock-up periods: On each round
t, if a lock-up period is running, the gambler must select the
same arm as in the previous round (however, the gambler can
still select multiple arms in that round).

A self-explained example is depicted in Fig. 2, where three
different rounds are highlighted (tk, tm and tn). In the first
case, the selection policy decides to grant tenant 1 but no net-
work slices are issued from this tenant, returning no rewards.
In the second case, the selection policy grants tenant 1 asking
for a network slice (and hence returning a reward). It also
reselects the previous tenant (5) as its lock-up is still running.
In tn the selection policy can select tenant 4 and 1 getting
rewards, as they ask for new network slices. The case of
a traffic request coming from a tenant and not pulled by
the broker, will simply force the tenant to perform a second
request in a subsequent time instant.
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Fig. 2. BLMAB problem example applied to an online network slicing
brokering process.

All in all, we can express the reward ηi,t as the following

ηi,t = α
R

(s)
i,t

C
+ (1− α)

R
(s)
i,t − λi,t

R
(s)
i,t

, (1)

where α ∈ [0, 1] is a weight parameter, and it holds

λi,t ≤ R
(s)
i,t ≤ C, (2)

so that no negative values are obtained, i.e., ηi,t ∈ [0, 1].
Specifically, the reward accounts for the global amount of
resources asked within the slice request (left side of Eq. (1)) as
well as for the multiplexing gain, i.e., the ratio between what
has been really used and what is being asked (right side). The
rationale behind relies on the concept of discovering bargains.
Tenants underutilizing assigned resources are preferred with
respect to the ones fully using them.4

Operators may reuse spare resources to allocate additional
network slice requests so as to increase the network utilization
(and, in turn, to increase overall system revenues). Addition-
ally, we also take into consideration the total amount of PRBs,
as operator might prefer to assign resources to tenants asking
(and paying) for more resources, again pursuing the system
utilization maximization. α provides a trade-off between those
different metrics. However, in case of monitoring information
not available, the second term will be null and the reward

is equal to ηi,t = α
R

(s)
i,t

C . Please note that, when tenant(s)
is(are) selected to be granted with no pending slice requests,
the total amount of PRBs asked is R

(s)
i,t = 0 resulting in reward

ηi,t = 0. Notably, as explained before, the reward expressed in
Eq. (1) indirectly accounts also for the tenants behavior, such
as the inter-arrival time between consecutive slice requests.
Every round t, the operator selects tenants to be granted for
being allocated through a set of binary actions At. We can
now formulate our problem as the following.

4In this paper we assume uniform pricing for slice resources.

Problem ONLINE-SLICING:

max
∑
t∈T

∑
i∈I

ηi,tai,t

s.t.
∑
i∈I

λi,t ≤ C, ∀t ∈ T ; budget

ai,t ∈ At ⊆ {0, 1}|I|, ∀t ∈ T ; multi-plays

ai,t ≥ ai,t−1�(t− tSTART
i ≤ L

(s)
i ), ∀t ∈ T ; lock-up

where the last constraint (:lock-up) imposes to select the same
arm as in the previous turn, if the lock-up period is still
running. For the sake of completeness, we wish to highlight
that we assume ai,−1 = 0 as initial condition of the problem.
With some abuse of notation, we denote tSTART

i as the round
when slice request has been allocated for tenant i and �(·)
is an indicator function providing value 1, if the condition in
brackets is satisfied.

Lemma 1: A network slice online brokering can be mapped
onto a multi-armed bandit (MAB) model with novel variations,
such as i) multi-plays, ii) limited budget and iii) lock-up
periods. Therefore, Problem ONLINE-SLICING falls into
a new class of MAB problems, namely Budgeted Lock-up
Multi-armed Bandit problems (BLMAB).

Sketch of Proof: Problem ONLINE-SLICING is a specific
instance of MAB, as stated in Lemma 1. We apply a reduction
to Problem ONLINE-SLICING by assuming that only one
tenant i can be selected every round t, i.e.,

∑
i∈I ai,t ≤ 1,

∀t ∈ T . Additionally, we assume that each network
slice request lasts a single round, i.e., L(s) = t − t−1.
This implies that the first constraint (:budget) is always
satisfied due to Eq. (2). Therefore, we can state that
Problem ONLINE-SLICING can be easily reduced with
polynomial reductions to a MAB problem. �

Lemma 1 states that every advanced algorithm solving
BLMAB also provides solutions to our network slicing online
brokering problem, as we will show in Section V. Additionally,
Lemma 1 clarifies that such a new class of problem, namely
BLMAB exhibits higher complexity w.r.t. the classical MAB
problem due to additional constraints. Therefore, we propose
the following:

Proposition 1: The BLMAB problem is more complex than
the stochastic multi-armed bandit problem, where the fore-
caster can switch arms at every round. Therefore, a regret
lower bound of the stochastic MAB is also a regret lower
bound of the BLMAB problem, considering the same number
of rounds.

Proposition 1 suggests that we can use the lower bound
suggested for MAB to provide a reference point to our
mechanism. As we show in the next section, we build on top
of such a lower bound to further provide findings on tight
bounds for this given class of decision policies.

D. Regret Lower Bound

The performance of MAB algorithms can be measured by
given metrics, namely regret. The regret denotes the difference
in terms of rewards between actions played according to an
arbitrary selection policy and the optimal selection policy
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aware of all reward distributions [25]. Let us consider a player
selecting a set of arms K ⊆ I every round, such that the
budget constraint is fulfilled (refer to constraint:budget of
Problem ONLINE-SLICING). Each arm i ∈ K is associated
with a univariate known probability density function f(x, θi),
where x is the random variable, all θi ∈ Θ are unknown
parameters and Θ represents the set of the reward distributions.
Every time arm i is pulled, it returns a reward υi drawn from
f(x, θi) such that μ(θi) is the mean of υi. Let us now consider
π = {π(t)}Tt=1 as an arbitrary selection policy. The optimal
cumulative reward is provided by selecting |K| arms with the
highest reward, i.e., {i|i ∈ {σ1, σ2, · · · , σ|K|}}, where σ is a
permutation vector of I following a reward decreasing order.
Mathematically, it holds that the regret is obtained as

Rπ
T (Θ) = T

|K|∑
i=1

μ(θσ(i))− Eπ [
T∑

t=1

υπ(t)(t)]

= T

|K|∑
i=1

μ(θσ(i))−
I∑

i=1

μ(θi)E[Wi(T )]; (3)

where Wi(t) is the number of rounds arm i has been pulled
down till time instant t, and T represents the last instant
of the time period T . More in details, the first term of
Eq. (3) represents the optimal cumulative reward at time T ,
ideally achievable only by selecting the best |K| arms in all
the decision intervals, while the second term identifies the
expected reward of the experiment, defined as function of
the arms’ mean reward μ(θi) and algorithm’s arm selection
rates E[Wi(T )]. If the selection policy is uniformly good, then
Rπ

T (Θ) = o(T b), ∀b > 0, where o(·) refers to the little-o
notation, and, in turn, it holds that

lim
T→∞

I∑
i=1

T−1μ(θi)E[Wi(T )] =
|K|∑
i=1

μ(θσ(i)). (4)

Therefore, we can express the lower bound of the regret for
any uniformly good policy as the following

lim
T→∞

inf
Rπ

T (Θ)
logT

≥
∑

i: μ(θi)<μ(θσ(|K|))

μ(θσ(|K|))− μ(θi)
H(θi, θσ(|K|))

,

(5)

where H(θu, θv) = E log(f(x,θu)
f(x,θv) ) is the relative entropy of

one statistical distribution with respect to the other, character-
ized by θu and θv, respectively.5

V. ONLINE NETWORK SLICE BROKER

Although online network slicing brokering solutions can
benefit from being fully customized and not requiring human
interventions, a proper design needs advanced algorithms
to achieve near-optimal performance. We focus on different
classes of solutions, which are explained and analyzed next.

Algorithms proposed for classical multi-armed ban-
dit (MAB) problems trade off the exploitation of good payoffs
with exploration of unknown rewards. This makes such solu-
tions robust and practical resulting in O(logT ) as expected

5We refer the reader to state-of-the-art literature such as [26] and [27] for
a complete list of the derivation steps.

Algorithm 1 eUCB: Selection Algorithm π to Select the Next
Batch of Arms to Pull Down While Guaranteeing a Fixed
Budget

Input: I, T, C
Initialization: i = 0, Wi = 0, θ̄i(0) = 0 ∈ Θ̄, ∀i ∈ I,L ←
∅
Procedure

1: for all i ∈ I do
2: GET υi

3: UPDATE θ̄i(0)
4: Wi = Wi + 1
5: end for
6: for all t ∈ T do
7: for all i ∈ I do
8: θ̂i(t) = θ̄i(t) +

√
2 log t

Wi

9: end for
10: R={i}← Problem D-ONLINE-SLICING(C,L(t),Θ̂(t))
11: for all i ∈ R do
12: GET υi

13: UPDATE θ̄i(t)
14: Wi = Wi + 1
15: end for
16: UPDATE L(t)
17: end for

cumulative regret. When important variations are considered,
the overall complexity might be perturbed by additional fac-
tors, e.g., the lock-up time periods.

A. Index-Based Policy Algorithms

The first class of selection algorithms computes an index per
arm. Such an index is updated based on the set of arms already
selected in the past, including information regarding the total
time elapsed. By doing that, it guarantees the uniformly
goodness property (as explained in Section IV-D), which might
optimally bound the performance. We consider the classical
Upper Confidence Bound (UCB) solution, enhanced to address
our BLMAB problem.

1) Enhanced-UCB (eUCB): Several works address the UCB
solution considering different variations. We focus on the clas-
sical one proposed in [25] where we collect at every “attempt”
the reward obtained from each arm and infer the mean of the
statistical distribution θ̄i. Without loss of generality, we assume
that the density function is parameterized with its mean,
i.e., μ(θi) = θi. Clearly, the larger the number of attempts,
the more accuracy on the distribution information. To avoid
the negative influence of random effects, the authors include
an additional term GALG to give more weight to empirical
distribution means obtained in longer time windows, than
averages obtained in shorter time windows. Also, to address
starvation issues, each empirical distribution is weighted with
the number of times that an arm has been selected. Index
per arm i is formulated as θ̂i(t) = θ̄i(t) + GALG, where

GALG =
√

2 log t
Wi(t)

, and θ̄i(t) is the empirical distribution mean
until time t.

This could be envisioned as a training session where tenants
subscribing for network slicing operations, may express their
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interests on given slice template and, in turn, result in different
initial fictitious rewards υi ∼ f(x, θi). It can be noticed
that line 8 optimally solves an instantaneous version of the
problem, dubbed as D-ONLINE-SLICING, assuming as
input only one time instant t, the total budget, the lock-up time
windows currently running and the empirical mean of reward
distributions retrieved until that time. Please note that the
instantaneous version significantly reduces the complexity of
our problem, pursuing only the punctual reward maximization
at time t rather than the cumulative reward over time window
T . Output of this problem is a set of arms indexes that are
promptly selected in lines 9 − 13. Line 14 updates the status
of current lock-up periods for next selections.

2) ONETS: Online NETwork Slice Broker: While the eUCB
algorithm achieves outstanding performance, it requires solv-
ing an Integer Linear Programming (ILP) problem at every
round and thus, it is not a feasible solution in practice.
UCB applied to the Budget-Limited Multi-Armed Bandit
problem has been proven to be NP-HARD in [28]. Therefore
we designed a lower complexity version of eUCB, namely
ONETS, where exactly K arms are selected every round while
meeting the budget constraint. Clearly, this modification dras-
tically reduces the computational time to O(K) (see Alg.2)
but at the performance cost of a sub-optimal solution (both
effects are studied in Section VI).

The pseudocode is listed in Alg. 2. The idea is to substitute
Problem D-ONLINE-SLICING with a practical procedure:
Indexes î with active lock-up sessions are included in the next
round (Line 9−10), as the budget constraint has been already
fulfilled in the previous round. If those indexes are not enough
(less than K), we search the index among the remaining ones
such that the empirical distribution mean is maximized while
fitting into the budget left (line 14).

Regret Upper Bound for ONETS: We provide an upper
bound analysis for the ONETS scheme. Let us consider
set Θ̂ = {θ̂i} of empirical distribution means per arm i
obtained within time window T , where θ̂i = θ̄i + GALG(

in case of eUCB, GALG =
√

2 log T
Wi(T )

)
. We can calculate the

expected number of times arm i is pulled down based on
ONETS algorithm as follows.

E[Wi(T )]

=

∞∫
0

f(x, θ̂i)Pr(x ≥ max
p�=i

υp)dx

+

∞∫
0

f(x, θ̂i) Pr
∀j∈I

(single υj ≥ x)Pr(x ≥ max
p�={i,j}

υp)dx

+

∞∫
0

f(x, θ̂i) Pr
∀j∈I

(multiple υj ≥ x)Pr(x ≥ max
p�=i

υp)dx

≤
|K|∑

|H|=0

( |I|
|H|)∑
σ=1

∞∫
0

f(x, θ̂i)

Algorithm 2 ONETS: Selection Algorithm π to Select K
Arms to Pull Down While Guaranteeing a Fixed Budget

Input: K, I, T, C
Initialization: i = 0; B = 0; n = 0; Wi = 0, θ̄i(0) = 0 ∈
Θ̄, ∀i ∈ I;L ← ∅
Procedure

1: for all i ∈ I do
2: GET υi

3: UPDATE θ̄i(0)
4: Wi = Wi + 1
5: end for
6: for all t ∈ T do
7: for all i ∈ I do
8: θ̂i(t) = θ̄i(t) +

√
2 log t

Wi

9: end for
10: while n ≤ K ∧B ≤ C do
11: if L(t) �= ∅ then
12: î← L(t)
13: else
14: î : argmax

I\L
θ̂i(t)

15: end if
16: if B + λî ≤ C then
17: R← R∪ î
18: B = B + λî

19: n = n + 1
20: end if
21: end while
22: for all i ∈ R do
23: GET υi

24: UPDATE θ̄i(t)
25: Wi = Wi + 1
26: end for
27: UPDATE L(t)
28: B = 0; n = 0
29: end for

×

⎛
⎜⎜⎜⎜⎜⎝

∏
j∈H(σ)

∞∫
x

f(y, θ̂j)dy
∏
k∈I,
I\{i}
I\H(σ)

x∫
0

f(y, θ̂k)dy

⎞
⎟⎟⎟⎟⎟⎠ dx. (6)

Considering a negative exponential distribution f(x, θ̂i) =
e
− x

θ̂i

θ̂i
and recalling that

x∫
0

f(x, θ̂i)dx = 1−e
− x

θ̂i we can obtain

the following upper bound for E[Wi(T )]

|K|−1∑
|H|=0

( |I|
|H|)∑
σ=1

∑
φ∈

℘(I\{H(σ)},
I\{i})

(−1)|φ|
1

θ̂i

(
1

θ̂i
+

∑
j∈H(σ)

1

θ̂j
+
∑
p∈φ

1

θ̂p

) ;

(7)

where σ is the permutation (index) of all elements included in
H, while ℘(I) is the power set of all elements included in I.
Note that, in this paper, the reward distribution function can
be approximated to a negative exponential distribution as we



128 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2022

assume an exponential distribution for the arrival time of slice
requests. However, complex distributions can be used to derive
advanced upper bounds. For the sake of brevity, we leave to
the reader the derivation from Eq. (6) to Eq. (7). Also note that,
the first two summations (on the left of Eq. (7)) can be also
expressed as ℘(K), however we prefer to explicitly keep them
to provide the computational effort for solving that equation.
By substituting the empirical distribution mean θ̂i with the
value provided by the algorithm, assuming Li  T and using
Eq. (3), we can obtain the upper bound of the regret, i.e.,
E[Rπ

T (Θ)] = O(log(T )) if we apply ONETS. When T ∼ Li,
E[Rπ

T (Θ)] = O(log(T ) + L∗), where L∗ = max
i∈I

Li, as also

confirmed in [29].

B. -Greedy Algorithm

A greedy solution is the simplest algorithm for approaching
BLMAB problems, where K is not needed. It implies that the
balance between exploitation and exploration is driven by a
random  value. A linear dependency of  with the elapsed
time t helps the selection policy to explore “more” neighboring
solutions during the first rounds (as inferred distribution means
might not be accurate) while “trusting” more on known
distributions along the evolution of the experiments. We set
 = b|I|

d2t where d ∈ {0, 1} and b > 0 are arbitrary values,
as shown in Section VI. The algorithm (listed in Alg. 3)
will select the best arms maximizing the reward (line 9) with
probability , whereas it will select arms randomly (line 11)
satisfying (in both cases) the limited budget constraint (lines
14−17). Please note that -greedy algorithm does not require
an initial training phase.

Regret Upper Bound for -Greedy: Greedy solutions are
proved to have a sub-linear regret. In particular, as shown
in [26] the upper bound regret for T → ∞ is expressed as
b/(d2T ) + o(1/T ) + O(1/T 1+ε). Since our lock-up period
constraint might only affect the number of times sub-optimal
arms are randomly selected, i.e., L∗ = max

i∈I
Li, such an

upper bound works also for our BLMAB considering that
the probability to select a sub-optimal arm is at most the
following:

P
i�=i∗
{ai,t = 1} =

b

d2t
+ 2

(
b

d2
log

(t− 1)d2e1/2

b|I|

)

×
(

b|I|
(t− 1)d2e1/2

) b
(5d2)

+
4e

d2

(
b|I|

(t− 1)d2e1/2

)b/2

, (8)

where i∗ represents the optimal arm.

VI. NUMERICAL RESULTS

In this section, we validate our findings through numerical
simulations carried out using a commercial tool, MATLAB®.
In particular, we deploy a budgeted lock-up multi-arm ban-
dit (BLMAB) problem as discussed in Section IV-C. Network
slice requests are generated following exponential distribu-
tions, as explained in Section IV, with given ρ, ζ parameters.

Algorithm 3 -Greedy: Selection Algorithm π to Select the
Next Batch of Arms Based on -Exploration Probability

Input: I, T, C, b, d
Initialization: Wi = 0, θ̄i(0) = 0 ∈ Θ̄; ∀i ∈ I,L ← ∅
Procedure

1: for all t ∈ T do
2:  = min{1, b|I|

d2t }
3: while (C −B ≥ 0)or(I �= ∅) do
4: if L(t) �= ∅ then
5: î← L
6: else
7: GET z ∈ [0, 1] (uniformly distributed)
8: if z >  then
9: î : argmax

I\L
θ̄i(t)

10: else
11: î : rand(I \ L)
12: end if
13: end if
14: if B + λi ≤ C then
15: R← R∪ î
16: B = B + λi

17: end if
18: end while
19: for all i ∈ R do
20: GET υi

21: UPDATE θ̄i(t)
22: Wi = Wi + 1
23: end for
24: UPDATE L(t)
25: B = 0
26: end for

Fig. 3. Performance evaluation of BLMAB Heuristics versus the Optimum
and eUCB solutions.

Every round, a selection policy is invoked to select a batch
of tenants K ≥ 1 to be granted. When a tenant is granted,
it can (randomly) choose the slice template s ∈ S for its own
traffic. Network traffic utilization is obtained in terms of used
PRBs, as a sequence of i.i.d. random variables upper-bounded
to the available number of slice template resources. All our
simulations are run and results averaged over 1000 random
seeds to cope with randomness effects, providing a 95%
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Fig. 4. Performance evaluation of different BLMAB selection policies for a 10 tenants scenario.

TABLE I

SIMULATION PARAMETERS

TABLE II

COMPUTATIONAL LOAD

confidence degree. The default system parameters are listed
in Table I.

A. BLMAB Solutions: Optimal vs Heuristics

Fig. 3 shows a comparison of all solutions previously
described for a network scenario with 5 tenants, in terms of
average reward η̄i and average system utilization. As expected
eUCB is the closest solution to the Optimum with ONETS
closely following it.

Optimum results have been obtained through the commer-
cial tool IBM CPLEX OPL® solver, used to solve Prob-
lem ONLINE-SLICING, whereas eUCB results are retrieved
after solving Problem D-ONLINE-SLICING for any single
time t. ONETS is run with K empirically set to K = 3.

Table II shows the computational counterpart to the aver-
age reward and utilization results. We show the measured
computational time for running every solutions for a single
instance (referred as Inst.) as well as for the whole simulation
period of 1000 rounds (referred as Sim.). As it can be
observed, the performance gains previously observed from
the Optimum and eUCB solutions come at a poor scalability
with the number of tenants deeming them as unfeasible in
practice. In the rest of the experiments we will not consider
them anymore for feasibility reasons.

Fig. 5. Performance evaluation of different BLMAB selection policies when
increasing the number of tenants.

B. BLMAB Heuristics Benchmarking

Given the lack of existing solutions in this particular con-
text, we consider for benchmarking purposes two baseline
approaches. First, we consider a trivial selection policy, First
Come First Served (FCFS), to accept all incoming network
slice requests as far as there are enough resources in our net-
work. Second, we consider a random selection policy process
(Random) that chooses tenants (or subset of tenants) based on
a uniform distributed random variable, while satisfying budget
constraints.

Arms Selection Policies: In Fig. 4 we depict three key
performance figures for a 10 tenants scenario. Fig. 4(a) shows
the differences obtained by the different approaches in terms
of reward. Fig. 4(b) shows the number of times each tenant i
is selected by the different approaches. Note that inter-arrival
times Δt of slice requests per tenant are exponentially dis-
tributed with rate φi (see Section IV). On the same figure,
we also plot with cross signs the expected number of times
each tenant is selected based on Eq. (6) as described in
Section V. This result supports our model, as our analysis
accurately predicts the number of times each tenant is selected
by ONETS. Fig. 4(c) shows the system utilization percentage
achieved with the different approaches. Based on these results
ONETS fulfills its design objectives outperforming at different
levels the different alternative approaches.

Number of Tenants: In Fig. 5, we study two performance
metrics as the number of tenants is increased. On the left
picture, we show the average utilization for all mechanisms
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Fig. 6. Scatterplot of reward versus system utilization for different α configurations.

compared with the total slice resource demand. While increas-
ing the number of tenants intuitively leads to a higher average
utilization, it also benefits the potential multiplexing gain as
shown in the green area. On the right side, we show the
average reward for an increasing number of tenants. ONETS
outperforms the other solutions showing consistent gains in
terms of reward, average utilization and multiplexing gain.
These results suggest that operators would benefit of “open-
ing” their networks to external tenants through network slicing
given the potential gains in increasing the overall system
utilization and corresponding profit.

Network Slicing Multiplexing Control (α): In this section,
we study our reward solution expressed in Eq. (1) in order
to illustrate the impact of the configurable parameter α.
In particular, we show its behaviour in relation to system
utilization. Fig. 6 shows a scatter plot of reward obtained per
round compared with the system utilization achieved at that
particular time, when different solutions are applied. The over-
all behavior suggests a strong dependency of system utilization
from the game reward ηi, which validates our reward design:
the larger the reward, the higher the multiplexing gains.

However, a proper tuning of the weight α might strongly
influence and lead the system toward near-optimal steady
states. When α equally distributes the weight (Fig. 6(b)),
the system efficiency is equally distributed around the linear
dependency line (dashed line). When α = 0.9 in Fig. 6(c), the
strong dependency results in a strong perturbation of results: a
small variation of reward may cause a significant increase of
utilization resulting in an unstable behavior when performed
in an online fashion. All results show that ONETS translates
higher rewards to higher multiplexing gains.

SLA Protection vs Multiplexing Gains: ONETS relies on the
BLMAB framework ability to predict traffic behaviour based
on past observations. However, outliers (i.e., traffic bursts)
might lead to performance degradation and, in the worst case,
to SLA violations.

In Fig. 7, we show the network slicing multiplexing gains
versus the average SLA violation per tenant computed as the
percentage of the number of times slice resources were not
fully provided to tenants divided by the total number of slices
granted. As it can be observed, our solution achieves high
multiplexing gains (> 30%) at limited SLA violation risk

Fig. 7. Performance evaluation of different BLMAB selection policies by
varying the α configuration.

(< 0.015%). This trade-off is optimally driven by a proper
tuning of the reward ηi,t, expressed in Eq. (1) .6 Specifically,
different α values might strongly influence the overall system
behavior, as shown in Fig. 7. In case of α = 1, only net-
work slice request information is considered without any past
information on the real slice utilization. This ensures no SLA
violation but also no multiplexing gains. As α increasingly
approaches to 0, past traffic information is considered in
our model, allowing for resource over-provisioning and thus,
multiplexing gains. However, this comes at the cost of an
increasing SLA violation risk.

VII. PROOF-OF-CONCEPT

A. PoC Setup

In this section we describe the proof-of-concept imple-
mentation of our proposed ONETS solution. We built on
available commercial hardware to setup a testbed comprising:
i) three virtualized Evolved-Packet-Core (EPC) (one per slice),
ii) 2 LTE eNBs connected to the EPCs, iii) multiple LTE
devices generating traffic with different service requirements,
such as mobile phones, surveillance cameras and USB don-
gles, iv) our ONETS solution implemented as a stand-alone
software connected to the Local Maintenance Terminal (LMT)
of the RAN environment. All equipment hardware specifica-
tions are listed in Table III.

6We assume the same reward model for the whole system. Advanced reward
models differentiating customers classes are out of scope of this paper and
might be considered in future extensions.
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Fig. 8. Network slicing proof-of-concept with 3 slices: eMMB (BE), public safety and eMBB (GBR).

TABLE III

POC HARDWARE SPECIFICATIONS

The OpenEPC software [31] contains all the functional
elements of the 3GPP EPC up to Release 12. We deploy three
separated virtual machines running on the same host machine.
It automatically builds main LTE core network elements, such
as HSS, AAA, S-GW, MME and P-GW. All the interfaces
among them are virtualized through a hypervisor, VMWare
Workstation. The host machine is provided with two external
Gigabit ethernet interfaces: the former is used for an internet
gateway connection, the latter is used for establishing the
S1 interface with the RAN nodes. Regarding the commercial
eNBs [37], they use 15MHz bandwidth and exploit MIMO
technology, i.e., 150 PRBs per 1ms subframe (cfr. [38]). For
practical reasons we carry out conducted tests: We abate wire-
less channel uncertainty providing the devices with CRC/SMA
cables directly connected to the radio interface of the eNBs.

To support the network slicing concept, we build on the
concept of RAN Sharing: This enables us to use the same
RAN infrastructure for different Public Land Mobile Networks
(PLMNs). We apply the Multiple Operator Radio Access
Network (MORAN) approach to have dedicated network core
domains sharing the same RAN facilities. Each UE connects
through the same set of eNBs indicating the PLMN-id, i.e.,
the slice id, for being served. In our experiments, a fixed
number of mobile cores is already instantiated (corresponding

to the number of tenants in our system). When a network
slice request is accepted, eNBs are dynamically configured to
activate an additional PLMN-id and to route traffic associated
with users under this PLMN-id to its dedicated MME (and
virtualized EPC network).

We assume three different tenants registered for issuing
network slice requests with different traffic characteristics:
i) enhanced Mobile BroadBand (eMBB BE) slice generating
FTP file transfers best-effort traffic, ii) eMBB GBR generating
multiple Voice over LTE (VoLTE) traffic streams emulating an
audio conference system, iii) a Public Safety slice for video
surveillance.

Raspberry Pis [36] with LTE USB dongles [34] are used
to generate eMBB BE traffic. Tenants might ask for a new
network slice only if an own network slice is not already
running. Our network slice broker dynamically receives net-
work slice requests and at run-time decides whether to accept
the network slice and configure the eNBs accordingly. eNBs
provide an LMT interface to properly tune the number of
physical resource blocks (PRBs) assigned per PLMN. Once
the slice is accepted and correctly instantiated, the network
slice broker monitors the slices traffic to retrieve statistical
information for future network slicing decisions. An overview
of the system is depicted in Fig. 8(a). In the eMBB GBR
slice case, commercial cellular phones and tablets are used
for generating voice traffic.

As one of the slices in the testbed is tailored to public
safety purposes, we deploy surveillance cameras in our testbed.
We connect the IP cameras to LTE routers [35], which are,
in turn, connected to our eNBs. The cameras [33] are provided
with motion detection features. This introduces a bursty traffic
source for our experiments. In addition, an advanced face
recognition software [32] is fed with video streaming traffic to
detect face recognition matches to faces stored in a database.
The recognition server is attached to the P-GW through the
SGi interface. A target list is already loaded in the recognition
server. When the face recognition software matches a known
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Fig. 9. Sample of video surveillance face detection: successful (upper side)
and failed (lower side).

target, a yellow square appears around the face detected (see
Fig. 9). However, a detection threshold parameter may affect
the detection process. Indeed, if the quality of the video stream
is below a pre-determined threshold, the detection process
may fail and the target might not be correctly recognized.
The images quality is dynamically adjusted based on the LTE
channel condition.

The IP camera stores video streams while a VLC server
dynamically encodes the live-video based on the channel
quality feedback from the recognition server. In Fig. 8(b)
the different proof-of-concept components are depicted, where
we highlight the service domain (Consumer slice domain),
the RAN infrastructure (RAN domain) and the core network
domain where the three EPCs are deployed.

B. PoC Performance Evaluation

We evaluate our ONETS online network slicing solution in
the proof-of-concept setup previously described. Our goal is
to analyze the feasibility of our approach and get insights on
the potentially achievable gains, i.e., exploit the multiplexing
gain between the amount of resources assigned to a particular
network slice and the actual slice resources utilization in time.

We consider three slices that are sequentially introduced in
our system and dimensioned for peak demand. First, we intro-
duce a baseline eMBB (Best-Effort) slice requesting 80% of
the system capacity for FTP transfers. Fig. 10(a) depicts the
traffic pattern in time of this slice and the difference to the
granted slice limit. Second, we introduce a Public Safety slice
for video surveillance, see Fig. 10(b), where two surveillance
cameras upload video streams for face recognition within
a 1500 seconds time window and illustrate the difference to the
granted traffic slice limit (40% of the system capacity). Finally,
we introduce an eMBB (GBR) slice for audio conferences.
We considered 30 devices generating voice calls. Each device
is provided with a custom SIM-card, configured in our core
domain to belong to a single PLMN-id, i.e., a single network
slice. eNBs are configured to allocate an eMBB (GBR) net-
work slice with 15% of system capacity as demand. Fig. 10(c)
shows the measured utilization versus the granted slice limit.

In Fig. 11(a), we show the dynamic system behavior when
ONETS is applied. The eMBB (Best-Effort) network slice is
dimensioned to use 80% of the system capacity. Initially, the
slice is fully using its resource allocation. During this period,

Fig. 10. Network slices traffic: granted vs measured.

Fig. 11. ONETS online network slice Broker in action sequentially granting
network slices.

if new network slice requests arrive, the system might reject
them if they are above the leftover capacity.

After 480 seconds, we reduce the eMBB (BE) slice offered
load by reducing the FTP file transfers. Our ONETS solution
automatically detects a change in the system utilization (λ1)
and triggers the selection policy to consider admitting new
network slice requests. When the Public Safety network slice
request arrives, the system checks its feasibility and allocates
it resulting in a higher reward (η1+η2), as shown in Fig. 11(c).

After 900 seconds, the traffic associated to the eMBB (BE)
slice is decreased again. The system capacity variation is
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detected (λ1, λ2) and a new network slice admitted into our
system: eMBB (GBR). As its traffic is scheduled, a higher
system reward is achieved (η1 + η2 + η3). The multiplexing
gain is shown in Fig. 11(b), where the system utilization is
compared with the aggregated granted network slice resources
(the green area indicates a utilization above 100%).

As it can be observed, the network slicing multiplexing
gains achieved with ONETS allow for increasing the number
of slices that can be accepted in the system. In this example,
network slice requests can be admitted up to ≈ 120% of the
system capacity, thus virtually increasing the effective capacity
of the system and the achievable profit, accordingly. The cost
of this gain is shown in Fig. 11(a) where after admitting in
the system the second and third slice request, there are peaks
of offered load that hit the maximum available capacity and
thus, the SLA protection level could be threatened.

VIII. CONCLUSION

One of the key novel concepts of 5G (and beyond) networks
has been recently identified in the Network Slicing paradigm,
driven by use cases which are very diverse and sometimes
with extreme requirements, e.g., automated driving, tactile
internet, mission-critical. In this paper, we proposed and
analyzed ONETS: an Online NETwork Slice broker solution
that builds on the budgeted lock-up multi-armed bandit theory
to design a low-complexity solution that maximizes network
slicing multiplexing gains, achieving the accommodation of
network slice requests in the system with an aggregated level
of demands above the available capacity.

Our results show that ONETS i) is feasible in practice as
it has been successfully implemented and tested on top of
a commercial LTE system, ii) the achievable multiplexing
gains are significant and increase according to the number
of slices in the system, iii) ONETS clearly outperformed
naïve or greedy solutions (FCFS, Random, -greedy) for the
considered scenarios, iv) its computational complexity is in
the same order of magnitude of a simple greedy solution
(-greedy), v) ONETS aggressivity for achieving network slic-
ing multiplexing gains is a configurable parameter (α) that can
be freely tuned by operators according to proprietary policies
and desired SLA protection levels.
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