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Abstract

The deployment of federated learning in a wireless network, called federated edge learning (FEEL),

exploits low-latency access to distributed mobile data to efficiently train an AI model while preserving

data privacy. In this work, we study the spatial (i.e., spatially averaged) learning performance of FEEL

deployed in a large-scale cellular network with spatially random distributed devices. Both the schemes

of digital and analog transmission are considered, providing support of error-free uploading and over-

the-air aggregation of local model updates by devices. The derived spatial convergence rate for digital

transmission is found to be constrained by a limited number of active devices regardless of device density

and converges to the ground-true rate exponentially fast as the number grows. The population of active

devices depends on network parameters such as processing gain and signal-to-interference threshold for

decoding. On the other hand, the limit does not exist for uncoded analog transmission. In this case,

the spatial convergence rate is slowed down due to the direct exposure of signals to the perturbation

of inter-cell interference. Nevertheless, the effect diminishes when devices are dense as interference is

averaged out by aggressive over-the-air aggregation. In terms of learning latency (in second), analog

transmission is preferred to the digital scheme as the former dramatically reduces multi-access latency

by enabling simultaneous access.

I. INTRODUCTION

The availability of enormous data at edge devices motivate the deployment of machine-learning

algorithms at the network edge to distill the data into artificial intelligence (AI). The trained

AI models are expected to enable a wide range of next-generation mobile applications such

as autonomous driving and augmented reality. Fast growing relevant research has led to the
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emergence of a new area called edge learning [1], [2]. In this area, federated learning is perhaps

the most widely studied framework due to its feature of preserving data privacy by avoiding

their uploading. To this end, a model-training task is distributed over devices using the iterative

algorithm of stochastic-gradient descent (SGD) [3]. A main vein of research on edge learning

concerns efficient implementation of federated learning in wireless systems, call federated edge

learning (FEEL). In this work, we study the performance of FEEL in a large-scale cellular

network where inter-cell interference is present. The results help crystalizing the effects of

network parameters on the (model) convergence rate.

In the area of FEEL, recent years have seen the development of diversified approaches for

overcoming the communication bottleneck, which is caused by the uploading of high-dimensional

model updates from multiple devices to a server. One approach is efficient joint management of

communication-and-computation resources via designing scheduling and bandwidth allocation

to accelerate convergence [4]–[7]. From the theoretic perspective, researchers have attempted to

shed light on the fundamental question of how many devices are needed for providing a guarantee

on learning performance within a finite time duration [8]. An alternative approach is to realize

“over-the-air aggregation” of local model updates so as to support simultaneous access by many

devices [9], [10]. The core idea is to adopt analog transmission so as to exploit the waveform-

superposition property of a multi-access channel. The versatility and efficiency of over-the-air

aggregation has been improved by the development of numerous relevant techniques including

digital aggregation [11], gradient compression [10], power control [12], and beamforming [13].

Another approach is source compression. Some existing techniques exploit local-model sparsity

[14] or enable efficient model quanization [15].

In view of prior work, most results assume single-cell systems. The topic of deploying FEEL

in a large-scale network remains one largely unexplored. In this scenario, learning performance

is affected by inter-cell interference as well as network configurations. Recently, some initial

work has accounted for such an effect in designing device-scheduling schemes [16]. While

the work points to the important direction of FEEL networking, many fundamental questions

remain unanswered. In particular, a question of our interest is how the convergence depends on

the network parameters (i.e., device density, cell sizes, and coding rates), which parameterize

the interference distribution.

A standard approach of characterizing the effect of inter-cell interference on network perfor-

mance, which is also adopted in this work, is to model the randomly located network nodes
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(devices or base stations) as spatial point processes such as a Poisson point process (PPP) or its

derivatives [17]. Consequently, the interference power can be modelled as a shot-noise process,

referring to a sum over a PPP [18]. Then the study of network performance is reduced to the

equivalent analysis of the expected performance of a typical cell, which results from uniformly

sampling all cells, over the distributions of interference, channels, and nodes [17]. Such analysis

leverages a rich set of results from the stochastic-geometry theory [19]. The tractability brought

by the theory has motivated many researchers to use it as a tool to study the performance of a

wide range of wireless networks such as cellular networks (see e.g., [20]), cooperative networks

(see e.g., [21]), heterogeneous networks (see e.g., [22], [23]), and most recently unmanned

aerial vehicle networks [24]. Most existing work is based on the classic “communication-and-

computation separation” approach. To be specific, the considered networks aim at providing

generic radio-access services to users or sensors without concerning their applications. The

corresponding design objective is to ensure the required quality-of-service, network throughput

or coverage [17]. In contrast, the study of a FEEL network, referring to a network supporting

the FEEL application, should adopt a learning-related metric for network performance such

as the proposed metric of convergence rate in a typical cell, termed spatial convergence rate.

The corresponding network-performance analysis is differentiated from existing analysis in its

interplay of stochastic geometry and learning theories, which is a key feature of current analysis.

In this work, we consider a large-scale network with hexagonal cells and devices distributed

following a PPP. FEEL is deployed in a typical cell. For the reason, the corresponding model

convergence is termed spatial convergence. Uplink transmission by each device is based on

either digital or analog (over-the-air aggregation) transmission and protected against interference

using frequency-hopping spread spectrum (FHSS) following [25]. By analyzing the spatial

convergence rate, we quantify the effects of network parameters on the learning performance for

different transmission schemes and scenarios (i.e., low and high mobility). The key findings are

summarized as follows.

• Spatial convergence for digital transmission: The spatial convergence rate (in terms

of rounds) [26] is derived to quantify the deviation from the ground-true rate, which

corresponds to direct gradient descent on the loss function. The deviation results from

inter-cell interference and a random number of devices that succeed in transmission (i.e.,

a random data size), called successful devices. The key findings are as follows. First,

as the device density grows, the expected number of successful devices converges to a
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constant and thereby introduces a limit to the learning performance. The expected number

is proportional to the processing gain of spread spectrum, decreases with a growing signal-

to-interference (SIR) threshold for successful transmission, but is insensitive to variations

of cell sizes. Second, the mentioned rate deviation diminishes exponentially fast as the

expected number of successful devices increases. Last, channel-temporal diversity due to

high mobility increases the chance of a device to succeed in transmission and participate

in at least one round of the learning process, which increases the spatial-convergence rate.

• Spatial convergence for analog transmission: The distinctions of analog transmission is

its support of simultaneous access while directly exposing the received model update to

the perturbation by interference. The corresponding spatial convergence rate is derived by

applying results on the interference distribution from stochastic geometry to the convergence

analysis. The rate deviation from the ground truth reveals two conflicting effects of increas-

ing the devices density. On one hand, without outage, the expected number of active devices

participating in learning can grow unboundedly as the density increases. Consequently, more

training data lead to faster spatial convergence. On the other hand, increasing the device

density also causes the number of significant interferers to grow, which perturbs the SGD

process and slows down spatial convergence. As the first scaling law is faster than the

second, the net effect is found to be a higher spatial convergence rate when devices are

denser. This makes analog transmission a favourable choice over the digital counterpart in

a dense network.

• Learning Latency: Besides corroborating the above findings, experiments using a real

dataset are conducted to compare the learning latency (in second) of digital and analog

transmission. The latency of analog transmission is observed to be much lower than the

digital-transmission counterpart in both sparse and dense networks. The low-latency of

analog transmission in a sparse network results from more active devices (i.e., fewer rounds)

and that in a dense network from shorter per-round latency. The findings are aligned with

those for a single-cell system [9].

The remainder of this paper is organized as follows. Models and metrics are introduced

in Section II. Spatial convergence is analyzed with respect to (w.r.t.) for the cases of digital-

transmission and analog transmission in Sections III and IV, respectively. Experimental results

are presented in Section V, followed by concluding remarks in Section VI.
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II. MODELS AND METRICS

A. Network Topology Model

Adopting the classic model, the cellular network contains hexagonal cells as illustrated in

Fig. 1 [27]. Base stations, denoted as {Y } ⊂ R2, are placed at cell centers. Let C(Y,R) denote

a cell centered at Y and with a distance R from Y to its boundary. Randomly located edge

devices, denoted as {X} ⊂ R2, are randomly distributed on plane modeled as a homogeneous

PPP Φd = {X} with density λd. FEEL is performed in a typical cell chosen by uniform sampling

of all cells, denoted as C0 = C(Y0, R) with Y0 being the typical BS [17]. Devices in other cells

are interferers involved in other services or tasks. To facilitate analysis, the number of devices in

C0, namely |C0∩Φd|, can be lower bounded by K = |D0∩Φd|, where D0 represents the inscribed

disk of C0 with the radius R (see Fig. 1). For the K devices, their propagation distances to Y0

are independent and identically distributed (i.i.d.) with the following probability density function

(PDF):

fR(r) =
2r

R2
, 0 < r < R. (1)

Remark 1 (Extension to Random Cells). It is possible to extend the current results to the

case of random cells generated by BSs distributed as a Poisson point process instead of a

hexagonal lattice [20]. Similar to the current case, a random typical cell can be inner bounded

by a disk but is radius, R, is now random. Specifically, R has the distribution function of

fR(r) = 8πλsr exp(−4λsπr
2) [20]. The current analytical results hold conditioned on a given

R. Then taking their expectation with respect to the distribution of R yields the desired extension.

B. Federated Learning Model

The operations of FEEL is illustrated in Fig. 2 and described as follows. We consider the

specific implementation of FEEL where stochastic gradients are computed at devices using local

data and then transmitted to the server (co-located with the BS) for updating the global model

[3] (see Remark 2 for extension to alternative implementation). Each round of FEEL comprises

three phases: (1) global model updating and broadcasting, (2) local gradient computation, and

(3) local gradient uploading. The current analysis focuses on the last phase as it represents the

communication bottleneck of the FEEL system as discussed earlier. Let t(n)
cmm denote the duration

of the uploading phase in the typical cell in the n-th round. The requirement that all participating
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Fig. 1. The spatial model of a cellular network where FEEL is supported in a typical cell.

devices must finish their uploading within the duration before the global model can be updated

introduces the constraint of so called synchronized updates [28]. Under the constraint, t(n)
cmm is

a random variable depending on the random number of workers in the cell and their channel

states. In contrast, the broadcasting phase uses the whole spectrum and can be assumed to finish

within a given duration denoted as tbc. Moreover, the workers are assumed to have comparable

computation capacities, enabling them to complete local computation within a given duration

denoted as tcmp.

Let N denote the number of rounds needed for accomplishing the learning task, and A(n)

the number of devices that successfully upload their gradients in the n-th round. Let IX be an

indicator function of worker X with IX = 1 if transmission is successful or otherwise IX = 0.

Denote the device process in the n-th round as Φ
(n)
d . Then we can write A(n) =

∑
X∈C0∩Φ

(n)
d
IX .

Both the cases of high and low mobility are considered. In the case of high mobility, {Φ(n)
d } are

independent over different rounds and so are {A(n)}. In the case of low mobility, they are fixed

throughout the learning process: Φ
(1)
d = Φ

(2)
d = · · · = Φ

(N)
d and thus A(1) = A(2) = · · · = A(N).

In the current setting of supervised learning, let a labelled data sample be denoted as (u, y)

with u and y representing the data and label, respectively. The samples follow an unknown

probability distribution p(u, y). Let w denote the model or its parameters. Consider the loss

function f(w; u, y), which measures the discrepancy between predicted output from w using
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Fig. 2. The operations of FEEL in the typical cell.

the sample (u, y). The expected risk of the predictor w, known as the ground-true loss function,

is defined as [29]:

F (w) = E(u,y)∼p(u,y)[f(w; u, y)]. (2)

Since the data distribution p(u, y) is unknown, it is impossible to find the ideal model w∗ =

arg minw F (w). FEEL is a distributed training algorithm for finding an approximate of the ideal

model, which is described as follows.

To this end, some notation is introduced. The local dataset of device X is denoted as DX
comprising samples that are drawn i.i.d. from p(u, y). Then the local loss function is defined in

terms of the empirical risk as [11]:

F
(n)
X (w(n)) =

1

|DX |
∑

(u,y)∈DX

f(w(n); u, y). (3)

For convenience, we assume a uniform size for local datasets, i.e., |DX | ≡ D, ∀X . The learning

task of the typical cell is specified by the tuple {F0, F
∗, f}, where f is the mentioned per-sample

loss function, F0 , F (w(0)) denotes the value of the ground-true loss function F at the initial

model w(0), and F ∗ is the global minimum of F .

The distributed SGD algorithm underpinning FEEL is described as follows (see e.g., [30]).

Consider the n-th round, each device uses its local dataset DX and the model broadcast by the

BS, w(n), to compute the gradient of the local loss function F (n)
X (w(n)), called a local gradient
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and denoted as g̃(n)
X = ∇F (n)

X (w(n)). The local gradients are transmitted to the BS for averaging,

yielding the following global gradient estimate (of that of the ground-true loss function):

ḡ
(n)
0 =


1

A(n)

∑
X∈C0∩Φ

(n)
d

g̃
(n)
X , A(n) > 1,

0, A(n) = 0.

(4)

It is applied to updating the global model based on gradient descent:

w(n+1) = w(n) − µḡ(n)
0 , (5)

where the step size µ is called the learning rate. Last, the BS broadcasts the updated model to

all devices, completing one round. The rounds are repeated till the model converges.

Remark 2 (Extension to Local-model Uploading). The current analysis can be extended to

the alternative FEEL implementation with local-model uploading by accounting for multi-round

local-gradient descent [3]. First, in each round, the local model at device X is updated via

w̃
(n+1)
X = w

(n)
X −µg̃

(n)
X ; then w̃X

(n+1) is transmitted to the server for updating the global model:

w
(n+1)
X = 1

A(n)

∑
X∈C0∩Φ

(n)
d
w̃

(n+1)
X . The analysis can be modified accordingly and the modification

is straightforward and does not change the findings.

For tractable convergence analysis, a set of assumptions commonly made in the literature (see

e.g., [26]) are also adopted in this work.

Assumption 1. (Lower Bound) The ground-true loss function F (w) is lower bounded, namely

F (w) ≥ F ∗ for some constant F ∗.

Assumption 2. (Smoothness) Let S denote the model dimension and hence we can write the

parameter vector as w = [w1, w2, ..., wS]T . The ground-true loss function F (w) is assumed

smooth. Mathematically, for the loss function evaluated at w, we assume there exist a non-

negative constant vector L := [L1, L2, ..., LS]T , the gradient of the ground-true loss function

F (w), ∇F (w), satisfies the following

∣∣F (β)− [F (w) +∇F (w)T (β −w)])
∣∣ ≤ 1

2

S∑
i=1

Li(βi − wi)2, ∀w,β. (6)

Define the L2 Lipschitz constant L0 as L0 := ‖L‖∞ = maxi Li.
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Assumption 3. (Variance Bound) The stochastic gradient (or local gradient estimate) g̃X at an

arbitrary device, say X , is an unbiased estimation of ground-true loss function and has a bounded

variance:

E[g̃X ] = ∇F and E
[
||g̃X −∇F ||2

]
≤ σ2, (7)

where σ2 is a given constant.

C. Uplink Transmission Models

The cellular network is assumed to be interference-limited, where channel noise is negligible.

All BSs and devices are equipped with single antennas. The transmission power of a device

in the typical cell depends on the specific transmission schemes as elaborated in the sequel.

For simplicity, all interfering devices are assumed to fix their power as P . FHSS is adopted to

regulate inter-cell interference [31]. Specifically, the total uplink bandwidth B is divided into

M sub-carriers; each device randomly chooses one sub-carrier for transmission in each round

and its choices over rounds are independent. As a result, the devices occupying an arbitrary

sub-carrier, say sub-carrier m, is obtained from Φd by thinning and thus also a PPP but with

density λd/M , denoted as Φ̂d,m. The transmission by an arbitrary device, X , is received at the

typical BS with the power GX |X − Y0|−α where the coefficient GX = exp(1) models Rayleigh

fading and α denotes the path-loss exponent. All fading coefficients are assumed independent.

We consider two transmission schemes for devices in the typical cell. They are described as

follows.

1) Digital Transmission: For digital transmission, each coefficient of the local gradient at

each device is quantized into a sufficiently large number of bits, denoted as D, such that the

effect of quantization errors on learning performance is negligible. Then the quantized gradient

is encoded and transmitted at the fixed rate B
M

log(1 + θ) with θ being a chosen constant. The

fixed rate yields constant communication latency per round given as

tcmm =
SDM

B log(1 + θ)
. (8)

To cope with both intra-cell and inter-cell interference, all devices make independent choices

of their hopping patterns, each of which refers to a sequence of choices of sub-carriers over

rounds. Moreover, the transmission power of devices are assumed to be fixed and identical to
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that of interferers. Considering the n-th round, the receive SIR for transmission by an arbitrary

device in the typical cell, denoted as X0, over a chosen subcarrier, say m, can be written as:

SIR
(n)
X0

=
GX0|X0|−α∑

X∈Φ̂
(n)
d,m\{X0}

GX |X|−α
. (9)

If the SIR exceeds the threshold θ, the uploaded gradient can be decoded correctly or otherwise

an outage event occurs, resulting in the device being successful or inactive, respectively [32].

Let A(n) denote the set of active (or successful) devices in the typical cell in the n-th round:

A(n) = {X ∈ Φ
(n)
d ∩ C0|SIR

(n)
X > θ}. (10)

Then A(n) = |A(n)|.

2) Analog Transmission: In each round, all devices in the typical cell transmit their local

gradients using linear analog modulation without coding and over the same sub-carrier to perform

over-the-air aggregation [28]. In other words, their hopping patterns are identical but independent

of those of interferers. Following the model in [28], assuming i.i.d. data over devices, the

distribution of the local-coefficients at each device is assumed to have the mean and variance,

denoted as ν and σ̃2, respectively, which are identical for all devices and known by them. To

facilitate power control, a local-gradient vector at each device, say X , is normalized before

transmission to have zero mean and unit variance, i.e., s
(n)
X =

g̃
(n)
X −ν
σ̃

. Then the normalized

vector is analog modulated and transmitted as
√
PXs

(n)
X , where PX denotes the transmission

power. Next, for the typical BS to receive a desired average of uploaded local gradients, their

corresponding received signals must have aligned in magnitude, called magnitude alignment [28].

To this end, power control based on truncated channel inversion is applied to suppress channel

fading [33]:

PX =


η

GX |X|−α
, GX > gth,

0, otherwise,
(11)

where η is the magnitude scaling factor of the received signal and gth is a channel truncation

threshold chosen to avoid exceeding an average power budget, denoted as P̄ = E[PX ]. For fair

performance comparison with digital transmission, we set the average transmission power to be

P̄ = P or equivalently E[PX ] = P .

The two constants η and gth are set such that the constraint of average transmission power can

be satisfied [11], [33]. The reason for not factoring path loss into channel truncation is similar
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to that for proportional fairness with the “fairness” measure modified as data diversity in the

current context. In other words, preventing devices with high path loss from transmission would

fail to exploit data distributed at the cell edge for learning, and thus scarifies data diversity;

small-scale fading based truncation in (11) avoids such an issue. By reuse of notation, let A(n)

re-denotes the set of devices whose channels are not truncated in n-th round:

A(n) = {X ∈ Φ
(n)
d ∩ C0|GX > gth}. (12)

Then A(n) = |A(n)| is the number of active devices in the n-th round.

Given analog transmission, the received aggregated signal vector at the typical BS is

y0 =
∑

X∈A(n)

√
PXGX |X|−

α
2 s

(n)
X + I0, (13)

where I0 is the interference given as

I0 =
∑

X′∈Φ̂
(n)
d,m∩C̄0

√
PGX′|X ′|−

α
2 s

(n)
X′ . (14)

At the typical BS, the desired estimation of the aggregated gradient is obtained by the following

de-normalization of the received signal [11], [33]:

ḡ
(n)
0 =

σ̃

A(n)
√
η
y0 + ν

=
1

A(n)

∑
X∈A(n)

g̃
(n)
X +

I0σ̃

A(n)
√
η
. (15)

Since the symbol duration is Ts = M
B

, the per-round latency for the analog transmission is

tcmm =
SM

B
. (16)

D. Learning Performance Metrics

Two metrics for measuring the performance of FEEL in a spatial network are defined as

follows. The first is the spatial convergence criterion. Consider FEEL in a specific cell centered

at a fixed location y ∈ R2. Given N rounds, let J (N) denotes the index set of rounds with a non-

empty cell and the number of effective rounds Ne = |J (N)|. A convergence criterion widely

adopted in the FEEL literature (see e.g., [26]) is determined by the expectation of averaged-

gradient norm over rounds:

ḡ0(N) = E

 1

Ne

∑
n∈J (N)

∥∥∇F (w(n))
∥∥2

∣∣∣∣∣∣Ne > 1

 6 ε0, (17)
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where ε0 is a given constant. Note that the expectation in (17) is taken over the distribution of

descent trajectories. Since the typical cell C0 results from uniform sampling of all cells, there

exists a probability that the learning in the cell fails to meet the convergence criterion in (17):

Pr (ḡ0(N) > ε0). The spatial convergence criterion is defined as one that the network can support

model training within N rounds with a high probability, (1− δ). Mathematically,

Pr (ḡ0(N) > ε0) 6 δ. (18)

It is worth mentioning that if FEEL is performed in all cells, the probability in (18) can be

interpreted as the percentage of cells where learning fails to be completed in time.

The next performance metric is expected learning latency defined as the expected time duration

(in second) required for learning in the typical cell to meet the spatial convergence criterion in

(18). Let N? denote the smallest number of rounds for meeting the criterion. The expected

learning latency is the expected sum of computation-and-communication latency over N rounds:

T̄Σ = E

[
N?∑
n

t(n)
cmm

]
+N?(tcmp + tbc). (19)

III. SPATIAL CONVERGENCE FOR THE DIGITAL-TRANSMISSION CASE

In this section, we consider the digital-transmission case and study the effects of network

parameters on the spatial learning performance. To this end, we derive a sufficient condition for

meeting the spatial convergence criterion and analyze the corresponding bound on the minimum

expected learning latency. Both the cases of high and low mobility are considered.

A. Spatial Convergence Analysis with Low-Mobility

Consider FEEL in the typical cell with low mobility. For tractability, the analysis in this section

focuses on the case where only the subset of devices lying in the inscribed circle of the cell

[see Fig. 1 (a)], D0, upload local gradients while other devices are silent. As it reduces training

data, the corresponding convergence rate lower bounds the counterpart involving all devices.

First, we derive the distribution of the number of active (successful) devices in D0. To this

end, define the success probability, denoted as ps, as the probability that an arbitrary device in

D0 succeeds in transmission. Mathematically,

ps = EX [Pr(SIR
(n)
X > θ|X ∈ D0)], (20)
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where SIR
(n)
X is given in (9). Using the well-known Laplace-transform method (see e.g., [34]),

the probability can be obtained as shown in the following lemma.

Lemma 1 (Success Probability [34]). The success probability of a typical device in the disc

cell D0 is given as

ps =
1− exp(−aR2)

aR2
, (21)

where

a =
2πλdB

(
2
α
, 1− 2

α

)
αM

θ
2
α , (22)

with B(x, y) being the beta function: B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

Let MX denote an indicator whether device X is successful or not, i.e., MX = I(SIRX > θ).

Thereby, the success devices form a marked PPP represented by Φ̃d = {X,MX}. By applying

the theorem of marked PPP, the density of Φ̃d is obtained as λdps [18]. Let K denote the number

of successful devices in D0 .

Lemma 2 (Distribution of the Number of Successful Devices). The distribution of the number

of successful devices, K, is given as

Pr(K = j) =
exp

(
−K̄

) (
K̄
)j

j!
, (23)

with the mean

K̄ = πλdR
2ps =

αM(1− e−aR2
)

2B
(

2
α
, 1− 2

α

)
θ

2
α

, (24)

and a is given in (22).

Remark 3 (Finite Active Devices). It should be emphasized that as the device density λd

grows, the expected number of successful devices, K̄, does not diverge since ps decreases due

to stronger interference according to Lemma 2. As a result, K̄ converges to a constant:

K̄ → αM

2B
(

2
α
, 1− 2

α

)
θ

2
α

, λd →∞. (25)

In FEEL, increasing the number of successful devices has the effect of increasing the batch-

size of training data. This reduces the variance of the global gradient estimate. Given Assumption

3, it is straightforward to quantify the reduction as shown in the following lemma.
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Lemma 3. In the typical cell, the number of successful devices in the n-th round, K(n), reduces

the variance of the global gradient estimate as follows:

E

∥∥∥∥∥∥ 1

K(n)

∑
X∈K(n)

g̃
(n)
X −∇F (w(n))

∥∥∥∥∥∥
2 6

σ2

K(n)
. (26)

In low-mobility case, the number of successful devices in D0 is fixed throughout the learning

process: K(1) = K(2) = · · · = K(N) = K. Note that K is a random variable since the typical cell

is a random process. With K fixed for a particular typical-cell realization, the model converge has

been analyzed extensively in the literature. Specifically, the following result on the convergence

rate can be derived using the method in [26].

Lemma 4 (Fixed-Cell Convergence with Digital Transmission and Low-mobility [26]). Consider

the case with digital transmission and low mobility. With K fixed, and given the learning rate

µ = 1
L0

√
N

, the expected averaged-gradient norm is bounded as follows:

ḡ0(K,N) 6
1√
N

[
(F0 − F ∗) +

σ2

K

]
, K > 0. (27)

Since K is a random variable, so is the averaged gradient norm. To facilitate spatial conver-

gence analysis, we apply the Markov inequality to upper bound the norm as

Pr (ḡ0(K,N) > ε0) = Pr (ḡ0(K,N) > ε0 | K > 0) (1− pnull) + pnull

≤ E[ḡ0(K,N) | K > 0]

ε0

(1− pnull) + pnull,

where the void probability pnull = Pr(K = 0). It follows from Lemma 2 that pnull = e−K̄ .

By setting the above upper bound equal to δ, a sufficient condition for meeting the spatial

convergence criteria in (18) is

E[ḡ0(K,N) | K > 0] 6
(δ − pnull)ε0

1− pnull
. (28)

Consider a typical non-empty cell from uniformly sampling the set of non-empty cells. Then

the spatial convergence rate of FEEL as measured using the metric E[ḡ0(K,N) | K > 0] can be

obtained as shown in the following theorem.

Theorem 1 (Spatial Convergence with Digital Transmission and Low-mobility). In this case,

given the learning rate µ = 1
L0

√
N

, the expected averaged-gradient norm of a typical non-empty

cell is bounded as follows:

E[ḡ0(K,N) | K > 0] 6
1√
N

[
(F0 − F ∗) +

σ2e−K̄

1− e−K̄
(
Ei(K̄)− log K̄ − γ

)]
, (29)
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where K̄ is the expected number of active devices in (24), the exponential integral Ei(x) =∫ x
−∞

exp(t)
t
dt and γ represents the Euler’s Constant (≈ 0.5772...).

Proof. See Appendix A.

At the right-hand side of (29), the first term, namely (F0 − F ∗), represents gradient descent

along a path defined by the ground-true gradients. On the other hand, the second term that is

a function of K̄ reflects the effect of inaccurate distributed gradient estimation. Its dependance

on K̄ is discussed as follows. According to Remark 3, in a network with dense devices, K̄ is

independent of the device density but proportional to Mθ−
2
α . Using the result, it follows from

Theorem 1 that the deviation of convergence rate from the ideal one can be approximated as

E[ḡ0(K,N) | K > 0]− F0 − F ∗√
N

≈ c1σ
2

√
N

exp

(
−c2M

θ
2
α

)
, (30)

where c1 and c2 are constants. One can observe that the loss in convergence rate due to distributed

gradient estimation decays at an exponential rate when either the number of sub-channels, M ,

or the SIR-threshold function θ−
2
α increases. The gain of the former arises from interference

suppression using FHSS and that of the latter from the reduction of outage probability as θ

reduces, both of which contribute to the growth of the number of successful devices.

It should be emphasized that the above gains of convergence rate (in round) is at the cost of

increased per-round latency (in second). The learning latency is discussed as follows.

Remark 4 (Learning Latency). For ease of notation, define the constant ε = (δ−pnull)ε0
1−pnull

. Based

on the result in Theorem 1, to meet the spatial-convergence criterion in (18), the expectation of

the required number of round, denoted as Nmin, is upper bounded as

E[Nmin] ≤ 1

ε2

[
(F0 − F ∗) +

σ2e−K̄

1− e−K̄
(
Ei(K̄)− log K̄ − γ

)]2

. (31)

Then the expected learning latency defined in (19) is given as

T̄Σ = E[Nmin] ·
(

SDM

B log(1 + θ)
+ tcmp + tbc

)
︸ ︷︷ ︸

Per-round latency

. (32)

where tcmp and tbc are recalled to be constant latency for computation and broadcasting, respec-

tively. The dependence of learning latency on network parameters are described as follows.

• (SIR Threshold) Increasing the SIR threshold θ is found to have two opposite effects. On

one hand, a larger θ reduces the number of active devices and increases the null probability
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pnull. This causes the increase of the required rounds for spatial convergence. On the other

hand, increasing θ leads to a higher data rate and hence lower per-round latency. These

effects give rise to the need optimizing θ for minimizing the learning latency as further

illustrated by experimental results in the sequel.

• (Device Density) One can observe from (31) and (32) that the device density λd (or the

expected number of active devices K̄) affects only the expected number of rounds but not

the per-round latency. As λd (or K̄) increasing, the expected number of rounds converges

to the minimum.

• (Processing Gain) Increasing the processing gain of FHSS, M , reduces the number of

required rounds (via increasing the number of active devices) but linearly increases the per-

round latency. When there is a sufficiently large number of active devices (i.e., sufficient

exploited data), it is desirable to rein in the second effect by keeping M small.

B. Spatial Convergence Analysis with High Mobility

In this sub-section, we show that high mobility increases the spatial convergence rate as well

as reduces the learning latency. In this case, the typical-cell realization changes independently

over rounds. Consequently, an empty cell in one round can be non-empty in another. In contrast,

the realization is fixed throughout the learning process in the case of low mobility. Therefore, for

FEEL to be feasible, the typical cell in the current case should uniformly sample those cells that

are non-empty in at least one of N round, i.e., Ne > 0. For the consistency with digital case and

tractability, it is also necessary to choose a suitable learning rate as µ = 1
L0

√
E
[

1
Ne

∣∣∣Ne > 1
]
.

Then the spatial convergence rate is derived as follows.

Theorem 2 (Spatial Convergence with Digital Transmission and High-mobility). In this case,

given the learning rate µ = 1
L0

√
E
[

1
Ne

∣∣∣Ne > 1
]

and small pnull, the expected averaged-gradient

norm of the typical cell that is non-empty in at least one round is bounded as follows:

E[ḡ0(N) | Ne > 1] 6
√

1
N

+ pnull
N−1

[
(F0 − F ∗) + σ2e−K̄

1−e−K̄
(
Ei(K̄)− log K̄ − γ

)]
+O(p2

null),(33)

where K̄ is defined in (24) and Ei(·) and γ follow those in Theorem 1.

Proof. See Appendix B.

Comparing Theorems 1 and 2, when pnull is small, one can conclude that high mobility slightly

reduces the spatial convergence rate, which is averaged over non-empty cells, approximately by
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the factor of
√

1 + pnull. However, it should be emphasized that the percentage of non-empty

cells in the case of high mobility is larger that that in the case of low mobility, namely (1−pNnull)

versus (1− pnull). If all cells are considered, the opposite conclusion can be drawn based on the

following learning-latency analysis.

To this end, the above result is applied to analyzing the learning latency in the case of high-

mobility. Similar to (28), a sufficient condition for meeting the spatial convergence criterion in

(18) is obtained as

E[ḡ0(N) | Ne > 1] 6
(δ − pNnull)ε0

1− pNnull
. (34)

Using the condition, the learning latency is analzyed and compared with that in the case of low

mobility as discussed in Remark 5.

Remark 5 (Learning Latency Comparison). For convenience, define the constant ε′ = (δ−pNnull)ε0
1−pNnull

.

Let N ′min and T̄ ′Σ denote the required number of rounds and learning latency under the sufficient

convergence conditions in (34). Then they can be derived using Theorem 2. Using the result

and Remark 4, since per-round latency is identical for both the cases of low and high mobility,

the ratio of corresponding expected latency is equal that of the expected numbers of required

rounds:

T̄ ′Σ
T̄Σ

=
E[N ′min]

E[Nmin]
≈ ε2

√
1 + pnull

(ε′)2

≈ 1−
(

2

δ
− 5

2

)
pnull, pnull → 0.

As suggested by the result, if δ is small, the learning latency (in second) with high mobility

is slightly smaller than the low-mobility counterpart despite low-mobility having a faster con-

vergence rate (in round) in non-empty cells. The reason is that in the former case, more cells

are able to support FEEL and hence a more relaxed spatial convergence criterion. Note that the

above analysis is based on approximation and bounds. Therefore, the actual quantification may

not be accurate despite yielding the correct conclusion. More significant latency reduction due

to high mobility is observed from experimental results in the sequel.

IV. SPATIAL CONVERGENCE FOR THE ANALOG-TRANSMISSION CASE

In the preceding section, spatial convergence of the FEEL is studied for the digital-transmission

case. In this section, it is analyzed for the analog-transmission case that enables low-latency over-

the-air aggregation. We assume low mobility. The extension of the results to the case of high
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mobility is similar to that in the preceding section. As it yields no new insight, the details are

omitted for brevity. By reuse of notation, identical symbols as used in the preceding section are

also used to to denote their counterparts in the current case whenever there is no confusion.

First, the distinction of the current case is the direct exposure of the received signal, namely

over-the-air aggregated gradient, to inter-cell interference. The effect can be expressed mathe-

matically by deriving the deviation of the aggregated gradient from the ground truth as follows.

From (15), the expectation of aggregated gradient is an unbiased estimate of the ground truth:

E
[
ḡ

(n)
0

]
= E

[
I

(n)
0 σ̃

K
√
η

+
1

K

∑
X∈K

g̃
(n)
X

]
= ∇F (w(n)), (35)

and its variance can be written as:

E
[
||ḡ(n)

0 −∇F (w(n))||2
]

= E

∥∥∥∥∥ I
(n)
0 σ̃

K
√
η

+

(
1

K

∑
X∈K

g̃
(n)
X −∇F (w(n))

)∥∥∥∥∥
2


6
σ̃2(I

(n)
0 )2

ηK2
+
σ2

K
, (36)

where K is the number of active devices in the inscribed cell, D0, of the typical cell. Given (35)

and (36), a similar result as in Lemma 4 can be obtained as follows.

Lemma 5 (Fixed-Cell Convergence with Analog Transmission and Low-mobility). In this case,

consider a fixed cell with a given number of active devices, K, and the learning rate µ = 1
L0

√
N

,

the expected averaged-gradient norm is bounded as follows:

ḡ0(K,N) 6
1√
N

(
(F0 − F ∗) +

σ2

K
+

σ̃2

K2ηN

N−1∑
n=0

(I
(n)
0 )2

)
. (37)

Accounting for the random distribution of K, the spatial-and-round averaged gradient norm

follows from Lemma 5 as

E[ḡ0(K,N) | K > 0] 6
1√
N

(
F0 − F ∗ + σ2E

[
1

K

∣∣∣∣K > 0

]
+
σ̃2

η
E

[
(I

(n)
0 )2

K2

∣∣∣∣∣K > 0

])
. (38)

Next, to derive a closed-form expression for the above upper bound, it is necessary to analyze

the distribution of K as follows. In the digital-transmission case, a device is activated based on

the criterion of successful transmission. In the current case, given truncated channel inversion in

(11), the criterion is for the device’s fading gain to meet the truncation threshold. This results

in the activation probability given as pa , Pr(GX > gth) = e−gth . It follows that

Pr(K = j) =
exp

(
−K̄ ′

) (
K̄ ′
)j

j!
, (39)
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where K̄ ′ = πR2λdpa is the expected number of active devices in the typical disk cell, D0.

Using (38) and (39), we derive the main result of this section as follows.

Theorem 3 (Spatial Convergence with Analog Transmission and Low-mobility). In this case,

given the learning rate µ = 1
L0

√
N

, the expected averaged-gradient norm of a typical non-empty

cell is bounded as follows:

E[ḡ0(K,N) | K > 0] 6
1√
N

[
(F0 − F ∗) + σ2φ+

16σ̃2(−Ei(−gth))

pa(α2 − 4)M

(
φ− K̄ ′e−K̄

′

1− e−K̄′

)]
, (40)

with

φ = E

[
1

K

∣∣∣∣K > 0

]
=

e−K̄
′

1− e−K̄′
[
Ei(K̄ ′)− log(K̄ ′)− γ

]
, (41)

where the expected number of active devices K̄ ′ = πR2λdpa, the exponential integral Ei and

Euler’s Constant γ follow those in Theorem 1, and the term (−Ei(−gth)) is positive.

Proof. See Appendix C.

The second term on the right-hand side of (40), σ2φ, represents the error of distributed gradient

estimation and is observed to have the same form as its counterpart for the digital-transmission

case in Theorem 1 but with K̄ replaced by K̄ ′. Due to the different scalings of K̄ and K̄ ′ w.r.t.

the device density λd, there is an important difference between the two cases. Specifically, as the

density λd increases, the term for the case of analog transmission diminishes at an exponential

rate while its digital-transmission counterpart converges to a constant according to (25). This

results in different accuracies of distributed gradient estimation. On the other hand, analog

transmission exposes learning to the effect of inter-cell interference as represented by the last

term in (40). Though higher density will cause larger interference, one can observe that this term

also decays at an exponential rate as λd grows. The fundamental reason is that more devices are

involved with the increasing density and the interference can be effectively suppressed by gradient

aggregation. Combining the above discussion suggests that analog transmission is preferred to

digital transmission in a network with dense devices as also corroborated by experimental results.

Next, we compare the relative effects of interference and distributed-data induced gradient

deviations from the ground truth. To this end, we consider the following ratio between the last

two terms of (40), called interference effect:

Interference induced deviation
Data induced deviation

=
16σ̃2(−Ei(−gth))

σ2pa(α2 − 4)M
·
(

1− K̄ ′

Ei(K̄ ′)− log(K̄ ′)− γ

)
. (42)
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The dependence of interference effect on different network parameters is discussed as follows.

• (Device-density/cell-size) Increasing the device density or cell size both lead to linear

growth of the expected number of devices, K̄ ′. This reduces the interference effect in

two aspects. One is the suppression of interference by more aggressively averaging via

over-the-air aggregation. The other is larger path-loss for interference signals received at

the BS. Mathematically, the interference reduction by increasing the cell size is reflected

in the last term on the right hand side of (42),
(

1− K̄′

Ei(K̄′)−log(K̄′)−γ

)
, being a decreasing

function of K̄ ′.

• (Path-loss exponent) The interference effect is observed to diminish as the path-loss exponent

α increases, which reduces inter-cell interference by reducing spatial coupling between cells.

• (Processing gain) The interference effect is inversely proportional to the processing gain

of FHSS, M . Though the increase of M seems to accelerate learning (in terms of rounds),

it increases per-round latency (in second) as the effective transmission bandwidth, namely

B/M , reduces. See more discussion in the sequel.

• (Channel truncation threshold) The interference effect decreases as a decreasing threshold

causes the activation probability to grow. This holds only in the considered interference-

limited regime. Reducing the threshold may not be desired in the noise-limited regime as it

can cause devices with weak channels to participate in learning, amplifying the noise effect.

Similar to the analysis shown in the digital case, given the spatial convergence target δ and

the null probability pnull, a sufficient condition for meeting the spatial convergence criterion in

(18) is obtained as

E[ḡ0(K,N) | K > 0] 6
(δ − pnull)ε0

1− pnull
. (43)

Remark 6 (Learning Latency). Under the sufficient condition in (43), the expected minimum

number of rounds, denoted as E[Nmin], has no simple form but can be upper bounded by the

ratio between the upper bound on the averaged-gradient norm in Theorem 3 and the constant

ε = (δ−pnull)ε0
1−pnull

. The expected learning latency can be written as

T̄Σ = E[Nmin] ·
(
SM

B
+ tcmp + tbc

)
︸ ︷︷ ︸

Per-round latency

, (44)

where tcmp and tbc are recalled to be constant computation and broadcasting latency, respectively.

One key observation is that increasing the processing gain M increases per-round latency but
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reduces the expected number of rounds as mentioned earlier. This suggests the need of optimizing

M for latency minimization.

V. EXPERIMENTAL RESULTS

A. Experimental Settings

The experimental settings are as follows unless specified otherwise. Consider a cellular network

in a 50× 50 (unit area) horizontal area. Each hexagon cell’s radius is 1 (unit length). FEEL is

deployed in the cell located at the centre of the area. The path-loss exponent is set as α = 4, and

total bandwidth is B = 1 MHz. In the digital-transmission case, we assume that each coefficient

of a transmitted gradient is quantized into 16 bits; in the analog-transmission case, each coefficient

is mapped to a symbol. Transmission power in digital case is given by P = 1 for all the edge

devices, while in the analog case, η and gth are set to satisfy the average power constraint

E[PX ] = P . The constant computing-and-broadcasting latency is assumed negligible in our

experiments. Let each sample path be a sequence of typical-cell realizations over rounds. Then

each result on spatially averaged learning performance (i.e., test accuracy or learning latency) is

computed as the average of 10 sample paths to account for spatial network distribution.

The learning task is to perform the handwritten-digit recognition using the well-known MNIST

dataset. There are total 60, 000 labeled training data samples in this dataset, each edge device

is assigned 200 samples by randomly sampling the dataset. The classifier model is implemented

using a 6-layer convolutional neural network (CNN) that consists of two 5×5 convolution layers

with ReLu activation, each followed by 2 × 2 max pooling, a fully-connected layer with 512

units, ReLu activation, and a final softmax output layer.

B. Effect of Device Mobility

Consider the case of digital transmission. The curves of spatially averaged test accuracy versus

the number of rounds are plotted in Fig. 3 for both the cases of low and high mobility. Overall, one

can observe that convergence rate with high mobility is faster than the low-mobility counterpart,

which is aligned with the theoretic analysis. In particular, when devices are sparse (i.e., λd = 1),

the test accuracy with low mobility (0.9) is substantially lower than that with high mobility

(> 0.95). The reason is that the data size and diversity are both insufficient, which, however,

can be effectively overcome by mobility. The benefit of mobility in terms of convergence rate
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Fig. 3. The spatially averaged test accuracy versus the number of communication rounds for both the cases of digital transmission

with low and high mobility and a varying device density λd.

can also be observed even for a higher density, i.e., λd = 5. The difference attributed to mobility

diminishes when the density is sufficiently high (λd = 10).

C. Effects of Network Parameters

Consider the case of digital transmission. The effects of network parameters, namely the

device density, SIR threshold, and processing gain, on learning latency are demonstrated in Fig.

4. The curves of spatially averaged learning latency versus network parameters are plotted for

achieving the target spatially averaged test accuracy of 95%. Several observations can be made.

First, one can observe from Fig. 4(a) that the learning latency decreases and then saturates as

λd increases. The first part corresponds to the data-limited regime where increasing the density

of devices contributes more training data and thereby reducing the needed number of rounds.

The second part corresponds to the data-sufficient regime where more devices no longer yield

an increase of the convergence rate. Second, it can be observed from Fig. 4(b) that the latency

first decreases and then increases as the SIR threshold θ grows. This corroborates Remark 4

based on analysis and suggests the need of optimizing θ. Last, Fig. 4(c) shows the linear growth

of latency as the processing gain M increases. Thus, for the current experimental settings, the

minimum processing gain (M = 1) is desired. This is aligned with Remark 4.
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(b) Effect of SIR threshold θ

0 5 10 15 20 25 30 35

Processing gain, M

0

200

400

600

800

1000

1200

1400

S
p
a
ti
a
lly

 a
v
e
ra

g
e
d
 l
e
a
rn

in
g
 l
a
te

n
c
y
 (

s
e
c
o
n
d
)

(c) Effect of processing gain M

Fig. 4. The effects of network parameters on learning latency with digital transmission for achieving a target spatially averaged

test accuracy of 95%.

D. Comparison of Digital and Analog Transmission

The spatially averaged test accuracies for the cases of digital and analog transmission are

compared in Fig. 5 in terms of spatially averaged test accuracy. Different device densities are

considered. When the network is relatively sparse (i.e., λd = 1 or 3), digital transmission is ob-

served to outperform the analog scheme as the latter exposes uncoded signals to the perturbation

of inter-cell interference. On the other hand, when there are many active devices (i.e., λd = 30),

the aggressive over-the-air aggregation realized by analog transmission effectively suppresses

interference by averaging. Consequently, analog transmission achieves better performance in

this case.
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Fig. 5. Comparison of spatially averaged test accuracies for the cases of digital and analog transmission for different device

densities.

The learning performance for the cases of digital and analog transmission is further compared

in Fig. 6 in terms of the required number of rounds and spatially averaged learning latency for

the target spatially averaged test accuracy of 93%. The learning latency for analog transmission is

observed from Fig. 6(a) to be much lower than the digital-transmission counterpart for both low-

and-high device densities. One can observe from Fig. 6(b) that in a sparse network (λd ≤ 10),

error-free transmission of digital transmission reduces the required number of rounds; in a dense

network (λd ≥ 10), the gain varnishes as analog transmission supports more active devices.

Regardless of this difference in terms of required rounds, the advantage of shorter per-round

latency of analog transmission dominates, resulting in the earlier observation from Fig. 6(a).

VI. CONCLUDING REMARKS

In this work, we have investigated the spatial convergence of FEEL deployed in a typical

cell of a large-scale cellular network. Both the schemes of digital and analog transmission are

considered. In terms of spatial convergence rate (in round), digital transmission is preferred

for low-to-medium device densities while convergence with analog transmission is faster when

devices are dense. On the other hand, in terms of learning latency (in second), analog transmission

is always preferred due to its support of low-latency over-the-air aggregation.

This work opens the direction of distributed edge learning in large-scale cellular networks,

in which numerous topics warrant further investigation. In particular, a more complex network
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(a) Spatially Averaged Learning Latency
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Fig. 6. Learning-performance comparison between the cases of digital and analog transmission in terms of: (a) spatially averaged

learning latency and (b) the required number of rounds for the targeted spatially averaged test accuracy of 95%.

topology including both backhaul and radio-access links can be considered to support hierarchical

federated learning involving edge devices, edge servers and central-could servers. Moreover, the

current work suggests the need of optimizing network parameters (e.g., SIR threshold), which can

be further investigated to improve the learning performance. Furthermore, for the deployment of

FEEL in 5G networks, it is interesting to study the effects of advanced physical-layer techniques

(i.e., massive MIMO and non-orthogonal access) on the spatial learning performance.

APPENDIX A

PROOF OF THEOREM 1

It follows from Lemma 4 that

E[ḡ0(K,N) | K > 0] 6
1√
N

(
(F0 − F ∗) + σ2E

[
1

K

∣∣∣∣K > 0

])
. (45)

Using the distribution of K in Lemma 2, the last term in (45) can be obtained as follows

E

[
1

K

∣∣∣∣K > 0

]
=

∞∑
j=1

1

j
p(A = j|A > 0)

=
exp(−πR2λdps)

1− exp(−πR2λdps)

∞∑
j=1

1

j

(πR2λdps)
j

j!

(b)
=

exp(−πR2λdps)

1− exp(−πR2λdps)

(
Ei(πR2λdps)− log(πR2λdps)− γ

)
, (46)

where (b) is obtained using [35, (3.16)]. The desired result follows.
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APPENDIX B

PROOF OF THEOREM 2

First, we analyze the convergence in the typical cell condition on its being non-empty. Based

on Assumption 2 and substituting (5) into (6), the single-step improvement of the loss function

is obtained as

F (w(n+1))− F (w(n)) 6
(
∇F (w(n))

)T (
w(n+1) −w(n)

)
+

d∑
i=1

Li
2

(
w(n+1) −w(n)

)2

i

6 −µ
(
∇F (w(n))

)T
ḡ(n) +

‖L‖∞
2

µ2‖ḡ(n)‖2, (47)

where ḡ(n) is the aggregated gradient received at the BS in the nth round. Note that two random

processes underpinning the spatial learning process are {K(n);n > 0} and {ḡ(n);n > 0}.

Consider the (n + 1)th communication round, condition on fixed K(n) > 0 and the model

updated in the preceding round, taking expectation of both sides of (47) yields

E
[
F (w(n+1))− F (w(n))|K(n)

]
6 −µ

(
∇F (w(n))

)T  1

K(n)

∑
X∈D(n)

0

E
[
g̃

(n)
X

]
+

L0µ
2

2
E

‖ 1

K(n)

∑
X∈D(n)

0

g̃
(n)
X ‖

2

∣∣∣∣∣∣∣K(n)

 , (48)

where L0 = ‖L‖∞. Based on Assumption 3 and Lemma 3, (48) can be written as:

E
[
F (w(n+1))− F (w(n))|K(n)

]
6 −µ‖∇F (w(n))‖2 +

L0µ
2

2

(
‖∇F (w(n))‖2 +

σ2

K(n)

)
=

(
−µ+

L0µ
2

2

)
‖∇F (w(n))‖2 +

L0µ
2σ2

2K(n)
. (49)

Conditioning on the effective number of rounds Ne ≥ 1, performing a telescoping sum over the

iterations gives

F0 − F ∗ ≥ F0 − E[F (w(n))|Ne ≥ 1]

= E

[
Ne−1∑
n=0

(
F (w(n))− F (n+1)

)∣∣∣∣∣Ne ≥ 1

]

≥
(
µ− L0µ

2

2

)Ne−1∑
n=0

‖∇F (w(n))‖2 − L0µ
2σ2

2

Ne−1∑
n=0

1

K(n)
, Ne ≥ 1. (50)
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Since Ne is a random variable, it follows that

(F0 − F ∗)E
[

1

Ne

∣∣∣∣Ne > 1

]
>(

µ− L0µ
2

2

)
E

[
1

Ne

Ne−1∑
n=0

‖∇F (w(n))‖2

∣∣∣∣∣Ne > 1

]
− L0µ

2σ2

2
E

[
1

Ne

Ne−1∑
n=0

1

K(n)

∣∣∣∣∣Ne > 1

]
.

By rearranging the terms,

E

[
1

Ne

Ne−1∑
n=0

‖∇F (w(n))‖2

∣∣∣∣∣Ne > 1

]
6

(F0 − F ∗)E
[

1
Ne

∣∣∣Ne > 1
]

+ L0µ2σ2

2
E
[

1
Ne

∑Ne−1
n=0

1
K(n)

∣∣∣Ne > 1
]

µ− L0µ2/2
. (51)

On the other hand, since µ = 1
L0

(
E
[

1
Ne

∣∣∣Ne > 1
])1/2

,

1

µ− L0µ2/2
=

2L0(
E
[

1
Ne

∣∣∣Ne > 1
])1/2

(
2−

(
E
[

1
Ne

∣∣∣Ne > 1
])1/2

)
(a)

6
2L0(

E
[

1
Ne

∣∣∣Ne > 1
])1/2

, (52)

where (a) follows from
(
E
[

1
Ne

∣∣∣Ne > 1
])1/2

6 1. By combining (51) and (52), and replacing

E
[

1
Ne

∑Ne−1
n=0 ‖∇F (w(n))‖2

∣∣∣Ne > 1
]

with ḡ0(N),

ḡ0(N) 6

(
E

[
1

Ne

∣∣∣∣Ne > 1

])1/2
(

(F0 − F ∗) + σ2E

[
1

Ne

Ne−1∑
n=0

1

K(n)

∣∣∣∣∣Ne > 1

])
. (53)

For spatial convergence, take expectation over the spatial distribution of edge devices, one can

obtain the following upper bound on the spatial-and-round averaged gradient:

E[ḡ0(N) | Ne > 1] 6

(
E

[
1

Ne

∣∣∣∣Ne > 1

])1/2(
(F0 − F ∗) + σ2E

[
1

K(n)

∣∣∣∣K(n) > 0

])
. (54)

The expression for the term in (54), E
[

1
Ne

∣∣∣Ne > 1
]
, can be obtained as

E

[
1

Ne

∣∣∣∣Ne > 1

]
=

N∑
i=1

1

i

 N

i

 (1− pnull)
i (pnull)

N−i

1− pNnull

(a)
=

1

1− pNnull

N∑
i=1

pi−1
null − pNnull

N − i+ 1

=
1

N
+

pnull

N − 1
+O(p2

null), pnull → 0, (55)

where (a) is based on (10) in [36]. Substituting (55) and (46) into (54) yields the desired result.
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APPENDIX C

PROOF OF THEOREM 3

Starting from (38), the proof focuses on deriving an expression for the perturbation term caused

by inter-cell interference, namely σ̃2

η
E

[
(I

(n)
0 )2

K2

∣∣∣∣K > 0

]
. Due to the independence between the

interference (I
(n)
0 )2 and the number of devices K,

σ̃2

η
E

[
(I

(n)
0 )2

K2

∣∣∣∣∣K > 0

]
=
σ̃2

η
E
[
(I

(n)
0 )2

]
E

[
1

K2

∣∣∣∣K > 0

]
. (56)

First, by applying Campbell’s Theorem [18],

E
[
(I

(n)
0 )2

]
=

2πλdPR
2−α

(α− 2)M
. (57)

Next,

E

[
1

K2

∣∣∣∣K > 0

]
= E

[(
1 +

1

K

)2

· 1

(K + 1)2

∣∣∣∣∣K > 0

]

6 4E

[
1

(K + 1)2

∣∣∣∣K > 0

]
. (58)

Using the distribution of K in (39),

E

[
1

K2

∣∣∣∣K > 0

]
≤ 4

1− exp(−K̄ ′)

∞∑
j=1

exp(−K̄ ′)
(j + 1)2

(K̄ ′)j

j!

=
4

1− exp(−K̄ ′)

(
∞∑
j=0

exp(−K̄ ′)
(j + 1)2

(K̄ ′)j

j!
− exp(−K̄ ′)

)

=
4

1− exp(−K̄ ′)

(
1

K̄ ′

∞∑
j=1

exp(−K̄ ′)
j

(K̄ ′)j

j!
− exp(−K̄ ′)

)

=
4

K̄ ′
E

[
1

K

∣∣∣∣K > 0

]
− exp(−K̄ ′)

1− exp(−K̄ ′)
. (59)

Combining (56), (57), and (59) gives

σ̃2

η
E

[
(I

(n)
0 )2

K2

∣∣∣∣∣K > 0

]
6

8Pσ̃2

ηps(α− 2)MRα
·

(
E

[
1

K

∣∣∣∣K > 0

]
− K̄ ′e−K̄

′

1− e−K̄′

)
. (60)

On the other hand, based on truncated channel inversion in (11), the expected transmission power

of a device is obtained as

E[PX ] = E

[
η

GX |X|−α

]
= ηE

[
1

GX

]
·
∫ R

0

rαfR(r)dr

=
2ηRα(−Ei(−gth))

α + 2
. (61)
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Under the average power constraint E[PX ] = P ,

η =
P (α + 2)

2Rα(−Ei(−gth))
. (62)

Substituting (62) into (60) gives the desired result.
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