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Abstract—Spectrum mapping has emerged as an important
problem in wireless communications, which generates a spec-
trum map for the spectrum resource analysis and management.
Given the constrained transceiver volume and the limited en-
ergy consumption, how to effectively reconstruct the spectrum
situation by the limited sampling data is a pressing challenge
for spectrum mapping. In this paper, by exploiting the sparse
nature of spectrum situation, we firstly attempt to solve the
three-dimensional (3D) compressed spectrum mapping problem
in the way of compressed sensing. Then, we develop a quadrature
and right-triangular (QR) pivoting based measurement matrix
optimization algorithm. By iteratively selecting new dominant
sampling locations, it promotes the recovery accuracy compared
to random measurement. After that, we propose a 3D spatial
subspace based orthogonal matching pursuit (OMP) algorithm to
recover spectrum situation for 3D compressed spectrum mapping.
Finally, simulations are presented to show the comparisons in
terms of localization, source signal strength recovery, recovery
success rate and situation recovery. Results show our proposed
3D spectrum mapping scheme not only effectively reduces the
sampling number, but also achieves a high level of spectrum
mapping accuracy.

Index Terms—Spectrum mapping, compressed sensing,
spectrum-heterogeneity, OMP algorithm

I. INTRODUCTION

W ITH the proliferation of various wireless devices and
the increasingly crowded spectrum environment, how

to efficiently utilize spectrum resources has received much
attention [1]–[3]. As reported by the Federal Communications
Commission (FCC), most of licensed bands allocated to for
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example broadcasting TVs or analogue cellular telephony are
often highly underutilized [4], [5]. Consequently, to solve
such a widespread dilemma in most current wireless systems
with fixed spectrum access, the revolutionary spectrum sharing
technology, cognitive radio (CR) [6]–[9] comes out. It has
overlay, underlay and interweave modes in resource allocations
and access strategies [2], [10], [11]. The key task in cognitive
radio is to accurately determine the spectrum situation for
dynamic spectrum access of radio frequency (RF) devices,
which is called spectrum situational awareness in the DARPA
RadioMap program [12]. Here spectrum situation refers to the
current state of the electromagnetic environment, including
busy or idle spectrum state, spectrum signal strength, spectrum
modulation mode, and spectrum access protocol, etc.

Spectrum mapping has become a new interest in wireless
communication, which aims at establishing a spectrum map to
effectively manage the spatial spectrum resources in spectrum-
heterogeneous environment. Therein the spectrum situational
awareness results are projected to the geographic locations one
by one, which indicates the signal strength at any location in
space. With the 3D spatial spectrum map, the RF devices can
instantly access the idle spectrum in both underlay/interweave
modes and avoid conflicts where it is busy. This undoubtedly
and greatly helps spectrum sharing and interference manage-
ment, and thereby improves the spectrum utilization [13]. Due
to constrained signal acquisition costs and limited hardware
computation of RF devices, the target in CR spectrum mapping
is accurate and robust spectrum reconstruction with limited
sampling points.

With respect to 3D spectrum mapping, there are three
main challenges. Firstly, most of existing works focus on 2D
spectrum mapping. In [14], the authors propose a prototype
of a radio environment map (REM) which aims at storing
and reasoning the spectrum data obtained from heterogeneous
spectrum sensors. This is a basic guiding work of constructing
a heterogeneous radio environment map for spectrum man-
agement. In [15], the authors apply nonlinear support vector
machine (SVM) to detect the boundary between the coverage
area and the non-coverage area of the primary user, which
is actually a prototype of a 2D binary spectrum map. In
[16], support vector machine-type solvers are used to obtain
power spectrum map, which also minimizes the bandwidth
requirements for sensor measurements by introducing linear
compression and quantization. Moreover, the authors in [17]
propose a new power spectrum estimation algorithm based
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on generating adversarial networks (GANs) for detecting idle
radio resources, which transforms the estimation task into
an image reconstruction task through image color mapping.
However, these 2D ground spectrum maps do not well match
the practical 3D spectrum-heterogeneous environment. What’s
more, as discussed in [18], by leveraging the location flexi-
bility of newly emerging RF devices such as unmanned aerial
vehicle (UAV), it is able to explore more spatial spectrum
opportunities. Specifically, when the RF device is at different
heights, whether it can occupy the spectrum and how much
impact it has on the primary user will be different. Therefore,
due to more spatial freedom and greater spatial isolation be-
tween primary user and secondary users, the spectrum access
opportunity which does not exist in 2D plane can be further
exploited in 3D space. Therefore, the spectrum mapping along
with the height dimension is worthy being considered, which
leads to 3D spectrum mapping.

Secondly, 2D spectrum mapping is usually treated as solving
a matrix completion problem. In [19]–[21], the authors formu-
late the spectrum situation of multiple frequency points with
multiple time slots as an “image” and propose an idea of image
inference to complete and predict the spectrum data. However,
these works only deal with spectrum data in time-frequency
dimension, the geographical location is not combined, nor is
signal transmission mechanism taken consideration. What’s
more, when a column or row of the spectrum matrix is
completely missing, it is rather difficult to recover the desired
matrix [21]. For this reason, the technique of compressed
sensing (CS) (also known as compressed sampling) is applied
in this paper to recover the entire 3D spectrum situation map,
which allows a high signal reconstruction performance even
with a small number of measurements by taking advantage
of the sparseness of the signal [22]–[25]. Common recovery
algorithms include matching pursuits (MP) algorithm [26],
orthogonal matching pursuit (OMP) algorithm [27] and so on.

Thirdly, most of the existing works employ random sam-
pling over locations to return the sampling data for spectrum
mapping. However, different from the traditional random sam-
pling [28], [29], if the intrinsic features of the spatial spectrum
situation could be fully exploited, it is possible to restore the
3D spectrum situation map with less data requirement. Studies
in [30] explore optimized sensor placement based on a tailored
library of features extracted from training data by means of
QR factorization with column pivoting. In our prior work
[31], region of interest (ROI) driven 3D spectrum sampling
procedure is studied, which aims to obtain better ROI spectrum
situation recovery with less energy cost. Nevertheless, the
channel propagation characteristics for signal transmission is
not taken into consideration. This is also one of the listed open
issues for 3D spectrum mapping.

In a nutshell, most of existing studies focus on 2D ground
spectrum mapping with spectrum data collected by random
sampling. To the best of our knowledge, there are no reports
on 3D spectrum mapping with optimized measurements in the
spectrum-heterogeneous environment, which will be studied in
this paper based on compressed sensing. The main contribu-
tions of this paper are summarized as follows:
• The 3D compressed spectrum mapping model is firstly

formulated in the way of compressed sensing by exploit-
ing the sparse nature of spectrum situation.

• A QR pivoting based 3D compressed spectrum mapping
measurement matrix optimization algorithm is developed.
The optimization successively executes a sparse dictio-
nary preprocessing, selects new sampling points with
the largest column 2-norms and applies Householder
reflection. Comparisons confirm our solution outperforms
random measurement by less spectrum mapping errors.

• An improved 3D spatial subspace based OMP algorithm
for 3D compressed spectrum recovery is proposed. It
solves the sparse signal representation of the 3D space
and recovers the 3D spatial spectrum situation, which
overcomes the ineffectiveness of the traditional OMP al-
gorithm in compressed sensing. Performance comparison-
s show the superiority of our proposed 3D compressed
spectrum mapping scheme.

The remainder of this paper is organized as follows. Section
II introduces and formulates the 3D spectrum mapping model,
and reviews the compressed sensing model. In Section III, the
3D compressed spectrum mapping model is proposed. Then,
the details of 3D spectrum mapping scheme are presented
in Section IV. Section V presents the simulation results and
Section VI draws conclusions.

II. PRELIMINARIES ON 3D SPECTRUM MAPPING
AND COMPRESSED SENSING

In this paper, we consider constructing a 3D spectrum map
as shown in Fig. 1, in which spectrum signals from building
facilities, vehicles, human being, etc. spread everywhere. As
illustrated in Fig. 1(a), the entire area to be monitored is a 3D
space which is spectrum-heterogeneous. The area with high
spectrum energy (in red) indicates busy spectral occupancy,
and the area with low spectrum energy (in yellow) indicates
that the spectrum channel is relatively idle. The purpose of
3D spectrum mapping is to get a complete and accurate 3D
spectrum situation map for efficient and reliable dynamic
spectrum access management, in which we can obtain the
spectrum occupancy status as well as spectrum channel quality
of any position in the 3D space of interest.

A. 3D Spectrum Mapping

In order to solve the task of 3D spectrum mapping, we
discretize the entire 3D space into small cubes as shown
in Fig. 1(b). The color of each cube represents the signal
strength of this position. Red indicates high signal strength
and green indicates low strength. This constitutes a spectrum
tensor X ∈ RN1×N2×N3 of the 3D space, where N1, N2,
and N3 represent the grids number of tensor X in x, y, z
dimensions, respectively.

In the process of spectrum mapping, it is supposed to
perform spatial spectrum signal strength measurements in
every cube. However, our goal is to operate spectrum sensing
in as few cubes as possible and recover the energy values of
all unsampled cubes to get the complete 3D spectrum map
as shown in Fig. 2. If we sample every location, we will
undoubtedly obtain the accurate spectrum map, however, it
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(a) An illustration of the spectrum situation for a city block scenario. (b) A discretized three-dimensional spatial spectrum situation 

tensor of (a).

Low Signal StrengthHigh Signal Strength Signal Source

Fig. 1. System Model. (a) illustrates the spectrum situation of a city block, different places have different spectral signal strengthes. (b) is a 3D tensor
obtained by discretizing the 3D space in (a). Each cube has a situation value, the red means high signal strength, and the green represents low signal strength.

will suffer enormous resource consumption. Therefore, we
have to adaptively search for suitable sampling positions to
avoid blind sampling. By exploiting the spatial correlations
among the sampling locations, it is possible to restore the
spectrum situation through partial sampling. Of course, if the
sampling ratio is too small, the spatial correlation among all
the sampling points will be severely damaged, resulting in poor
recovery accuracy. In addition, even with the same sampling
ratio, different sampling locations combinations will lead to
different recovery accuracies [31].

Thus, the objective is to obtain better spectrum situation
recovery, subject to limited sampling ratio by optimizing the
sampling locations as follows:

Θ∗ = arg min
Θ

WX , (1)

s.t. r =
NΘ

N1 ×N2 ×N3
, (C1-1)

WX =
1

NX

∑
i∈X


∣∣∣TX iR − TX i∣∣∣
TX i

2

, (C1-2)

where Θ represents a set of sampling points, including the
number of samples and the sampling positions. WX is the
Relative Mean Square Error (RMSE) of the target 3D space
X . NΘ denotes the sampling number, and r is the sampling
ratio. In (C1-2), the NX represents the total points number of
X . TX i and TX iR represent the original and recovered spectral
energy value at the i-th position, respectively. Eq. (1) is a
function of Θ, which means given a sampling ratio r, a total
of (N1·N2·N3)!

(r·N1·N2·N3)!((1−r)·N1·N2·N3)!
deployment solutions can be

found. This scale is too large to be solved by means of
exhaustive search if NX is big. Traditionally, for the spectrum
mapping problem illustrated in Fig. 2, researchers usually

treat it as a tensor recovery problem [19], or perform matrix
completion by decomposing the tensor into a series of matrices
to finally obtain the recovered tensor XR [20], [21]. Therein,
the objective is minimizing ‖TXR − TX ‖F . However, with a
fixed sampling ratio, the sampling locations are selected in
advance or randomly generated.

B. Compressed Sensing

In compressed sensing theory, it is assumed that the pro-
jection of the signal x ∈ Rn×1 on dictionary ψ ∈ Rn×l
is sparse, and the sparsity is k (k = ‖s‖0 represents the
nonzero number in signal s ∈ Rl×1, s is called sparse
representation of the original signal x). The observation vector
y ∈ Rm×1 can be obtained by multiplying measurement
matrix φ ∈ Rm×n, that is, y = φx = φψs, where ψ is
called sparse dictionary, and φ is called measurement matrix.
Since m � n, reconstructing the original signal x through
the observation y is an ill-condition process. With compressed
sensing theory, this problem is transformed into the following
optimization problem:

s∗ = arg min
s
‖s‖0, (2)

s.t. ‖y − φx∗‖2 ≤ σ2, (C2-1)
x∗ = ψs∗. (C2-2)

The `0 minimization problem in Eq. (2) is NP-hard so it is
tough to solve but it is equivalent to the `1 minimization
problem as follows:

s∗ = arg min
s
‖s‖1, (3)

s.t. ‖y − φx∗‖2 ≤ σ2, (C3-1)
x∗ = ψs∗. (C3-2)
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Usually the problem in Eq. (3) is solved by using greedy
pursuit algorithms such as orthogonal matching pursuit (OMP)
[27].

III. 3D COMPRESSED SPECTRUM MAPPING MODEL

The difficulty of applying compressed sensing to 3D spec-
trum mapping lies in mining the inherent sparsity feature of
3D spectrum situation. Actually, the spectral energy strength
TX i for each location is generated by linear superposition of
signals from all sources in the 3D space after path loss and
is then added with noise. Compared with the total discretized
points in the 3D space in Fig. 1, the number of signal sources
in space turns out to be sparse in fact. Therefore, based on
Section II, the 3D compressed spectrum mapping model is
established as follows:

As shown in Fig. 3, the entire N × N × N (N1 =
N2 = N3 = N ) situation tensor X is first vectorized into
x ∈ RN3×1. Then, the sparse representation of the spectrum
situation is analyzed as:

sX i =

 pX i , if a sourse exists at point X i,

0, else,
(4)

where pX i is the transmit power of the signal at position X i.
k = ‖sX ‖0 represents the sparseness of sX , sX ∈ RN3×1 is a
sparse signal with exactly k nonzero elements corresponding
to k signal sources in the 3D space.

According to the path loss of signal propagation model,
the spectral signal strength at any point in 3D space can be
obtained as:

xX j =
∑NX

l=1
sX ld

−η
jl , (5)

where η is path loss coefficient determined by the environ-
ment. djl represents the Euclidean distance of radio signal
propagation between point X j and point X l, which is defined
as:

djl =


∥∥X j −X l∥∥

2
, j 6= l,

1, j = l.
(6)

Compared to the compressed sensing model, we obtain the
sparse dictionary ψ3DSM

jl = f(djl) = d−ηjl for 3D spectrum
mapping. Because of djl = dlj , the sparse dictionary ψ3DSM

is a symmetric matrix. Moreover, we let xX denote the spectral
signal strength vector of all points, which is equivalent to TX
in Eq. (1) of the spectrum mapping model.

ψ3DSM =



f(d11) f(d12) ... f(d1(n−1)) f(d1n)

f(d21) f(d22) ... f(d2(n−1)) f(d2n)

... ... ... ... ...

f(dn1) f(dn2) ... f(dn(n−1)) f(dnn)


(7)

According to the obtained signal strength of each position
in 3D space, we can perform spatial sampling operation by
selecting m sampling positions from all n positions with

    Spectrum Mapping

Sampled Spectrum Situation Completed Spectrum Situation

Fig. 2. Graphical illustration of 3D spectrum mapping. It aims at accurately
recovering the situational values of all locations in the entire 3D space through
a small number of sampling points.

Fig. 3. Schematic illustration of 3D spectrum mapping process based on
compressed sensing. The entire N × N × N situation tensor X is first
vectorized into x (RN3×1). Then, according to Eq. (4) and (5), x can be
expressed as the product of the sparse dictionary ψ (Rn×n, n = N3) and the
sparse signal s (Rn×1). φ represents the sampling matrix, where the black
and white squares represent 1 and 0, respectively. y (Rm×1) is the received
signal. The goal of the entire mapping is to accurately recover the complete
x with y.

sampling ratio m/n (according to Eq. (1) and (2), n = NX ).
Therefore, we have:

y3DSM = φ3DSMxX + ε = φ3DSMψ3DSMsX + ε, (8)

where ε denotes the Gaussian additive white noise with power
spectral density σ2

0 . The measurement matrix φ3DSM satisfies

φ3DSM
ij =

 1, point X j is the ith sampling location,

0, point X j is not sampled,
(9)

where each row of φ3DSM has an element of 1 representing
the sampling position. Therefore, the objective of 3D spectrum
sensing is rewritten as:

ŝX = arg min
sX

‖sX ‖1, (10)

s.t.
∥∥y3DSM − φ3DSM x̂X

∥∥2 ≤ σ2, (C10-1)

x̂X = ψ3DSM ŝX . (C10-2)
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Fig. 4. Sparse signal x recovery performance with random sampling matrix φ and traditional OMP recovery algorithm. The sampling rates are 0.2 and 0.3
for (a) and (b) respectively. It is observed that the estimated signal source locations and signal strengthes are not accurate, however, the estimated locations
are always adjacent to the real signal sources in the Cartesian coordinate.

Without considering the optimization of the sampling position-
s, i.e., the measurement matrix, we adopt random sampling
in three-dimensional space and perform signal recovery with
OMP algorithm. The result is shown in Fig. 4. Clearly, the
recovery algorithm based on traditional compressed sensing
and no sampling position optimization has poor performance.
It is unable to accurately restore the locations of all sources
in the 3D spectrum map. However, it is observed that the
positions of the restored signal sources are adjacent or close
to the real signal sources in Cartesian coordinate. Therefore,
it is necessary to propose a 3D compressed spectrum mapping
scheme to coping with the difficulty in accurate 3D spectrum
situation recovery.

IV. 3D COMPRESSED SPECTRUM MAPPING
SCHEME

In this section, the proposed 3D compressed spectrum map-
ping scheme is introduced, which contains sampling positions
(measurement matrix) optimization and 3D spectrum situation
reconstruction algorithm.

A. QR pivoting based measurement matrix optimization

The QR decomposition factors an input matrix G as the
product of an orthogonal matrix Q and a right triangular
matrix R, i.e., G = QR. Nevertheless, the above standard QR
algorithm is not suitable for purposes like rank determination
or low rank approximations. In [32], it is shown that a col-
umn permutation operation helps to find more representative
columns during decomposition, which is named as QR decom-
position with column pivoting. Therein, a permutation matrix
P is required to rearrange columns into a more beneficial
ordering which is represented as GP = QR. Accordingly, a
series of applications with QR pivoting have emerged, such as

least-squares approximation, as well as various measurement
selection tasks [33]–[36].

When solving Eq. (10), the invertibility of the product about
φ3DSM and ψ3DSM has a greater impact on the recovery
of sparse signal sX . The invertibility of the matrix can be
measured by the condition number, which is defined as the
ratio of the maximum and minimum singular values of the
matrix. What’s more, the condition number of the system may
be indirectly bounded by optimizing the spectral content of
matrix using its determinant, trace or spectral radius [30].

The oversampled sensor placement problem is studied in
[30], where the number of sensors exceeds the number of
modes used in reconstruction. The key computational idea is
the QR factorization with column pivoting which yields $
sensors (pivots) that best sample the $ basis modes of ψ$
(case m = $ ):

ψT$C
T = QR, (11)

where the column permutation matrix C actually represents
the sensor placement matrix. Moreover, the measurement
matrix is optimized by maximizing the matrix determinant
[30]:

γ∗ = argmax
γ,|γ|=m

|detMγ | = arg max
γ,|γ|=m

∏
i

|λi(Mγ)| , (12)

therein Mγ = Cγψ$ and γ represents the m selected
columns. λi is the eigenvalue of Mγ . det (·) denotes the
operation of matrix determinant calculation. According to Eq.
(11) and (12), we get

|detMγ | = |det (Cγψr)| = |det (QR)|
= |detQ| |detR| = |detR|
= Π

i
|aii| . (13)
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Algorithm 1 QR pivoting-based 3D spectrum map measure-
ment matrix optimization
Input:

3D spectral mapping sparse dictionary ψ3DSM ; Sampling
number m; The number of iteration K; Initial selected
column index set γ = ∅;

Output:
Selected column index set γ; The optimized 3D spectrum
mapping measurement matrix φ3DSM ;

1: Obtain ψ3DSM
m according to Eq. (18), (19) and (20);

2: Initialize A0 =
(
ψ3DSM
m

)T
;

3: for j = 1; j <= m; j + + do
4: Find γj as Eq. (14);
5: Apply Pj to swap j-th column with γj-th column;
6: Establish Householder reflection Hj as Eq. (15), (16);
7: Apply reflection and update Aj as Eq. (17);
8: γ = γ ∪ {γj};
9: end for

10: Output φ3DSM and γ;

Therefore, the objective of maximizing the first m eigenvalues
of matrix Mγ can be turned into maximizing the product of
the first m diagonal items of the matrix R.

QR pivoting algorithm for the above optimization is an
approximate greedy solution, which is known as submatrix
volume maximization (here the matrix volume refers the
absolute value of the determinant). At the j-th iteration,
QR pivoting algorithm increments the submatrix volume by
selecting new dominant column with maximum 2-norm:

γj = arg max
j /∈{1,2,...,j−1}

‖aj‖2. (14)

where aj = (ajj , aj+1j , ..., anj)
T is j-th column of Aj−1.

Then, a Householder transformation is applied on the dom-
inant column by

Hj · aγj = (
∣∣aγj ∣∣ , 0, ..., 0)T , (15)

where Hj = I − 2ωjω
T
j , ωj denotes the reflection vector:

ωj =
aγj −

∣∣aγj ∣∣ e∣∣aγj − ∣∣aγj ∣∣ e∣∣ . (16)

The aγj denotes the column with the maximum 2-norm in the
j-th iteration. e is a unit vector with 1 at the first index and
zeros elsewhere. e has the same length as aγj .

Moreover, a permutation matrix Pj is introduced to swap
j-th column with γj-th column. The Householder reflection
contributions from every other column onto the pivot column
are further subtracted by multiplying diag(Ij−1,Hj). Thus,
the Aj is updated as

Aj = diag(Ij−1,Hj) ·Aj−1 · Pj . (17)

This QR pivoting procedure is recomputed for each new
column selection and gradually expands the submatrix volume
by enforcing a diagonal dominance structure [37]. After m
iterations, we obtain the m dominant sampling positions. If
necessary, n iterations are executed to get a total list of

(a) An illustration of spatial subspace (b) Spatial subspaces in the 3D space

All elements in the subspace Center of the spatial subspace

Spatial subspace region Spatial subspace radius

Fig. 5. An illustration of the 3D spatial subspace. The red sphere is defined
as a spatial subspace with a radius dSS . All spatial cubes within the sphere
form a set to solve the next dominant sampling location. (b) presents some
examples of spatial subspaces.

n pivots, with the first m pivots optimized for spectrum
reconstruction. The additional sampling locations may also be
leveraged if available.

However, our sparse dictionary ψ3DSM is a full-rank matrix
as shown in Eq. (7), that is, m < rank(ψ3DSM ) = n. It
can’t be directly applied to the case of Eq. (11). Thus, we
add a sparse dictionary preprocessing by executing singular
value decomposition (SVD) on the sparse matrix ψ3DSM in
advance as Eq. (18), (19) and (20).

[Un×n,Sn×n,Vn×n] = svds(ψ3DSM , n), (18)

Vn×m = Vn×n(1 : m, :), (19)

ψ3DSM
m = Un×n × Sn×n × V T

m×n, (20)

where svds (M , n) represents the SVD decomposition of
matrix M and obtains the largest n eigenvalues and their
corresponding eigenvectors. For the n singular values of the o-
riginal sparse dictionary, only the first m items are kept. Based
on the above preprocessing and QR pivoting algorithm, we can
quickly get the optimized measurement matrix φ3DSM

m , which
is also the basis for the following spectrum mapping recovery
stage.

The entire pseudo implementation code is summarized in
Algorithm 1. Therein line 1 is sparse dictionary prepro-
cessing. Line 3 to line 9 are the QR pivoting procedures.
Specifically, it selects the pivot that has the maximum column
2-norms at each iteration and updates trailing column to
remove the contribution of row j according to the Householder
transformation.

The time complexity of sparse dictionary preprocessing is
O
(
n3
)
. The rest time complexity mainly focuses on line 4

and line 7. For the j-th iteration, the complexity of line 4 is
O ((m− j − 1)(n− j − 1)). Based on the matrix multiplica-
tion law, the computation cost of line 7 is O

(
m2n+mn2

)
.

Therefore, the total time complexity of Algorithm 1, denot-
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ed by (C1), is

C1 = O
(
n3
)

+O
(∑m

j=1
(m− j − 1)(n− j − 1)

)
+ O

(
m
(
m2n+mn2

))
= O

(
n3 +m2n+m3n+m2n2

)
. (21)

B. Improved 3D Spatial Subspace Based OMP Algorithm For
3D Compressed Spectrum Mapping Recovery

In the traditional OMP algorithm, the target is to continu-
ously select column index in the sensing matrix φψ which
has the largest inner product with the iteratively updating
residual. Due to the ineffective performance of the traditional
OMP algorithm in 3D spectrum situation recovery as shown
in Fig. 4, we propose an improved OMP algorithm based on
3D spatial subspace for efficient spectrum recovery as shown
in Algorithm 2.

First, for the selection of each optimal column (line 2 in
Algorithm 2), we design a spatial subspace as shown in
Fig. 5(a). At the t-th iteration, the chosen column (sampling
location) at the center of the 3D spatial subspace is

πct = arg max
i=1,2,...,n

|〈qt−1, δi〉| , (22)

where qt−1 represents the residual and δi is the i-th column
of the sensing matrix ∆ = φψ. Operation 〈·, ·〉 means inner
product calculation between two vectors.

Then, all columns within the spatial subspace radius dSS are
found in Cartesian coordinate and denoted as dset,xyzt (line 3
to 4 in Algorithm 2) according to∥∥∥X πit −X πct ∥∥∥

2
≤ dSS , (23)

where X πct is the 3D spatial location in Cartesian coordinate
corresponding to the column index πct in matrix ∆. X πit ∈
X πt . ‖·‖2 calculates the 2-norms. dSS denotes spatial subspace
radius and is a positive adjustable parameter.

Furthermore, we transform the set dset,xyzt from the 3D
Cartesian coordinate to the vectorized column index set dsett
(line 5 in Algorithm 2). For each column in dsett , we solve
the least squares problem and calculate the residual (line 6 to
line 13 in Algorithm 2):

ẑSS
πjt

= arg min
zSS
π
j
t

∥∥∥y3DSM − (B ∪ {δπjt }) · z
SS
πjt

∥∥∥
2
, (24)

qSS
πjt

= y3DSM − (B ∪ {δπjt }) · ẑ
SS
πjt
, (25)

where B represents all the optimally selected columns in ∆,
δπjt

is j-th column in the spatial subspace. ẑSS
πjt

is estimated
signal power of signal sources when adding δπjt into B, and
qSS
πjt

is the corresponding spatial subspace residual. The total

residual set qSSπt is thereby augmented with the new residual
by

qSSπt = qSSπt ∪ {q
SS
πjt
}. (26)

At last, the corresponding index of the minimal residual in
the spatial subspace can be obtained as follows (line 14 in

Algorithm 2 3D Spatial Subspace Based OMP Algorithm For
3D Compressed Spectrum Mapping Recovery
Input:

Initial residual vector q0 = y3DSM ; Initial source location
set Λ0 = ∅; Sampling ratio r = m/n; Sensing matrix
∆ = φ3DSMψ3DSM ∈ Rm×n; Iteration counter t; Initial
chosen column set Γ0 = ∅; Iteration error threshold
therror; Spatial subspace radius dSS ; Initial recovered
sparse signal representation ŝ = zeros(n, 1);

Output:
The RMSE of the 3D recovered spectrum map X , WX ;
Recovered sparse signal representation ŝ;

1: for t = 1; t ≤ m; t+ + do
2: Calculate πct by Eq. (22);
3: Transform πct to X πct ;
4: Find set dset,xyzt subject to Eq. (23);
5: Transform dset,xyzt to dsett ;
6: Set qSSπt = ∅;
7: for j = 1; j ≤ length(dsett ); j + + do
8: Set Π = Λt−1, B = Γt−1;
9: Π = Π ∪ {πjt }, B = B ∪ {δπjt };

10: Solve Eq. (24) to obtain ẑSS
πjt

;

11: qSS
πjt

= y3DSM −BẑSS
πjt

;

12: qSSπt = qSSπt ∪ {q
SS
πjt
};

13: end for
14: Get πmin

t and δπmin
t

as Eq. (27);
15: Λt = Λt−1 ∪ {πmin

t }, Γt = Γt−1 ∪ {δπmin
t
};

16: Solve ẑt = arg min
zt

∥∥y3DSM − Γtzt
∥∥
2
;

17: Get residual qt = y3DSM − Γtẑt;
18: Set ∆πmin

t
= zeros(m, 1);

19: if |ẑt(t)| /‖ẑt‖2 < therror then
20: Break
21: end if
22: end for
23: Obtain Λ, ẑ, and ŝ(Λ) = ẑ, x̂X = ψ3DSM ŝ;
24: Output WX and ŝ.

Algorithm 2):

πmin
t = arg min

πit

∥∥∥qSSπit ∥∥∥2. (27)

Subsequently, the estimated signal power vector ẑt and the
residual qt corresponding to πmin

t in the t-th iteration are
obtained (line 15 to 17 in Algorithm 2), the selected column
is also set to zero (line 18 in Algorithm 2).

After m iterations of the outer for loop, or when the
successive iteration deviation of ẑt is less than the threshold
therror, we get the final estimated signal source locations Λ
and their transmission powers ẑ. Upon ŝ(Λ) = ẑ, the entire
situation can be obtained as x̂X = ψ3DSM ŝ.

The time complexity of the proposed 3D spatial subspace
based OMP algorithm focuses on the maximum column pro-
jection calculation in line 2, the 3D spatial subspace minimal
residual iterations from line 7 to line 13 and the iterative
signal estimation operation in line 16. The column projec-
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Fig. 6. Signal sources localization performance comparisons of Random-
OMP, Random-3DOMP, QR-OMP and QR-3DOMP (dSS = 3).

tion calculation is a simple process with computational cost
O(mn). The least squares problem solution in line 10 has a
time complexity of O(j3). The cost of residual calculation in
line 11 is O(mj). Similarly, the time complexity of line 16
is O(t3 + mt). Therefore, the complexity summation of 3D
spatial subspace minimal residual iterations can be obtained

as O
(∑|dsett |

j=1

(
j3 +mj

))
≈ O

(
|dsett |

3
+m · |dsett |

)
. In

general, after m outer for loops, the total computational cost
C2 is obtained as

C2 =O(m · (mn) +m(
∣∣dsett ∣∣3 +m

∣∣dsett ∣∣) +
m∑
t=1

(t3 +mt))

≈O(m2n+m
∣∣dsett ∣∣3 +m2

∣∣dsett ∣∣+m3 +m2)

≈O(m2n+m3), (28)

where |dsett | is a constant of 3D spatial subspace size and is
usually small compared to sampling number m and original
signal length n.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experiment Setup

In this section, the performance of the proposed 3D spec-
trum mapping scheme is evaluated through simulations. The
parameters are set as follows: First, we consider a 3D city
block with a size of 100m× 100m× 100m. We take a spatial
granularity of 10m and discretize the space into a spectrum
tensor of N1 ×N2 ×N3 = 10× 10× 10. The source number
is 5. The signal power of the source is assumed to be 30mW.
3D spatial subspace based OMP algorithm iteration threshold
therror = 5 × 10−4. The receiver noise spectral density is
−174dBm/Hz and the bandwidth is 200KHz.

B. Comparison of Localization Performance

First, as shown in Fig. 6, the relationship between the
localization error of 3D sparse spatial signal sources and the
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Fig. 7. Source signal strength recovery performance comparisons of Random-
OMP, Random-3DOMP, QR-OMP and QR-3DOMP (dSS = 3).

sampling ratio is studied. The average localization error is
defined as:

localization error =

k∑
i=1

∥∥location(i) − truelocation(i)
∥∥
2

k
,

(29)
where location(i) and truelocation(i) represent estimated and
true signal sources locations in the Cartesian coordinate. k is
the sparsity of signal which is the number of signal sources
in the 3D space.

Four different algorithms are compared, including Random-
OMP, Random-3DOMP, QR-OMP and QR-3DOMP. Giv-
en sampling ratio r, “Random” means sampling locations
are arbitrarily selected from the 3D space. “QR” means
Algorithm 1 in Section IV.A is adopted to optimize the
location selection. “OMP” is a recovery method used in
traditional compressed sensing [27]. “3DOMP” is our pro-
posed Algorithm 2 mentioned in Section IV.B. It can be
seen from the simulation results that: i) For all algorithms,
localization error decreases as the number of sampling points
increases; ii) Our proposed 3D spectrum mapping scheme
outperforms the others; iii) In addition, Random-3DOMP and
QR-3DOMP algorithms are much better than the Random-
OMP and QR-OMP algorithm on the localization accuracy. It
reveals that the selected locations through QR pivoting based
sampling optimization can better guarantee sparse recovery
than random sampling. In addition, 3D spatial subspace based
OMP algorithm brings more performance improvement than
QR sampling optimization in signal source location estimation.
Through spatial subspace search, the accuracy of signal source
localization is further improved by nearly 2m when r = 0.2.

C. Comparison of Signal Strength Recovery Performance

Here we compare the source signal strength recovery
performance among the four cases Random-OMP, Random-
3DOMP, QR-OMP and QR-3DOMP. The average relative
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Fig. 8. Recovery success ratio comparisons of Random-OMP, Random-
3DOMP, QR-OMP and QR-3DOMP (dSS = 3).
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Fig. 9. 3D spectrum situation recovery performance comparisons of Random-
OMP, Random-3DOMP, QR-OMP and QR-3DOMP (dSS = 3).

signal strength recovery error is

signalstrength error =
1

k

k∑
i=1

∣∣∣∣ signal(i) − truesignal(i)

truesignal(i)

∣∣∣∣2,
(30)

where signal(i) and truesignal(i) denote estimated and true
sources signal strengthes, respectively. Results are shown in
Fig. 7: when the sampling ratio is less than 0.15, the Random
and QR algorithms with OMP have lower errors than the
3DOMP algorithm. But when sampling ratio exceeds 0.15,
the performances of Random-3DOMP and QR-3DOMP are
better. It can be concluded that when the sampling ratio is
very low, although 3DOMP algorithm brings more accurate
signal source locations, the source signal strength recovery is
relatively inferior. This indicates 3DOMP is more sensitive to
localization errors which cause more signal strength recovery
errors than OMP.
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Fig. 10. Impact of spatial subspace size dSS on the QR-3DOMP perfor-
mances of localizations, signal strength recovery, success rate and spectrum
situation recovery (r = 0.2, 0.4, 0.6).
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Fig. 11. Impact of sparsity k on the QR-3DOMP performances of localiza-
tions (dSS = 3).

D. Comparison of Recovery Success Rate

In Fig. 8, we study the recovery success ratio of four
algorithms, which is defined as:

success ratio =
|{i : success error (i)<τ, 1 ≤ i ≤ NMonte}|

NMonte
,

(31)
success error = ‖ŝ− s‖2, (32)

where ŝ and s represent the estimated and original sparse
signals. NMonte is the total number of Monte Carlo process. τ
denotes the error threshold to decide whether it is a successful
sparse signal recovery (NMonte = 5000, τ = 0.1 in our
simulation). |·| returns the element number of a set.

It can be seen that the performances of Random-3DOMP
and QR-3DOMP are much better than the other two algorithm-
s. The success rates of Random-3DOMP and QR-3DOMP are
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Fig. 12. Impact of sparsity k on the QR-3DOMP performances of signal
strength recovery (dSS = 3).
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Fig. 13. Impact of sparsity k on the QR-3DOMP performances of success
rate (dSS = 3).

close to 1 when the sampling ratio is about 0.4. However,
the Random-OMP and QR-OMP require a sampling ratio of
0.7 to achieve the same performance. What’s more, the sparse
signal recovery errors of OMP algorithm are always larger
than the threshold τ when the sampling ratio is less than
0.15. Compared with Fig. 7, we can get that the nonzero
elements number of the OMP recovered sparse signal is much
larger than sparsity k. Generally speaking, the proposed 3D
spectrum mapping scheme can greatly increase the probability
of successful recovery.

E. Comparison of Situation Recovery Performance

Moreover, the 3D spectrum situation recovery performance
is studied as showed in Fig. 9. It calculates the average relative
situation recovery error of a single spatial point as below:

situation error =
1

n

n∑
i=1

∣∣∣∣ situation(i) − truesituation(i)

truesituation(i)

∣∣∣∣2,
(33)
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Fig. 14. Impact of sparsity k on the QR-3DOMP performances of spectrum
situation recovery (dSS = 3).

where situation(i) and truesituation(i) denote estimated and
true spatial point situation values, respectively. Generally, our
proposed QR-3DOMP algorithm is outstanding in situation
recovery. In comparison with Fig. 6, 7, and 9, it can be seen
that when the sampling rate is lower than 0.1, the performance
of QR-3DOMP is close to the others. But when it’s larger
than 0.1, the two 3DOMP based algorithms outperform the
others by a huge advantage. This is a result of both superior
performance in signal source localization and sparse signal
recovery.

F. Impact of Spatial Subspace Size dSS
Furthermore, we study the impact of the 3D spatial subspace

size dSS on the performance of the proposed QR-3DOMP
algorithm, as shown in Fig. 10. It can be found that the
performances including localizations, signal strength recovery,
success rate and spectrum situation recovery are all improved
and then gradually converge as dSS increases. Meanwhile, a
large dSS also brings more computations as more column
candidates exist in the spatial subspace. In addition, when
the sampling rate r grows, all performances obtain great
improvements. When r reaches 0.6, the success rate is almost
1, and the recovery errors are close to 0. These observations
indicate that appropriate increasement of spatial subspace
radius can reduce an amount of sampling.

G. Impact of Sparsity k

The sparsity k is an important parameter for sparse recovery
in the compressed sensing theory. The effects of k on the
proposed QR-3DOMP algorithm are shown in Fig. 11 to 14.
It can be seen from Fig. 11 and Fig. 12 that as the sparsity k
increases, the localization error and the signal strength recov-
ery error both increase. Fig. 13 shows that the success rate of
signal recovery decreases as k increases, and approximately
when m > 2k ln(n/k), it is possible to successfully recover
the signal. In addition, for spectrum situation recovery in Fig.
14: when the sampling ratio r is small, the situation recovery
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Fig. 15. 3D spectrum mapping performance visualization (r = 0.1, dSS = 3). (a) and (b) present the localizations and signal strength recovery of Random-
OMP, Random-3DOMP and QR-OMP, QR-3DOMP, respectively. (c), (d), (e) and (f) show the spectrum situation recovery. (g) is the ground truth of spectrum
situation.

error first increases and then decreases with the increasing k;
When r is large, the situation recovery error monotonously
increases with k.

H. 3D Spectrum Mapping Performance Visualization

At last, performance visualizations are made in Fig. 15 to
intuitively present the recovery effects of the above Random-
OMP, Random-3DOMP, QR-OMP and QR-3DOMP algo-
rithms on localization, source signal strength and 3D spectrum
situation. In Fig. 15(a) and (b) on the left, the color bar
represents different signal strengths. The solid dot, pentagon,
and circle represent the ground truth and the recovered signal
source location of four algorithms. If the pentagon or circle
overlaps with the solid dot, it means that one of the recovered
signal source is accurately located. The comparison of (c)-
(g) on the right further proves our proposed mapping scheme
performs well in signal source localization and source signal
strength recovery visually.

VI. CONCLUSION

In this paper, we have investigated the issue of 3D com-
pressed spectrum mapping in spectrum-heterogeneous en-
vironment, which offers high value for efficient dynamic
spectrum access of various RF devices. We first formulated
3D compressed spectrum mapping as a compressed sensing
optimization problem by exploiting the underlying sparse
nature of 3D spectrum situation. Then, we proposed a 3D
compressed spectrum mapping scheme, which is composed
of two components: sampling locations optimization and
spectrum situation recovery. The former adopts QR pivoting
optimization to determine dominant sampling locations and

shows better performance than random measurement. Due
to the ineffectiveness of traditional OMP recovery algorithm
in 3D compressed spectrum mapping, a tailored 3D spatial
subspace based OMP algorithm was proposed. Furthermore,
we compared the localization, source signal strength recovery,
recovery success rate and situation recovery performances
among four schemes Random-OMP, Random-3DOMP, QR-
OMP and QR-3DOMP. The impact of spatial subspace size
and sparsity on situation recovery precision were also studied.
Results show the superiority of the proposed 3D compressed
spectrum mapping scheme. Further research will be conduct-
ed to investigate several issues including data-driven sparse
dictionary learning algorithms to grab the signal transmission
mechanism of practical scenarios and constraints of spectrum
mapping, e.g., irregular surveillance area and energy consump-
tion of spectrum-monitoring devices.
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