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Networks with Distributed Beamforming
Tianxin Feng, Lifeng Xie, Jianping Yao, and Jie Xu

Abstract—This paper studies an unmanned aerial vehicle
(UAV)-enabled wireless sensor network, in which one UAV flies
in the sky to collect the data transmitted from a set of ground
nodes (GNs) via distributed beamforming. We consider two
scenarios with delay-tolerant and delay-sensitive applications,
in which the GNs send the common/shared messages to the
UAV via adaptive- and fixed-rate transmissions, respectively. For
the two scenarios, we aim to maximize the average data-rate
throughput and minimize the transmission outage probability,
respectively, by jointly optimizing the UAV’s trajectory design
and the GNs’ transmit power allocation over time, subject to the
UAV’s flight speed constraints and the GNs’ individual average
power constraints. However, the two formulated problems are
both non-convex and thus generally difficult to be optimally
solved. To tackle this issue, we first consider the relaxed problems
in the ideal case with the UAV’s flight speed constraints ignored,
for which the well-structured optimal solutions are obtained to
reveal the fundamental performance upper bounds. It is shown
that for the two approximate problems, the optimal trajectory
solutions have the same multi-location-hovering structure, but
with different optimal power allocation strategies. Next, for
the general problems with the UAV’s flight speed constraints
considered, we propose efficient algorithms to obtain high-quality
solutions by using the techniques from convex optimization and
approximation. Finally, numerical results show that our proposed
designs significantly outperform other benchmark schemes, in
terms of the achieved data-rate throughput and outage proba-
bility under the two scenarios. It is also observed that when the
mission period becomes sufficiently long, our proposed designs
approach the performance upper bounds when the UAV’s flight
speed constraints are ignored.

Index Terms—Unmanned aerial vehicle (UAV), distributed
beamforming, throughput maximization, outage minimization,
trajectory design, power allocation.

I. INTRODUCTION

UNmanned aerial vehicles (UAVs) or drones are expected

to have a lot of applications in beyond-fifth-generation

(B5G) and sixth-generation (6G) wireless networks as ded-

icatedly deployed aerial wireless platforms (such as aerial

base stations (BSs) [2]–[8], cellular-connected users [9], [10],

energy transmitters (ETs) [11]–[13], relays [14], [15], and

mobile edge computing (MEC) servers [16], [17]). Among

others, there has been an upsurge of interest in using UAVs
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as aerial data collectors (or fusion centers) to collect data

from large-scale wireless sensor networks (WSNs). In the

upcoming Internet of Things (IoT) era, WSNs have been

widely deployed for applications such as surveillance and en-

vironmental, agricultural, and traffic monitoring [18]–[21], by

collecting, e.g., geographical and environmental information,

as well as images and videos. In practice, these applications

might be implemented in the remote areas (e.g., rural macro)

or in emergency situations (e.g., after an earthquake or in the

sea), such that employing ground BSs for data collections

may become difficult if not infeasible [22]. How to collect

the data to the BSs in a fast and reliable manner is one of

the key challenges faced in the design of WSNs. Different

from the conventional designs using on-ground fusion centers

for data collection, the UAVs in the sky can exploit the fully-

controllable mobility in the three-dimensional (3D) space to fly

close to the IoT devices for collecting data more efficiently,

and then convey the data to the target BSs. UAVs can also

leverage the strong line-of-sight (LoS) ground-to-air (G2A)

channels for increasing the communication quality.

In the literature, there have been a handful of prior works

studying the UAV-enabled data collection [23]–[29], in which

the UAV’s trajectory is designed for enhancing the system

performance. For example, the authors in [23] and [24] jointly

designed the UAV’s flight trajectory and wireless resource

allocation/scheduling to minimize the mission completion

time, in the scenarios when the sensors are deployed in

the one-dimensional (1D) and two-dimensional (2D) spaces,

respectively. The authors in [25] and [26] optimized the UAV’s

trajectory and the sensors’ transmission/wakeup scheduling, in

order to maximize the energy efficiency of the WSNs while

ensuring the collected data amounts from sensors. The authors

in [27] jointly designed the sensors’ transmission scheduling,

power allocations, and UAV’s trajectory to maximize the

minimum data collection rate from the ground sensors to a

multi-antenna UAV. Furthermore, [28] exploited the UAV’s 3D

trajectory optimization for maximizing the minimum average

rate for data collection, by considering angle-dependent Rician

fading channels. In addition, [29] characterized the fundamen-

tal rate limits of UAV-enabled multiple access channels (MAC)

for data collection in a simplified scenario with linearly de-

ployed sensors on the ground. In these prior works, the authors

considered the adaptive-rate transmission at the sensors, such

that the sensors on the ground can adaptively adjust their

transmission rate based on the wireless channel fluctuations

due to the mobility of the UAVs. Furthermore, these prior

works assumed that the on-ground devices (or sensors) send

independent messages to the UAV under different multiple

http://arxiv.org/abs/2004.11332v2
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access techniques.

Nowadays with technical advancements, the sensors are be-

coming more powerful with more advanced signal processing

capabilities to support new applications, such as distributed

beamforming. In contrast to the communicating independently,

distributed beamforming has been recognized as a promising

technique to enhance the data rate and energy efficiency in

WSNs (see, e.g., [30]–[32] and the references therein), in

which a large number of sensors are enabled to coordinate

in transmitting common or shared messages to a fusion center

(the UAV of our interest). By properly controlling the phases,

the signals transmitted from different sensors can be coherently

combined at the fusion center, thus increasing the communica-

tion range and enhancing the energy efficiency via exploiting

the distributed beamforming gain [30]. For example, the

authors in [31] considered a wireless powered communication

networks system, in which the sensors first harvest energy

from dedicated ETs and then transmit information to a fixed

access point (AP), to enhance the transmission performance

via designing the distributed beamforming. The authors in [32]

designed the distributed beamforming in order to maximize

the network lifetime under the requirement of a pre-specified

quality of service. In these prior works, the authors assumed

that the fusion centers are fixed on the ground. By contrast,

under the mobile fusion center deployed at a UAV of our

interest, how to jointly design the UAV’s trajectory and the

wireless resource allocation for improving the data collection

performance is a new problem that has not been investigated

yet.

Motivated by this, this paper focuses on a new UAV-

enabled data collection system with distributed beamforming,

in which the UAV collects data from multiple single-antenna

ground nodes (GNs) via the distributed beamforming. The

GNs have powerful computing and communication capabilities

and can be the headers of the sensors or nodes with sensing

capability themselves which are deployed in the same swarm

and interconnected with device-to-device (D2D) communi-

cations. In each swarm, due to the random errors such as

quantization noise and wireless channel distortion, the sensing

data synchronization scheme is adopted, so that the transmitted

messages by all the GNs are identical. For example, all GNs

can broadcast the collected sensing data to each other until the

data is synchronized. Notice that when the UAV flies over the

swarm of GNs, the UAV will broadcast the reference signals

periodically so that the GNs perform carrier synchronization

and channel estimation [33], [34].

Different from the existing works focusing on the adaptive-

rate transmissions at the ground devices, we consider two

scenarios with the adaptive-rate and fixed-rate transmissions.

These two scenarios may correspond to the delay-tolerant ap-

plications (e.g., for delay-insensitive measurement information

delivery) and the delay-sensitive applications (e.g., for real-

time video delivery), respectively. For the two scenarios, our

objectives are to maximize the average data-rate throughput

and minimize the transmission outage probability, respectively,

by jointly optimizing the UAV’s trajectory design and the

GNs’ transmit power allocation over time, subject to the

UAV’s flight speed constraints and the GNs’ individual average

TABLE I
LIST OF NOTATIONS

K Number of GNs
K Set of GNs
T Mission duration
T Mission period
sk Horizontal location of GN k

N/Ñ Number of time slots for (P1)/(P2)

N/Ñ Set of time slots for (P1)/(P2)
q UAV’s horizontal location
qI/qF UAV’s horizontal initial/final location
Vmax UAV’s maximum flight speed
Z UAV’s desirable flight region
dk Distance between UAV and GN k
β0 Channel power gain at reference d0
H UAV’s fixed altitude
hk Channel coefficient from GN k to UAV
α Path loss exponent
Pk GN k’s transmit power
ψk Channel phase shift from GN k to UAV
υ AWGN

σ2 AWGN power

δ/δ̃ Discretized duration for (P1)/(P2)
ϕk GN k’s signal phase
r Data-rate throughput
P ave

k
GN k’s maximum average power

γmin SNR threshold
O Outage probability
w Distributed beamforming vector

π SNR order permutation over Ñ

h Combined channel vector

N ′ Subset of Ñ with highest SNR values

power constraints. However, due to the infinite number of

optimization variables for the GNs’ power allocation and

UAV’s trajectory over continuous time, how to jointly optimize

them is a difficult problem.

To deal with this issue, we first consider the relaxed prob-

lems in the ideal case without considering the UAV’s flight

speed constraints, for which the well-structured optimal solu-

tions are obtained via the Lagrange duality method to reveal

the fundamental performance upper bounds. It is observed that

for the two scenarios, the optimal trajectory solutions follow

the same multi-location-hovering structure, but the optimal

power allocation solutions are distinct. In particular, in the

first scenario for rate maximization, the GNs transmit their

messages based on the water-filling-like power allocation over

time. However, in the second scenario for outage probability

minimization, the GNs adopt an on-off power allocation over

time, where the GNs may remain silent in the outage status

when the wireless channels become bad, such that the transmit

power can be reserved for non-outage transmission at other

time instants.

Next, motivated by the obtained optimal trajectories for the

above special problems, we propose efficient approaches to

obtain high-quality solutions to the general problems with the

UAV’s flight speed constraints considered, by using techniques

from convex optimization and approximation. In the proposed

approaches, we solve a series of approximated convex opti-

mization problems to update the UAV’s flight trajectories and

the GNs’ power allocations towards efficient solutions.

Finally, we provide numerical simulations to validate the

effectiveness of our proposed schemes. It is shown that
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our proposed designs significantly outperform the benchmark

schemes in terms of the achieved data-rate throughput and

outage probability under the two scenarios. It is also shown

that when the communication duration becomes sufficiently

long, the proposed designs approach the performance upper

bounds achieved when the UAV’s flight speed constraints are

ignored.

The remainder of this paper is organized as follows. Section

II introduces the system model of our considered UAV-enabled

data collection system with distributed beamforming. Sec-

tion III solves the average data-rate throughput maximization

problem in the delay-tolerant application scenario. Section

IV solves the outage probability minimization problem in

the delay-sensitive application scenario. Section V presents

numerical results. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-enabled data collection system, in which

one single-antenna UAV acts as an aerial mobile data collector

to periodically collect data from a set of K , {1, . . . ,K}
single-antenna GNs. We assume that all the GNs collaborate

as a swarm to transmit common/shared messages towards the

UAV with distributed beamforming employed. It is assumed

that each GN k ∈ K is deployed at a fixed location (xk, yk, 0)
on the ground in the 3D Cartesian coordinate system. For

notational convenience, let sk = (xk, yk) denote the horizontal

location of GN k ∈ K, which is assumed to be known by the

UAV a-priori to facilitate the trajectory design.1 For ease of

reading, we summarize the main notations in this paper in

Table I.

We focus on one particular mission period of the UAV

with finite duration T in second (s), denoted by T , [0, T ].
The UAV is assumed to fly at a fixed altitude H , with

the time-varying horizontal location q(t) = (x(t), y(t)) for

any time instant t ∈ T . Suppose that qI = (xI , yI) and

qF = (xF , yF ) denote the UAV’s horizontal initial and final

locations, respectively. Let Vmax denote the UAV’s maximum

flight speed. Thus, we have

ẋ2(t) + ẏ2(t) ≤ V 2
max, ∀t ∈ T , (1)

q(0) = qI, q(T ) = qF, (2)

where ẋ(t) and ẏ(t) denote the first-derivatives of x(t) and

y(t) with respect to t, respectively. We denote the region

Z , [x, x̄]× [y, ȳ] as the UAV’s desirable flight region in the

horizontal plane, where x = min({xk, k ∈ K} ∪ {xI , xF }),
x̄ = max({xk, k ∈ K} ∪ {xI , xF }), y = min({yk, k ∈
K} ∪ {yI , yF }), and ȳ = max({yk, k ∈ K} ∪ {yI , yF }).
We also assume that the UAV’s mission duration T satisfies

T ≥ ‖qF − qI‖/Vmax, in order for the trajectory from

the initial to final locations to be feasible. Accordingly, the

distance between the UAV and GN k ∈ K at any time instant

t ∈ T is given by

dk(q(t)) =
√

‖q(t)− sk‖2 +H2.

1Since the GNs are active, the UAV can estimate the GNs’ locations
according to the signal angle-of-arrival (AOA) or the received signal strength
(RSS). Furthermore, due to the high altitude of the UAV, a UAV can locate the
GNs by using its optical camera and synthetic aperture radar with intelligent
image, video processing, and pattern recognition [35].

According to the practically measured results in [36] and the

channel models introduced in Third Generation Partnership

Project (3GPP) TR 36.777 [37], we assume that the UAV’s

altitude H is sufficiently high so that the G2A channels

from the GNs to the UAV are LoS dominated with the path

loss exponent α ∈ [2, 4]. Therefore, we consider a channel

model with LoS path loss together with random phases, which

may come from devices’ circuits, environmental factors, and

UAV’s fluctuation and jittering as introduced in [38], [39].

Consequently, the channel coefficient between the UAV and

GN k ∈ K at any time instant t ∈ T is given by

hk(q(t)) =
√

β0d
−α
k (q(t))ejψk(t),

where β0 denotes the channel power gain at the reference

distance of d0 = 1 m, ψk(t) denotes the channel phase shift

at any time instant t ∈ T [30].2

In particular, we consider that all the GNs collaborate as a

swarm to transmit a common message s, which is a circularly

symmetric complex Gaussian (CSCG) random variable with

zero mean and unit variance (i.e., s ∼ CN (0, 1)).3 At any

time instant t ∈ T , the transmit signal of GN k ∈ K is
√

Pk(t)e
jϕk(t)s, where Pk(t) ≥ 0 and ϕk(t) ∈ [−π, π] denote

GN k’s transmit power and signal phase, respectively. Suppose

that each GN k ∈ K is subject to a maximum average power

budget P ave
k . Therefore, the average transmit power constraint

for each GN k is given by

1

T

∫ T

0

Pk(t)dt ≤ P ave
k , ∀k ∈ K. (3)

Then, the received signal at the UAV at any time instant t ∈ T
is given by

y(t) =
K
∑

k=1

√

Pk(t)β0d
−α
k (q(t))ej(ϕk(t)+ψk(t))s+ υ.

Here, υ denotes the additive white Gaussian noise (AWGN)

at the UAV’s information receiver, which is a CSCG random

variable with zero mean and variance σ2 (i.e., υ ∼ CN (0, σ2)).
Since the GNs can estimate the channel phase shift online,

we design the signal phase as ϕk(t) = −ψk(t) online to

achieve the maximum received signal power at the UAV. After

obtaining the locations of the GNs by the methods introduced

before, we can solve our proposed problems to design the

GNs’ transmit powers and the UAV’s trajectory offline, thus

computing the signal-to-noise ratio (SNR). As a result, the

2At the beginning of each time slot, the GNs can overhear the transmit-
ted signals (particularly pilots) from the UAV, perform channel estimation,
quantize the estimated channel phase shift online with the traditional channel
estimation methods [40]. Note that no channel estimation at the UAV and no
feedback operation at the GNs are required.

3For the common message obtaining, the ground IoT devices (e.g., moni-
toring sensors) first generate the messages (e.g., physical phenomenon) and
send them to the GN nearby. Then, the GN summarizes and processes the
received messages as the common messages. After that, the common messages
are shared to other GNs by D2D communications. As the GNs are generally
located in a very short distance, the energy consumed for data sharing is
negligible as compared to the energy consumed for transmission towards the
UAV.
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received SNR by the UAV at any time instant t ∈ T is given

by

SNR(q(t), {Pk(t)}) =

(

∑K
k=1

√

Pk(t)β0d
−α
k (q(t))

)2

σ2
. (4)

Consequently, the data-rate throughput from the K GNs to

the UAV in bits/second/Hertz (bps/Hz) at time instant t ∈ T
is given by

r(q(t), {Pk(t)}) = log2 (1 + SNR (q(t), {Pk(t)})) . (5)

In the following, we will formulate the optimization prob-

lems for rate maximization in the delay-tolerant application

scenario and outage probability minimization in the delay-

sensitive application scenario, respectively.

A. Rate Maximization in Delay-Tolerant Application Scenario

In the delay-tolerant application scenario, we assume that

the GNs can adaptively adjust the communication rate based

on channel variations due to the time-varying locations of the

UAV. In this case, the average or ergodic data-rate throughput

is used as the performance metric. According to (5), the

average data-rate throughput from K GNs to the UAV over

the whole duration T in bps/Hz is given by

R({q(t), Pk(t)}) =
1

T

∫ T

0

log2 (1 + SNR (q(t), {Pk(t)})) dt.

Our objective is to maximize the average data-rate through-

put R({q(t), Pk(t)}), by jointly optimizing the UAV’s trajec-

tory {q(t)} and GNs’ power allocation {Pk(t)} over time,

subject to the UAV’s flight speed constraints in (1), the

UAV’s initial and final locations constraints in (2), and the

GNs’ average transmit power constraints in (3). Consequently,

the average data-rate throughput maximization problem is

formulated as

(P1) : max
{q(t)},{Pk(t)≥0}

R({q(t), Pk(t)})

s.t. (1), (2), and (3).

It is worth noting that the objective function of problem (P1)
is non-concave, due to the complicated data-rate through-

put expression with respect to coupled variables q(t)’s and

Pk(t)’s. Moreover, problem (P1) contains an infinite number

of optimization variables over continuous time. As a result,

problem (P1) is difficult to be solved optimally. We will deal

with this issue in Section III.

B. Outage Probability Minimization in Delay-Sensitive Appli-

cation Scenario

In the delay-sensitive application scenario, we assume that

the GNs use a fixed transmission rate for delivering the delay-

sensitive information. In order for the UAV to successfully

decode the message (with fixed rate) at any given time instant,

the received SNR must be no smaller than a certain threshold

γmin. In this case, the transmission outage occurs if the

received SNR at the UAV falls below γmin. Therefore, we use

the following indicator function to indicate the transmission

outage at any time instant t ∈ T .

1(SNR(q(t), {Pk(t)})) =
{

1, SNR(q(t), {Pk(t)}) < γmin,
0, SNR(q(t), {Pk(t)}) ≥ γmin.

Accordingly, we define the outage probability as the probabil-

ity that the transmission is in outage over the whole duration

T , which is expressed as

O({q(t), Pk(t)}) =
1

T

∫ T

0

1(SNR(q(t), {Pk(t)}))dt.

Our objective is to minimize the outage probability

O({q(t), Pk(t)}), by jointly optimizing the UAV’s trajectory

{q(t)} and GNs’ power allocation {Pk(t)} over time, subject

to the UAV’s flight speed constraints in (1), the UAV’s initial

and final locations constraints in (2), and the GNs’ average

transmit power constraints in (3). Consequently, the outage

probability minimization problem is formulated as

(P2) : min
{q(t)},{Pk(t)≥0}

O({q(t), Pk(t)})

s.t. (1), (2), and (3).

It is worth noting that the objective function of problem (P2) is

non-convex and even non-smooth due to the indicator function

with coupled variables q(t)’s and Pk(t)’s. In addition, problem

(P2) contains an infinite number of optimization variables

over continuous time. As a result, problem (P2) is even more

challenging to be solved optimally than problem (P1). We will

deal with this issue in Section IV.

III. PROPOSED SOLUTION TO PROBLEM (P1)

In this section, we solve the average data-rate throughput

maximization problem (P1) in the delay-tolerant scenario. We

first obtain the optimal solution to a relaxed problem of (P1) in

the special case with T → ∞ to gain key engineering insights.

Then, based on the optimal solution under the special case, we

propose an alternating-optimization-based algorithm to obtain

an efficient solution to the original problem (P1) under any

finite T .

A. Optimal Solution to Relaxed Problem of (P1) with T → ∞
In this subsection, we consider the special case when the

UAV’s flight duration T is sufficiently large (i.e., T → ∞),

such that we can ignore the finite flight time of the UAV from

one location to another. As a result, the UAV’s flight speed

constraints in (1) as well as the initial and final locations

constraints in (2) can be neglected. Therefore, problem (P1)
can be relaxed as

(P1.1) : max
{q(t)},{Pk(t)≥0}

R({q(t), Pk(t)}), s.t. (3).

Though problem (P1.1) is still non-convex, it satisfies the

so-called time-sharing condition [41]. Therefore, the strong

duality holds between problem (P1.1) and its Lagrange dual

problem. As a result, we can optimally solve problem (P1.1)
by using the Lagrange duality method [42]. Let λk ≥ 0 denote

the dual variable associated with the k-th constraint in (3).
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For notational convenience, we define λ , [λ1, . . . , λK ]. The

partial Lagrangian of problem (P1.1) is given as

L({q(t), Pk(t)},λ) =
1

T

∫ T

0

r(q(t), {Pk(t)})dt

− 1

T

∫ T

0

K
∑

k=1

λkPk(t)dt+
K
∑

k=1

λkP
ave
k .

The dual function is

g(λ) = max
{q(t)},{Pk(t)≥0}

L({q(t), Pk(t)},λ). (6)

The dual problem of problem (P1.1) is given by

(D1.1) : min
λ�0

g(λ).

In the following, we solve problem (P1.1) by first obtaining

the dual function g(λ) via solving problem (6) and then

solving the dual problem (D1.1).

First, we solve problem (6) for finding g(λ)
under given λ. For notational convenience, let

w(t) =
[

√

P1(t), . . . ,
√

PK(t)
]⊤

∈ R
K×1 and

h(q(t)) =

[

√

β0d
−α
1 (q(t)), . . . ,

√

β0d
−α
K (q(t))

]⊤

∈ RK×1

denote the GNs’ distributed beamforming vector and the

combined channel vector at any time instant t ∈ T ,

respectively. To obtain g(λ), we decompose problem (6)

into a set of subproblems, each for one time instant, which

are presented in the following with the index t dropped for

facilitating the analysis.

max
q,w�0

log2

(

1 +

∣

∣w⊤h(q)
∣

∣

2

σ2

)

−
K
∑

k=1

λk‖e⊤k w‖2, (7)

where ek ∈ RK×1 denotes a vector with only the k-th element

being 1 and the others being 0. Under any given q, problem

(7) is simplified as

max
w�0

log2

(

1 +
h
⊤
ww⊤h

σ2

)

− Tr(B(λ)ww⊤), (8)

where Tr(H) refers to the trace of square matrix H , B(λ) ,
Diag(λ1, . . . , λK). In general, we must have λk > 0, since

otherwise, g(λ) is not upper bounded. Let w̃ = B1/2(λ)w
and h̃ = B−1/2(λ)h. Then, problem (8) is recast into

max
w̃�0

log2

(

1 +
|h̃⊤

w̃|2
σ2

)

− ‖w̃‖2. (9)

Notice that the maximum value of problem (9) is attained at

w̃ =
√

P̃ h̃/‖h̃‖ with P̃ ≥ 0. Therefore, problem (9) can be

re-expressed as

max
P̃≥0

log2

(

1 +
‖h̃‖2P̃
σ2

)

− P̃ . (10)

Problem (10) is convex. Hence, by checking the first-derivative

of the objective function, we obtain the optimal solution to

problem (10) as

P̃ (λ,q) =

[

1

ln 2
− σ2

‖h̃(λ, q)‖2

]+

=

[

1

ln 2
− σ2

h
⊤(q)B−1(λ)h(q)

]+

,

where [y]+ , max(y, 0). Accordingly, the optimal solution to

problem (8) is given as

w(λ,q) =

√

P̃ (λ,q)

‖B−1/2(λ)h(q)‖
B−1(λ)h(q).

Thus, each GN’s optimal power allocation is

P
(λ,q)
k =

∥

∥

∥

∥

e⊤k

√

P̃ (λ,q)

‖B−1/2(λ)h(q)‖
B−1(λ)h(q)

∥

∥

∥

∥

2

, ∀k ∈ K.

(11)

After substituting w(λ,q) into problem (7), we can obtain

the optimal location q(λ) for problem (7) by using the 2D

exhaustive search over the region Z , given as

q(λ) =argmax
q

log2

(

1 +

∣

∣

∣
w(λ,q)⊤h(q)

∣

∣

∣

2

σ2

)

−
K
∑

k=1

λk‖e⊤k w(λ,q)‖2. (12)

Without loss of generality, suppose that the set of the

optimal locations in (12) are given as {q(λ)
ν , ν ∈ V(λ) ,

{1, . . . , V (λ)}}, with V (λ) ≥ 1 denoting the number of

optimal locations for problem (12). Note that when the optimal

solution to problem (12) is non-unique, we can arbitrarily

choose any one of q
(λ)
ν ’s for obtaining g(λ).

Next, we solve the dual problem (D1.1) by minimizing the

dual function g(λ). This is implemented via using subgradient-

based methods, such as the ellipsoid method [43], with the

subgradient being

[

P ave
1 − P

(λ,q(λ)
ν )

1 , . . . , P ave
K − P

(λ,q(λ)
ν )

K

]

.

According to [43], the ellipsoid method is convergent and we

can finally obtain the optimal solution λopt to the dual problem

(D1.1).

After solving the dual problem (D1.1), it remains to con-

struct the optimal primal solution to problem (P1.1), denoted

by {qopt(t), P opt
k (t)}. In this case, since the optimal solution

to problem (6) is non-unique in general, we need to time

share among these hovering locations to construct the optimal

primal solution to problem (P1.1). Let τν denote the hovering

duration at the optimal location q
(λopt)
ν , ν ∈ V(λopt). In the
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following, we solve the following problem to obtain the

optimal hovering durations for time sharing.

max
{τν≥0}

1

T

V (λopt)
∑

ν=1

τν log2

(

1 +

∣

∣

∣
(w(λopt,q(λopt)

ν ))⊤h(q
(λopt)
ν )

∣

∣

∣

2

σ2

)

s.t.
1

T

V (λopt)
∑

ν=1

τν‖e⊤k w(λopt,q(λopt)
ν )‖2 ≤ P ave

k , ∀k ∈ K (13)

V (λopt)
∑

ν=1

τν ≤ T.

As problem (13) is a linear program (LP), the optimal hovering

durations {τoptν } can be obtained by CVX [42]. As a result,

problem (P1.1) is optimally solved.

It is observed that the optimal UAV trajectory so-

lution to problem (P1.1) has a multi-location hovering

structure, while the GNs’ optimal power allocation fol-

lows a water-filling-like pattern, dependent on the value of
√

P̃ (λopt,q
(λopt)
ν )B−1(λopt)h(q(λopt)

ν )

‖B−1/2(λopt)h(q
(λopt)
ν )‖

.

Complexity Analysis: The complexity of solving problem

(P1.1) includes the complexity of solving dual problem (D1.1)
and time sharing problem (13). In each iteration of the

ellipsoid method for optimally solving dual problem (D1.1),
the complexity mainly comes from two parts: the K GNs’

optimal power allocation in (11) and the 2D exhaustive search

over the region Z in (12). The complexity of the first part

is O(K2 logK) [44], while the complexity of the second

part is O(1/ε21) [29], where ε1 denotes the accuracy of the

search. Hence, the complexity of solving dual problem (D1.1)
is O(K4 logK/ε21). Furthermore, the complexity of solving

linear problem (13) with V (λopt) variables and K + 1 linear

constraints is O(K2V (λopt)) [42]. Finally, we can conclude that

the complexity of solving problem (P1.1) is O(K4 logK/ε21+
K2V (λopt)).

Example 1: For obtaining more insights, we consider the

special case with two GNs. Without loss of generality, we

suppose that the two GNs are deployed at (−D/2, 0, 0) and

(D/2, 0, 0), where D denotes the distance between the two

GNs.

Fig. 1 shows the UAV’s optimal hovering locations with

different GNs’ distances D = 80 m in subfigure (a) and D =
40 m in subfigure (b), where H = 50 m and P ave

1 = P ave
2 =

30 dBm. It is observed that if the two GNs are far away (i.e.,

D = 80 m), then the UAV should hover at two symmetric

locations with the same hovering time; while if the two GNs

are close (i.e., D = 40 m), the UAV should hover at the

middle point of them. Table II shows the optimal power and

hovering time allocations in Fig. 1(a) with T = 10 s. It is

observed that the UAV’s optimal hovering durations at the two

hovering locations are equal due to the symmetric nature of the

considered setup; while the GNs’ transmit power allocations

are different, which have a symmetric structure. Moreover, the

optimal power allocation of each GN k in Fig. 1(b) is obtained

at the power P ave
k .

TABLE II
GNS’ TRANSMIT POWER AND HOVERING TIME ALLOCATIONS

Hovering duration τ1 = 5 s τ2 = 5 s

GN 1’s transmit power 32.3 dBm 25.0 dBm

GN 2’s transmit power 25.0 dBm 32.3 dBm

B. Proposed Solution to Problem (P1) with Finite T

In this subsection, we consider problem (P1) in the general

case with finite T . Motivated by the optimal solution to

the relaxed problem (P1.1) in the previous subsection, we

propose an efficient solution based on the techniques of convex

optimization and successive convex approximation (SCA).

Towards this end, we first discretize the whole duration T
into a finite number of N time slots denoted by the set

N , {1, ..., N}, each with equal duration δ = T/N . Let

q[n] and Pk[n] denote the UAV’s horizontal location and GN

k’s transmit power at time slot n, k ∈ K, n ∈ N . Accordingly,

problem (P1) can be approximated as

(P1.2) : max
{q[n]},{Pk[n]≥0}

1

N

N
∑

n=1

log2(1 + SNR(q[n], {Pk[n]}))

s.t.
1

N

N
∑

n=1

Pk[n] ≤ P ave
k , ∀k ∈ K (14a)

‖q[n]− q[n− 1]‖2 ≤ V 2
maxδ

2, ∀n ∈ N (14b)

q[0] = qI, q[N ] = qF. (14c)

Problem (P1.2) is non-convex due to the non-concave

objective function. To tackle this issue, we introduce two

sets of auxiliary variables {ak[n]} and {A[n]}, k ∈ K, n ∈
N . We assume that ak[n] and A[n] are the lower bounds

of
√

Pk[n]β0

(‖q[n]−sk‖2+H2)α/2 and
(

∑K
k=1 ak[n]

)2

, respectively.

Problem (P1.2) is re-expressed as

(P1.3) : max
{q[n]},{Pk[n]≥0},{A[n]},{ak[n]}

1

N

N
∑

n=1

log2
(

1 +A[n]/σ2
)

s.t. A[n] ≤
(

K
∑

k=1

ak[n]

)2

, ∀n ∈ N (15a)

ak[n] ≤
√

Pk[n]β0
(‖q[n]− sk‖2 +H2)α/2

, ∀k ∈ K, n ∈ N (15b)

(14a), (14b), and (14c).

Note that at the optimal solution to problem (P1.3), all

the constraints in (15a) and (15b) must be met with strict

equality, since otherwise, we can increase ak[n] and A[n],
thus further increasing the objective value of problem (P1.3).

Problem (P1.3) is still non-convex due to the non-convex

constraints in (15a) and (15b). Next, we solve problem (P1.3)
by alternatively optimizing the UAV’s trajectory and the GNs’

power allocation.

1) Trajectory Optimization: Under given GNs’ power allo-

cation {Pk[n] ≥ 0}, we optimize the UAV’s trajectory {q[n]}
with variables {A[n]} and {ak[n]} for problem (P1.3) by

adopting the SCA technique. To deal with the non-convex

constraints in (15a) and (15b), we update the UAV’s trajectory
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Fig. 1. UAV’s optimal hovering locations with different GNs’ distances.

{q[n]} and {ak[n]} in an iterative manner by approximating

the non-convex problem into a convex problem. Let {q(i)[n]}
and {a(i)k [n]} denote the local points at the i-th iteration.

Under given UAV’s trajectory {q(i)[n]} and {a(i)k [n]}, since

any convex function is globally lower-bounded by its first-

order Taylor expansion at any point, we have the lower bounds

for
√

Pk[n]β0

(‖q[n]−sk‖2+H2)α/2 and
(

∑K
k=1 ak[n]

)2

as follows.

√

Pk[n]β0
(‖q[n]−sk‖2+H2)α/2

≥
√

Pkβ0

(

(‖q(i)[n]−sk‖2+H2)−α/4

− α(‖q[n]− sk‖2 − ‖q(i)[n]− sk‖2)
4(‖q(i)[n]− sk‖2 +H2)α/4+1

)

,alowk(i)(q[n]), (16)

( K
∑

k=1

ak[n]

)2

≥
( K
∑

k=1

a
(i)
k [n]

)2

+ 2

( K
∑

k=1

a
(i)
k [n]

)

×
( K
∑

k=1

ak[n]−
K
∑

k=1

a
(i)
k [n]

)

, Alow
(i) (ak[n]). (17)

In each iteration i with given local points {q(i)[n]}
and {a(i)k [n]}, we replace

√

Pk[n]β0

(‖q[n]−sk‖2+H2)α/2 and
(

∑K
k=1 ak[n]

)2

as their lower bounds alowk(i)(q[n]) and

Alow
(i) (ak[n]), respectively. As a result, the trajectory

optimization problem is changed to a convex optimization

problem, which is denoted as problem (P1.3.1) and can be

optimally solved by CVX [42].

2) Power Allocation: Under any given UAV trajectory

{q[n]}, we optimize the GNs’ power allocation {Pk[n] ≥ 0}
together with {A[n]} and {ak[n]} for problem (P1.3) by using

the SCA technique as well. In this case, only the constraints

in (15a) are non-convex. Similarly as for optimizing the UAV

trajectory, we replace

(

∑K
k=1 ak[n]

)2

in (15a) as its lower

bound Alow
(i) (ak[n]) in (17) to approximate the non-convex

terms into convex forms and denote the approximate problem

as problem (P1.3.2), so as to optimize the GNs’ power

allocation iteratively, for which the details are omitted for

brevity.

According to [45], by alternately optimizing the UAV trajec-

tory and GNs’ power allocation, we can obtain a converged

solution to problem (P1.3), thus efficiently solving problem

(P1.2).
Complexity Analysis: The complexity of the proposed al-

ternating optimization-based approach for solving problem

(P1.3) includes the complexities of solving the power alloca-

tion sub-problem and trajectory design sub-problem. By using

SCA, these two sub-problems are solved in an iterative manner

by respectively approximating as two convex optimization

problems: sub-problem (P1.3.1) and sub-problem (P1.3.2).
According to [42] and [46], CVX uses interior point method

with Newton steps to solve the convex optimization problem,

whose complexity is O((B + C)1.5B2), where B is the

dimension of optimization variables and C is the number of

constraints. For problem (P1.3.1), we have B = (K + 2)N
and C = (K+2)N +2, while for problem (P1.3.2), we have

B = 2KN+N and C = KN+N+K . Thus, the complexities

of solving the two sub-problems are both O(K3.5N3.5). Then,

the computation complexity for solving problem (P1.3) is

O(Lalt(LSCA1 + LSCA2)K
3.5N3.5), where Lalt, LSCA1, and

LSCA2 are the iteration numbers of alternating optimization

for problem (P1.3), SCA for sub-problem (P1.3.1), and SCA

for sub-problem (P1.3.2), respectively.

Remark 3.1: It is worth noting that the performance of the

alternating optimization-based approach critically depends on

the initial point chosen for iteration. In this paper, we consider

the following three trajectory designs as the potential initial

point.

• Fly-hover-fly trajectory with power design: The UAV

first flies straightly from the initial location to one op-

timized fixed location (xfix, yfix, H), and hovers at this

location as long as possible, and finally flies to the final

location at the maximum flight speed. The fixed location

(xfix, yfix, H) is obtained by using a 2D exhaustive search

over the region in Z during the mission time to maxi-

mize the received SNR at the UAV, during which each

GN k employs the fixed power P ave
k . Thus, the flying

time TFHF
fly is ‖qI − (xfix, yfix)‖/Vmax + ‖(xfix, yfix) −

qF ‖/Vmax and the hovering duration at the optimized

location is given as TFHF
hov = T − TFHF

fly . Under such a
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trajectory, the GNs’ power allocation can be obtained by

solving the power allocation problem in (P1.3).
• Successive hover-and-fly trajectory with power design:

The UAV flies from the initial location to successively

visit the optimized hovering locations to problem (P1.1),
then hovers at these locations, and finally flies to the

final location at the maximum flight speed. During the

flight, we choose the minimum flying path by solving the

traveling salesman problem (TSP) [11]. Then, we have

the minimum flying time T SHF
fly and the hovering duration

at each optimized location can be obtained similarly by

solving problem (P1.1), with total hovering time given

by T SHF
hov = T −T SHF

fly . Under such a trajectory, the GNs’

power allocation can be obtained by solving the power

allocation problem in problem (P1.3).
• Power design only: The UAV flies from the initial

location to the final location directly with a constant flight

speed ‖qI − qF ‖/T . Under such a trajectory, the GNs’

power allocation can be obtained by solving the power

allocation problem in (P1.3).

Note that the minimum flying time in each trajectory

design should be no larger than the UAV flight duration T to

guarantee a feasible trajectory. In this case, under any given

T , we choose the one which has the best performance as the

initial point of our proposed SCA-based algorithm.

IV. PROPOSED SOLUTION TO PROBLEM (P2)

In this section, we address the outage probability minimiza-

tion problem (P2) in the delay-sensitive application scenario.

We first obtain the optimal solution to a relaxed problem of

(P2) in the special case with T → ∞ to gain key engineering

insights. Then, based on the optimal solution under the special

case, we propose an alternating-optimization-based algorithm

to obtain an efficient solution to the original problem (P2)
under any finite T .

A. Optimal Solution to Relaxed Problem of (P2) with T → ∞
In this subsection, we consider the special case that the

UAV’s flight duration T is sufficiently large (i.e., T → ∞).

Similarly as for problem (P1), problem (P2) can be relaxed

as

(P2.1) : min
{q(t)},{Pk(t)≥0}

O({q(t), Pk(t)}), s.t. (3).

Though problem (P2.1) is non-convex, it satisfies the so-called

time-sharing condition [41]. Therefore, the strong duality

holds between problem (P2.1) and its Lagrange dual problem.

As a result, we can optimally solve problem (P2.1) by using

the Lagrange duality method [42] as follows. Let µk ≥ 0
denote the dual variable associated with the k-th constraint in

(3). For notational convenience, we define µ , [µ1, . . . , µK ].
The partial Lagrangian of problem (P2.1) is given as

L̃({q(t)}, {Pk(t)},µ) =
1

T

∫ T

0

1 (SNR(q(t), {Pk(t)})) dt

+
1

T

∫ T

0

K
∑

k=1

µkPk(t)dt−
K
∑

k=1

µkP
ave
k .

The dual function is

g̃(µ) = min
{q(t)},{Pk(t)≥0}

L̃({q(t)}, {Pk(t)},µ). (18)

The dual problem of problem (P2.1) is given by

(D2.1) : max
µ�0

g̃(µ).

In the following, we solve problem (P2.1) by first obtaining

the dual function g̃(µ) and then solving the dual problem

(D2.1). First, to obtain g̃(µ), we solve problem (18) by solving

a set of subproblems, each for a time instant in the following,

in which the index t is dropped for facilitating the analysis.

min
q,{Pk≥0}

1(SNR(q, {Pk})) +
K
∑

k=1

µkPk. (19)

To solve problem (19), we consider the following two cases

when 1 (SNR(q, {Pk})) equals one and zero, respectively.

1) Outage case: First, consider that 1 (SNR(q, {Pk})) = 1.

In this case, the outage occurs, and thus GN’s optimal power

allocation is {P (µ,q)
k = 0}, and UAV’s optimal location q(µ)

can be any arbitrary value in Z . Accordingly, the optimal value

for problem (19) is 1.

2) Non-outage case: Next, consider that 1(SNR(q, {Pk}))=
0. In this case, we solve problem (19) by first deriving the

GNs’ power allocation under any given UAV’s location q and

then searching over q via a 2D exhaustive search over Z .

Under given q and defining ρk =
√
Pk, ∀k ∈ K, problem (19)

is reduced as

min
{ρk≥0}

K
∑

k=1

µkρ
2
k (20)

s.t.
K
∑

k=1

ρk

√

β0d
−α
k (q) ≥ √

γminσ.

If µk > 0, ∀k ∈ K, then problem (20) is a convex problem.

By checking the Karush-Kuhn-Tucker (KKT) conditions, we

have the optimal solution as

ρ
(µ,q)
k =

√

γminβ0d
−α
k (q)σ

(

∑K
k=1(β0d

−α
k (q)/µk)

)

µk

. (21)

If there exists any k ∈ K such that µk = 0, then the

optimal value of problem (20) is zero, which is attained by

setting ρ
(µ,q)
k to be sufficiently large and ρ

(µ,q)

k̄
= 0, ∀k̄ 6= k.

Therefore, we obtain P
(µ,q)
k = ρ

(µ,q)
k

2
. By substituting P

(µ,q)
k

into problem (19), we obtain the optimal UAV location q(µ)

by using the 2D exhaustive search over Z , given as

q(µ) =argmin
q

1

(

SNR(q, {P (µ,q)
k })

)

+

K
∑

k=1

µkP
(µ,q)
k . (22)

Accordingly, the obtained power allocation is given by

{P (µ,q(µ))
k } and the optimal value for problem (19) is

∑K
k=1 µkP

(µ,q(µ))
k . Without loss of generality, suppose that

the set of the optimal locations is {q(µ)
ν̃ , ν̃ ∈ Ṽ(µ) ,

{1, . . . , Ṽ (µ)}}, with Ṽ (µ) ≥ 1 denoting the number of
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optimal locations for problem (22). Note that when the optimal

location for problem (22) is non-unique, we can arbitrarily

choose any one of q
(µ)
ν̃ ’s for obtaining g̃(µ).

By comparing the corresponding optimal values under

1 (SNR(q, {Pk})) = 1 and 1 (SNR(q, {Pk})) = 0, we can ob-

tain the optimal solution to problem (19) as the one achieving

the smaller optimal value. Therefore, the dual function g̃(µ)
is obtained.

Next, we solve the dual problem (D2.1) by maximizing the

dual function g̃(µ). This is implemented via using subgradient-

based methods, such as the ellipsoid method [43], with the

subgradient being [P
(µ,q

(µ)
ν̃ )

1 −P ave
1 , . . . , P

(µ,q
(µ)
ν̃ )

K −P ave
K ]. We

denote the optimal dual solution to the dual problem (D2.1)
as µopt.

At the optimal dual solution µopt, we need to deal with the

following two cases.

• If
∑K

k=1 µ
opt

k P
(µopt,q(µopt))
k = 1, (i.e., the outage case 1)

and the non-outage case 2) lead to the same optimal value

of problem (19)), then we need to time share between

case 1) and case 2) to construct the primal optimal

trajectory and power allocation, denoted by {q̃opt(t)}
and {P̃ opt

k (t)}, respectively. Notice that under µopt, the

optimal solution to problem (19) is generally non-unique

in case 2). Therefore, we also need to time share among

these UAV locations and the corresponding power allo-

cation strategies to construct the primal optimal solution

to problem (P2.1). Let τ̃ν̃ denote the UAV’s hovering

duration at the location q
(µopt)
ν̃ , ν̃ ∈ Ṽ(µopt). In the

following, we solve the following problem to obtain the

optimal hovering durations for time sharing.

min
{τ̃ν̃≥0}

1

T

(

T −
Ṽ (µopt)
∑

ν̃=1

τ̃ν̃

)

(23)

s.t.
1

T

Ṽ (µopt)
∑

ν̃=1

τ̃ν̃P
(µopt,q

(µopt)
ν̃ )

k ≤ P ave
k , ∀k ∈ K

Ṽ (µopt)
∑

ν̃=1

τ̃ν̃ ≤ T.

In problem (23), we have omitted the time duration when

outage occurs, which should be T−
Ṽ (µopt)
∑

ν̃=1

τ̃ν̃ . As problem

(23) is a linear program, the optimal hovering durations

{τ̃ opt
ν̃ } can be obtained by CVX [42]. Therefore, problem

(P2.1) is finally optimally solved.

Note that at the optimal solution, the UAV hovers at

multiple locations {q(µopt)
ν̃ } each with duration τ̃ opt

ν̃ to col-

lect data from GNs, and the GNs adopt an on-off power

allocation, i.e., the GNs are active to send messages with

properly designed power allocation (i.e., P
(µopt,q(µopt))
k )

when no outage occurs, but inactive with zero transmit

power when outage occurs. Also note that the duration

with outage occurring is given by τ̃opt
0 = T −

Ṽ (µopt)
∑

ν̃=1

τ̃ν̃ ,

with the resulting outage probability being τ̃ opt
0 /T .

• If
∑K

k=1 µ
opt

k P
(µopt,q(µopt))
k < 1 (i.e., non-outage occurs),

then the UAV can achieve non-outage communication

over the whole mission period. However, in this case it

becomes difficult to directly find the feasible or optimal

solution to problem (P2.1). Hence, we use an additional

step to obtain the primal optimal solution to problem

(P2.1). In this case, we reduce the transmit power at

all GNs by reducing P ave
k as α̃P ave

k , with 0 < α̃ < 1.

We solve problem (P2.1) under different α̃ together with

a bisection over α̃, in order to find a α̃∗ such that the

resultant outage probability is slightly lager than 0. In

this case, the obtained {q̃opt(t)} can be used as a feasible

solution to problem (P2.1). Accordingly, by finding the

feasible power allocations at these locations, an optimal

solution of {q̃opt(t), P̃ opt
k (t)} to problem (P2.1) can

finally be obtained.

Complexity Analysis: The complexity of solving problem

(P2.1) includes solving dual problem (D2.1) and time sharing

problem (23). Similar to problem (P1.1), we can obtain that

the complexities of solving dual problem (D2.1) and linear

problem (23) are O(K3/ε22) and O(K2Ṽ (µopt)) [42], where ε2
denotes the accuracy of the search for problem (D2.1), Ṽ (µopt)

and K +1 are the numbers of variables and linear constraints

for problem (23), respectively. It is noticed that, when no

outage occurs, we need to add one more outer step (i.e.,

bisection searching over P ave
k ) to solve problem (P2.1), whose

complexity is O(log(1/ε3)), in which ε3 denotes the accuracy

of the bisection search. Therefore, the complexity of solving

problem (P2.1) is O((log(1/ε3))(K
3/ε22 +K2Ṽ (µopt))).

Example 2: For obtaining more insights, we consider the

special case with two GNs, where the setup is the same as

Example 1. Besides, we set γmin = 17 dB. Fig. 2(a) and

Fig. 2(b) show the optimal hovering locations with different

GNs’ distances being D = 80 m and D = 40 m, respectively.

When D = 80 m, the optimal hovering locations are observed

to be the same as those in Fig. 1(a) in Example 1; while

when D = 40 m, the UAV can hover at any point within the

desirable flight region to achieve non-outage communication

(i.e., O({q̃opt(t), P̃ opt
k (t)}) = 0). This is due to the fact that

when the GNs are close and have sufficient transmit power,

they can easily meet the minimum SNR requirement at the

UAV when the UAV is within the indicated region, as shown

in Fig. 2(b). Notice that in Fig. 2(b) we also show the hovering

location that leads to the highest SNR, which is observed to be

exactly the optimal hovering location in Fig. 1(b) in Example

1.

Table III shows the optimal power and hovering time dura-

tions in Fig. 2(a) with T = 10 s. It is observed that the system

is non-outage for 8.24 s and outage for 1.76 s. When the

system is non-outage, similar observation is shown as Example

1 and the optimal trajectory has the similar multi-location-

hovering structure as in Example 1. Noting that, though the

UAV’s optimal hovering locations are similar as in Example

1, the GNs’ power allocation in Example 2 is different. In

particular, the GNs need to focus more power at each optimal

hovering location to satisfy the SNR requirement. Therefore,

the GNs in Example 2 adopt an on-off power allocation and
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give up the transmission at some time, while the GNs in

Example 1 transmit continuously based on a water-filling-

like power allocation to balance the data-rate throughput over

time. Moreover, at the non-outage time in Fig. 2(a), the ratio

between the two GNs’ transmit powers at each optimized

hovering location is the same as that in Fig. 1(a) in Example

1; while in Fig. 2(b), the ratio between the two GNs’ transmit

powers at each optimized hovering location is non-unique in

general. Here, we set the power allocation the same as that in

Fig. 1(b) in Example 1, since such a power allocation leads to

the maximized SNR in both scenarios.

TABLE III
GNS’ TRANSMIT POWER AND HOVERING TIME ALLOCATIONS

Hovering duration τ̃0 = 1.76 s τ̃1 = 4.12 s τ̃2 = 4.12 s

GN 1’s transmit power 0 33.1 dBm 25.8 dBm

GN 2’s transmit power 0 25.8 dBm 33.1 dBm

B. Proposed Solution to Problem (P2) with Finite T

In this subsection, we consider problem (P2) in the general

case with finite T . Motivated by the optimal solution to

the relaxed problem (P2.1) in the previous subsection, we

propose an efficient solution based on the techniques of convex

optimization and SCA. Towards this end, we first discretize

the whole duration T into a finite number of Ñ time slots

denoted by the set Ñ , {1, ..., Ñ}, each with equal duration

δ̃ = T/Ñ . Accordingly, problem (P2) is re-expressed as

(P2.2) : min
{q[n]},{Pk[n]≥0}

Ñ
∑

n=1

1

(

SNR(q[n], {Pk[n]})
)

s.t.
1

Ñ

Ñ
∑

n=1

Pk[n] ≤ P ave
k , ∀k ∈ K (24a)

‖q[n]− q[n− 1]‖2 ≤ V 2
maxδ̃

2, ∀n ∈ Ñ (24b)

q[0] = qI, q[Ñ ] = qF. (24c)

Problem (P2.2) is still non-convex. To tackle this

issue, let ln(q[n], {Pk[n]}) = SNR(q[n], {Pk[n]}) −
γmin, ∀n ∈ Ñ and l({q[n], Pk[n]}) =
[l1(q[1], {Pk[1]}), . . . , lÑ(q[Ñ ], {Pk[Ñ ]})]. As a result,

problem (P2.2) is equivalently expressed as

(P2.3) : min
{q[n]},{Pk[n]≥0}

‖l({q[n]}, {Pk[n]})‖0

s.t. (24a), (24b), and (24c).

To handle the zero-norm function in problem (P2.3), we use

‖l({q[n]}, {Pk[n]})‖1 to approximate ‖l({q[n]}, {Pk[n]})‖0
[47]. Note that to reduce the outage probability with mini-

mized energy consumption, the received SNR of each time slot

should not be larger than γmin. Thus, we have the following

constraints: SNR(q[n], {Pk[n]}) ≤ γmin, ∀n ∈ Ñ . Similar as

in problem (P1.2), we introduce two sets of auxiliary variables

{ak[n]} and {Ak[n]}, k ∈ K, n ∈ Ñ , and problem (P2.3) is

approximated as

(P2.4) : max
{q[n]},{Pk[n]≥0},{A[n]},{ak[n]}

1

Ñ

Ñ
∑

n=1

A[n]/σ2

s.t. A[n] ≤
(

K
∑

k=1

ak[n]

)2

, ∀n ∈ Ñ (25a)

ak[n] ≤
√

Pk[n]β0
(‖q[n]− sk‖2 +H2)α/2

, ∀k ∈ K, n ∈ Ñ (25b)

A[n]/σ2 ≤ γmin, ∀n ∈ Ñ (25c)

(24a), (24b), and (24c).

Problem (P2.4) is still non-convex due to non-convex con-

straints in (25a) and (25b). Specifically, we solve problem

(P2.4) by optimizing the UAV trajectory and GNs’ power

allocation in an alternating manner via SCA techniques. By

applying the similar lower bounds in (16) and (17), we can

obtain an efficient solution, which is omitted for brevity. Let

{q∗[n]} and {P ∗
k [n]} denote the obtained trajectory and power

allocation, respectively.

Complexity Analysis: Similar to problem (P1.3), the com-

plexity of the proposed alternating optimization-based ap-

proach for solving problem (P2.4) includes the complexities

of solving the approximated power allocation sub-problem

and trajectory design sub-problem in an iterative manner,

denoted as sub-problem (P2.4.1) and sub-problem (P2.4.2),
respectively. Hence, the complexity of problem (P2.4) can

be represented as O(L′
alt(L

′
SCA1 + L′

SCA2)K
3.5Ñ3.5), where

L′
alt, L

′
SCA1, and L′

SCA2 are the iteration numbers of alter-

nating optimization for problem (P2.4), SCA for sub-problem

(P2.4.1), and SCA for sub-problem (P2.4.2), respectively.

Finally, we use an additional step to obtain the GNs’ power

allocation {Pk[n]} for problem (P2.2) under the obtained UAV

trajectory {q∗[n]}, for which the problem is given as

(P2.5) : min
{Pk[n]≥0}

Ñ
∑

n=1

1(SNR(q∗[n], {Pk[n]}))

s.t.
1

Ñ

Ñ
∑

n=1

Pk[n] ≤ P ave
k , ∀k ∈ K.

To solve problem (P2.5), we sort the time

slots based on the SNR {SNR(q∗[n], {P ∗
k [n]})},

i.e., SNR(q∗[π(1)], {P ∗
k [π(1)]}) ≥ · · · ≥

SNR(q∗[π(Ñ )], {P ∗
k [π(Ñ )]}), in which π(·) denotes the

permutation over Ñ . Then, we allocate the GNs’ transmit

power over a subset N ′ of time slots with the highest SNR

values, i.e., N ′ = {π(1), . . . , π(N ′)}, where N ′ is a variable

to be determined. To find N ′ and the corresponding power

allocation, we solve the following feasibility problem.

(P2.6) : find {Pk[n] ≥ 0}, ∀n ∈ N ′, k ∈ K
s.t. SNR(q∗[π(n)], {Pk[π(n)]}) ≥ γmin, ∀π(n) ∈ N ′ (26a)

1

N ′

N ′

∑

n=1

Pk[π(n)] ≤ P ave
k , ∀k ∈ K. (26b)
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Fig. 2. UAV’s optimal hovering locations with different GNs’ distances.

By letting ρ′k[n] =
√
Pk[n], problem (P2.6) can be trans-

formed into a convex form and thus be solved optimally via

CVX [42]. By solving problem (P2.6) under givenN ′ together

with a bisection search over Ñ , we can find a high-quality

solution to problem (P2.5). By combining this together with

{q∗[n]}, an efficient solution of N ′ and the corresponding

power allocation at GNs to problem (P2) is finally obtained.

In addition, in order to guarantee the performance of the

obtained solution to problem (P2), we adopt similar trajectory

designs presented in Remark 3.1, and choose the one with the

best performance as the initial point.

Since the problem formulations and solutions of the two

original problems are very similar, we summarize the similar-

ities and differences in Table IV as the following for the sake

of clarity.

V. NUMERICAL RESULTS

In the simulation, we consider the scenario with 10 GNs,

which are located at (20, 10) m, (30, 28) m, (46, 0) m,

(56, 24) m, (94, 168) m, (100, 200) m, (112, 176) m,

(162, 0) m, (178, 40) m, and (200, 6) m. We set β0 = −30
dB, σ2 = −60 dBm, K = 10, α = 2.8, Vmax = 40 m/s,

N = Ñ = 128, H = 50 m, qI = (0, 0) m, qF = (200, 200) m,

and γmin = 27.4 dB, unless otherwise stated.

For each scenario, we first show the system setup and

the obtained trajectories under given T . Next, we compare

the performance of our proposed design versus the following

scheme together with the three designs presented in Remark

3.1.

• Trajectory design only: In this scheme, the GNs use

the uniform power allocation and accordingly the UAV’s

trajectories are obtained by solving the trajectory opti-

mization problems in (P1.3) and (P2.4), respectively.

A. Rate Maximization in Delay-Tolerant Scenario

Fig. 3 shows the system setup and the obtained trajectories

for problem (P1) with T = 20 s. It is observed that there are

V = 3 optimal hovering locations for problem (P1.1).
Fig. 4 shows the average data-rate throughput of the sys-

tem versus the flight duration T , where P ave
k = 30 dBm,
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Fig. 3. System setup and the obtained trajectories with T = 20 s in the
delay-tolerant scenario.
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Fig. 4. Average data-rate throughput versus the flight duration T in the delay-
tolerant scenario.

∀k ∈ K. It is observed that the proposed design achieves

higher average data-rate throughput than the other benchmark

schemes. Furthermore, with sufficiently large T , the proposed
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TABLE IV
SIMILARITIES AND DIFFERENCES BETWEEN THE SOLUTIONS

Similarities

1) We first obtain the optimal solutions to the relaxed problems of (P1) and (P2) in the special case with infinite T to obtain key
engineering insights by solving the dual problems and time-sharing problems.
2) We propose an alternating-optimization-based algorithm to obtain efficient solutions to the original problems (P1) and (P2) under any
finite T , whose initial points are based on the optimal solutions under the special case.
3) At each iteration of the alternating optimization, we use the SCA approach to approximate the non-convex problems as convex
optimization problems.

Differences

1) As for problem (P1), the objective function of the alternating-optimization-based algorithm is the same as the original problem (P1).
Therefore, after the alternation, the efficient solution to problem (P1) is directly obtained.
2) As for problem (P2), before performing the alternating-optimization-based algorithm, we approximate the outage probability
minimization problem (P2) to the average SNR maximization problem (P2.4). After the alternation, we obtain an efficient trajectory
and then use a bisection method over the time slots according to the SNR order to find the power allocation for the GNs. Therefore, the
efficient solution to problem (P2) is finally obtained.
3) As for problem (P1), the GNs transmit their messages based on the water-filling-like power allocation over time. While for problem
(P2), the GNs adopt an on-off power allocation over time, where the GNs may remain silent in the outage status when the wireless
channels become bad, such that the transmit power can be reserved for non-outage transmission at other time instants.

design is observed to approach the performance upper bound

achieved by problem (P1.1) with the UAV’s flight speed

constraints ignored. The successive hover-and-fly trajectory

with power design is observed to perform close to the proposed

design, which shows the significance of the optimized hovering

locations.
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Fig. 5. Average data-rate throughput versus the GN’s maximum average
power constraint P ave in the delay-tolerant scenario.

Fig. 5 shows the average data-rate throughput of the system

versus the GN’s maximum average power P ave
k = P ave, ∀k ∈

K, where T = 20 s. It is observed that as P ave increases,

the average data-rate throughputs of all the methods increase.

Similar observations are made as in Fig. 4.

B. Outage Probability Minimization in Delay-Sensitive Sce-

nario

Fig. 6 shows the system setup and the obtained trajectories

with T = 20 s for problem (P2). The optimized hovering

locations are observed to be the same as those in Fig. 3 under

this setup, which is consistent with our analysis in Section IV.

The obtained trajectories are observed to be similar to those

in Fig. 3, with only a slight difference. However, the strategies

of the UAV’s time schedules and GNs’ power allocations

are much different for the two problems. For example, at

0 20 40 60 80 100 120 140 160 180 200
x (m)

0

20

40

60

80

100

120

140

160

180

200

y 
(m

) Initial location
Final location
Optimal hovering locations for (P2.1)
GN location
Proposed design trajectory
Successive hover-and-fly trajectory

Fig. 6. System setup and the obtained trajectories with T = 20 s in the
delay-sensitive scenario.

the proposed design trajectories, according to the simulation

results, the UAV hovers over the first optimal hovering location

for 4.38 s in Fig. 3, while for 4.69 s in Fig. 6. Moreover,

Table V shows the GNs’ transmit powers in dBm at the first

optimal hovering location of the two problems, which indicate

the different power allocation strategies.

Fig. 7 shows the outage probability of the system versus the

GN’s maximum average power P ave
k = P ave, ∀k ∈ K, where

T = 20 s. It is observed that when P ave is less than 31.3
dBm, the outage probability achieved by the trajectory design

only scheme is 1; while that achieved by other schemes is

less than 1. It is because that with the constant uniform power

allocation for the trajectory design only scheme, the received

SNR at the UAV only depends on the channel condition, i.e.,

the UAV trajectory. Hence, it is always outage until the average

power is up to 31.3 dBm, which meets the requirement of

the location with the best channel condition. Consequently,

there is a sharp decrease for the trajectory design only scheme.

This shows that power optimization is quite significant in this

case. It is also observed that the performance gap between

the proposed method and the upper bound increases as the

average power increases. This is intuitive, as the upper bound,

the UAV always hovers at the optimal locations to enjoy the

strong channel condition and achieve the best communication
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TABLE V
GNS’ TRANSMIT POWER AT THE FIRST OPTIMAL HOVERING LOCATION (dBm)

GN 1 GN 2 GN 3 GN 4 GN 5 GN 6 GN 7 GN 8 GN 9 GN 10

Fig. 3 34.0 33.9 33.7 33.2 19.0 17.7 17.5 22.8 21.0 21.3
Fig. 6 33.5 33.5 33.0 32.5 19.4 18.3 18.0 21.1 19.8 19.9
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Fig. 7. Outage probability versus the GN’s maximum average power
constraint P ave in the delay-sensitive scenario.

performance, while for the proposed method, the power is

prior to allocating to the time duration at the optimal locations

and then for the communication in the path connecting the op-

timal locations. Furthermore, it is observed that our proposed

design considerably outperforms other benchmark schemes in

all regions of transmit power, by jointly designing the UAV’s

trajectory and the GNs’ power allocation.
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Fig. 8. Outage probability versus the flight duration T in the delay-sensitive
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Fig. 8 shows the outage probability versus the flight duration

T , where P ave
k = 30 dBm, ∀k ∈ K. Notice that the trajectory

design only scheme always leads to the outage probability of

one, and therefore, this scheme is not shown in this figure.

It is observed that the proposed design achieves a lower

outage probability than other benchmark schemes. Further-

more, with sufficiently large T , the proposed design leads to

similar performance as the performance upper bound achieved

by problem (P2.1) with the UAV’s flight speed constraints

ignored.

VI. CONCLUSION

In this paper, we considered the UAV-enabled data collec-

tion from multiple GNs with distributed beamforming. We

maximized the average data-rate throughput and minimized

the transmission outage probability, by jointly optimizing the

UAV’s trajectory and the GNs’ power allocation over time. To

deal with these challenging problems, we first optimally solved

the relaxed problem without considering the UAV’s flight

speed constraints. The optimal solutions indicated that the

UAV should successively hover over the same location set for

both problems, but with different power allocation strategies.

Next, we used the techniques from convex optimization and

approximation to find the sub-optimal solutions to the general

problems. Finally, we conducted simulations to show the

effectiveness of our proposed design. As the space is limited,

there are still several important issues unaddressed in this

paper. These issues will be briefly discussed in the following

to motivate future work.

• When an imperfect location model is considered, our

proposed schemes are extendable by e.g., considering a

bounded location error model with a given estimation

error, which is generally handled by the robust optimiza-

tion techniques [5]. However, it is non-trivial to solve the

resultant robust optimization problem with the estimation

errors taken into account. Thus, we would like to leave

this interesting topic for our future work.

• Under mixed LoS and non-LoS cases (e.g., probabilistic

LoS models [37]), 3D trajectory design is beneficial

since there is a tradeoff between the link distance and

LoS probability. In particular, the higher altitude means

the longer link distance, but also leads to higher LoS

probability. Hence, it generally exists an optimal UAV

altitude. How to optimize the problems in 3D under

other channel models (e.g., probabilistic model) is another

interesting topic that requires further investigation.

• According to the estimation schemes in [40], the GNs

may only know imperfect channel state information (CSI)

due to the errors of channel estimation and channel

quantization. As a result, properly designing the CSI

acquisition under our setup to balance the acquisition

overhead and the CSI accuracy is a significant work. Fur-

thermore, how to optimize the distributed beamforming

under such imperfect CSI (e.g., via robust optimization

techniques [48]) is another issue that requires further

investigation.
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• In order to perform the distributed beamforming, we need

to synchronize the data in advance. However, due to the

random errors such as quantization noise and wireless

channel distortion, the data synchronization scheme is a

non-trivial task and beyond the scope of the paper, thus

deserving a dedicated study. Hence, we would like to

leave this interesting and important topic as our future

work.

• Finally, multiple UAVs and the received beamforming at

the multi-antenna UAVs, which are beneficial for reliable

and fast data collection, can be taken into consideration.

Nevertheless, there have been various practical issues to

be addressed. How to extend our proposed results in these

scenarios is a challenge future direction.
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