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Optimizing Information Freshness via Multiuser
Scheduling with Adaptive NOMA/OMA

Qian Wang, He Chen, Changhong Zhao, Yonghui Li, Petar Popovski and Branka Vucetic

Abstract—This paper considers a wireless network with a base
station (BS) conducting timely status updates to multiple clients
via adaptive non-orthogonal multiple access (NOMA)/orthogonal
multiple access (OMA). Specifically, the BS is able to adaptively
switch between NOMA and OMA for the downlink transmission
to optimize the information freshness of the network, charac-
terized by the Age of Information (AoI) metric. For the simple
two-client case, we formulate a Markov Decision Process (MDP)
problem and develop the optimal policy for the BS to decide
whether to use NOMA or OMA for each downlink transmission
based on the instantaneous AoI of both clients. The optimal
policy is shown to have a switching-type property with obvious
decision switching boundaries. A suboptimal policy with lower
computation complexity is also devised, which is shown to achieve
near-optimal performance via numerical simulations. For the
more general multi-client scenario, the optimal solution is the
computationally intractable due to the large state and action
spaces. As such, we devote to provide a feasible suboptimal
policy with low computation complexity. Specifically, inspired
by the proposed suboptimal policy of the two-client scenario,
we formulate a nonlinear optimization problem to determine the
optimal power allocated to each client by maximizing the ex-
pected AoI drop of the network in each time slot (i.e., minimizing
the expected network-wide AoI of the next slot). The problem is
shown to be non-convex, we manage to solve it by approximating
it as a convex optimization problem. Simulation results validate
the tightness of the adopted approximation. Specifically, the
performance of the adaptive NOMA/OMA scheme by solving
the convex optimization is shown to be close to that of the
max-weight policy solved by exhaustive search. Besides, the
adaptive NOMA/OMA scheme achieves significant performance
improvement compared to the OMA scheme, especially when the
number of clients in the network is large and the transmission
SNR is high.
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I. INTRODUCTION

Recently, researchers have shown enormous interest (see,
e.g, [2]–[19]) in a new performance metric, termed Age of
Information (AoI), thanks to its capability in characterizing the
timeliness of data transmission in status update systems. The
timeliness of status update is of great importance, especially
in real-time monitoring applications, in which the dynamics
of the monitored processes need to be well grasped at the
monitor side for further actions. The AoI is defined as the time
elapsed since the generation time of the latest received status
update at the destination [2]. According to this definition, the
AoI is jointly determined by the transmission interval and the
transmission delay.

Early work on the analysis and optimization of AoI in var-
ious networks has mainly focused on the simple single-source
system model [2]–[11]. Recent efforts on AoI optimization
pay more attention to the more general multi-source systems
[12]–[21]. For systems with multiple sources, the AoI of each
user depends on the transmission scheduling of all devices.
In this line of research, the authors in [12] considered a
base station (BS) receiving status updates from multiple nodes
with a generate-at-will status arrival model in the uplink. A
BS serving status updates to multiple nodes in the downlink
with the randomly generated status update was investigated in
[14]. Both of them derived the lower bound of the weighted
sum of the expected AoI of the considered network and
compared the lower bound with that of various suboptimal
scheduling policies, including Whittle index policy and max-
weight policy, etc. The authors in [16] also considered systems
with stochastic status update arrivals and derived the Whittle
index policy in closed form. A decentralized policy was
proposed in [16], which was shown to achieve near-optimal
performance. Different from the above work, joint sampling
and scheduling were studied in [20] and [21], considering
multiuser systems with uniform and non-uniform status packet
sizes, respectively. Another branch of this research line is to
analyze and optimize the AoI of the networks with random
access protocols. Particularly, the AoI performance of slotted
ALOHA was investigated in [15], [18] and that of Carrier
Sense Multiple Access (CSMA) was investigated in [17].

All the aforementioned studies on AoI have concentrated
on the orthogonal multiple access (OMA) scheme. That is,
only one status update packet can be delivered and received
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Figure 1: An illustration of AoI evolution for a two-client
network under the adopted adaptive NOMA/OMA scheduling.

in each time slot. Very recently, the authors in [22] have for the
first time investigated the potential of applying non-orthogonal
multiple access (NOMA) in reducing the average AoI of a
two-node network. The results in [22] showed that OMA and
NOMA can outperform each other in different setups. In fact,
NOMA has been regarded as a promising technique to deal
with large-scale Internet of Thing (IoT) deployment [23]–[28].
The basic idea of NOMA is to leverage the power domain
to enable multiple clients to be served at the same time or
frequency band. Compared to OMA, NOMA has the potential
to reduce AoI by improving spectrum utilization efficiency.
Specifically, more than one client can be served by the BS
using NOMA, resulting in a possible AoI drop of more than
one client. However, in OMA, only the served client may have
AoI drop and the AoI of all other clients will increase. In
this context, a natural question arises: how should a multiuser
system adaptively switch between OMA and NOMA modes to
minimize the long-term average weighted sum of AoI of the
network? To the best of authors’ knowledge, the answer to
this question remains unknown in the literature. The NOMA
scheme allows the BS to serve more clients in each time slot
at the cost of a high transmission error probability, while the
OMA scheme serves at most one client in each time slot with a
smaller transmission error probability. This makes the optimal
multiuser scheduling problem with adaptive NOMA/OMA
non-trivial. In Fig.1 we depict an example of the AoI evolution
under the adopted adaptive NOMA/OMA scheduling for a
two-client network. We can observe from Fig. 1 that the BS
may take a risk to serve both clients in order to achieve small
AoI for both clients at next time slot when the age difference
between clients is relatively small. When the age difference
between clients is large with one age being small, the BS
tends to use OMA to serve the client with larger AoI.

Motivated by the gap above, in this paper we consider a
wireless network with a BS that conducts timely status updates
to multiple clients in a time-slotted manner. The BS is able to
adaptively switch between NOMA and OMA for the downlink
transmission. To achieve reduced AoI performance, the BS
needs to decide which scheme (i.e., NOMA or OMA) to use
at the beginning of each time slot. For the OMA scheme, the
BS should further decide which client to serve. For the NOMA

scheme, the BS needs to further decide the power allocated
to each scheduled client. That is, when using NOMA, the BS
should decide which clients to serve by allocating non-zero
power for status update transmission to these clients; the rest
unselected clients will be allocated with zero power.

A. Contributions

The main contributions of this paper lie in the following
two aspects:
• For the two-client scenario, we develop the optimal policy

for the BS to decide whether to use NOMA or OMA for
each downlink transmission based on the instantaneous
AoI of both clients by formulating a Markov Decision
Process (MDP) problem. We prove the existence of the
optimal stationary and deterministic policy, and perform
action elimination to reduce the action space for lower
computation complexity. The optimal policy is shown
to have a switching-type property with obvious deci-
sion switching boundaries. A suboptimal policy with
lower computation complexity is also proposed, which
can achieve near-optimal performance, as shown by the
simulation results.

• For the multi-client scenario, the optimal policy is not
computationally tractable due to the exponentially in-
creasing state space for linearly increasing number of
clients, the coupled AoI evolution across clients and large
action space considering different combinations of power
allocated to each client. To adaptively switch between
NOMA and OMA, we formulate a nonlinear optimization
problem to determine the optimal power allocated to
each client by maximizing the weighted sum of expected
AoI drop of the network within each time slot, inspired
by the suboptimal policy for the two client scenario
and the max-weight policy in [12]–[14]. We manage to
resolve the formulated problem by approximating it as a
convex optimization problem. Simulation results show the
tightness of the adopted approximation. The performance
of the adaptive NOMA/OMA scheme by solving the
convex optimization problem is shown to be close to
that of max-weight policy solved by exhaustive search.
Besides, the adaptive NOMA/OMA scheme can achieve
significantly lower average AoI, compared to the OMA
scheme, especially when the number of clients in the
network is large and the transmission SNR is high.

B. Related Work

We note that MDP method has been widely used in design-
ing optimal scheduling policies for average AoI minimization
[3]–[6], [19]–[21]. In multiuser systems, the states of the
system are jointly determined by the AoI values of all users,
where the MDP method becomes intractable as the number
of users increases [21]. This is because the increasing number
of users will lead to exponentially exploding state space and
enormous computation complexity, known as the curse of
dimensionality [29]. Thus, several attempts [12]–[14], [16],
[17], [19], [20] have been made to seek low-complexity
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scheduling algorithms. An online learning algorithm was de-
veloped to obtain a low-complexity suboptimal policy in [20].
Whittle index policy has been investigated in [12], [13], [16],
[19], where the indexability of their considered problem was
proved. This policy demonstrated near-optimal performance in
numerical simulations. To implement the Whittle index policy,
the Whittle index function needs to be derived beforehand
and the user with the largest Whittle index will be scheduled
to update its status. However, it can be challenging to prove
indexability and derive closed-form Whittle index function for
many problems [30]. To address these issues, the authors in
[31] proposed an Approximate Index Policy. On the other
hand, the max-weight policy has been studied in [12]–[14] and
the upper bound of its average age performance was analyzed.
Simulation results in [12], [13] showed negligible performance
gap between the max-weight policy and the optimal policy, and
similar performance between Whittle index policy and max-
weight policy.

All the aforementioned work focused on the OMA scheme,
i.e., different users cannot update their status simultaneously.
The potentials of the NOMA scheme on reducing AoI were
first investigated in [22] considering a simple two-user net-
work. The analytical expression of the total average AoI of the
network using NOMA scheme and that of conventional OMA
environments were derived via Stochastic Hybrid Systems
(SHS) and compared in different setups. The simulation results
have illustrated the advantage of NOMA for the case of
relatively high spectral efficiency in comparison with OMA.
The authors in [22] focused on analyzing the AoI of two-user
network that always uses NOMA to investigate the potential
of NOMA scheme by comparing it with the AoI of the
same network adopting OMA scheme. In contrast, our work
considers how to dynamically schedule the communications
in a more general multiuser system by adaptively switching
between OMA and NOMA modes to minimize the AoI of the
network. The considered system is more practical due to the
increased number of users and the scheduling scheme is more
comprehensive including which user(s) to schedule and the
corresponding power allocation.

II. SYSTEM MODEL

We consider a multiuser wireless network, in which a BS
conducts timely status updates to N clients in a slotted manner.
At the beginning of each time slot, the BS can generate a status
update packet for each client, which is known as generate-
at-will in the literature [3], [4], [12]. Adaptive NOMA/OMA
transmission scheme is adopted by the BS. Specifically, the
BS can adaptively switch between NOMA and OMA for the
downlink transmission. 1 With NOMA, it is possible for more
than one client to receive their packets simultaneously within
one time slot. At the end of each time slot, if client i has
received its packet successfully from the BS, it will send an
acknowledgment (ACK) to the BS. The ACK link from all
clients to the BS is considered to be error-free and delay-free.

1TDMA-based OMA scheme is considered in this paper. That is, the BS
schedules one user to serve in each time slot when using the OMA scheme.

We use Age of Information (AoI) [2] to characterize the
timeliness of the information received at each client. AoI is de-
fined as the time elapsed since the generation time of the latest
received information at the destination side. Mathematically,
the AoI of client i in time t, denoted by ∆i(t), is t − ui(t),
where ui(t) denotes the generation time of the latest received
status update at time t. According to the considered generate-
at-will model, if client i has successfully received its status
update from the BS, its AoI will decrease to 1, otherwise its
AoI increases by 1. Mathematically, we have

∆i(t+ 1) =

{
∆i(t) + 1, vi(t) = 0,

1, vi(t) = 1,
(1)

where vi(t) is the indicator that is equal to 1 when the client
i receives its status update correctly from the BS in time slot
t, and vi(t) = 0 otherwise. The weighted sum of the expected
AoI of all clients is adopted to measure the network-wide
information timeliness, which is given by

∆̄ = lim
T→∞

sup
1

T
E

[
N∑
i=1

T∑
t=1

wi∆i(t)

]
, (2)

where the expectation is taken over all possible system dy-
namics and wi is the weight coefficient of client i with∑N
i=1 wi = 1. Specifically, wi indicates the importance of

client i which is predetermined according to the practical
requirement of the real systems. The larger value of wi, the
greater importance of client i.

For ease of understanding, we first consider the two-client
scenario, i.e., N = 2. We later will extend our design to the
general case with more clients. In the OMA mode, the BS only
conducts transmission to a single client. In this context, if time
slot t is assigned for the transmission to client i, i ∈ {1, 2},
the signal received at the client i can be written as

yOi (t) = hi(t)
√
Psi(t) + ni(t), (3)

where P is the constant transmission power of the BS; si is
the status update message from the BS to client i; hi is the
channel coefficient between the BS and client i. Specifically,

hi =
√
d−τi gi, (4)

where the normalized distance di = ci/c0, with ci and c0
denoting the distance between client i to the BS and the
baseline distance, respectively. Parameter τ denotes the path
loss exponent and gi ∼ CN (0, 1) with CN denoting complex
normal distribution2. Without loss of generality, we consider
c1 < c2, i.e., E[|h1|2] > E[|h2|2]. Random variable ni is
the complex additive Gaussian noise with variance σ2

i . For
simplicity, we assume the variance of ni is identical for both
clients, i.e., σ2

i = σ2, ∀i. After receiving the signal, the
information can be decoded in an interference-free manner
with a SNR γi = |hi|2ρ, where ρ = P/σ2 is the transmis-
sion SNR. Then, the rate for client i can be expressed as

2In this paper, we consider a Rayleigh fading environment, and our
framework can be readily extended to other channel models.
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ROMA
i = log(1+γi). The outage probability of client i using

OMA is given by

POi =1−P
(
ROMA
i ≥ Ri

)
=1−exp

(
− (2Ri − 1)dτi

ρ

)
, (5)

where Ri is the target rate of client i, according to the integrals
of elementary functions in [32], which are also applied to
calculate the outage probability for the far user as well as
that of NOMA scheme. The packet for each client at the BS
has the same length and the transmission to each client takes
one time slot. Thus, the target data rate for each client is the
same, i.e., R1 = R2 = R.

On the other hand, when NOMA is conducted in time
slot t, the signals to different clients are combined in the
power domain at the BS by allocating different power levels
to them. Through successive interference cancellation (SIC),
it is possible for two clients to successfully recover their
corresponding information in the same time slot. We consider
fixed power transmission, and the observation at client i can
be expressed as

yNi (t) = hi(t)(
√
α1Ps1(t) +

√
α2Ps2(t)) + ni(t), (6)

where αi is the power allocation coefficient, and we readily
have α1 +α2 = 1 to achieve the best possible performance. It
is assumed that the BS only has the knowledge of statistical
channel state information (CSI) of its channels to both clients
3, while the clients as receivers have perfect knowledge of
CSI, as in [26], [33]. Thus, we have α1 < α2 according to the
NOMA principle. Note that OMA can be regarded as a special
case of NOMA, which allocate all power to one client.

Then, for client 2 (i.e., the far user), it decodes its message
from the BS directly by treating s1 as interference. The re-
ceived SINR can be written as γ22 = α2|h2|2/(α1|h2|2+1/ρ).
Therefore, the outage probability of client 2 using NOMA is
given by

PN2 = 1− P (log(1 + γ22) ≥ R)

= 1− exp

(
− (2R − 1)dτ2
ρ(α2 − α1(2R − 1))

)
,

(7)

where we enforce α2 − α1(2R − 1) > 0, i.e., α2 >
2R−1

2R
.

For client 1 (i.e., the near user), it will conduct SIC.
Specifically, client 1 will first decode s2 as what client 2
has done by treating s1 as interference. The received SINR
of client 1 when decoding s2, denoted by γ12, can thus
be similarly expressed as γ12 = α2|h1|2/(α1|h1|2 + 1/ρ).
Once s2 is successfully decoded, client 1 will then decode s1

without interference, and the resultant SNR is γ11 = α1|h1|2ρ.

3The network overhead in the considered system would be low as the
decision is made based on the channel statistic information rather than the
instantaneous CSI. Thus, the overhead network cost is insignificant and not
considered in this work.

The outage probability of client 1 using NOMA can thus be
calculated as

PN1 = 1− P (log(1 + γ12) ≥ R & log(1 + γ11) ≥ R)

=1−exp

(
−max

{
(2R − 1)dτ1

ρ(α2 − α1(2R − 1))
,

(2R − 1)dτ1
ρα1

})
.

(8)

Comparing the above outage probability expressions be-
tween NOMA and OMA schemes, we can find that NOMA
offers more chances for the BS to transmit fresh status updates
to both clients at the cost of a higher outage probability. Thus,
to maintain the freshness of the information received at each
client, at the beginning of each time slot, the BS needs to
carefully decide whether to use NOMA or OMA scheme. In
addition, the outage probability of NOMA is determined by
the power allocation among the two clients. As such, when
using NOMA, the BS should appropriately allocate power for
the transmission to each client. The power allocated to each
client is considered to be discrete in the two-client system.
Specifically, the power allocated to client i, denoted by pi, can
only take the value from the discrete set {0, p, 2p, 3p, ..Lp}
with p = P/L and p1 + p2 = P , as α1 = 1 − α2. That is,
αi can take the value from {0, 1

L ,
2
L ,

3
L , .., 1}. As client 2 is

far from the BS (i.e., c1 < c2), to effectively use NOMA, α2

should be larger than α1 when applying NOMA, i.e., α2 > 0.5.
Combining it with the previous condition α2 > 2R−1

2R
, one

can deduce that α2 can only take value from {0,max{ 1
2 +

1
L , d

(2R−1)L
2R

e 1
L},max{ 1

2 + 1
L , d

(2R−1)L
2R

e 1
L}+ 1

L , ..., 1}.
Let α2(t) denote the power allocation coefficient for client

2 in time slot t. Specifically, α2(t) = 0 or α2(t) = 1 indicates
the BS uses OMA scheme, conducting orthogonal transmission
to client 1 and client 2, respectively; otherwise, the BS uses
NOMA scheme, serving both clients with the amount of power
α2(t)P allocated to client 2 and (1− α2(t))P to client 1.

Action a ∈ {0,max{dL2 e + 1, d (2R−1)L
2R

e}, ..., L} indicates
that the BS allocates atp amount of power to client 2. If a = 0,
the BS chooses OMA scheme and only transmits information
to client 1; if a = L, the BS chooses OMA scheme and
transmits information to client 2; otherwise, the BS chooses
NOMA scheme, with ap amount of power allocated to client
2 and P − ap allocated to client 1. Given the AoI of both
clients at the beginning of a time slot, the action to take will
influence the corresponding AoI at the beginning of the next
time slot (i.e., the AoI drop for one or two clients). In this
way, the scheduling policy will affect the AoI at each time slot
sequentially and thus, affect the weighted sum of the expected
AoI given in (2). Our design objective is to find the optimal
policy to be adopted by the BS that can adaptively switch
between NOMA and OMA schemes to minimize the weighted
sum of the expected AoI for both clients.

III. OPTIMAL AND SUBOPTIMAL POLICIES FOR
TWO-CLIENT SYSTEM

The scheduling policy design is a dynamic decision-making
problem. In this section, we formulate it as an MDP problem
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Figure 2: A graphical explanation of MDP formulation.

and investigate the age-optimal policy that minimizes the
weighted sum of the expected AoI of both clients. By analyz-
ing the structural results of the optimal policy, we then devise
a suboptimal policy with lower computation complexity.

A. MDP Formulation

The MDP problem is described by a tuple {S,A,P, r} [34],
where
• State space S = Z+ × Z+: The state in time slot t is

composed by the instantaneous AoI of both clients, st ,
(∆1,t,∆2,t).

• Action space A = {0,max{dL2 e+ 1, d (2R−1)L
2R

e}, ..., L}:
the detailed description of action at ∈ A has been
provided at the end of the previous section.

• Transition probabilities P: P (st+1|st, at) is the probabil-
ity of the transition from state st to st+1 when taking
action at. According to the outage probability of both
clients using either NOMA or OMA given in Section II,
we have the following transition probabilities,

P ((1,∆2 + 1)|(∆1,∆2), a = 0) = 1− PO1 , (9a)

P ((∆1 + 1,∆2 + 1)|(∆1,∆2), a = 0) = PO1 , (9b)

P ((∆1 + 1, 1)|(∆1,∆2), a = L) = 1− PO2 , (9c)

P ((∆1 + 1,∆2 + 1)|(∆1,∆2), a = L) = PO2 , (9d)

and for i 6= 0, L

P ((1,∆2 + 1)|(∆1,∆2), a = i) = (1− PN1 (a))PN2 (a),

P ((∆1 + 1, 1)|(∆1,∆2), a = i) = (1− PN2 (a))PN1 (a),

P ((1, 1)|(∆1,∆2), a = i) = (1− PN1 (a))(1− PN2 (a)),

P ((∆1 + 1,∆2 + 1)|(∆1,∆2), a = i) = PN1 (a)PN2 (a),
(10)

where PN1 (a) and PN2 (a) are the outage probability of
client 1 and client 2, respectively, using NOMA with
α1 = 1 − a

L and α2 = a
L . Note that in (9) and (10),

the time superscript for the state (∆1,t,∆2,t) and action
at is omitted for brevity.

• r : S ×A → R is the one-stage reward function of state-
action pairs, defined as r(st, at) = w1∆1,t + w2∆2,t.

Fig. 2 shows the interaction between the BS and the clients
in MDP formulation. Let π denote a transmission policy at
the BS, which maps system states to action space. A policy
consists of a sequence of decision rules π = (π1, π2, ...). It

is stationary if πt is a function of state st rather than the
whole history and does not depend on time, i.e., πt = π(a|st),
indicating choosing action a with probability π(a|st) when the
state at time t is st. Given any initial state s0, the infinite-
horizon average reward of any feasible policy π, can be
expressed as

C(π, s0) = lim
T→∞

sup
1

T

T∑
k=0

Eπs0 [r(sk, ak)|s0]. (11)

We are now ready to formulate the following MDP problem

Problem 1: min
π
C(π, s0). (12)

To proceed, we first investigate the existence of an optimal
stationary and deterministic policy of Problem 1 and arrive at
the following theorem.

Theorem 1. There exists a constant J∗, a bounded function
h(∆1,∆2) : S → R and a stationary and deterministic policy
π∗, satisfying the average reward optimality equation,

J∗+h(∆1,∆2) = min
a∈A

(w1∆1+w2∆2+E[h(∆̂1, ∆̂2)]), (13)

∀(∆1,∆2) ∈ S , where π∗ is the optimal policy, J∗ is the
optimal average reward, and (∆̂1, ∆̂2) is the next state after
(∆1,∆2) taking action a.

Proof. See Appendix A in [35].

According to Theorem 1, the optimal policy is stationary
and deterministic, i.e., it is time-invariant and deterministically
selects an action in each time slot with no randomization.

B. Action Elimination

In this subsection, we establish action elimination by an-
alyzing the property of the formulated MDP problem, which
can reduce the action space of each state for lower computation
complexity. According to (7) and (8), and the fact α1+α2 = 1,
the outage probability of client 2 using NOMA (i.e., PN2 ) is
decreasing in α2, i.e., PN2 (a) is decreasing in action a when
max{dL2 e + 1, d (2R−1)L

2R
e} < a < L. However, the outage

probability of client 1 using NOMA (i.e., PN1 ) is decreasing
in α2 when 2R−1

2R
< α2 < 2R

2R+1
and is increasing in α2

when 2R

2R+1
< α2 < 1. That is, PN1 (a) is decreasing in

a when a ∈ {max{dL2 e + 1, d (2R−1)L
2R

e}, ..., b 2RL
2R+1

c} and
increasing in a when a ∈ {d 2RL

2R+1
e, d 2RL

2R+1
e + 1, ..., L − 1}.

As such, the action a = b 2RL
2R+1

c has a better performance in
reducing AoI of both clients, with lower outage probability
compared to a ∈ {max{dL2 e + 1, d (2R−1)L

2R
e},max{dL2 e +

1, d (2R−1)L
2R

e}+ 1, ..., b 2RL
2R+1

c}. Thus, the action space can be
reduced to a ∈ {0, b 2RL

2R+1
c, b 2RL

2R+1
c+ 1, ..., L}.

C. Structural Results on Optimal Policy

In this subsection, we derive two structural results of the
optimal policy that offer an effective way to reduce the offline
computation complexity and online implementation hardware
requirement.
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Theorem 2. The optimal policy π∗ has a switching-type
policy. That is, denoting c and d as any action from action
space {0, b 2RL

2R+1
c, b 2RL

2R+1
c+ 1, ..., L},

• If π∗((∆1,∆2)) = c, then π∗((∆1,∆2 + z)) = d, where
z is any positive integer and d ≥ c,

• If π∗((∆1,∆2)) = c, then π∗((∆1 + z,∆2)) = d, where
z is any positive integer and d ≤ c.

Proof. See Appendix B in [35].

Given the structure of the optimal policy, only the decision
switching boundary is needed for implementation, rather than
storing each state-action pair in the optimal policy, which
significantly reduces the memory for the hardware. In addition,
based on the structure, a structured value iteration algorithm
can be developed accordingly as in [5, Algorithm 1] to reduce
the complexity when calculating the optimal policy.

D. Suboptimal Policy
In this subsection, we propose a suboptimal policy with

lower computation complexity compared with that of the op-
timal MDP policy. Inspired by the max-weight policy in [13],
the proposed suboptimal policy makes use of the transition
probability of the underlying MDP and only maximizes the
weighted sum of the expected AoI drop within each time slot,
i.e., the weighted sum of the expected difference between
the age of current state and the possible age of next state.
According to (9), given the current state s = (∆1,∆2), the
expected AoI drop, denoted by E[η(s, a)], can be expressed
as

E[η(s, a)]=

 w1(1 − PO1 )∆1 − 1, if a = 0;
w2(1 − PO2 )∆2 − 1, if a = L

w1(1 − PN1 (a))∆1 + w2(1 − PN2 (a))∆2 − 1,otherwise.
(14)

where a = 0 indicates using the OMA scheme to serve
client 1, the next possible states thus include (1,∆2 + 1)
and (∆1 + 1,∆2 + 1) with probability in (9a) and (9b)
respectively. a = L indicates using the OMA scheme to serve
client 2, the next possible states thus include (∆1 + 1, 1)
and (∆1 + 1,∆2 + 1) with probability in (9c) and (9d)
respectively. The remaining cases indicate using the NOMA
scheme to serve both clients, the next possible states thus
include (1,∆2 + 1), (∆1 + 1,∆2 + 1), (∆1 + 1, 1) and
(1, 1). The corresponding probability depends on the power
allocation, and (10) provides how power allocation influences
the state transition probability. Then, the action of state s in
the proposed suboptimal policy π̄ can be given by

π̄(s) = arg max
a

E[η(s, a)]. (15)

The suboptimal policy is simple and easy to implement.
Compared with the RVI method applied to calculate the opti-
mal policy, the suboptimal policy does not require iterations.
Moreover, as we show via the numerical results in Section V,
the suboptimal policy can achieve near-optimal performance.
In addition, the suboptimal policy can be readily extended to
a continuous power scenario, i.e., in each time slot, finding
the optimal power allocated to each client to maximize the
weighted sum of the expected AoI drop where PN1 (a) and
PN2 (a) in (14) are replaced by the outage probability of each

client using NOMA with continuous power allocated to client
2.

IV. EXTENSION TO MULTIPLE CLIENTS N > 2

Recall that the BS aims to deliver status updates to all
clients in a timely manner. To that end, the BS needs to
carefully decide the transmission power allocated to each client
as explained in Section III. However, both state space and
action space grow exponentially as the number of clients
increases, represented by Z+N , and LN , respectively, where
Z+ denotes the set of positive integers. The increase of power
discretization level L will also lead to a larger action space.
Thus, the MDP method elaborated in Section III is no longer
computationally tractable for the multi-client scenarios.

In this section, we extend our suboptimal policy proposed in
Section III.D to the general case with a BS delivering timely
status updates to N clients (N > 2) 4 in a slotted manner using
adaptive NOMA/OMA principle 5. At the beginning of each
time slot, the BS needs to schedule transmission to clients.
That is, the BS decides to transmit to which client(s) and
allocates the transmission power to them. At the end of each
time slot, if client i has received its packet successfully from
the BS, it will send an ACK to the BS. The observation at the
ith client in time slot t is given by

yi(t) = hi(t)

N∑
j=1

√
pj(t)sj(t) + ni(t), (16)

where sj denotes the message from BS to client j and hi
denotes the channel coefficient between the BS and client i
as in (4). Without loss of generality, we consider the sorted
distance c1 > c2 > ... > cN , i.e., E[|h1|2] < E[|h2|2] < ... <
E[|hN |2]. Variable pj is the transmission power allocated to the
message intended to client j which satisfies the power limit
p̄, i.e.,

∑N
i=1 pi ≤ p̄, and ni ∼ CN (0, σ2

i ) is the complex
additive Gaussian noise at client i. For simplicity, we assume
the variance of ni is identical for all clients, i.e., σ2

i = σ2, ∀i.
Denoted by N the set of all clients in the system, i.e.,
N = {1, 2, ..., N}. Any subset K ⊆ N denotes the possible
set of clients to be served in each time slot. According to
the NOMA principle, in the subset of clients selected to be
served, a client with a smaller distance is assigned with a larger
decoding order index [36], [37]. Each selected client employs
the successive interference cancellation (SIC) technique to
decode the messages for clients with a smaller decoding order
index in the selected client set first, and to remove the inter-
user interference if the decoding is correct. Denote λi as the
indicator that equals 1 when client i is selected to transmit,
and equals 0 otherwise. Thus, if K clients are selected to
be served, then

∑N
i=1 λi = K. Let m(k) denote the original

4In the real system, the value of N will not be large considering the
maximum allowable SIC stage due to some practical issues like the com-
putational capacity of the hardware. The considered model can capture the
system with multiple orthogonal frequency channels, where each frequency
channel is shared by N clients.

5The scheduling design for a multi-antenna BS transmitting multiple
streams simultaneously has been left as a future work.
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client index among the K selected clients whose decoding
order is k, i.e., λm(k) = 1, k ∈ {1, 2, ...,K}, ∀k. m(.) is
a single mapping that maps the set {1, 2, ...,K} to the set
{1, 2, ..., N} where K ≤ N . The sequence {m(k)}k=1,2,...,K

consists of the set of clients selected for receiving status
updates. Besides, according to the decoding order of NOMA,
we have m(1) < m(2) < ... < m(K).

Given the set of clients {m(k)}k=1,2,...,K to be served,
denote by Rm(j)

m(i) the rate for client m(j) to detect client m(i)’s
message. We consider j ≥ i, indicating m(j) ≥ m(i). To
correctly detect client m(i)’s message, client m(j) should
first successfully remove the interference from clients in
{m(k)}k=1,2,...,K whose decoding order index is smaller than
m(i). Thus, the expression of Rm(j)

m(i) is given by [33], [36],
[37]

R
m(j)
m(i) = log

(
1 +

|hm(j)|
2
pm(j)∑K

k=i+1 |hm(k)|
2
pm(k) + σ2

)
. (17)

As the BS does not have perfect knowledge of CSI, outages
may occur in the considered system. We define that if client
m(j) cannot detect its own message or the message of client
m(i) with smaller decoding index m(j) ≥ m(i) in the selected
client set, then an outage occurs at client m(j) [33], [38].
Similar to the two-client scenario that the BS transmits one
message to each client with the same fixed target rate R, the
outage probability of client m(j) can be expressed as [36],
[37]

P om(j) = 1 − P
(
R
m(j)

m(1) ≥ R, ..., R
m(j)

m(j) ≥ R
)

=1 − exp

(
−dτm(j) max

k=1,2,...,j

{
(2R − 1)σ2

pm(k) − (2R − 1)
∑K
i=k+1 pm(i)

})
.

(18)
We can see from (18) that if pm(k)−(2R−1)

∑N
i=k+1 pm(i) ≤

0, the outage probability of client m(j) will always be 1. Thus,
for any client m(k) selected to be served, i.e., pm(k) 6= 0, the
following condition needs to be satisfies

pm(k) > (2R − 1)

K∑
i=k+1

pm(i). (19)

Otherwise, an outage always occurs and the allocated power
will be wasted. Moreover, if client i is not served, i.e.,
i /∈ {m(k)}k=1,2,...,K and pi = 0, its outage probability is
1, otherwise, its outage probability will be smaller than 1.
Mathematically, we have

E[vi(t) = 1] =

{
0, i /∈ {m(k)}k=1,2,...,K ,

1− P oi , i ∈ {m(k)}k=1,2,...,K .
(20)

Recall the vi(t) is the indicator that equals 1 when client
i successfully receives its status update from the BS in
time slot t. Let p(t) = {p1(t), p2(t), ..., pN (t)} denote the
amount of transmission power allocated to each client sat-
isfying

∑N
i=1 pi(t) ≤ p̄. Give {m(k)}k=1,2,...,K , we have∑K

i=1 pm(i)(t) ≤ p̄ and pi(t) = 0, ∀i /∈ {m(k)}k=1,2,...,K .
Note that the special case K = 1 indicates only one client

will be served, i.e., client m(1) will be served using OMA

scheme. The corresponding outage probability becomes 1 −
exp

(
−dτm(1)

(2R−1)σ2

pm(1)

)
as in (5).

We now extend our suboptimal policy (i.e., the problem
in (15)) to the multiple-client scenario by formulating the
following power allocation problem.

Problem 2: max
p(t)

N∑
i=1

(1− P oi (p(t)))wi∆i(t)

s.t., (19),
N∑
i=1

pi(t) ≤ p̄, pi(t) ≥ 0.

(21)

We note that in the above optimization problem, the instan-
taneous AoI of all clients in time slot t will affect the power
allocated to each client. Clients with smaller AoI are less likely
to be served as the resultant AoI drop is insignificant.

A. Effective power allocation

In this subsection, we solve Problem 2 to obtain the effective
power allocation to minimize the weighted sum of expected
AoI in two steps: 1) Step 1: design an optimal power allocation
scheme to serve a fixed number of clients. That is, given K,
find optimal {m(k)}k=1,2,...,K and

(
pm(1), pm(2), ..., pm(K)

)
;

2) Step 2: choose optimal K ∈ {1, 2, ..., N} that achieves the
maximum objective value. The detailed description of these
two steps is given in the following.

1) Step 1: Optimal power allocation to conduct transmis-
sion to fixed K number of clients: Given K, i.e., the number
of clients to serve, the BS should decide which group of clients
to serve, i.e., {m(k)}k=1,2,...,K , and the power allocated to
them, i.e.,

(
pm(1), pm(2), ..., pm(K)

)
. Recall that the power

allocated to the unselected clients is 0.
As in [36, Eq.(15)], we convert the power constraint de-

scribed in (19) to the following format to facilitate the use of
power constraint,

K∑
k=1

p̂m(k)(r + 1)
(k−1) ≤ p̄, (22)

where r = 2R − 1 and

p̂m(k) = pm(k) − r
K∑

i=k+1

pm(i). (23)

The outage probability of the selected client m(k) can be
expressed as

P om(k) = 1− P
(
R
m(k)
m(1) ≥ R, ..., R

m(k)
m(k) ≥ R

)
=1−exp

(
−dτm(k)rσ

2 max
t=1,2,...,k

{
1

p̂m(t)

})
, k ∈ {1, 2, ...,K}.

(24)
For other unselected nodes, their outage probability is always
equal to 1. Recall that c1 > c2 > ... > cN , indicating
dτ1 > dτ2 > ... > dτN . We thus have dτm(1) > dτm(2) > ... >
dτm(K). Note that only the selected clients may have AoI drop
and the AoI of unselected clients will increase by one, and
therefore the one-step weighted sum of expected AoI drop of
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the network is actually that of those selected clients. Hence,
for a given K, Problem 2 can be re-written as

Problem 3: max
p(t)

K∑
k=1

(
1−P om(k)(p(t))

)
wm(k)∆m(k)(t)

s.t., (19),
K∑
k=1

pm(k)(t) ≤ p̄,

pi(t) = 0, ∀i /∈ {m(k)}k={1,2,...,K}.
(25)

To further simplify the above problem, the variable transfor-
mation according to (22) is applied, and Problem 3 can be
transformed into the following equivalent form:

Problem 4: max
p̂(t),{m(k)}

K∑
k=1

(
1−P om(k)(p̂(t))

)
wm(k)∆m(k)(t)

s.t., (22), p̂(t) = (p̂m(1), p̂m(2), ..., p̂m(K)),

p̂m(k) > 0, ∀k ∈ {1, 2, ...,K}.
(26)

This problem consists of two parts: 1) select which K clients
to serve, i.e., {m(k)}; 2) transferred power variable of these
K clients, i.e., p̂(t), given ∆(t) = {∆1(t),∆2(t), ...,∆N (t)},
dτ1 > dτ2 > ... > dτN , r and σ2.

Suppose {m(k)}k=1,2,...K is known, we then solve Problem
4 as following (note that the time index t is dropped hereafter
for notation simplicity):
Problem 5:

max
p̂

K∑
k=1

exp

(
−dτm(k)rσ

2 max

{
1

p̂m(1)
, . . . ,

1

p̂m(k)

})
wm(k)∆m(k)

(27a)

s.t.,
K∑
k=1

(r + 1)k−1p̂m(k) ≤ p, (27b)

p̂m(k) > 0, k = 1, . . . ,K. (27c)

In solving Problem 5, we first have the following lemma.

Lemma 1. Adding the following constraint:

p̂m(1) ≥ p̂m(2) ≥ · · · ≥ p̂m(K)

to Problem 5 will not change its optimal objective value of
(27a)

Proof. See Appendix C in [35].

By Lemma 1, we focus on solving the following problem
to the same objective value as Problem 5, which can be solved
in a simple and tractable way.

Problem 6: max
p̂

K∑
k=1

wm(k)∆m(k) exp

(
−
dτm(k)rσ

2

p̂m(k)

)
(28a)

s.t.
K∑
k=1

(r + 1)k−1p̂m(k) ≤ p (28b)

p̂m(1) ≥ p̂m(2) ≥ · · · ≥ p̂m(K) (28c)
p̂m(k) > 0, k = 1, . . . ,K (28d)

0

0.5

1

1.5

Figure 3: Understanding of the convex approximation.

To proceed, we first investigate the properties of the objective
function (28a) in Problem 6. We define

Gk(p̂m(k)) := wm(k)∆m(k) exp

(
−
dτm(k)rσ

2

p̂m(k)

)
.

The following properties hold for functions Gk(·), k =
1, . . . ,K:

• limp̂m(k)→0+ Gk(p̂m(k)) = 0. For convenience, we define
Gk(0) = 0;

• limp̂m(k)→+∞Gk(p̂m(k)) = wm(k)∆m(k);
• Gk(·) is strictly monotonically increasing on (0,+∞),

which can be verified by checking G′k(·);

• Gk(·) is strictly convex on [0,
dτm(k)rσ

2

2 ), and strictly

concave on [
dτm(k)rσ

2

2 ,+∞), which can be verified by
checking G′′k(·).

Inspired by the properties above, we propose a convex
upper approximation of Gk(·) as follows. We find a constant
p̃m(k) > 0 for each k = 1, . . . ,K, and replace the segment of
Gk(·) on [0, p̃m(k)] by the straight line segment connecting two
points (0, Gk(0) = 0) and (p̃m(k), Gk(p̃m(k))). At the same
time, the straight line segment is a tangent line to Gk(·) at the
point (p̃m(k), Gk(p̃m(k))). Therefore p̃m(k) can be calculated
as follows:

Gk(p̃m(k))−Gk(0)

p̃m(k) − 0
= G′k(p̃m(k))

which leads to the result p̃m(k) = dτm(k)rσ
2. Hence a convex

upper approximate of Gk(·) is:

G̃k(p̂m(k)) :=


wm(k)∆m(k)e

−1

dτ
m(k)

rσ2 p̂m(k), 0 ≤ p̂m(k) < dτm(k)rσ
2

wm(k)∆m(k) exp

(
−d

τ
m(k)rσ

2

p̂m(k)

)
, p̂m(k) ≥ dτm(k)rσ

2

For the sake of understanding, we illustrate an example of the
adopted convex approximation in Fig. 3. Then we can solve
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the following convex problem as an approximate of Problem
6:

Problem 7: max
p̂

K∑
k=1

G̃k(p̂m(k)) (29a)

s.t.
K∑
k=1

(r + 1)k−1p̂m(k) ≤ p, (29b)

p̂m(1) ≥ p̂m(2) ≥ · · · ≥ p̂m(K), (29c)
p̂m(k) ≥ 0, k = 1, . . . ,K. (29d)

Let p̂o = (p̂om(1), . . . , p̂
o
m(K)) be an optimal solution that we

obtain by solving Problem 7, and denote the optimal objective
value of Problem 7 as Ũo = Ũ(p̂o) :=

∑K
k=1 G̃k(p̂om(k)).

Note that p̂o is also a feasible solution to Problem 6. Moreover,
denote the objective value of Problem 6 at p̂o as Uo =
U(p̂o) =

∑K
k=1Gk(p̂om(k)). Then the optimal objective value

of Problem 6, denoted by U∗, is bounded as Uo ≤ U∗ ≤ Ũo.
The following Corollary provides an upper bound of the
suboptimality gap U∗ − Uo for Problem 6.

Corollary 1. The gap between the optimal objective
value of Problem 6 and that of Problem 7 is bounded
by e−2

∑K
k=1 wm(k)∆m(k). Mathematically, U∗ − Uo ≤

e−2
∑K
k=1 wm(k)∆m(k).

Proof. See Appendix D in [35].

We realize that it could be difficult to derive the closed-
form solution to both Problem 6 and Problem 7. However,
compared to Problem 6, Problem 7 can be solved efficiently
via any convex optimization solver. Besides, Corollary 1 offers
the upper bound of the suboptimality gap between Problem 7
and Problem 6.

Moreover, for a fixed total number N of clients and a
fixed number K of clients to be served, there are in total
CKN possible sequences {m(k)}k=1,2,...K . By traversing all
these combinations, we can find the optimal solution to
Problem 7 with the optimal set of K clients to be served
K = {m(k)}k=1,2,...K . It is worth emphasizing that we
traverse all these combinations by substituting them to (28a)
rather than (29a), and then select the one with the maximum
objective value6. We remark that the number of clients N will
not be large due to the computational limitation of hardware.
Thus the computation complexity is of our suboptimal scheme
will remain at an acceptable level.

2) Step 2: Optimal number of clients to be served:
By comparing the optimal performance for every K ∈
{1, 2, ..., N}, we can find the optimal value K∗, and its
corresponding clients to be served K∗ = {m(k)}k=1,2,...K∗

and
(
p̂m(1), p̂m(1), p̂m(3), . . . , p̂m(K∗)

)
. It is worth emphasiz-

ing that we traverse all K ∈ {1, 2, ..., N} by substituting them
to the object in Problem 2 to find K∗ = {m(k)}k=1,2,...K∗ and
the corresponding value

(
p̂m(1), p̂m(1), p̂m(3), . . . , p̂m(K∗)

)
.

6Note that the more clients scheduled to schedule at the same time, the
higher the decoding complexity at the scheduled clients as more SIC stages
are needed.

Then, according to the relationship between {pm(k)} and
{p̂m(k)}, we can transfer {p̂m(k)} to the power allocated to
each client, and obtain {pm(k)} and pi = 0, if i /∈ K∗.

To summarize our method, the pseudocode of the overall
algorithm for resolving Problem 2 is described in Algorithm
1.

Algorithm 1 Calculate power allocated to each client

Require:
1: Input:∆(t) = {∆1(t),∆2(t), ...,∆N (t)},

(d1, d2, ..., dN ), r, τ and σ2.
2: for K = 1 to N do
3: ηK = 0;
4: for j = 1 to CKN do
5: {m(k)}k=1,2,··· ,K = {mj(k)}k=1,2,··· ,K ; . The

subset of N with K clients
6: {p̂m(k)}:= solution to Problem 7;. Solve Problem

7 by convex optimization tool.
7: if ηK <

∑K
k=1Gk(p̂m(k)) then

8: ηK =
∑K
k=1Gk(p̂m(k));

9: {m∗K(k)}k=1,2,··· ,K = {m(k)}k=1,2,··· ,K ;
10: p̂K = {p̂m(k)}k=1,2,··· ,K ;
11: end if
12: end for
13: end for
14: K∗ = arg max

K=1,2,...,N
ηK ;

15: K∗ = {m∗K∗(k)}k=1,2,··· ,K∗ ; . The set of served clients
16: convert p̂K∗ to pK∗ using (23); . Power allocated to

clients in K∗.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, simulation results are provided to evalu-
ate the effectiveness of the proposed adaptive NOMA/OMA
scheme for both two-client and multi-client scenarios.

A. Two-client scenario

This subsection provides numerical results to verify the
analytical results for the two-client scenario presented in
Section III. We set path loss exponent τ = 2 and the target
data rate R = 1 in all simulations. The SNR in this subsection
refers to the transmission SNR ρ.

We follow [39] and apply Relative Value Iteration (RVI)
method on truncated finite states (∆i ≤ 100, ∀i) to ap-
proximate the countable infinite state space. The optimal
policy and suboptimal policy is illustrated in Fig. 4, where
SNR= 18dB, the normalized distances for two clients are
d1 = 2 and d2 = 4, and the weighted parameters for two
clients w1 = w2 = 0.5. We can observe the switching structure
of the optimal policy which verifies Theorem 2. Besides, we
can find that the proposed suboptimal policy is similar to the
optimal policy.

Fig. 5 compares the weighted sum of the expected
AoI of the two clients under optimal policy using adap-
tive NOMA/OMA scheme (optimal adaptive NOMA/OMA
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Figure 4: Age-optimal policy and suboptimal policy. Each
point represents a state s = (∆1,∆2). The colored area
indicates action for each state, i.e., a = 0 for states in the
blue area; a = 7 for states in the orange area; a = 8 for
states in the purple area; a = 9 for states in the green area
and a = 10 for states in the red area, where L = 10 and
A = {0, 6, 7, 8, 9, 10}.

scheme), the policy that always using NOMA for trans-
mission (optimal NOMA policy with a ∈ {max{dL2 e +

1, d (2R−1)L
2R

e}, ..., L−1}) which reproduces the NOMA policy
in [22], the proposed suboptimal policy and the optimal OMA
policy that the BS adaptively selects one client to conduct
transmission (optimal OMA scheme with a ∈ {0, L}) which
reproduces the OMA policy in [22] in two cases: 1) d1 = 2
and d2 = 4; 2) d1 = 3 and d2 = 6. The setting of
the rest system parameters is the same as that in Fig 4.
We conduct the simulations by generating 106 time slots
for different transmission SNRs. We can see from Fig. 5
that the proposed suboptimal policy achieves near-optimal
performance: its weighted sum of the expected AoI almost
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Figure 5: The performance comparison of different policies
versus SNR for the two-client scenario with w1 = w2 = 0.5.

coincides with that of the optimal adaptive NOMA/OMA
policy especially when the outage probability of two clients
are small as shown in Fig. 5. Specifically, the performance
of suboptimal policy is closer to that of the optimal adaptive
NOMA/OMA policy when d1 = 2 and d2 = 4, compared to
the case when d1 = 3 and d2 = 6; the gap between the AoI
performance of the suboptimal policy and that of the optimal
adaptive NOMA/OMA policy narrows as the SNR increases.

Moreover, we can see that when SNR is small, e.g., SNR<
15dB, the performance of the optimal adaptive NOMA/OMA
scheme and that of the optimal OMA scheme are almost the
same in Fig. 5. This is due to the low SNR, which leads to
a higher outage probability for both OMA and NOMA. The
situation for NOMA is even worse. As such, both optimal
adaptive NOMA/OMA policy and the suboptimal policy will
prefer not to choose NOMA scheme but use OMA scheme.
Thus, these two policies have similar performance. As SNR
increases, the weighted sum of the expected AoI of optimal
OMA policy will approach 1.5, when w1 = w2 = 0.5.
This is the optimal performance under the OMA scheme.
As the outage probability of each client is approaching 0,
the instantaneous age of each client will equal to 1 and 2
iteratively.

Furthermore, we can see from Fig. 5 that the performance of
optimal adaptive NOMA/OMA policy and that of suboptimal
policy and NOMA policy are relatively close when SNR is
large, e.g., SNR≥ 20dB. This is because both optimal adaptive
NOMA/OMA policy and suboptimal policy are more likely to
choose NOMA for transmission to both clients at the same
time. When SNR is large enough, the optimal performance
of both the optimal adaptive NOMA/OMA policy and the
suboptimal policy approaches 1 as the instantaneous AoI of
each client will be always 1, thanks to almost no outage for
both clients in NOMA at high SNR. The BS thus always
chooses NOMA scheme to conduct transmissions to both
clients. In addition, NOMA is better than optimal OMA when
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SNR> 16dB for d1 = 2 and d2 = 4 and SNR> 19dB for
d1 = 3 and d2 = 6. This shows the benefits of NOMA in
timely status update when SNR is large.

B. Multi-client scenario

In this subsection, we evaluate the effectiveness of ap-
proximation of the max-weight policy in multi-client scenario
and studies how the proposed algorithm works. We conduct
all simulations by generating 105 time slots for different
transmission SNR ρ = p̄/σ2. We consider the scenario
with a BS conducting timely status update to 5 clients with
normalized distance di = 6 − i, i ∈ {1, 2, .., 5}. We set
path loss exponent τ = 2 and the target data rate R = 1.
Fig. 6a illustrates the performance of different policies under
different transmission SNR, including: 1) max-weight policy
under adaptive NOMA/OMA solved by exhaustive search in
each time slot (MW-N/OMA), 2) approximated convex opti-
mization policy (termed AP-N/OMA), 3) approximated convex
optimization policy under NOMA with fixed client number K
(termed AP-NOMA-F-K) and 4) OMA scheme that selects
the client corresponding to achieve maximum expected age
drop to serve as in [14] (termed MW-OMA). We can see that
similar to the results of the two-client scenario, when the SNR
is low, the AoI performance under different NOMA schemes
(i.e., AP-NOMA-F-K) is poor, due the relatively large out-
age probability of NOMA scheme in low SNR scenario,
comparing with MW-OMA scheme. Specifically, when SNR
ρ ≤ 13dB, the performance of AP-NOMA-F-K1 is worse than
that of AP-NOMA-F-K2, if K1 > K2. As the transmission
SNR increases, the performance of AP-NOMA-F-K becomes
better. The rationale is that when the transmission SNR is
sufficiently large, the NOMA scheme that allows to serve
more clients achieves reduced age performance. When SNR
ρ ≥ 29dB, the performance of AP-NOMA-F-K1 is better
than that of AP-NOMA-F-K2, if K1 > K2. Compared to the
AP-NOMA-F-K and MW-OMA, the proposed AP-N/OMA
scheme that adaptively switches between NOMA and OMA
achieves overall better AoI performance as it allocates power
to each client in a more flexible way. In addition, the small
gap between MW-N/OMA policy and AP-N/OMA shows the
effectiveness of our proposed approximation method which
reduces the computation complexity but achieves near-optimal
performance.

Fig. 6b shows the probability of scheduling different number
of clients of the proposed AP-N/OMA of different SNRs. We
can observe that as the SNR increases, it is more likely for the
AP-N/OMA to serve more users. This well coincides with the
effect in Fig.6a where the performance of AP-N/OMA is close
to the performance of AP-NOMA-F-2 when SNR is small, and
close to the performance of AP-NOMA-F-5 as SNR increases.
We can also find some the fluctuation of the probability of
scheduling different number of clients in Fig. 6b which could
result from the randomness of outage for each client in the
transmission and the approximation that we made in Problem
7.
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Figure 6: The performance comparison of different policies
and the probability scheduling different number of users of
AP-N/OMA versus SNR for multi-client scenario, N = 5 with
wi = 1/N , ∀i ∈ {1, 2, .., 5}.

Fig. 7 plots the curves of the weighted sum of expected
AoI performance for MW-OMA policy, AP-N/OMA policy,
AP-NOMA-F-K policy and MW-N/OMA policy versus the
number of clients in the network. The network with increasing
number of clients is considered with N ∈ {2, 3, 4, 5, 6}, the
normalized distance of ith client in the system with N clients
is di = N+1−i and weighted parameter wi = 1/N . As shown
in Fig. 7, the performance of AP-N/OMA scheme is close to
that of MW-N/OMA. Moreover, compared to the MW-OMA
scheme, it achieves significant performance improvement. We
can see that the performance of AP-NOMA-F-2 policy is
comparable to that of AP-N/OMA policy. This indicates that at
the transmission SNR ρ = 20 dB, it is suitable to use NOMA
to serve 2 clients in each time slot. We can also find that
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Figure 7: Simulation of network with different number of
clients N with wi = 1/N , ∀i and transmission SNR ρ = 20
dB.

the performance of AP-NOMA-F-K policy decreases as K
increases. This is understandable as the transmission to more
than 2 clients using the NOMA scheme will involve a large
error probability, especially when the SNR is not large enough.
Besides, the AP-N/OMA scheme has a slow speed of AoI
increase due to the increasing number of clients in the network,
comparing with MW-OMA scheme. The performance gap
between MW-OMA and AP-N/OMA and that between MW-
OMA and MW-N/OMA, both increase as the number of clients
in the network increases. This shows the potential of adaptive
NOMA/OMA scheme in achieving reduced AoI performance
for multi-client network. The rationale behind is that in MW-
OMA scheme, only one client can be served to have potential
AoI drop while other clients’ AoI will certainly increase. The
increasing number of clients in the network makes more clients
have AoI increase. Thus, the age of network will increase.
While for adaptive NOMA/OMA, as more than one client can
be served at each time slot, the speed of AoI increase due
to the increasing number of clients in the network will slow
down.

VI. CONCLUSIONS

In this paper, we considered a wireless network with a
base station (BS) conducting timely transmission to multiple
clients in a time-slotted manner. The BS can adaptively switch
between NOMA and OMA for the downlink transmission to
minimize the AoI of the network. We studied both two-client
scenario and multi-client scenario. For the two-client scenario,
we developed an optimal policy for the BS to decide whether
to use NOMA or OMA for downlink transmission based on
the instantaneous AoI of both clients in order to minimize
the weighted sum of the expected AoI of the network. This
was achieved by formulating and resolving a Markov Decision
Process (MDP) problem. We proved the existence of an
optimal stationary and deterministic policy. Action elimination

was conducted to reduce the computation complexity. The
optimal policy is shown to have a switching-type property with
obvious decision boundaries. A suboptimal policy with lower
computation complexity was also proposed, which is shown
to achieve near-optimal performance according to simulation
results.

For the multi-client scenario, inspired by the proposed
suboptimal policy, we formulated a nonlinear optimization
problem to determine the optimal power allocated to each
client by maximizing the expected AoI drop of the network in
each time slot. We managed to resolve the formulated problem
by approximating it as a convex optimization problem. Sim-
ulation results validated the tightness of the approximation.
The performance adaptive NOMA/OMA scheme by solving
the convex optimization was shown to be close to that of max-
weight policy solved by exhaustive search. Besides, the adap-
tive NOMA/OMA scheme has achieved significantly reduced
AoI compared to OMA scheme, especially when the number
of clients in the network is large and the transmission SNR is
high.
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