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Abstract—Multiuser techniques play a central role in the fifth-
generation (5G) and beyond 5G (B5G) wireless networks that ex-
ploit spatial diversity to serve multiple users simultaneously in the
same frequency resource. It is well known that a multi-antenna
base station (BS) can efficiently serve a number of users not
exceeding the number of antennas at the BS via precoding design.
However, when there are more users than the number of antennas
at the BS, conventional precoding design methods perform poorly
because inter-user interference cannot be efficiently eliminated.
In this paper, we investigate the performance of a highly-loaded
multiuser system in which a BS simultaneously serves a number
of users that is larger than the number of antennas. We propose a
dynamic bandwidth allocation and precoding design framework
and apply it to two important problems in multiuser systems: i)
User fairness maximization and ii) Transmit power minimization,
both subject to predefined quality of service (QoS) requirements.
The premise of the proposed framework is to dynamically assign
orthogonal frequency channels to different user groups and
carefully design the precoding vectors within every user group.
Since the formulated problems are non-convex, we propose two
iterative algorithms based on successive convex approximations
(SCA), whose convergence is theoretically guaranteed. Further-
more, we propose a low-complexity user grouping policy based
on the singular value decomposition (SVD) to further improve
the system performance. Finally, we demonstrate via numerical
results that the proposed framework significantly outperforms
existing designs in the literature.

Index Terms—Beyond 5G, multiuser MISO, precoding vector,
optimization, successive convex approximation, singular value
decomposition.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communications
play an essential role in 5G and beyond 5G (B5G) wireless
systems to fulfill the rapidly increasing demand for data-
hungry applications. By equipping transceivers with multiple
antennas, a multi-antenna base station (BS) is able to serve
multiple users simultaneously thanks to spatial multiplexing
techniques. It is well known that under mild conditions, a
BS equipped with N antennas can send independent data
streams to a number of users not exceeding N via precoding
methods. In this case, the BS can provide adequate degree
of freedoms for the users to mitigate inter-user interference
[1], [2]. A proper precoding design can improve a multiuser

Manuscript received Feb. 6, 2021; revised Jun. 11, 2021; accepted Aug. 13,
2021. This work is supported by the Luxembourg National Research Fund via
projects DISBuS and FlexSAT. The associate editor coordinating the review
of this paper and approving it for publication was M. Payaró.
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system in terms of both spectral efficiency (SE) and energy
efficiency (EE) [3]. The research on multiuser systems has
attracted much attention with main focus on the performance
analysis based on fundamental physical layer properties. It is
shown in [4] that a good SE is achievable in MIMO networks
with a limited number of antennas when the pilot sequences
of adjacent cells are carefully designed to eliminate pilot
contamination impacts [5], [6]. The authors of [7] propose
a power control algorithm for maximizing the EE in massive
MIMO uplinks under both perfect and imperfect channel state
information (CSI) conditions. In [8], the authors analyze the
impacts of the number of antennas at the BS on the system
EE and conclude that the optimal solution can be derived
via a joint resource allocation design. We note that these
MIMO system results are obtained in under-loaded conditions
in which the number of users is usually smaller than the
number of antennas at the BS. In such cases, the BS can
simultaneously serve the users in the same frequency band
via efficient spatial multiplexing, e.g., multiuser precoding,
because the BS has sufficient antennas to mitigate inter-user
interference.

The proliferation of mobile handsets and internet-of-thing
(IoT) devices in the B5G era has not only imposed stressful
requirements for high data rate and stringent latency but
also likely put the communication system into overloaded
situations. With the number connected devices larger than the
global population [9], it is highly probable that the number
of users connected to a BS exceeds the number of antennas
of the BS. In these cases, the system resources are scarce
and exploiting only the spatial diversity may not be sufficient.
Consequently, the conventional multiuser precoding design
perform poorly because the inter-user interference cannot be
efficiently eliminated. To overcome this issue, the authors of
[10] propose a joint user selection and precoding design to a
subset of users not exceeding the number of antennas at the
BS. The proposed method therein, however, cannot provide
the required data rate to all the users simultaneously as it
serves only a subgroup of users at a time. This asks for novel
resource allocation techniques for highly-loaded multiuser
systems in the B5G era. This paper develops a resource
allocation framework that exploits the frequency dimension
together with the spatial multiplexing gain.

A. Related Works

Joint bandwidth and power allocation design has been
studied in multi-homing networks. The authors of [11] propose
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a joint bandwidth and power allocation to improve the EE of
multi-homing uplink networks. Therein, the users can select
one out of multiple available air interfaces to send data to the
BS. A parameter-free solution based on the Charnes-Cooper’s
transformation is proposed to solve the EE maximization
problem. A similar study is considered in [12] to optimize the
EE, in which the users select either LTE or WiFi frequency
bands to transmit uplink data. A Dinkelbach-based solution
is proposed to overcome the fractional formulation of the
objective function. Based on the design proposed in [11],
[12], a number of subsequent works have been investigated
in different scenarios [13]–[18]. The authors of [13] analyze
the tradeoff between the spectral and energy efficiencies of cel-
lular networks via dynamic power and bandwidth allocation.
Starting with a single-cell use case, the goal therein is to ex-
amine the Pareto points of the EE. The resulting optimization
minimizes the transmit power subject to resource constraints,
assuming a constant transmission rate. Then for a multi-cell
use case, a Poisson point process method is used to analyze the
inter-cell interference that is independent from the variables.
The spectral and energy efficiencies are investigated in [14]
via dynamic bandwidth and power allocation for terrestrial
systems. By proving the concavity of the rate function with
respect to the bandwidth and power variables, closed-form
expressions for the optimal bandwidth and power are derived.
The authors of [16] study the impacts of joint bandwidth and
power control on a geostationary satellite system. Therein,
two problems of sum capacity maximization and power min-
imization are formulated subject to the total bandwidth and
power constraints. The performance of such joint resource
allocation is evaluated via package loss and transmit power
metrics. A matching algorithm is proposed in [17] to solve the
resource allocation in multi-homing environments, in which
both the users and base stations are equipped with multiple air
interfaces. The impact of imperfect channel state information
is taken into account in [18] when optimizing the bandwidth
assignment in heterogeneous wireless uplinks.

Joint bandwidth and power allocation has also been con-
sidered in multiuser downlink systems in [19], [20]. A dy-
namic frequency and power allocation is proposed in [19]
for heterogeneous small cell networks, in which a macro BS
provides wireless backhaul to multiple small-cell BSs that
serve their users in the same frequency band. In [20], the
authors develop an energy-efficient resource allocation scheme
for heterogeneous wireless networks in which the users can
receive data from both LTE and WiFi orthogonal frequency-
division multiplexing (OFDM) signals. Therein, an iterative
joint sub-carrier assignment and power control algorithm is
proposed by relaxing the binary selection variables followed
by a Lagrange dual method. It is worth noting that the above-
mentioned works do not consider inter-user interference as
each user (or BS) is assigned to an orthogonal frequency
channel.

B. Contributions

In this paper, we investigate the performance of a multiuser
multiple-input single-output (MISO) system in highly-loaded

scenarios in which the number of users can exceed the number
of antennas at the BS. Our contributions are summarized as
follows:
• We propose a resource allocation framework that fully

exploits the spatial diversity and the frequency dimension
via a joint design of the precoding vectors and band-
width allocation in multiuser systems. The effectiveness
of the proposed framework is shown via its superior
performance compared with the conventional precoding
solution [21] and existing joint bandwidth and power
allocation strategies [11], [12] in highly- and over-loaded
scenarios.

• Two joint optimization problems are formulated to maxi-
mize the user fairness and to minimize the transmit power,
the two important problems in multiuser systems, subject
to minimum quality of service (QoS) requirements, the
total bandwidth and a limited transmit power. Unlike
previous bandwidth-power allocation designs [11], [12],
[14], [15], [17], [19] which avoid inter-user interference
by allocating an orthogonal frequency band to each user,
our joint optimizations tolerate inter-user interference
among users within one group via precoding vectors
design. To overcome the non-concavity of the achievable
rate (with respect to the bandwidth and precoding vector
variables), we reformulate the original problems into
a difference-of-convex (DC) representation and propose
two iterative algorithms based on the successive convex
optimization (SCA) method. The convergence to at least
a local optimum of the proposed iterative algorithms is
theoretically guaranteed.

• To further enhance the system performance, we propose a
heuristic user grouping policy based on the singular value
decomposition (SVD) to determine the best user groups
partition to which the joint bandwidth and precoding
vectors design will be applied.

• Finally, we demonstrate the advantages of the proposed
framework via extensive numerical results. It is shown
that our solutions achieve more than 50% performance
gain over reference schemes proposed in [11], [12], [21].

C. Organization

The remainder of this paper is organized as follows. Sec-
tion II describes the system model and relevant variables.
Section III presents the min rate maximization problem. Sec-
tion IV derives the joint optimization for the power mini-
mization problem. Section V proposes a low-complexity user
grouping policy. Section VI extends the proposed method to a
zero-forcing (ZF)-based design. Section VII presents numeri-
cal results and demonstrates the effectiveness of the proposed
framework. Finally, Section VIII provides conclusions and
discussions.

II. SYSTEM MODEL

We consider a wireless communications system in which a
BS serves multiple users via the shared wireless medium. The
BS is equipped with N antennas while the K users, where
K ≥ N , are equipped with a single-antenna. In this paper, we
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Fig. 1. The multiuser MISO system under highly-loaded conditions. The
number of users is greater than the number of antennas at the BS. Interference
comes from adjacent cells.

exploit the frequency dimension beside the spatial diversity to
optimize the system resources utilization. It is assumed that
the frequency channels can be flexibly assigned to the users.
We propose a dynamic resource allocation framework that
jointly allocates orthogonal frequency channels to different
user groups and optimizes the precoding vectors within every
user group. In particular, the users are divided into M groups,
each having a number of users smaller than N . Let Km
denote the set of Km ≤ N users in user group m, i.e.,
Km = {um1 , . . . , umKm

}. By definition,
∑M
m=1Km = K. The

way the user groups are formed (refer to user grouping policy)
will be studied in Section V.

Let hm,k ∈ CN×1 denote the channel coefficients from the
BS to the k-th user in group m, including the pathloss. In order
to mitigate inter-user interference, the BS performs precoding
for every group. Denote wm,k ∈ CN×1 as the precoding
vector designed for the k-th user in group m. In addition,
let bm be the orthogonal frequency bandwidth allocated for
the user group m. The achievable rate of user k in group m
is given as follows:

rm,k = bm log
(

1 +
|hHm,kwm,k|2∑

k 6=j∈Km
|hHm,kwm,j |2+bmN0+Iout

)
,

(1)

where N0 is the Gaussian noise density and Iout is the
interference caused by the transmission of neighboring cells
which is calculated as Iout = bmNI , where NI is the average
interfering power density [13].

A. Problem Formulation

In this paper, we consider two important problems in
multiuser systems: 1) Problem 1: Maximizing the fairness and
2) Problem 2: Minimizing the transmit power. The generic
joint design can be formulated as follows:

Maximize
b,w

f(b,w) (2)

s.t. rm,k ≥ ηm,k,∀m,∀k ∈ Km, (2a)

∑M

m=1
bm ≤ B, (2b)∑M

m=1

∑Km

k=1
‖wm,k‖2 ≤ Ptot, (2c)

where rm,k is given in (1), b , {bm}Mm=1,w , {wm,k}∀m,k
is the short-hand notations for the bandwidth allocation and
the precoding vectors, respectively, and f(b,w) is the generic
objective function which is defined as

f(b,w) =


minm,k{rm,k}, for Problem 1

−
M∑
m=1

Km∑
k=1

‖wm,k‖2, for Problem 2
.

In (2), the first constraint is to satisfy the user QoS require-
ments, the second constraint states that the aggregated band-
width allocated to all user groups cannot exceed the total band-
width B. Orthogonal allocation in frequency domain between
different user groups is also ensured by this constraint. Note
that although inter-group interference is avoided, there exists
inter-user interference among the users with one group. The
last constraint limits the transmit power not exceeding Ptot. In
the next sections, we propose joint bandwidth allocation and
optimal precoding vectors designs for these two problems.

III. MAXIMIZING THE USER FAIRNESS

In this section, we would like to maximize the minimum rate
among the users under limited bandwidth and power resources.
The optimization problem is formulated as follows:

Maximize
bm,wm,k

min
m,k

bm log(1 + γm,k) (3)

s.t. bm log(1 + γm,k) ≥ ηm,k,∀m, k, (3a)∑M

m=1
bm ≤ Btot, (3b)∑M

m=1

∑Km

k=1
‖wm,k‖2 ≤ Ptot, (3c)

where γm,k ,
|hH

m,kwm,k|2∑
k 6=j∈Km

|hH
m,kwm,j |2+bm(N0+NI)

is the signal
to noise plus interference (SINR) of user k in group m.
We note that the SINR is also determined by the allocated
bandwidth bm for the user group m.

The problem (3) is non-convex due to the objective function
and constraint (3a). Unlike the conventional fairness design
[21], in which the max-min rate problem can be equivalently
represented via a corresponding max-min SINR that comprises
only the precoding vector variables, the considered optimiza-
tion in (3) jointly optimizes the bandwidth and precoding
vectors for all user groups. To add insult to injury, the allocated
bandwidth variable bm also appears in the denominator of the
SINR, which makes the problem more difficult.

To overcome this challenge, we will transform problem (3)
into a more traceable formulation that can be easier to tackle.

3
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Specifically, by introducing the auxiliary positive variables
xm,k and γm,k, we can reformulate problem (3) as follows:

Maximize
bm,wm,k,γm,k,xm,k

min
m,k

xm,k (4)

s.t. bm log(1 + γm,k) ≥ xm,k,∀m, k, (4a)

|hHm,kwm,k|2∑
k 6=j∈Km

|hHm,kwm,j |2+bm(N0+NI)
≥γm,k,∀m, k, (4b)

bm log(1 + γm,k) ≥ ηm,k,∀m, k, (4c)
(3b), (3c),

where the two new constraints (4a) and (4b) leverage the
achievable rate in the objective function of (3), and constraint
(4c) is to satisfy the QoS requirements.

The problem (4) is equivalent to problem (3). This can be
shown from the fact that the equalities are held in constraints
(4a) and (4b) at the optimum.

Because the logarithm function is concave and the function
1
x is convex, constraint (4c) can be equivalently transformed
into a convex representation by dividing both sides by a
positive value bm. Therefore, the main challenge in solving
(4) lies in the first two constraints. To deal with the former,
with the aid of the slack variable ym,k, we can reformulate
constraint (4a) as

log(1 + γm,k) ≥ ym,k, (5)
bmym,k ≥ xm,k. (6)

It is observed that constraint (5) is convex since the loga-
rithm function is concave. To deal with constraint (6), we use
an equivalent representation:

(6)⇔ (bm + ym,k)2 ≥ 2xm,k + b2m + y2
m,k, (7)

which has a DC representation as both sides are convex
functions. This suggests to employ the iterative method which
approximates the left-hand-side (LFS) of (6) by its first order
approximation. In particular, given feasible solutions b̂m and
ŷm,k in the current iteration, constraint (6) will be approxi-
mated in the next iteration by the following convex constraint

2(bm + ym,k)(b̂m + ŷm,k)−(b̂m + ŷm,k)2

≥ 2xm,k + b2m + y2
m,k. (8)

To tackle the non-convexity of constraint (4b), we represent
it in an equivalent form as

|hHm,kwm,k|2

γm,k
≥

∑
k 6=j∈Km

|hHm,kwm,j |2 + bm(N0 +NI). (9)

In Appendix A, we show that function f(x, y) = xTAx
y is

jointly convex in x and y in their supports. Therefore, the LFS
of (9) is convex with respect to wm,k and γm,k. In addition,
the right-hand-side of (9) is also convex as it is a summation
of a linear term and square terms. Therefore, iterative method
can be used to solve problem (4) in which at each iteration, the
constraint (9) is approximated the first-order approximation of
the LHS. In particular, given feasible solutions ŵm,k and b̂m

Algorithm 1 ITERATIVE ALGORITHM TO SOLVE (3)

1: Initialize a feasible solution ŵm,k, b̂m, γ̂m,k, ŷm,k, ε, t =
1, Rold, tMAX and error = 1.

2: while error > ε and t < tMAX do
3: Solve problem P1(ŵ, b̂, ŷ, γ̂) in (11) to obtain
w?
m,k, b

?
m, γ?m,k, x

?
m,k, y

?
m,k.

4: Compute R(t) = minm,k{x?m,k}.
5: Compute error = |R(t) −Rold|
6: Update ŵm,k = w?

m,k; b̂m = b?m, ŷm,k = y?m,k,
γ̂m,k = γ?m,k, Rold = R(t), t := t+ 1.

at the t-th iteration, in the (t + 1)-th iteration, constraint (9)
is approximated by a convex constraint below∑

k 6=j∈Km

wH
m,kHm,kwm,j + bm(N0 +NI)

≤
2wH

m,kHm,kŵm,k

γ̂m,k
− γm,k

ŵm,kHm,kŵm,k

γ̂2
m,k

, (10)

where Hm,k , hm,kh
H
mk.

By using (8) and (10) as the inner approximations of (6) and
(9), respectively, the original optimization problem (4) can be
approximated by

P1(ŵ, b̂, ŷ, γ̂) : Maximize
bm,wm,k,xm,k,ym,k,γm,k

min
m,k

xm,k (11)

s.t. (2b), (2c), (5), (8), (10),

log(1 + γm,k) ≥ ηm,k
bm

, (11a)

where (11a) is directly obtained from (4c) by dividing both
sides by a positive number bm.

We observe that problem (11) is convex, hence it can be
efficiently solved by standard methods, e.g., the interior point
method [22]. Because the solutions of (11) also satisfy all
the constraints (3a), (3b) and (3c), it provides a (sub) optimal
solution for (3). It is worth noting that the solution of (11)
largely depends on the initial values ŵ, b̂, ŷ and γ̂. Therefore,
to close the gap to the global optimum of (3), we propose
an iterative algorithm that consists of solving a sequence of
convex optimization problems. The idea behind the proposed
iterative algorithm is to obtain better approximated solutions
through iterations. The steps of the proposed algorithm are
listed in Algorithm 1.

A. Convergence of Algorithm 1

Proposition 1: The sequence of the objective values gener-
ated by Algorithm 1 in solving the problem P1(ŵ, b̂, ŷ, γ̂) is
non-decreasing.
The proof of Proposition 1 is shown in Appendix B. Although
not guaranteeing the global optimal solution of the problem
(3), Proposition 1 justifies the convergence to at least a local
optimum of the proposed iterative algorithm. The study of the
performance gap to the global optimum is left for future work.

B. Complexity of the Proposed Algorithm

The complexity of the proposed Algorithm 1 is determined
by the computation complexity of one iteration and the number
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of iterations. Assuming that the interior point method is used
to solve the convex problem (11), in the worst case the
complexity is equal to the cube of the number of real variables
[22]. Since there are 2NK + 3K + M real variables in
the problem (11), the computational complexity for solving
(11) is (2NK + 3K + M)3. As the result, it requires the
overall complexity of tMAX(2NK + 3K +M)3 to solve the
proposed Algorithm 1, where tMAX is the maximum number
of iterations.

IV. MINIMIZING THE TRANSMIT POWER

In this section, we aim to serve the users with given QoS
requirements for the least energy consumption. In particular,
the BS must provide an achievable rate to every user k in
group m that is not less than the QoS target ηm,k. The power
minimization problem is formulated as follows:

Minimize
bm,wm,k

M∑
m=1

Km∑
k=1

‖wm,k‖2 (12)

s.t. bm log
(

1 +
|hHm,kwm,k|2∑

k 6=j∈Km
|hHm,kwm,j |2 + bm(N0 +NI)

)
≥ ηm,k,∀m,∀k ∈ Km, (12a)

(2b), (2c),

where we have used (1) for the achievable rate in the QoS
constraint.

In problem (12), the first constraint is to satisfy the mini-
mum QoS requirement for every user, the second and the third
constraints are to satisfy the total bandwidth and the power
budget, respectively.

Although having a convex objective function, solving prob-
lem (12) is difficult due to the non-convexity of constraint
(12a) that involves both the precoding vectors wm,k and band-
width allocation bm. To tackle this challenge, we reformulate
constraint (12a) as follows:

log(1 + γm,k) ≥ ηm,k
bm

, (13)

|hHm,kwm,k|2∑
k 6=j∈Km

|hHm,kwm,j |2 + bm(N0 +NI)
≥ γm,k, (14)

where γm,k is the auxiliary variable representing the SINR at
user k in group m.

It is observed that constraint (13) is convex as the logarithm
function is concave and the function 1

x is convex. Therefore,
the main challenge lies in (14). Similar to the previous section,
we will transform this constraint into a DC representation,
which can be effectively solved via iterative algorithm.

Indeed, because both the variables are positive, (14) is
equivalent to the following constraint:

|hHm,kwm,k|2

γm,k
≥

∑
k 6=j∈Km

|hHm,kwm,j |2+bm(N0 +NI). (15)

Accordingly Appendix A, the LHS of (15) is jointly convex
in wm,k and γm,k. Because the RHS of (15) is also convex,
we can use (16) as the approximation of the original constraint

Algorithm 2 ITERATIVE ALGORITHM TO SOLVE (12)
1: Initialize a feasible solution ŵm,k, γ̂m,k, ε, t = 1, Eold,
tMAX and error = 1.

2: while error > ε and t < tMAX do
3: Solve problem P2(ŵ, γ̂) in (17) to obtain
w?
m,k, b

?
m, γ

?
m,k.

4: Compute E(t) =
∑
m,k ‖w?

m,k‖2.
5: Compute error = |E(t) − Eold|
6: Update ŵm,k = w?

m,k; b̂m = b?m, Eold = E(t), t :=
t+ 1.

(15), where ŵm,k and b̂m are feasible solutions of the previous
iteration.∑

k 6=j∈Km

wH
m,kHm,kwm,j + bm(N0 +NI)

≤
2wH

m,kHm,kŵm,k

γ̂m,k
− γm,k

ŵm,kHm,kŵm,k

γ̂2
m,k

. (16)

Therefore, we propose an iterative algorithm that solves
problem (12) via a sequence of convex problems. The steps
of the proposed algorithm are presented in Algorithm 2.

P2(ŵ, γ̂) : Minimize
bm,wm,k,γm,k

M∑
m=1

Km∑
k=1

‖wm,k‖2 (17)

s.t. (2b), (2c), (13), (16).

Proposition 2: The sequence of the objective values gen-
erated by Algorithm 2 in solving the problem P2(ŵ, γ̂) is
non-decreasing.
The proof of Proposition 2 can be obtained in a similar way
as the proof of Proposition 1.

V. USER GROUPING OPTIMIZATION

The proposed joint bandwidth and precoding vectors opti-
mization algorithms in previous sections work on a predefined
user groups, e.g., K1, . . . ,Km, . . . ,KM . As the optimal pre-
coding vectors depend on the channel gains of each user group,
it is vital to find appropriate groups partition, which is called
as the user grouping policy, to maximize the overall system
performance. In this section, we aim at finding the best user
groups partition {Km}∀m for optimizing the joint bandwidth
and precoding vectors design. Denote K , {K1, . . . ,KM} as
a realization of user grouping. The generic optimal joint user
grouping, bandwidth allocation and precoding vectors design
can be formulated as follows:

Maximize
K,b,w

f(b,w,K) (18)

s.t. rm,k ≥ ηm,k;
∑M

m=1
bm ≤ B;∑M

m=1

∑Km

k=1
‖wm,k‖2 ≤ Ptot,

where b = {bm}Mm=1 and w = {wm,k}∀m,k are the
short-hand notations for the bandwidth allocation variables
and the precoding vectors, respectively, and f(b,w,K) is
the generic objective function. For the power minimization
problem f(b,w,K) = −

∑M
m=1

∑Km

k=1‖wm,k‖2, while in the

5



ACCEPTED IN THE IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

minimum rate maximization problem we have f(b,w,K) =
minm,k rm,k.

Solving (18) is challenging not only due to the non-
concavity of the rate function (with respect to the bandwidth
and precoding vector variables) but also the combinatorial
property of user grouping in K. More specifically, for every
given user grouping {K1, . . . ,KM}, the resulting problem of
(18) is still non-convex and has to be solved iteratively as in
Section III and IV. For example, for a system with N = 10
antennas, K = 18 users, and M = 2 there are more than
136000 groupings, for each of which we need to run the
iterative algorithm. This expensive computational complexity
may limit the optimal method from using in practical scenarios
which usually demand timely decision making actions.

One possible alternative is to deploy machine learning-
based solutions [23], [24] to predict the best user groups,
whose central idea is to establish underlying relation between
the full channel state information and the best user group
partition. Supervised learning method is used to train the
neural network (NN) parameters over the training set, which
consists of labeled input-output pairs. When the number of
training samples are sufficiently large, the trained NN is robust
and can efficiently generalize the relation between the best
user grouping and the channel state information. However, in
order to generate the sufficient training samples, it requires
considerable computations, as it needs to run the iterative
algorithm for all user groups for every training sample.

To tackle the high computation issue of the selection process
in (18), we propose a singular value decomposition (SVD)-
based user grouping which does not require running any iter-
ative algorithm. Our proposed user grouping policy originates
from the observation that the parallelism of a multiuser MISO
channel heavily depends on the singular values of the channel
matrix. In fact, the larger the singular values are, the higher
rate the users can achieve and the vice versus. This observation
ignites a grouping policy based on the singular values of
the channel matrix of each user group. Before introducing
detailed steps of the proposed user grouping policy, we de-
note H̄m = Hm

σΣ
as the effective channels matrix, where

Hm ∈ CKm×N is the channel matrix from the BS’s antennas
to the users in group Km and σ2

Σ = B(N0 +NI) is the total
Gaussian noise and inter-cell interference. It is worth noting
that the effective channel matrix Hm takes into account the
geographical distribution of users as it contains the pathloss
and total noise plus inter-cell interference. The SVD of H̄m

is given as:

H̄m = UmDmV
′

m, (19)

where Dm is a diagonal matrix containing the singular values
of H̄m, and Um and V m are unitary matrices of correspond-
ing dimensions. Let [λm1 , . . . , λ

m
Km

] denote the singular values
of Hm. Furthermore, we denote

λ = [λ1
1, . . . , λ

1
K1
, . . . , λM1 , . . . , λMKM

]

as the vector containing all singular values of all user groups
in the grouping K , {K1,K2, . . . ,KM}.

We propose to select the user groups based on the singular
values of the users in all groups. In particular, for each user

groups partition K we compute the ratio between the mean
singular value and the minimum value in λ and select the
groups partition with the largest score, which is formulated as

K? = arg max
K

mean(λ)

min(λ)
, (20)

where mean(λ) = 1
K

∑M
m=1

∑Km

k=1 λ
m
k . The insight of the

formulation in (20) is to select the grouping that minimizes
the divergence among the singular values of all users.

Once the selection in (20) is carried out, the optimal groups
{K?1, . . . ,K?M} are determined. Then, we apply Algorithm 1
and 2 for the min rate maximization and power minimization
problems, respectively.

VI. SPECIAL CASE: ZERO-FORCING BASED JOINT DESIGN

In particular scenarios, obtaining the optimal precoding vec-
tors is unfavorable due to, e.g., stringent latency requirements.
In such cases, a low-complexity design based on the ZF
beamforming is preferred. More specifically, the direction of
the precoding vectors are defined by the ZF beamformers,
therefore only the magnitudes of the precoding vectors need
to be optimized jointly with the bandwidth allocation. Denote
Wm = HT

m(HmH
T
m)−1 as the ZF-beamforming matrix of

the m-th user group and denote w̄m,k as the k-th column of
Wm. In the ZF-based precoding design, the precoding vector
designed for user k in group m is wZF

m,k =
√
pm,kw̄m,k,

where pm,k is the power scaling factor. By definition we have
hTm,kw̄m,j = δj,k,∀k, j,m, where δj,k equals to 1 if k = j
and 0 otherwise. As the result, the achievable rate for user k
in group m under the ZF design is given as

rZFm,k = bm log
(

1 +
|hHm,kwZF

m,k|2∑
k 6=j∈Km

|hHm,kwZF
m,j |2 + bm(N0 +NI)

)

= bm log

(
1 +

pm,k
bm(N0 +NI)

)
. (21)

Denote αm,k , ‖w̄m,k‖2, the total transmit power under
the ZF-based design is PZF =

∑M
m=1

∑Km

k=1 pm,kαm,k. Then
the min rate maximization problem under the ZF design can
be formulated as

Maximize
bm,pm,k

min
m,k

bm log

(
1 +

pm,k
bm(N0 +NI)

)
(22)

s.t. bm log

(
1 +

pm,k
bm(N0 +NI)

)
≥ ηm,k,∀m, k, (22a)∑M

m=1
bm ≤ Btot, (22b)∑M

m=1

∑Km

k=1
αm,kpm,k ≤ Ptot, (22c)

and the power minimization problem is formulated as

Minimize
bm,pm,k

∑M

m=1

∑Km

k=1
αm,kpm,k (23)

s.t. (22a), (22b).

Lemma 1: The rate function under the ZF design in (21) is
jointly concave in bm and pm,k.
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Proof: Consider a function g(x, y) = x log(1 + y/x) in
R2

+. The Hessian matrix of g(x, y) is given as follows:

Hg =

[
−y2

x(x+y)2
y

(x+y)2

y
(x+y)2 − x

(x+y)2

]
. (24)

For arbitrary vector x = [a b]T , we can calculate

xTHgx = − (ay − bx)2

x2(x+ y)2
, (25)

which is always less than or equal to zero. This implies that the
function x log(1 + y/x) is concave in its supports. From (21)
we can write rZFm,k =

g(bm(N0+NI),pm,k)
(N0+NI) , which completes the

proof of Lemma 1.
Lemma 1 states that the constraint (22a) is convex. Con-

sequently, problem (23) is convex as the objective function
and constraint (22b) are linear. Similarly, we can see that
all constraints of (22) are convex. Furthermore, as the min
function preserves the concavity, problem (22) is also convex.
The formulation in (22) has a similar form as in [11], [12],
although the work in [11], [12] does not consider the precoding
design.

VII. NUMERICAL RESULTS

In this section, we present numerical results to validate the
proposed joint resource allocation framework and compare to
existing solutions. The parameters used in the simulations are
summarized in Table I. In order to focus on highly- and over-
loaded scenarios, the parameters are chosen to satisfy K

N ≥ 1.
In order to efficiently exploit the spatial multiplexing gain,
the number of user groups is equal to bKN c+ 1. The users are
randomly located between 100 and 1000 meters from the BS.
The simulation results are average over 200 random channel
realizations.

We compare the proposed framework with following refer-
ences:

• Baseline 1: joint bandwidth and power allocation assum-
ing no inter-user interference. This scheme was first pro-
posed in [11], [12] and then deployed by other works in
[14], [15], [17], [19]. In this scheme, each user is assigned
an orthogonal frequency channel and the transmit power
for each user is jointly optimized with its frequency
channel.

• Baseline 2: the joint design in [11], [12] plus spatial
diversity via ZF-based power allocation. We note that
[11], [12] did not consider the precoding design, but their
method can directly be applied to the ZF-based precoding
context.

• Baseline 3: conventional multiuser precoding method
[21], in which all the users share the channel bandwidth.

• Baseline 4: The users are time-slotted into groups, and
conventional multiuser precoding method [21] is de-
ployed in each group.

Furthermore, in order to evaluate the effectiveness of the
optimal precoding design and the proposed user grouping
policy, two more schemes are presented:

TABLE I
SIMULATION PARAMETERS

Parameters Value
Cell radius 1000 m
Number of antennas N Vary from 5 to 8
Number of users K Vary and greater than N
User location Uniformly distributed
QoS ηk = η,∀k Vary between 10 Mbps and 40 Mbps
Channel bandwidth B 20 MHz
Thermal noise density N0 10−12 W/Hz
Interfering density NI 9N0

• Proposed precoding - random grouping: The user groups
are randomly selected, followed by the proposed joint
designs in Algorithm 1 and 2.

• Proposed grouping - ZF: The user groups are selected
based on the solution in Section V, followed by the joint
bandwidth and power allocation based on the ZF design
in Section VI. It is noted that in this case, the number of
users per group should not exceed the number of antennas
at the BS.

A. Initialization
Because the proposed Algorithm 1 and 2 work in an iterative

manner, they require initial values used in the inner approx-
imation. Initialization is an important step in any iterative
algorithm that affects the feasibility of the optimization. A
common method for initialization is to solve the feasible
problem, which searches for feasible solutions that satisfy all
the constraints. The feasibility problem can be formulated as
follows:

Maximize
bm,wm,k

1 (26)

s.t. bm log
(

1 +
|hHm,kwm,k|2∑

j 6=k|h
H
m,kwm,j |2 + bm(N0 +NI)

)
≥ ηm,k,∀m, k, (26a)
M∑
m=1

bm ≤ Btot,
M∑
m=1

Km∑
k=1

‖wm,k‖2 ≤ Ptot. (26b)

Unfortunately, the feasible problem is still difficult to solve
due to constraint (26a). Solving (26) directly requires an inner
approximation for (26a), which also results in an iterative
solution. Therefore, to speed up the initialization step, we
predetermine the direction of the precoding vectors based on
the ZF design, and find feasible magnitudes of the precoding
vectors and the bandwidth for initialization . This can be done
by solving the convex problem (22) without the objective
function1. From the output of this problem, we can compute
the required initial values used in Algorithm 1 and 2.

B. Convergence of the Proposed Iterative Algorithms
Fig. 2 shows the objective function values of the proposed it-

erative algorithms for the min rate maximization and the power

1An alternative solution for initialization is to search for valid precoding
vectors for a given bandwidth allocation {bm}∀m and then heuristically
adjusting {bm}∀m until a feasible solution is found. This method, however,
converges slower than the ZF-based initialization solution.
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(a) Algorithm 1: Min rate maximization
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(b) Algorithm 2: Transmit power minimization

Fig. 2. Convergence of the proposed iteration algorithms.

minimization as a function of the iterations when K = 7,
N = 6 and a QoS of 20 Mbps from all users. In Fig. 2a,
the total transmit power of the BS is 20 dBW. We observe
that both the iterative algorithms quickly converge to the (sub)
optimal values after less than 10 iterations. It is shown that
Algorithm 1 can double the min rate after 8 iterations, while
Algorithm 2 reduces 50% the transmit power, which justifies
the effectiveness of the proposed iterative algorithms.

C. Min Rate Maximization Performance

Fig. 3 plots the minimum achievable rate as a function of
the total transmit power. The minimum rate requirement of
every user is 10 Mbps. For each channel realization, we first
apply the proposed SVD-based grouping policy in Section V
to determine the user groups. Then we execute the proposed
Algorithm 1 to find the optimal bandwidth allocation and
precoding vectors. Fig. 3a shows the min rate performance
when the system is highly-loaded, i.e., K = N . In this
case, the BS has a sufficient number of antennas to eliminate
inter-user interference. As a result, the conventional precoding
design [21] performs efficiently, which is revealed in a good
performance of the baseline 3. Interestingly, the proposed
design outperforms the baseline 3 when the transmit power
is tight. It is also shown that the proposed design significantly
outperforms the baselines 1, 2 and 4 and outperforms the
baseline 3 when the transmit power of BS is small. Com-
pared to the ZF-based method, the proposed precoding design
improves the min rate by 12 Mbps for the same user grouping.
This gain results from the fact that the optimal precoding
design eliminates inter-user interference more efficiently than
the ZF-based method. Another important observation is that
the precoding vectors have more influence on the overall
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(a) Highly-loaded scenario
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(b) Over-loaded scenario

Fig. 3. Min rate versus the total transmit power: (a) - the system is highly-
loaded with K = N and (b) - the system is over-loaded with K > N .

performance than the user grouping selection, which is shown
via a larger gap of the proposed design to the ZF precoding
curve than the gap to the Random grouping curve.

The effectiveness of the proposed design is clearly demon-
strated in Fig. 3b when the system is over-loaded, i.e., K > N .
In this case, exploiting only the spatial diversity is not suf-
ficient because the BS does not have adequate antennas to
mitigate inter-user interference, which is shown via a poor
performance of the conventional precoding solution (baseline
3). On the other hand, the proposed design achieves the
highest rate which is proportional to the transmit power. More
importantly, the performance gain of the proposed design
compared with other schemes is preserved for all the transmit
power values.

Fig. 4 presents the min rate versus different numbers of
antennas at the BS, with K = 9 users. We note that the total
transmit power is fixed at 15 dBW. As expected, the proposed
design significantly outperforms other schemes. More impor-
tantly, the proposed design successfully exploits the spatial
diversity as it achieves a min rate which increases along with
the number of antennas. On the other hand, the ZF-based
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Fig. 4. Min rate versus the number of antennas. There are K = 9 users.
Ptot = 15 dBW.
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Fig. 5. Min rate versus the number of users. The BS is equipped with N = 6
antennas and transmits at Ptot = 15 dBW.

design, baseline 1 and baseline 2 fail to grasp the benefit of
having more antennas. This is because the ZF design spends
the energy inefficiently to completely suppress the inter-user
interference.

Fig. 5 shows the impact of the number of users on the
achievable min rate. The BS is equipped with 6 antennas and
has a power budget of 16 dBW. Having more users results in
a lower achievable min rate, which is because the power has
to be shared among more users. However, the proposed design
maintains relative gains compared with the reference schemes,
which demonstrates the effectiveness of our joint design.

Fig. 6 compares the achievable min rate of the proposed
design with the references for different number of users while
keeping the same level of overload, i.e., K

N = 1.5. It is
shown that the performance gains of the proposed design
are preserved, which justifies the advantage of the proposed
algorithm, although the gaps between curves may slightly vary.
It is also observed that the performance of baseline 2 and the
proposed grouping with ZF precoding degrades more quickly
than other schemes as K increases. This is because these two
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Fig. 6. Min rate versus the number of users while fixing the ratio K
N

= 1.5,
Ptot = 16 dBW.
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Fig. 7. Min rate versus the channel estimation errors. The BS is equipped
with N = 6 antennas and transmits at Ptot = 16 dBW.

schemes completely mitigate inter-user interference via ZF-
based power allocation, while the total transmit power is fixed.

Fig. 7 shows the max-min rate performance of all schemes
in the presence of channel estimation errors, measured in nor-
malized mean square error (MSE). In this case, the proposed
design treats the estimated CSI as the true one and uses it in the
proposed algorithm. It is observed that the effectiveness of the
proposed design is retained even in the presence of CSI imper-
fection. When the CSI is poorly estimated, the performances
of all schemes significantly degrade. However, the baselines
1 and 3 are less sensitive to CSI errors than other schemes.
This is because the other schemes rely on the estimated CSI
for both user group selection and precoding vectors design,
whereas the baseline 3 only designs the precoding vectors and
the baseline 1 does not implement either precoding vector or
user grouping.

D. Power Minimization Performance

Fig. 8 shows the minimum transmit power as a function
of the QoS requirements. We note that as the performance of
baseline 1 is far from other schemes, it is partially presented
in the figure to better show the comparison. In general, it

9



ACCEPTED IN THE IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

10 15 20 25 30 35 40

QoS requirements (Mbps)

0

5

10

15

20

25

30

35

40
T

ra
n

s
m

it
 p

o
w

e
r 

(d
B

W
)

N = 6, K = 6

Proposed precoding and grouping

Proposed grouping - ZF precoding

Proposed precoding - Random grouping

Baseline 1

Baseline 2

Baseline 3

(a) Highly-loaded scenario
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Fig. 8. Transmit power versus the QoS requirements. In (a), the system is
highly-loaded with K = N . In (b), the system is over-loaded with K > N .
Baseline 3 is unable to serve the users in the over-loaded scenario.

requires more power to satisfy the users with higher QoS
requirements for all schemes. When the system is highly-
loaded, i.e., K = N in Fig. 8a, the proposed design sig-
nificantly outperforms the baseline 1 and baseline 2 for all
QoS values. More interestingly, the proposed design also
outperforms the conventional precoding solution [21] in the
baseline 3, especially in the high QoS regime, which is in line
with the observation of Fig. 3. This is because although having
adequate antennas to provide the multiplexing gains (K = N ),
the BS in baseline 3 has to use more energy when the channel
is in weak conditions. On the other hand, the proposed design
overcomes the weak condition by dividing the users into two
groups with the number of users in each group smaller than N .
As a result, the proposed design spends less energy to provide
the same QoS to all users.

When the system is over-loaded, i.e., K > N , the baseline
3 is unable to serve the users’ QoS because the BS cannot
provide adequate degree of freedom to all users. Thus, the
performance curve of the baseline 3 is absent in Fig. 8b.
We can observe from Fig. 8b that the precoding design
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Fig. 9. Transmit power needs to serve K = 9 users for different number of
antennas. Baseline 3 is unable to serve the users with the given QoS.

has more impacts than the user grouping policy, which is
shown via a larger gap between the proposed design to the
ZF precoding curve than to the Random grouping curve. In
particular, combining the proposed precoding design with the
user grouping saves 7 dB and 3 dB compared to the scheme
using the ZF-based precoding and random user grouping,
respectively. It is also shown that the proposed design transmits
at a power which is much smaller than the power used by the
baseline 1 and baseline 2.

In Fig. 9 presents the transmit power as a function of
the antenna number. The BS serves K = 9 users, each of
which requires a QoS of 20 Mbps. It is shown that having
more antennas reduces the transmit power needed to serve
the users with the same QoS targets. In particular, having
3 more antennas, the proposed joint design cuts 40% the
transmit power, reducing from 10 dBW to 6 dBW when the
number of antennas increases from 5 to 8. This is because
having more antennas, the BS can exploit the spatial diversity
more efficiently, resulting in a smaller transmit power. An
interesting observation is that only the proposed precoding can
take advantage of having more antennas, while the baseline
and ZF-based schemes consume almost the same power.

Fig 10 plots the transmit power versus the number of users
when the BS is equipped with 6 antennas and the users require
a QoS of 20 Mbps. It is common that the BS spends more
power to serve more users. The proposed joint design always
consumes the least power. More specifically, the proposed
framework saves more than 50% the transmit power compared
with the baseline 2. Moreover, the proposed user grouping
reduces 20% the transmit power compared with the random
grouping scheme, which is shown via a constant gap between
the two curves.

VIII. CONCLUSIONS AND DISCUSSIONS

A. Conclusions

In this paper, we have investigated the performance of a
multiuser MISO system under highly-loaded conditions in
which conventional multiplexing techniques perform poorly.
We proposed a joint bandwidth allocation and precoding
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Fig. 10. Transmit power versus the number of users. Baseline 3 is unable to
serve the users with the given QoS.

vectors design that fully exploits the spatial multiplexing gain
and the frequency dimension. Two iterative algorithms based
on successive convex approximation were proposed to solve
the min rate maximization and power minimization problems,
two important problems in multiuser systems. Furthermore,
a low-complexity user grouping policy based on the singular
value decomposition was proposed to further enhance the sys-
tem performances. We showed via numerical results that the
proposed design significantly outperforms existing schemes
in terms of both the rate improvement and transmit power
reduction.

B. Discussions

The advantages of the proposed joint design relies on an
assumption that the frequency channel in the B5G networks
can be arbitrarily assigned to the users. In the current LTE
systems, the frequency channels are divided into sub-carriers
whose bandwidth are usually predetermined. In this case, the
output of the proposed design can be rounded up to the closest
resources available in the system.

The outcomes of this work suggest several research direc-
tions. One promising topic is to consider location-dependent
inter-cell interference (ICI) and cooperation among neighbor-
ing cells to better mitigate the ICI. In order to precisely model
the geographical distribution of ICI and to efficiently enable
such cooperation, however, it imposes extra signaling overhead
among the BSs to exchange relevant information. In addition,
it usually requires a distributed optimization method as the BS
only obtains the CSI from the users connected to itself. The
second topic is to study the problem in the presence of channel
estimation errors. Such imperfect CSI scenario will affect both
the user grouping selection and joint bandwidth and precoding
vectors optimization. The third topic is to consider the users
with multiple receive antennas. In this case, the formulated
optimization may be different since the precoding design
should be adapted to exploit multiple antennas at the users.
Another promising problem is consider heterogeneous users
with diverse requirements for quality of service and quality
of experience, e.g., latency. In such cases, the users’ service

requirements should be exploited in addition to the effective
channel gains to determine the best grouping partition.

APPENDIX A
CONVEXITY OF FUNCTION F (x, y) = xTAx

y [22]
For any positive semidefinite metric A, we will show that

the Hessian metric of F (x, y) is positive semidefinite. Indeed,
the Hessian matrix of F (x, y) is

HF =

[
2A
y

− (2A)x

y2

−xT (2A)

y2
2xTAx

y3

]
.

For arbitrary vector c = [aT b]T , where a ∈ RN×1, consider
a function

cTHF c =
aT (2A)a

y
− aT (2A)xb

y2
− xT (2A)ab

y2
+

2xTAxb2

y3

(∗)
=

2aTAa

y
− 4

aTAxb

y2
+

2xTAxb2

y3

=2
aTAa− 2aTAx̃+ x̃TAx̃

y
, (27)

where x̃ , xb/y and (∗) results from the fact that A is
symmetric and aTAx̃ = xTAã. It is obvious that the RHS
of (27) is always non-negative for y > 0 and positive semi-
definite matrix A, which concludes the positive semi-definite
of the Hessian metric of F (x, y).

APPENDIX B
PROOF OF PROPOSITION 1

We recall that the approximate constraints of the approxi-
mate problem (11) used in Algorithm 1 satisfy properties of
the SCA algorithm [25]. Denote Φ = (w?, b?, γ?m,k,x

?,y?)

as the set of optimal solutions of problem (11), and let Φt

be the optimal solution of the t-th iteration. Furthermore,
let Foriginal(Φ) and F(Φ) denote the objective function of
the original problem (3) and the approximated problem (11),
respectively. Because the feasible region of the approximated
problem is a subset of the feasible region of the original
problem, we have Foriginal(Φ) ≥ F(Φ),∀Φ. Consider a
sequence of the objective function F(Φt), t = 1, 2, . . . , ....
According to [25, Lemma 2.2], Φt+1 is a better solution of
problem (11) than Φt, thus we have F(Φt+1) ≤ F(Φt).
Furthermore, due to the constraints on the total bandwidth and
total transmit power, the sequence of the objective function
F(Φt), t = 1, 2, . . . is bounded and will converge, which
completes the proof.
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