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Abstract—Over-the-air computation (AirComp) based feder-
ated learning (FL) is capable of achieving fast model aggregation
by exploiting the waveform superposition property of multiple
access channels. However, the model aggregation performance is
severely limited by the unfavorable wireless propagation chan-
nels. In this paper, we propose to leverage intelligent reflecting
surface (IRS) to achieve fast yet reliable model aggregation
for AirComp-based FL. To optimize the learning performance,
we formulate an optimization problem that jointly optimizes
the device selection, the aggregation beamformer at the base
station (BS), and the phase shifts at the IRS to maximize the
number of devices participating in the model aggregation of
each communication round under certain mean-squared-error
(MSE) requirements. To tackle the formulated highly-intractable
problem, we propose a two-step optimization framework. Specif-
ically, we induce the sparsity of device selection in the first step,
followed by solving a series of MSE minimization problems to
find the maximum feasible device set in the second step. We
then propose an alternating optimization framework, supported
by the difference-of-convex-functions programming algorithm
for low-rank optimization, to efficiently design the aggregation
beamformers at the BS and phase shifts at the IRS. Simulation
results will demonstrate that our proposed algorithm and the
deployment of an IRS can achieve a lower training loss and
higher FL prediction accuracy than the baseline algorithms.

Index Terms—Federated learning, intelligent reflecting surface,
over-the-air computation, sparse optimization.

I. INTRODUCTION

Recent years have witnessed a bloom of artificial intel-

ligence (AI) applications, such as chess play [1], natural

language generation [2], and image classification [3]. By

adopting advanced machine learning techniques, particularly

reinforcement learning and deep learning, computers are able

to mimic human behaviours by exploiting tremendous comput-

ing power and large amounts of data. With the further rise of

edge computing and Internet of Things (IoT), there emerges

a new AI paradigm, named edge AI [4]–[7], which pushes

the AI frontier from the cloud center to the network edge.

As the data collection and processing are mostly performed at

the network edge, the service latency and energy consumption

of edge devices can be significantly reduced by edge AI. As

a promising framework for edge AI, federated learning (FL)
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[8], [9] has recently been proposed to coordinate multiple edge

devices to collaboratively train a global AI model. Specifically,

FL iteratively performs the following two processes [8]: 1)

model aggregation: the edge server receives the local model

updates from the edge devices over multiple-access channels,

and then updates the global model by averaging over the

received local model updates; and 2) model dissemination:

the edge server broadcasts its updated global model to the

edge devices, each of which updates the local model based

on its own local dataset. As only model parameters rather

than the real raw data are transmitted to the edge server in the

model aggregation process, FL is capable of achieving privacy

protection.

As the edge devices are usually connected to the edge

server over wireless channels, the model parameters received

by the edge server are inevitably distorted by channel fading

and additive noise. To tackle this issue, several digital FL

schemes have been proposed to achieve reliable and accurate

model aggregation [10]–[13]. Specifically, each edge device

is allocated an orthogonal resource block to upload its local

model parameters, while the edge server is assumed to cor-

rectly decode all the local models by adopting the adaptive

modulation and coding scheme [10]. The authors in [11]

minimized the training loss by jointly optimizing the resource

allocation and device selection, taking into account the delay

and energy consumption requirements. Besides, the device

scheduling policies for model uploading in each communi-

cation round were proposed in [12] and [13] to speed up the

convergence rate of FL. However, the aforementioned studies

adopted orthogonal multiple access (OMA) based resource

allocation schemes, such as time division multiple access

(TDMA) and orthogonal frequency division multiple access

(OFDMA), where the required radio resources are linearly

scaling with the number of edge devices that participate in

FL. When the number of edge devices is large, a substantial

communication latency is introduced in the model aggregation

process and in turn becomes the performance-limiting factor

of FL.

To address the above challenges, over-the-air computation

(AirComp) empowered analog FL emerged to enhance the

learning performance under the limited communication band-

width and stringent latency requirements. AirComp merges

the concurrent data transmission from multiple devices and

the function computation via exploiting the waveform su-

perposition property of multiple-access channels [14]–[16].

Meanwhile, as the edge server in FL is merely interested in

the aggregated model rather than the individual local mod-

els, AirComp, as a non-orthogonal multiple access (NOMA)

scheme, is recognized as a promising solution for achieving

spectral-efficient and low-latency FL [17]–[21]. Specifically,

http://arxiv.org/abs/2011.05051v2


2

the authors in [17] proposed a fast model aggregation approach

by jointly optimizing device selection and receive beamform-

ing to improve the statistical learning performance under

certain mean-squared-error (MSE) requirements for on-device

distributed FL. The authors in [18] developed a broadband

analog aggregation scheme for low-latency FL by considering

the communication-and-learning trade-off. The results in [19]

demonstrated that the analog approach via AirComp converges

faster than the digital approach due to its more efficient use

of limited radio bandwidth. In [20], the authors developed a

gradient-based algorithm to directly deal with noise distorted

gradients for FL over wireless channels. In addition, the

authors in [21] studied the optimal power control problem

for AirComp-based FL with gradient statistics. To achieve

an average behavior of local model updates during model

aggregation, magnitude alignment should be achieved at the

edge server to reduce the aggregation error of AirComp

[22]–[24]. However, unfavorable propagation environment in-

evitably leads to magnitude reduction and misalignment [24],

which in turn degrade the model aggregation accuracy of

AirComp-based FL.

To overcome the detrimental effect of channel fading in

wireless networks, intelligent reflecting surface (IRS) is a cost-

effective technology for improving the spectral and energy

efficiency via reconfiguring the wireless propagation envi-

ronment [25]–[31]. In particular, a large number of low-cost

passive reflecting elements contained in an IRS are capable

of adjusting the phase shift of the incident signal, and thus

altering the propagation of the reflected signal. The signal

reflected by IRS can be constructively superposed with the

signal over the direct link to boost the received signal power

[25]. Due to the passive nature, the power consumption of

the IRS is negligible compared with that of the traditional

full-duplex amplify-and-forward relay. In [26], an IRS was

deployed to minimize the transmit power of the multi-antenna

access point (AP) by jointly optimizing active and passive

beamforming, while satisfying the signal-to-interference-plus-

noise ratio (SINR) constraints. A joint design of the downlink

transmit power and the phase shifts of IRS was developed in

[27] to maximize the energy efficiency. The authors in [28]

utilized the IRS to enhance the physical layer security by

jointly optimizing the beamformers at the base station (BS)

and the reflecting coefficients at the IRS. The authors in [29]

leveraged the IRS to minimize the distortion of AirComp in

wireless networks. Moreover, the MSE of aggregated data can

be significantly reduced by deploying an IRS in a wireless-

powered AirComp network [30]. The aforementioned studies

demonstrated the potential gains of deploying an IRS in harsh

wireless environment, which motivates us to leverage IRS

to compensate for magnitude reduction and misalignment of

AirComp in FL systems, thereby achieving a lower training

loss and higher test accuracy in fewer communication rounds.

A. Contributions

In this paper, we exploit the advantages of IRS to de-

sign a communication-efficient model aggregation scheme for

AirComp-based FL systems. Developing such a scheme to

facilitate fast yet reliable model aggregation is challenging.

On one hand, selecting more devices to participate in FL at

each communication round is able to simultaneously collect

more local model updates, which has a positive impact on

the convergence rate of the training process. On the other

hand, selecting more devices in each communication round

enlarges the model aggregation error due to the inevitable

magnitude misalignment at the edge server, which is detri-

mental to the convergence rate of the training process. As a

result, the edge devices should be appropriately selected to

speed up the overall convergence rate of FL. The optimization

of device selection can be achieved by solving an ℓ0-norm

minimization problem, which, however, requires the design

of an efficient algorithm to accurately induce sparsity. In

addition, to prevent the learning performance from being

degraded by the large model aggregation error, it is critical

yet challenging to optimize the aggregation beamformer at the

BS and the phase shifts at the IRS to combat severe channel

fading and reduce the impact of additive noise. Therefore,

it is necessary to jointly optimize the device selection, the

aggregation beamformer at the BS, and the phase shifts at

the IRS to improve the learning efficiency and the prediction

accuracy of the IRS-assisted AirComp-based FL system. The

main contributions of this paper are summarized as follows.

• We propose an IRS-assisted AirComp-based FL system

that is able to achieve fast yet reliable model aggrega-

tion. In particular, an IRS is deployed to mitigate the

magnitude misalignment at the edge server during model

aggregation, so as to schedule more edge devices to

participate in FL at each communication round under

a certain MSE requirement of each aggregated model,

thereby achieving a lower training loss and higher test

accuracy in fewer communication rounds.

• We propose to jointly optimize the device selection, the

aggregation beamformer at the BS, and the phase shifts

at the IRS, which, however, is highly intractable due to

the sparse objective function as well as the biquadratic

constraints due to the coupling between the aggregation

beamformer at the BS and the phase shifts at the IRS.

• We first propose a two-step optimization framework to

tackle the sparse objective function. Specifically, we

induce the sparsity of the device selection by adopting

ℓ1-relaxation for the ℓ0-norm objective function in the

first step, followed by solving a series of MSE minimiza-

tion problems in the second step to find the maximum

feasible device selection set. Then, we propose an alter-

nating optimization method to decouple the aggregation

beamformer at the BS and the phase shifts at the IRS,

thereby removing the obstacles caused by the biquadratic

constraints in our problem.

• To address the nonconvex quadratic constraints in each

subproblem resulting from the alternating optimization

method, we convert them into rank-one constrained

semidefinite programming (SDP) problems via matrix

lifting. Subsequently, we reformulate the SDP problems

as difference-of-convex (DC) programming problems by

introducing DC representations for rank-one constraints,
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so as to effectively solve the low-rank optimization prob-

lem with the proposed DC algorithm.

Simulation results demonstrate that the proposed IRS-

assisted AirComp-based FL system is able to schedule more

devices in each communication round under certain MSE

requirements. The proposed two-step alternating DC algo-

rithm achieves more accurate feasible set detection than the

SDR approach. Moreover, our proposed algorithm enables

FL to converge faster and achieve more accurate prediction

in the experiment of training a deep convolutional neural

network (CNN) on the MNIST dataset [32] than other baseline

schemes.

B. Organization and Notations

The rest of this paper is organized as follows. Section II

describes the system model and problem formulation in IRS-

assisted FL system. In Section III, we propose a two-step

framework to solve the problem. Section IV presents a two-

step alternating DC algorithm for solving the problem. The

simulation results are provided in Section V. Finally, Section

VI concludes this work.

Italic, boldface lower-case, and boldface upper-case letters

denote scalar, vector, and matrix, respectively. Rm×n and

Cm×n denote the real and complex domain with the space of

m×n, respectively. The operators (·)T, (·)H, tr(·), and diag(·)
denote the transpose, Hermitian transpose, trace, and diagonal

matrix, respectively. E[·] denotes the statistical expectation.

The operator |·| denotes the cardinality of a set or the absolute

value of a scalar number, and ‖·‖ denotes the Euclidean norm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we develop a computation and communi-

cation co-design for fast and reliable model aggregation in

AirComp-based FL systems, where an IRS is deployed to

compensate for the magnitude reduction and misalignment of

AirComp.

A. FL Model

The IRS-assisted AirComp-based FL system under consid-

eration consists of one M -antenna BS serving as an edge

server, K single-antenna edge devices, and an IRS with N
passive reflecting elements, as shown in Fig. 1. Edge device

k ∈ K = {1, 2, . . . ,K} has its own local dataset Dk

with Dk = |Dk| labeled data samples {(ui, vi)}Dk

i=1 ∈ Dk,

where (ui, vi) denotes the input-output data pair consisting of

training sample ui and its ground-truth label vi. For a given d-

dimensional model parameter z ∈ Rd, the local loss function

for device k is defined as

Fk(z) =
1

Dk

∑

(ui,vi)∈Dk

f(z;ui, vi), (1)

where f(z;ui, vi) denotes the sample-wise loss function.

Without loss of generality, we assume that all local datasets

have a uniform size, i.e., Dk = D, ∀ k ∈ K, as in [18].

Fig. 1. Illustration of an IRS-assisted AirComp-based FL system.

Then, the global loss function with model parameter z can

be represented as

F (z) =
1

∑K

k=1Dk

K
∑

k=1

DkFk(z) =
1

K

K
∑

k=1

Fk(z). (2)

The learning process aims to optimize the model parameter z

that minimizes the global loss function, i.e.,

z⋆ = argmin
z∈Rd

F (z). (3)

To achieve this purpose, with the traditional method, the BS

gathers all the local data from the edge devices to train a global

model, which, however, not only increases the computation

burden on the centralized server but also causes the privacy

concern of edge devices.

Fortunately, as an on-device distributed machine learning

method, FL is able to collaboratively train a global model by

coordinating the distributed edge devices to update the local

model parameters according to the locally owned training data.

Without the need of uploading the local data to the BS, this

distributed learning method possesses the advantages of low

latency, low power consumption, and high data privacy. In

this paper, we leverage FedAvg [8], also referred to as model

averaging, to train a global model. Specifically, at the t-th
communication round, the BS and the edge devices perform

the following procedures

• The BS broadcasts the current global model z[t−1] to

the edge devices belonging to a selected set, denoted as

St ⊆ K.

• Based on the received global model z[t−1], each edge

device i ∈ St performs a local model update algorithm

by utilizing its local dataset Di to obtain an updated local

model z
[t]
i .

• All the local model updates are aggregated at the BS by

taking an average to obtain the updated global model z[t],
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Fig. 2. Training loss versus the number of selected devices under different
model aggregation errors.

which is given by

z[t] =
1

|St|
∑

i∈St

z
[t]
i . (4)

In the following, we train a deep CNN on the MNIST

dataset by using the FedAvg algorithm to show the impact

of the number of selected devices on the training loss and the

test accuracy under different model aggregation errors. The

aggregated global model is given by

ẑ =
1

|S|
∑

i∈S

zi + e, (5)

where e ∼ N (0, σ2
0I). As shown in Fig. 2 and Fig. 3,

selecting more devices to participate in the training process

is able to obtain a model that provides lower training loss

and higher test accuracy. Besides, the training loss increases

and the test accuracy decreases as the model aggregation

error increases under the same number of selected devices.

Therefore, it is critical to schedule more devices and reduce the

aggregation error in each communication round for training a

high quality model. Note that the aggregation error is mainly

caused by channel fading and additive noise during model

aggregation and dissemination over wireless channels. Moti-

vated by these observations, we propose to jointly optimize the

device selection, the aggregation beamformer at the BS, and

the phase shifts at the IRS to maximize the number of edge

devices participating in model aggregation while ensuring the

aggregation error is within a certain bound. Such a design is

capable of enhancing the performance of FL in terms of the

training loss and test accuracy.

B. Communication Model for IRS-Assisted AirComp

Since the average sum in Eq. (4) for model aggregation falls

into the category of nomographic functions [16], AirComp

as a promising technique can be utilized to enhance the

efficiency of model aggregation from distributed edge devices.

Let φi(x) = x denote the pre-processing function at device

i and ψ(x) = 1
|S|x denote the post-processing function at

4 6 8 10 12 14 16 18 20
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Fig. 3. Test accuracy versus the number of selected devices under different
model aggregation errors.

the BS. The target function for aggregating the local model

updates at the BS can be expressed as

z = ψ

(

∑

i∈S

φi(zi)

)

, (6)

where S is the device selection set. We denote si = zi ∈ Rd

as the transmit symbol vector at device i. Without loss of

generality, the transmit symbols are assumed to be independent

and normalized to have zero mean and unit variance, i.e.,

E[sis
H

i ] = Id [18]. Due to the limited capacity for data

storage and computing at the edge devices, the dimension

of model parameters is set to ensure that the entire model

parameters can be transmitted within one transmission interval

[33]. To simplify the notation, let s̄i denote a typical entry of

si within one communication interval. The target function to

be estimated at the BS is given by

g =
∑

i∈S

φi(s̄i) =
∑

i∈S

s̄i. (7)

The transmitted signals may encounter detrimental channel

conditions during the model aggregation process through Air-

Comp in the uplink, which leads to magnitude reduction and

misalignment, thereby enlarging the aggregation error at the

BS. To tackle this issue, we propose to deploy an IRS to

alleviate the distortion of AirComp.

Let hd
i ∈ CM , hr

i ∈ CN , and G ∈ CM×N denote the

channel responses from device i to the BS, from device i
to the IRS, and from the IRS to the BS, respectively. The

channel gain of each link is assumed to be invariant within one

transmission interval. In addition, with various channel esti-

mation methods proposed for IRS-assisted wireless networks

[34]–[36], we assume that the perfect CSI is available in this

paper, as in [25]–[30]. The diagonal phase-shift matrix of the

IRS is denoted by Θ = diag(βejθ1 , . . . , βejθN ) ∈ CN×N ,

where θn ∈ [0, 2π) denotes the phase shift of element n and

β ∈ [0, 1] is the amplitude reflection coefficient on the incident

signals. Without loss of generality, we assume β = 1 in this

paper [26]. Compounded with reflected signals, the received
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signal at the BS is given by

y =
∑

i∈S

(GΘhr
i + hd

i )wis̄i + n, (8)

where wi ∈ C is the transmit scalar of device i and n ∼
CN

(

0, σ2I
)

is the additive white Gaussian noise (AWGN).

By denoting the aggregation beamforming vector at the

BS as m ∈ CM , the estimated target function before post-

processing can be expressed as

ĝ =
1√
η
mHy =

1√
η
mH

∑

i∈S

(GΘhr
i + hd

i )wis̄i +
1√
η
mHn,

(9)

where η is a denoising factor. Thus, we can obtain the aggre-

gated global model at the BS by post-processing ẑ = ψ(ĝ).
The distortion of the estimated aggregated model, which

quantifies the performance for global model aggregation via

AirComp, can be measured by the MSE between ĝ and the

target value g as follows

MSE (ĝ, g) = E

[

|ĝ − g|2
]

=
∑

i∈S

∣

∣

∣

∣

1√
η
mH(GΘhr

i + hd
i )wi − 1

∣

∣

∣

∣

2

+
σ2‖m‖2

η
. (10)

The following proposition presents the optimal transmit scalars

at the edge devices to minimize the MSE.

Proposition 1. Given the aggregation beamforming vector m

and the phase-shift matrix Θ, the minimum MSE is obtained

by using the following optimal transmit scalar

w⋆
i =
√
η
(mH(GΘhr

i + hd
i ))

H

|mH(GΘhr
i + hd

i )|2
, ∀ i ∈ S. (11)

Proof. Please refer to Appendix A.

The transmit power of device i is constrained by a given

maximum transmit power P0 > 0, i.e., |wi|2 ≤ P0. With the

optimal transmit scalar w⋆
i given in (11), we have

η = P0 min
i∈S
|mH(GΘhr

i + hd
i )|2. (12)

Therefore, the minimum MSE is given by

MSE (ĝ, g) =
σ2

P0
max
i∈S

‖m‖2

|mH(GΘhr
i + hd

i )|
2 . (13)

C. Problem Formulation

As observed in Section II-A, we aim to maximize the num-

ber of selected devices while satisfying the MSE requirement

of model aggregation to speed up the convergence of the

training process and to avoid the notable reduction of the

prediction accuracy. Specifically, given the MSE requirement

γ > 0 for model aggregation, the corresponding optimization

problem can be formulated as

maximize
S,m,Θ

|S| (14a)

subject to max
i∈S

‖m‖2

|mH(GΘhr
i + hd

i )|
2 ≤ γ, (14b)

|Θn,n| = 1, ∀n ∈ {1, . . . , N}. (14c)

To facilitate the algorithm design, the MSE constraint (14b)

can be rewritten as nonconvex constraints with quadratic and

biquadratic terms, as presented in Proposition 2.

Proposition 2. The constraint (14b) can be equivalently

rewritten as the following constraints:

‖m‖2 − γ|mH(GΘhr
i + hd

i )|2 ≤ 0, i ∈ S, (15)

where ‖m‖2 ≥ 1.

Proof. Please refer to Appendix B.

According to Proposition 2, the objective function |S|
represents the number of feasible MSE constraints (15), which

should be maximized under the regularity condition ‖m‖2 ≥
1. By adding an auxiliary variable x [37], we equivalently

transform the problem of maximizing the number of feasible

MSE constraints into the problem of minimizing the number

of nonzero xi’s. Hence, we turn to solve the following sparse

optimization problem

P : minimize
x∈R

K

+ ,m,Θ
‖x‖0 (16a)

subject to ‖m‖2 − γ|mH(GΘhr
i + hd

i )|2 ≤ xi, ∀ i ∈ K,
(16b)

‖m‖2 ≥ 1, (16c)

|Θn,n| = 1, ∀n ∈ {1, . . . , N}. (16d)

Note that the selection of each edge device is indicated by

the sparsity structure of x, i.e., xi = 0 indicates that device i
can be selected while satisfying the MSE requirement. Due to

the sparse objective function and nonconvex constraints with

biquadratic (16b) and quadratic (16c) terms, problem P is

computationally difficult. To tackle this issue, we shall propose

a two-step alternating low-rank optimization framework in the

following section.

III. ALTERNATING LOW-RANK OPTIMIZATION

FRAMEWORK FOR MODEL AGGREGATION

In this section, we propose a two-step framework to solve

problem P for IRS-assisted AirComp-based FL with device

selection, followed by proposing to use the alternating opti-

mization approach to solve the problem in each step.

A. Proposed Two-Step Framework for Solving Problem P

The main idea of our proposed two-step framework is to

induce the sparsity of x in the first step, so as to determine

the priority for each device to be selected. With the obtained

priority vector, we then solve a series of MSE minimization

problems to find the maximum feasible device set while

satisfying the MSE requirement in the second step.

1) Sparsity Inducing: For the nonconvex sparse objective

function being in the form of ℓ0-norm, we adopt the well-

recognized ℓ1-norm as a convex surrogate [38]. To solve

problem P , we shall solve the following problem in the first

step:

P1 : minimize
x∈R

K

+ ,m,Θ
‖x‖1

subject to constraints (16b), (16c), (16d). (17)
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After solving problem P1, we proceed to the second step

to check the feasibility of the selected devices and find the

maximum number of edge devices under the MSE constraint.

2) Feasibility Detection: The value of xi obtained from

the first step characterizes the disparity between the MSE

requirement and the achievable MSE for device i. Therefore,

the smaller the value of xi, the higher priority device i
being selected in the second step. We sort {xi}Ki=1 in an

ascending order xπ(1) ≤ · · · ≤ xπ(K) to determine the

priority of edge devices, where xπ(i) denotes the i-th smallest

element in {xi}Ki=1. We adopt the bisection method to find

the maximum value of k that enables all devices in the set

S [k] = {π(1), π(2), . . . , π(k)} to be feasibly selected. Specif-

ically, for a given device set S [k], we check the feasibility via

comparing the MSE requirement with the minimum maximal

MSE of selected devices in S [k] obtained from the following

problem:

P2 : minimize
m,Θ

max
i∈S[k]

‖m‖2
|mH(GΘhr

i + hd
i )|2

(18a)

subject to |Θn,n| = 1, ∀n ∈ {1, . . . , N}. (18b)

If the optimal objective value of problem (18) is less than the

required MSE, then set S [k] is considered as a feasible set.

B. Alternating Low-Rank Optimization

It can be observed that constraint (16b) and objective

function (18a) are both nonconvex due to the coupled opti-

mization variables. To address this issue, we propose to apply

alternating optimization [29].

1) Sparsity Inducing: In the first step, variables (x,m) and

Θ of problem P1 can be optimized alternately. Specifically,

when the phase-shift matrix Θ is fixed (i.e., the combined

channel vector hi = GΘhr
i + hd

i between device i and the

BS is fixed), the problem can be expressed as

minimize
x∈R

K

+ ,m
‖x‖1

subject to constraints (16b), (16c). (19)

To address the nonconvexity of biquadratic and quadratic

constraints (16b) and (16c), we further transform problem (19)

into an SDP problem via the matrix lifting technique [39]. By

denoting M = mmH, problem (19) can be rewritten as a

low-rank optimization problem:

P1,1 : minimize
x∈R

K

+ ,M
‖x‖1

subject to tr(M)− γ · tr(MHi) ≤ xi, ∀ i ∈ K,
tr(M) ≥ 1,

M � 0, rank(M) = 1, (20)

where Hi = hih
H

i .

On the other hand, when the auxiliary vector x and the

aggregation beamforming vector m are fixed, problem P1

is reduced to be a feasibility detection problem of phase-

shift matrix Θ. By denoting v = [ejθ1 , . . . , ejθN ]T, aH

i =

mHGdiag(hr
i), and ci = mHhd

i , the problem can be ex-

pressed as

find v (21a)

subject to ‖m‖2 − γ|aHv + ci|2 ≤ xi, ∀ i ∈ K, (21b)

|vn| = 1, ∀n ∈ {1, . . . , N}. (21c)

We denote v̄ = [v, t]T by introducing an auxiliary variable t.
Constraints (21b) can be rewritten as

‖m‖2 − γ
(

v̄HRiv̄ + |ci|2
)

≤ xi, ∀ i ∈ K, (22)

where

Ri =

[

aia
H

i aici
cHi a

H

i 0

]

. (23)

Since v̄HRiv̄ = tr(Riv̄v̄
H), we lift v̄ as a positive semidef-

inite (PSD) matrix V = v̄v̄H with rank(V ) = 1. Problem

(21) can be equivalently reformulated as the following low-

rank matrix optimization problem:

P1,2 : find V

subject to ‖m‖2 − γ
(

tr(RiV ) + |ci|2
)

≤ xi, ∀ i ∈ K,
Vn,n = 1, ∀n ∈ {1, . . . , N + 1},
V � 0, rank(V ) = 1. (24)

2) Feasibility Detection: In the second step, we first refor-

mulate problem P2 as the following problem [29]:

minimize
m,Θ

‖m‖2

subject to |mH(GΘhr
i + hd

i )|2 ≥ 1, ∀ i ∈ S [k],
|Θn,n| = 1, ∀n ∈ {1, . . . , N}. (25)

To decouple the optimization variables, we optimize the ag-

gregation beamforming vector m and the phase-shift matrix

Θ alternately. Specifically, given the phase-shift matrix Θ, we

have

minimize
m

‖m‖2

subject to |mHhi|2 ≥ 1, ∀ i ∈ S [k]. (26)

This problem can be further represented as a low-rank matrix

optimization problem:

P2,1 : minimize
M

tr(M)

subject to tr(MHi) ≥ 1, ∀ i ∈ S [k],
M � 0, rank(M) = 1. (27)

On the other hand, given the aggregation beamforming

vector m, we have

find v

subject to |aHv + ci|2 ≥ 1, ∀ i ∈ S [k],
|vn| = 1, ∀n ∈ {1, . . . , N}, (28)

and its corresponding low-rank matrix optimization problem
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is given by

P2,2 : find V

subject to tr(RiV ) + |ci|2 ≥ 1, ∀ i ∈ S [k],
Vn,n = 1, ∀n ∈ {1, . . . , N + 1},
V � 0, rank(V ) = 1. (29)

In summary, the entire proposed two-step alternating DC

algorithm for solving the sparse and low-rank optimization

problem P is presented in Algorithm 1. The resulting prob-

lems P1,1, P1,2, P2,1, and P2,2 in the alternating low-rank

optimization are still nonconvex because of the fixed rank-

one constraints. This nonconvexity issue can be tackled by

simply dropping the nonconvex rank constraints via the SDR

technique [39]. In the procedure of solving the relaxed SDP

problems, if the obtained solution fails to be rank-one, the

Gaussian randomization method [39] can be adopted to obtain

a suboptimal solution. However, if the number of antennas and

the number of reflecting elements are large, the performance

of the SDR technique degenerates in the resulting high-

dimensional optimization problems due to the low probability

of returning rank-one solutions [15]. To address the limitations

of the SDR technique, we present a novel DC programming

approach for inducing rank-one solutions in the next section.

IV. ALTERNATING DC APPROACH FOR LOW-RANK

OPTIMIZATION

In this section, we present a DC formulation for the rank-

one constrained SDP problems in the alternating procedure,

followed by proposing a two-step alternating DC algorithm to

solve problem P in IRS-assisted AirComp-based FL systems.

A. DC Formulation for Rank-One Constrained Problems

The accurate detection of the rank-one constraint plays a

critical role in precisely detecting the feasibility of nonconvex

quadratic constraints, which is important in our two-step

framework for device selection. Therefore, we provide a DC

representation for the rank-one constraints in the aforemen-

tioned problems in Section III-B.

The rank-one constraint of PSD matrix M ∈ CM×M can

be equivalently rewritten as

‖{σi(M)}Mi=1‖0 = 1, (30)

where σi(M) denotes the i-th largest singular value of matrix

M . Furthermore, since the trace norm and the spectral norm

are represented by

tr(M) =

M
∑

i=1

σi(M) and ‖M‖2 = σ1(M), (31)

respectively, we have [17]

rank(M) = 1⇔ tr(M) − ‖M‖2 = 0, (32)

Algorithm 1: Two-step alternating DC algorithm for

solving problem P in FL with device selection.

Step 1: Sparsity Inducing

Input: Initial point Θ0 and predefined threshold ǫ > 0.

for t← 1, 2, . . . do

Given Θ
t−1, obtain solution (xt,mt) by solving

problem P1,1.

Given (xt,mt), obtain solution Θ
t by solving

problem P1,2.

if Decrease of the objective value of problem P1

is below ǫ then
break.

end

end

Output: x⋆ ← xt.

Step 2: Feasibility Detection

Input: Set S [K] = {π(1), π(2), . . . , π(K)} obtained

by ordering x⋆ in an ascending order as

xπ(1) ≤ · · · ≤ xπ(K), Nlow ← 0, Nup ← K ,

and predefined threshold ǫ > 0.

k ← K .

while Nup −Nlow > 1 do

Initialize Θ
0 and S [k] ← {π(1), π(2), . . . , π(k)}.

for t← 1, 2, . . . do

Given Θ
t−1, obtain solution mt by solving

problem P2,1.

if Maximum MSE ≤ γ then
Nlow ← k.

m̄←mt.

k ← ⌊Nlow+Nup

2 ⌋.
Break.

else if Decrease of the objective value of

problem P2 is below ǫ then
Nup ← k.

k ← ⌊Nlow+Nup

2 ⌋.
Break.

end

Given mt, obtain solution Θ
t by solving

problem P2,2.
end

end

Output: m⋆ ← m̄ and the set of selected devices

S [k] ← {π(1), π(2), . . . , π(k⋆)} with

k⋆ ← Nlow.

with tr(M) > 0. Therefore, we can use a DC penalty to

induce rank-one solutions. The corresponding DC formulation

for problem P1,1 is given by

P
′
1,1 : minimize

x∈R
K

+ ,M
‖x‖1 + ρ (tr(M) − ‖M‖2)

subject to tr(M)− γ · tr(MHi) ≤ xi, ∀ i ∈ K,
tr(M) ≥ 1, M � 0, (33)

where ρ > 0 denotes the penalty parameter. Hence, we

are able to obtain a rank-one matrix when the DC penalty
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term is enforced to be zero. Then, the feasible aggregation

beamforming vector m of problem P1 can be recovered by

utilizing Cholesky decomposition for M⋆ = mmH. Similarly,

we detect the feasibility of problem P1,2 by minimizing the

DC representation term that is given by

P
′
1,2 : minimize

V

tr(V )− ‖V ‖2
subject to ‖m‖2 − γ

(

tr(RiV ) + |ci|2
)

≤ xi, ∀ i ∈ K,
Vn,n = 1, ∀n ∈ {1, . . . , N + 1},
V � 0. (34)

Once the objective value becomes zero, we can obtain an

exact rank-one feasible solution and extract v̄ = [v0, t0]
T by

utilizing Cholesky decomposition for V ⋆ = v̄v̄H. Then, by

computing v = v0/t0, the phase-shift matrix can be recovered

according to Θ = diag(v).

Problems P2,1 and P2,2 in the second step can be reformu-

lated in the similar DC formulation to guarantee the feasibility

of the rank-one constraint, which are rewritten as

P
′
2,1 : minimize

M

tr(M) + ρ (tr(M)− ‖M‖2)

subject to tr(MHi) ≥ 1, ∀ i ∈ S [k],
M � 0, (35)

and

P
′
2,2 : minimize

V

tr(V )− ‖V ‖2
subject to tr(RiV ) + |ci|2 ≥ 1, ∀ i ∈ S [k],

Vn,n = 1, ∀n ∈ {1, . . . , N + 1},
V � 0. (36)

B. DC Algorithm

Although the DC programs are still nonconvex, their prob-

lem structures of minimizing the difference of two convex

functions can be exploited to develop an efficient DC algo-

rithm [40] by successively linearizing the concave part.

Specifically, in the first step, the objective functions of

problem P ′
1,1 and problem P ′

1,2 can be denoted as g1 − h1
and g2 − h2, respectively, where

g1 = ‖x‖1 + ρ · tr(M), h1 = ρ · ‖M‖2, (37)

g2 = tr(V ), h2 = ‖V ‖2. (38)

For problem P
′
1,1, by linearizing the concave term −h1 in

the objective function, the resulting subproblem at the t-th
iteration is given by

minimize
x∈R

K

+ ,M
g1 − 〈∂M [t−1]h1,M〉

subject to tr(M)− γ · tr(MHi) ≤ xi, ∀ i ∈ K,
tr(M) ≥ 1, M � 0, (39)

where 〈X,Y 〉 = ℜ[tr(XHY )] is the inner product of two

matrices, and ∂X[t−1]h denotes the subgradient of function h
with respect to X obtained at iteration t−1. Besides, problem

P ′
1,2 can be solved by iteratively solving

minimize
V

g2 − 〈∂V [t−1]h2,V 〉
subject to ‖m‖2 − γ

(

tr(RiV ) + |ci|2
)

≤ xi, ∀ i ∈ K,
Vn,n = 1, ∀n ∈ {1, . . . , N + 1}, V � 0. (40)

Likewise, in the second step, we can also transform the DC

programs P ′
2,1 and P ′

2,2 into such a series of subproblems to

apply the DC algorithm. In particular, we denote the objective

functions of problem P ′
2,1 and problem P ′

2,2 as g3− h3 and

g4 − h4, respectively, where

g3 = (1 + ρ) · tr(M), h3 = ρ · ‖M‖2, (41)

g4 = tr(V ), h4 = ‖V ‖2. (42)

The solution M [t] for P ′
2,1 is obtained by solving

minimize
M

g3 − 〈∂M [t−1]h3,M〉

subject to tr(MHi) ≥ 1, ∀ i ∈ S [k],
M � 0. (43)

Besides, the solution V [t] for P ′
2,2 is obtained by solving

minimize
V

g4 − 〈∂V [t−1]h4,V 〉

subject to tr(RiV ) + |ci|2 ≥ 1, ∀ i ∈ S [k],
Vn,n = 1, ∀n ∈ {1, . . . , N + 1},
V � 0. (44)

Therefore, we have ∂Mh1 = ∂Mh3 = ρ · ∂‖M‖2 and

∂V h2 = ∂V h4 = ∂‖V ‖2, where ∂‖X‖2 can be efficiently

computed by u1u
H

1 [17] and u1 is the eigenvector correspond-

ing to the largest eigenvalue of the matrix X . Consequently, it

can be verified that the above subproblems are convex and thus

can be efficiently solved by using CVX [41]. Furthermore, it

has been shown in [40] that the solving procedure with the

DC algorithm always converges to the critical points of the

DC programs from any feasible initial points.

C. Computation Complexity Analysis

In our proposed Algorithm 1, we need to solve a sequence of

SDP problems (39), (40) in the first step, and (43), (44) in the

second step. To solve each SDP problem, the worst case com-

putational complexity by using the second-order interior point

method [39] is O((M2+K)3.5) in problems (39) and (43), and

is O((N2+K)3.5) in problems (40) and (44). Supposing those

problems converging to critical points of the DC programs

with T > 1 iterations, the computational cost of solving a DC

program, i.e., one of problems P ′
1,1, P ′

1,2, P ′
2,1, and P ′

2,2, is

O(T (M2+K)3.5) or O(T (M2+K)3.5). Note that we merely

need to solve the SDP problem once for problems P1,1, P1,2,

P2,1, and P2,2 via SDR technique with simply dropping the

rank-one constraints, i.e., T = 1 in this case. The proposed

DC algorithm has a higher computational complexity than the

SDR method. Nevertheless, the sacrifice of the computational

complexity results in significant improvement on the system

performance, which will be demonstrated in the following

section.
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V. SIMULATION RESULTS

In this section, we present the simulation results to demon-

strate the advantages of the proposed two-step alternating DC

algorithm for FL with device selection. The effectiveness of

deploying an IRS for the AirComp-based FL system will

also be illustrated. We consider a three-dimensional coordinate

system, where the antennas at the BS and the reflecting

elements at the IRS are placed as a uniform linear array and

a uniform rectangular array, respectively. The locations of the

BS and the IRS are, respectively, set as (3, 0, 6) meters and

(0, 100, 6) meters, while the edge devices are distributed in

the region of ([0, 6], [100, 106], 0) meters surrounding the IRS.

The path loss model is given by

L(d) = C0(d/d0)
−α, (45)

where C0 denotes the path loss at the reference distance d0 =
1 meter, d is the link distance, and α is the path loss exponent.

All channels are assumed to suffer from Rician fading [26],

where the channel coefficient can be expressed as

̺ =

√

ς

1 + ς
̺LoS +

√

1

1 + ς
̺NLoS, (46)

where ς is the Rician factor, ̺LoS denotes the line-of-sight

(LoS) component, and ̺NLoS denotes the non-line-of-sight

(NLoS) component. In our simulations, the channel coeffi-

cients are given by G =
√

L(dBI)̺BI, h
r
i =

√

L(dID,i)̺ID,i,

and hd
i =

√

L(dBD,i)̺BD,i, where dBI, dID,i and dBD,i

denote the distance between BS and IRS, the distance between

IRS and device i, and the distance between BS and device i,
respectively. As in [42], the Rician factors of ̺IB, ̺DI,i, and

̺DB,i are set to be 3 dB, 0, and 0, respectively, and the path

loss exponents for the BS-device channel, the BS-IRS channel,

and the IRS-device channel are set to be 3.6, 2.2, and 2.8,

respectively. Unless stated otherwise, other parameters are set

as follows: C0 = −30 dB, P0 = 20 dBm, σ2 = −90 dBm,

ǫ = 10−3, K = 20, M = 20, and N = 64.

To ensure the effectiveness of our proposed two-step alter-

nating DC algorithm for device selection, we first show the

convergence behaviours of the sparse inducing step and the

feasibility detection step in Fig. 4 and Fig. 5, respectively. It

is observed that the objective values of problems P1 and P2

are both able to converge to the stationary points by accurately

finding rank-one solutions with DC programming.

Under the proposed two-step framework, we compare the

proposed alternating DC based device selection algorithm (i.e.,

Algorithm 1) with the following baseline schemes:

• Alternating SDR with IRS: In this scheme, the SDR

method is applied to solve problems P1,1, P1,2, P2,1,

and P2,2.

• Random phase shifts: In this scheme, the phase shift

of each reflecting element at the IRS is uniformly and

independently generated from [0, 2π). We merely solve

problem P1,1 in the first step and problem P2,1 in the

second step with the proposed DC algorithm.

• Without IRS: In the circumstance without IRS, only

problem P1,1 in the first step and problem P2,1 in the
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Fig. 4. Convergence behaviour of sparse inducing step.
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Fig. 5. Convergence behaviour of feasibility detection step.

second step need to be solved with the proposed DC

algorithm by setting Θ = 0.

A. Device Selection

Fig. 6 shows the average number of selected devices under

different schemes versus the MSE threshold γ for FL systems

with and without IRS. As the MSE threshold γ increases, the

average number of selected devices becomes larger. This is

because reducing the requirement for the aggregation error

is capable of inducing more edge devices to participate in the

training process of FL. In contrast to the scenario without IRS,

deploying an IRS in the FL system can support much more

devices for concurrent model aggregation under a certain MSE

requirement. Besides, the scheme with random phase shifts

performs worse than both the alternating DC and alternating

SDR methods, which demonstrates the importance of jointly

optimizing the device selection, the aggregation beamformer

at the BS, and the phase shifts at the IRS. Moreover, due to

the effectiveness of obtaining the rank-one solutions with the

DC algorithm, our proposed DC-based method significantly

outperforms the SDR method.
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Fig. 6. Average number of selected devices versus the MSE threshold.
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Fig. 7. Average number of selected devices versus the number of reflecting
elements at IRS.

Fig. 7 illustrates the impact of the number of reflecting

elements at the IRS on the average number of selected devices

when γ = −20 dB. As the number of reflecting elements

increases, the IRS generates more accurate passive reflective

beamforming for the incident signals, thereby effectively re-

ducing the aggregation error at the BS. Therefore, the system

is capable of selecting more edge devices to participate in FL,

while satisfying the MSE requirement. In addition, since the

SDR method has a high probability of failing to return rank-

one solutions for high-dimensional optimization problems, it

is observed that the gap between the DC and SDR schemes

increases as the number of reflecting elements at the IRS

becomes larger.

Fig. 8 shows the impact of the number of antennas at the BS

on the average number of selected devices when γ = −22 dB.

As the number of antennas at the BS increases, the channel

gain between the BS and each edge device is enhanced by

gathering signals from more antennas. Therefore, the adverse

impact of additive noise at the BS can be alleviated and

in turn the aggregation error is reduced, thereby being able

to schedule more edge devices to participate in FL under

a certain MSE requirement. In addition, it is observed that
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Fig. 8. Average number of selected devices versus the number of antennas
at BS.

even when the number of antennas at the BS is doubled, it is

still difficult for the system without IRS to achieve a similar

performance to the scenario with an IRS by jointly optimizing

the aggregation beamformer at the BS and the phase shifts at

the IRS. This observation implies that deploying an IRS not

only enhances the system performance but also reduces the

hardware complexity at the BS. Therefore, it is an efficient

way to achieve fast and reliable model aggregation from the

edge devices under a certain MSE requirement by deploying

an IRS in AirComp-based FL system.

B. Performance Comparison for Federated Learning

To directly show the excellent performance of the proposed

two-step alternating DC algorithm for dealing with the FL

tasks, we train a deep CNN on the widely used MNIST

dataset. In the simulations, the MNIST dataset consists of

10 classes with 6000 handwritten digits per class. The case

that all devices are selected at each communication round

and without any aggregation error serves as the Benchmark.

We also consider that the dataset locally owned by each edge

device is non-independent and identically distributed (non-IID)

with uniform size. In addition, each edge device only has two

randomly selected classes.

When γ = −17 dB, the training loss and test accuracy aver-

aged over 10 realizations are illustrated in Fig. 9 and Fig. 10,

respectively. The results indicate that the proposed two-step

alternating DC algorithm achieves a desirable performance in

terms of a lower training loss and higher test accuracy than

other schemes due to more edge devices and richer datasets

being selected to participate in FL in each communication

round. In addition, the proposed algorithm achieves almost

the same performance as the Benchmark scheme, which is

an ideal case and serves as the performance upper bound.

Furthermore, Table I shows an example of handwritten digit

identification under the FL system with and without IRS.

It can be observed that the IRS-assisted AirComp-based FL

system is capable of achieving more accurate prediction with

the given dataset, which indicates that under a specific MSE

requirement, admitting more edge devices to participate in FL
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TABLE I
EXAMPLES OF HANDWRITTEN DIGIT IDENTIFICATION WITH DIFFERENT SCHEMES

Data

Label 6 1 9 7 8 2 4

FL w/ IRS 6 1 9 7 8 2 4

FL w/o IRS 5 (×) 1 4 (×) 9 (×) 5 (×) 2 4

Data

Label 5 3 7 2 6 9 0

FL w/ IRS 5 2 (×) 7 2 6 7 (×) 0

FL w/o IRS 5 2 (×) 7 4 (×) 5 (×) 4 (×) 0
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Fig. 9. Training loss versus communication round.

and collaboratively train a global model can achieve a lower

training loss and higher test accuracy in fewer communication

rounds.

VI. CONCLUSIONS

In this paper, we proposed a novel IRS-assisted AirComp

approach for fast model aggregation in a FL system. To

accelerate the convergence and enhance the learning perfor-

mance of FL, we developed a two-step alternating low-rank

optimization framework to maximize the number of selected

devices under the MSE requirement for model aggregation. We

presented a DC formulation for rank-one constrained problems

in the alternating procedure, followed by proposing the DC

algorithm for solving the resulting DC programs. Simulation

results demonstrated that our proposed algorithm can achieve a

lower training loss and higher test accuracy by selecting more
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Fig. 10. Test accuracy versus communication round.

devices under certain MSE requirements compared with the

baseline scheme without IRS.

APPENDIX A

PROOF OF PROPOSITION 1

The transmitter scalar {wi} in Eq. (10) has the zero-forcing

structure to enforce

∑

i∈S

∣

∣

∣

∣

1√
η
mH(GΘhr

i + hd
i )wi − 1

∣

∣

∣

∣

2

= 0. (47)

Moreover, we have MSE(ĝ, g) ≥ σ2 ‖m‖2 /η from Eq. (10).

We thus obtain the form of zero-forcing transmitter scalar

given in Proposition 1 which minimizes the MSE.
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APPENDIX B

PROOF OF PROPOSITION 2

The constraint (14b) can be reformulated as Fi(m) =
‖m‖2−γ|mH(GΘhr

i +hd
i )|2 ≤ 0, i ∈ S, where m 6= 0. We

can further rewrite it as Fi(m/
√
τ ) = Fi(m)/τ ≤ 0, i ∈ S,

where ‖m‖2 ≥ τ and τ > 0. By introducing optimization

variable m̃ = m/
√
τ , the constraint (14b) can be equivalently

reformulated as ‖m̃‖2 − γ|m̃H(GΘhr
i + hd

i )|2 ≤ 0, i ∈ S,

where ‖m̃‖2 ≥ 1. Thus, we obtain the equivalent form of

constraint (14b) given in Eq. (15).
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