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Virtual Resource Allocation for Wireless Virtualized
Heterogeneous Network with Hybrid Energy Supply

Zheng Chang, Senior Member, IEEE, Tao Chen, Senior Member, IEEE

Abstract—In this work, two novel virtual user association
and resource allocation algorithms are introduced for a wireless
virtualized heterogeneous network with hybrid energy supply. In
the considered system, macro base stations (MBSs) are supplied
by the grid power and small base stations (SBSs) have the
energy harvesting capability in addition to the grid power
supplement. Multiple infrastructure providers (InPs) own the
physical resources, i.e., BSs and radio resources. The Mobile
Virtual Network Operators (MVNOs) are able to recent these
resources from the InPs and operate the virtualized resources
for providing services to different users. In particular, aiming
to maximize the overall utility for the MVNOs, a joint resource
(spectrum and power) allocation and user association problem is
presented. First, we present an alternating direction method of
multipliers (ADMM)-based algorithm solution to find the near-
optimal solution in a static manner. Moreover, we also utilize
deep reinforcement learning to design the optimal policy without
knowing a priori knowledge of the dynamic nature of networks.
We have conducted extensive simulation and the performance
evaluation demonstrate the advantages and effectiveness of the
proposed schemes.

Index Terms—energy harvesting, ADMM, reinforcement learn-
ing, deep learning, wireless network virtualization, resource
allocation.

I. INTRODUCTION

A. Background and Motivation

The future mobile communication system is expected to
provide the ubiquitous connectivity and unprecedented ser-
vices over billions of devices. However, the increased network
density and demand for diverse service and applications also
introduces significant challenges for higher capacity, reduced
energy consumption and low latency and for trillions of
devices. To provide the ubiquitous and unlimited Internet
and data access, some recent developed platforms, such as
Software Defined Network (SDN) and Network Function Vir-
tualization (NFV), have attracted significant research interests
and the research outcome also sheds the light on revisiting the
current cellular networks [1]. Incorporating with the wireless
network, the advanced SDN/NFV architectures are applied to
Radio Access Networks (RANs), which creates the Wireless
Virtualized Networks (WVNs) framework. In the WVN, the
RAN functions can be executed on commoditized platforms
owned by multiple Infrastructure Providers (InPs), instead of
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dedicated telecommunications hardware owned by the specific
companies.

In particular, the concept of virtualization allows the cus-
tomized WVNs for particular applications on top of a physical
network. The WVN makes physical infrastructure and radio
resources being abstracted, sliced and shared, which makes
them well suited to address the diverse requirements of future
wireless network and ease the network management. After
virtualization, the virtual slices containing radio resources
are offered to the service provider based on their demands.
The mobile operator and service provider can rent the virtual
resources, instead of owning them, to provide services to
the users. Consequently, the overall expenses of network
deployment and operation can be significantly decreased [2].

It can be found that WVN has many advantages in ef-
fectively utilizing the radio resources in the future wireless
network. However, successfully merging the NFV with recent
advances of RAN to reduce the operation cost requires ded-
icated efforts [3]. In the meantime, one promising solution
for ubiquitous connectivity is to deploy small based stations
(SBSs) to complement the traditional macro BS (MBS)-based
cellular architecture. Accordingly, the future wireless network
emerges with dense and heterogeneous features, and it is
expected that the heterogeneous wireless networks are able
to meet the stringent requirements of end-user’s Quality of
Experience (QoE) and Quality of Service (QoS).

Nevertheless, the wide and dense installation of the SBSs
faces many different challenges in reality as it will increase the
complexity of network planning and optimization, and bring
additional deployment expenditure. In particular, providing a
large number of SBSs with stable grid power in a cost-efficient
way is one of the major concerns. Comparing with the MBSs,
the high density and irregular location of SBSs make them dif-
ficult to access the power grid. Therefore, applying the energy
harvesting (EH) technology to the development of wireless
network receives many interests. As the EH technology is
able to utilize the renewable energy (e.g., solar and wind),
the EH-powered SBSs are able to accelerate the deployment
of dense small cells [4]. In addition, considering the random
variations of the wireless channel and the energy arrival in
the time domain, dynamic schemes, instead of static ones,
are preferred for network optimization [38]. In this context,
Reinforcement Learning (RL) has been utilized recently as an
promising solution to address the problems caused by network
dynamics [6]. The RL agent is able to adopt its policy to
the system dynamic to obtain the best long-term utility by
receiving feedback (reward) from the environment, which is
desirable for the time-variant systems [7].
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To this end, there are no doubts that in order to establish a
heterogeneous network (Hetnets) architecture, both EH and
virtualization technologies should be carefully explored to
be integrated to the SBS. WVN may offer us a novel view
in the small cell development from the network operation
perspective. As for the future networks, a wireless virtualized
Hetnet with hybrid power supply is full of possibility. Then,
how to efficiently operate it is also of profoundly importance.
Therefore, this work aims at presenting user association,
power, and spectrum allocation algorithms for such a complex
system to provide efficient solutions and useful insights. To
solve the formulated problem, we first propose a static and dis-
tributed alternating direction method of multipliers (ADMM)-
based optimization solution. In addition, we also dedicate to
investigate a machine learning-based scheme for addressing
the formulated problem in a dynamic manner. In particular, we
apply Q-learning in the algorithm design to learn the policy
and decide the action. Moreover, as the amount of actions may
dramatically increase with the growing number of users and
BSs in Q-learning, we utilize deep learning and form a Deep
Reinforcement Learning (DRL)-based framework to estimate
the Q-value to obtain efficient solution of the formulated
resource allocation and user association problem.

B. Related works

EH is considered as a promising technology for prolonging
the life of the battery-limited device. Recently, applying EH
technology for providing BS with renewable energy has re-
ceived great research interests. In particular, the investigation
on utilizing EH for small cell networks (SCNs) emerges as
one of the key research area since the SBSs may not be easy
to access the electric grid power. So far, there are some works
dedicated on investigating the resource allocation and user
association problems in the EH-based Hetnets [4], [9]-[11].
In [8], the authors propose time, power and rate allocations in
a multi-user EH network. The main objective of this work is to
maximize system throughput with the consideration of differ-
ent channel status among multiple users and ensuring the user
fairness. Considering a energy constrained Hetnet, The authors
of [9] investigate the backhaul-aware resource allocation prob-
lem. An optimization problem is then presented to optimize the
defined system utility with proportional fairness consideration.
The authors of [10] explore the energy provisioning problem
aiming at minimizing the cost of EH system deployment in
the cellular networks. A solution consisting of load balancing
scheme and system sizing is proposed. In [11], a traffic load
balancing scheme is presented, where the relations between
EH utilization and latency are studied.

Meanwhile, the development of WVN has also received
many research interests [2]. Successfully integrating the virtu-
alization into wireless network faces several main challenges,
including virtual resource allocation, abstraction, isolation and
signaling overhead issues, etc [3]. In [12], the authors propose
a wireless resource slicing scheme to flexibly divide spectrum
into different slices. Accordingly, complete resource abstrac-
tion is obtained in dense SCNs. A performance comparison
of different network sharing schemes is provided in [14]. In

[15], the authors present a virtual resource allocation scheme
to optimize the network utility of a virtualized information
centric network. The authors of [16] propose a resource pro-
visioning algorithm for a WVN with massive antenna BS. A
joint optimization problem of antenna, spectrum and transmit
power allocations is introduced to optimize the defined utility
while maintaining the user fairness. In our previous works
[5], we also consider the hybrid power empowered WVN and
present resource allocation solution. Moreover, there are some
works considering to utilize the features of virtualization to
efficiently manage the SCNs. In [17], the authors propose an
user association algorithm for saving energy consumption and
limiting interference in a Cloud-RAN-based SCN. The authors
of [18] utilize the resource allocation scheme and analyze
the downlink of virtualized cellular networks with large scale
multiple antenna. With the consideration of full-duplex self-
backhaul, the virtual resource allocation problem has been
studied for the SCN in [19].

Recently, utilizing machine learning (ML) framework for
resource management in wireless networks receives increasing
research interests. ML-based algorithms have great success in
supporting big data analytics, efficient parameter estimation
and interactive decision making in many application areas
and have shown its great potential in advancing the wireless
networks [20]. Specifically, applying the RL-based scheme for
optimization in heterogeneous wireless networks is able to
reach the Pareto-optimal solution which achieves the trade-off
among different objectives [21]. In [22], the authors present
DRL-based scheme for mode selection and resource allocation
to optimize the energy usage of fog radio access networks. In
[23], the authors investigate the joint design of beamforming
matrix at the BS and analog beamforming matrices at the
intelligent surfaces, by leveraging the DRL-based algorithm to
combat the propagation loss. In [24], how to utilize the RL-
based scheme for D2D communication is investigated. The
authors advocate the RL for investigating the D2D coalition
formation game, where the coalition are formed to maximize
long-term rewards of the D2D users. The authors of [25]
apply DRL framework to address resource allocation and user
association problem in heterogeneous cellular networks with
the objective to maximize network utility and satisfy the QoS
requirements of users over a long-term. In [26], the authors
propose to allow a central unit in wireless virtualization to
learn to configure radio resources autonomously with the goal
of minimizing a network cost function. DRL-based algorithm
is presented to solve the formulated problem. The authors of
[27] decompose the complex network virtulization function
into function components to make more effective decisions
for a virtual and heterogeneous IoT network. The authors
propose a DRL-based scheme with experience replay and
target network as a solution that can efficiently handle complex
and dynamic service function chain in IoT. In [28], the
authors investigate the network slicing realization problem
in a virtualized fog-RAN environment. The framework for
network slicing is formulated as an joint optimization problem
of content caching and mode selection, and addressed by DRL-
based scheme.

As can be observed, the problem of effectively utilizing the
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virtual resources of wireless virtualized Hetnets is still under-
investigation. Moreover, there are spare works utilizing ma-
chine learning-based schemes for addressing the associated re-
source allocation and user association problems to effectively
and efficiently operate WVN, which, however, is significant for
the development of future wireless communication system.

C. Contribution

Our primary target in this work is to propose different
optimization algorithms to find effective user association and
resource allocation solutions for hybrid power supplied wire-
less virtualized Hetnets, in both static and dynamic manners.
The InPs in the WVN own the physical infrastructure, such
as MBS, SBSs and spectrum resources. The MBS are em-
powered by the grid power, and SBSs are supplied by EH
in addition to the grid power. The Mobile Virtual Network
Operators (MVNOs) need to rent radio resources, virtualize
and then operate them to provide services to a number of users.
Comparing with the existed works, we can briefly summarize
the main contributions as follows.
• We introduce a virtualized and hybrid power suppled

Hetnets architecture with multiple InPs and MVNOs. In
this system, the InPs own MBS, EH-SBS, and various
type of radio resources. The physical network owned
by the InPs can be virtualized and flexibly shared for
different MVNOs to purchase.

• Based on the presented system model, an optimization
problem related to user association and resource alloca-
tion is formulated. The aim is to maximize the utility
of all the MVNOs, which concerns both the revenue
earned from the subscriber/user and the cost paid to
the InPs. In order to address the formulated problem,
power and spectrum allocation, and user association over
different time slots should be jointly optimized with
explicit consideration of EH limitations.

• Directly addressing the formulated non-convex mixed
integer programming problem induce a very high compu-
tational complexity. In this context, we aim at addressing
the formulated problem in a static manner, i.e., we turn to
find the solution in a certain time slot. We can then divide
the original problem into two subproblems and proposed
an ADMM-based scheme to find the solution with a fast
convergence rate.

• We also utilize the machine learning and propose a DRL-
based resource allocation and user association algorithm
to investigate the optimal policy. Particularly, we adopt
DQN to address the formulated problem by learning an
optimal policy without a priori information. According
to the utility function, the action space, state space and
reward functions in the DRL are carefully defined.

• Performance evaluations are presented to examine the
proposed schemes. It is found that both of the proposed
schemes have fast convergence performance. In addition,
by utilizing the proposed schemes, the overall utility
of MVNOs can be maximized. The proposed schemes
can obtain superior performance comparing with other
schemes as well.

Fig. 1. Wireless Network Virtualization

The reminder of this paper is organized as follows. The system
model is depicted in Section II. The problem formulation is
given in Section III. Section IV present the proposed ADMM-
based. In Section V, a DRL-based algorithm is introduced. The
simulation study is conducted in VI and Section VII concludes
the work.

II. WIRELESS VIRTUALIZED NETWORKS WITH HYBRID
ENERGY SUPPLY

A. Wireless Network Virtualization

Virtualization has mainly been studied for computing server
to deal with the computing resources. While talking about the
virtualization in the wireless networks, radio resources and
physical infrastructure of the wireless network are abstracted
and allocated into virtual slices with certain functionalities.
The virtual slices are then ready to be shared by different
parties after resource isolation [2]. Therefore, after the virtu-
alization process, the resources will be provided to different
Network Service Providers (NSPs). Then, the virtual resources
are used for service provisioning.

In Fig. 1, we have illustrated the concept of Wireless
Network Virtualization (WNV). When the NSPs receive the
demand of service from the users, they can request the radio
resources from InPs. Then, the radio resources and physical
infrastructures own by different InPs will be processed by the
network controller. After being isolation, abstract and virtual-
ization, the virtual slices containing radio resources are offered
to the NSPs based on their demands. The MVNO is able to
virtualize the physical resources according to the demand of
NSPs. The users is able to logically connect to the virtual
network through service subscription and communicates with
the cellular network physically.

B. System Model

In Fig. 2, we present an example of wireless virtualized SCN
with hybrid energy supply. The SBS is empowered by both re-
newable energy via EH and power grid. The harvested energy
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Fig. 2. Wireless virtualized networks with hybrid energy supply

Fig. 3. System Model

can be stored in the battery for further usage. The physical
infrastructure and radio resource are virtualized based on its
application and after virtualization, they can be dynamically
used according to the demand.

In the considered system, there are M InPs and each InP
owns a certain area containing J SBSs and one MBS, as shown
in Fig. 3. The set of InP is denoted as M. We also assume
there are I MVNOs and the set of MVNOs is denoted as
I. The MBSs and SBSs are connected to the power grid for
constant power supply. In addition, the SBSs are also with EH
capabilities and can be powered by renewable energy supply
(RES). We use S0

m to denote the MBS of InP m, Sj
m, j 6= 0 to

denote SBS j of InP m, and Sm to represent the set of BSs of
InP m. The set of users who is served by BS Sj

m is denoted as
U j
m, the set of users who connects with the InP m is denoted

as Um, and the set of users who subscribes to the MVNO i is
Ui. It is assumed that one user only connects with one BS in a
certain time slot. At time slot l, the user association indicator
βm,j
u for user-BS connection is defined as,

βm,j
u (l) =

{
1, if user u associates with BS Sj

m,
0, otherwise.

(1)

C. Transmission Model

In this work, OFDM-based network is assumed and the
whole spectrum usage of one InP is separated by the MBS
and SBSs to avoid the interference. We consider the spectrum
used by MBS is fm = αmWm and the one used by the SBS
is denoted as fsm = (1−αm)Wm, where Wm is the spectrum
bandwidth of InP m. Rm,j

u , j ∈ {0, ..., J} is denoted as the
throughput that user u can obtain when communicating with
the BSs. On the DL of MBS m, the throughput of user u at
time slot l is expressed as

Rm,0
u (l) = fm log2

(
1 +

pm,0(l)hm,0
u (l)

σ2

)
. (2)

where pm,0(l) is the transmit power of MBS of InP m, σ2 is
the noise variance and hm,0

u (l) is the channel gain from the
MBS to user u. Without loss of generality, the noise is with
zero-mean and unit-variance. When connecting with SBS, the
throughput Rm,j

u (l), j ∈ {1, ..., J} is

Rm,j
u (l) = fsmL log2

(
1 +

pm,j(l)hm,j
u (l)∑J

k=1,k 6=j p
m,k(l)hm,k

u (l) + σ2

)
,

(3)
where pm,j(l) is the transmit power of SBS Sj

m. As the
SBS can be supplied by the harvested energy, we consider
pm,j(l) = pm,j

e (l) + pm,j
g (l), where pm,j

e (l) is the power
consumption from harvested energy stored in the battery and
pm,j
g (l) is the one from grid power. hm,j

u (l) is the channel
gain from the SBS Sj

m to user u. We also denote δm,0
u (l) as

the resource ratio that MBS is used for transmitting to user u
and δm,j

u (l), j ∈ {1, ..., J} as the resource ratio that SBS Sj
m

is used for transmitting to user u. Therefore, for user u, the
total achievable throughput is

Cm
u (β,α, δ,p) = βm,0

u (l)δm,0
u (l)Rm,0

u (l)

+

J∑
j=1

βm,j
u (l)δm,j

u (l)Rm,j
u (l)

=
∑
j∈Sm

βm,j
u (l)δm,j

u Rm,j
u (l),

(4)

where β = {βm,j
u (l)} is the set of user association indicators.

α = {αm(l)} and δ = {δm,j
u (l)} is the resource allocation

policy for SBS and user, respectively. p = {pm,j(l)} is the
power allocation policy.

D. Energy Harvesting Model

We use Bj
m(l) to denote the battery letter at the beginning

of time slot l. The energy packets in EH is assumed to arrive at
the beginning of time slot and it is denoted as Ej

m(l). The EH
is modeled as a proper random process which is related to its
type of energy source. Such an assumption on the renewable
energy availability is reasonable as the resource allocation and
user association are decided based on the available information
at the beginning of time slot [9]. We also assume that the
battery capacity is infinite at the SBS to facilitate the study of
the algorithm design.



5

Then, the battery level at time slot l + 1, is expressed as

Bj
m(l + 1) = χ(Bj

m(l), Ej
m(l), ζjm,e(l)), (5)

where ζjm,e(l) is the energy consumption from the SBS’s
battery. χ(.) is the relation function shows the usage of the
battery and the harvested energy, and it depends on the type
of battery, such as storage efficiency and memory effects. The
consumed energy has the following constraint:

ζjm,e(l) ≤ ψj
m(l)Bj

m(l), (6)

where ψj
m is the ratio of the battery that can be used for serving

the users. For SBS Sj
m, pm,j

e is the consumed power from
battery, and thus, ζjm,e =

∑
u∈Uj

m
βm,j
u pm,j

e L. For simplicity,
we assume length of a time slot L = 1.

III. PROBLEM FORMULATION

A. Utility Function

Given the system model and assumptions, the utility func-
tion of a MVNO is defined in (7). The first term of the right
side of (7) is the benefit of the MVNO, which can be expressed
as follows,

Um
u (β,α, δ,p) = ςuU (Cm

u (β,α, δ,p))

=
∑
j∈Sm

βm,j
u (l) log

(
δm,j
u (l)Rm,j

u (l)
)
. (8)

where ςu is the profit per user per rate unit. Υm
i is defined

as cost for using spectrum and power resource of a MVNO,
which is

Υm
i (β,α, δ,p) = ψm,1

∑
u∈Ui

βm,0
u (l)fmp

m,0(l)

+ ψm,2

∑
u∈Ui

∑
j∈Sm

βm,j
u (l)fsm(l)pm,j

g (l)

+ ψm,3

∑
u∈Ui

∑
j∈Sm

βm,j
u (l)fsm(l)pm,j

e (l).

(9)

We use a bandwidth-power product to quantify the resource
consumption of the BS. The coefficients ψm,1 ψm,2 and ψm,3

specify the cost unit of MBS, the grid power and RES of
SBS, respectively. In order to prompt the usage of RES,
we can assume ψm,1 > ψm,2 > ψm,3 > 0 so that more
users would prefer to choose the RES and SBS. The expense
of the MVNOs for the usage of wireless backhaul is also
considered in (7). Such a expense depends on the amount of
data transmission on backhaul, which is given as

Qm
i (β,α, δ,p) = ωm

∑
u∈Ui

Cm
u (β,α, δ,p), (10)

where ωm is the unit charge (per bit) for backhaul transmis-
sion, which is related to the type of backhaul.

B. Problem formation
In this work, transmit power allocation p, spectrum re-

sources α and δ, and user associations β, are jointly opti-
mized. Correspondingly, P1 can be formulated as follows,

P1 : max
β,α,δ,p

Σmvno(β,α, δ,p), (11)

s.t. C1 : βm,j
u (l) ∈ {0, 1},

∑
m∈Sm

∑
j∈Sm

βm,j
u (l) ≤ 1,

C2 : βm,j
u (l) ∈ {0, 1},

∑
m∈Sm

∑
j∈Sm

βm,j
u (l) ≤ 1,

C3 : 0 ≤ pm,j(l) ≤ pjmax, j ∈ {1, ..., J},

C4 :
∑

u∈Uj
m

ζjm,e(l) ≤ ψj
m(l)Bj

m(l), j ∈ {1, ..., J},

C5 : 0 ≤ δm,j
u (l) ≤ 1,

C6 : βm,j
u (l)δm,j

u (l)Rm,j
u (l) ≥ ru,

C7 : 0 ≤ αm(l) ≤ 1.
(12)

In (12), p̂m,j
u = p̂m,j

u,e + p̂m,j
u,g . The constraints in C1 and C2

are to ensure each user can only be served by one BS at a time.
C3 ensures the transmit power can not exceed the maximum
power and C4 makes sure that the energy consumed up to any
time cannot exceed the accumulatively harvested energy before
this moment. C5-C7 are to ensure that resource allocation
strategy remains at an acceptable level and the minimum data
requirement. Moreover, in this work, we consider the transmit
power of MBS is constant which is reasonable as the MBS is
supplied by grid power. Thus, the focus on power allocation,
is in turn to optimize the usage of transmit power of SBS. In
the following, we first present an ADMM-based algorithm to
address the formulated problem in a certain time slot. Then, a
DRL-based scheme is explored in order to solve the problem
in a dynamic manner.

IV. PROPOSED ADMM-BASED SOLUTION

In the following, we aim to present distributed resource
allocation and user association scheme in each time slot.
Thus, in this section, time representative l is omitted to ease
the presentation unless being specified. In general, it can be
found that P1 is a non-convex problem with a combinatorial
integer programming structure. To obtain an optimal solution
for such a NP hard problem, exhaustive search approaches can
be used. However, it requires high computational cost, which
is infeasible for a large scale system. In addition, insightful
discussions cannot be made accordingly for system design.

In order to reduce the complexity of finding the solution,
in this section, P1 is divided into two subproblems. First,
assuming power allocation p is fixed, the user association
and spectrum allocation problems are addressed. Then, by
variable transformation and relaxation, P1 is converted into
a convex problem to find β, α and δ. After addressing the
user association and spectrum allocation, optimal p can be
addressed accordingly. Through iterative scheme, the final
solution of p, β, α, and δ will converge.
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Σmvno(β,α, δ,p) =
∑
i∈I

∑
m∈M

∑
u∈Ui

Um
u (β,α, δ,p)−

∑
i∈I

∑
m∈M

Υm
i (β,α, δ,p)−

∑
i∈I

∑
m∈M

Qm
i (β,α, δ,p). (7)

A. Proposed Solution for Solving β, α and δ

1) Problem transformation: First, we will present solution
for solving β, α and δ. The original problem then becomes:

P2 : max
β,α,γ

Σmvno (β,α,γ) , (13)

s.t. C1,C3−C7. (14)

Nevertheless, due to the binary variable βm,j
u and its ob-

jective function, P2 still has a non-convex structure after
transformation. We can first relax βm,j

u ,∀j ∈ {1, ..., J} in the
formulated problems so that 0 ≤ βm,j

u ≤ 1 [32]. Accordingly,
it can be interpreted as the ratio of time that user u can connect
with BS Sj

m. However, because of its objective function,
P2 remains non-convex after variable relaxation. To address
this problem, an auxiliary continuous variable is introduced,

i.e. α̃m,j
u = βm,j

u αm,j
u,n . If βm,j

u = 0, αm,j
u = 0 certainly

holds which is due to the fact that if user does not associate
with certain BS, it will not receive any resource from it.
Correspondingly, P2 can be transformed into P3 with the
objective in (15) and the constraints in (16).

P3 : max
β,α̃,δ

Σmvno (β, α̃, δ) , (15)

s.t. C1,C3,

C̃2 : 0 ≤ α̃m,j
u ≤ 1,

C̃4 : 0 ≤ δ̃m,j
u ≤ 1,

C̃6 :
∑

i∈I,u∈Ui

zmu γ̃
m,j
u ≤ Zj

m.

(16)

We can see that P3 is now a convex problem and we present
ADMM-based scheme to solve P3 in a distributed manner in
the following.

2) ADMM-based solution algorithm: To utilize ADMM
to solve the formulated problem, we introduce a set of
new variables representing local copies of the global optimal
solutions [29] [31]. Firstly, local copy β�m of the related
global user association factor β is defined for the InP m
and β�m can be roughly interpreted as the opinion of InP m
about the global variable. Similarly, (α�m, δ

�
m) are the local

variables of resource allocation strategies (α, δ) of InP m.
Correspondingly, the feasible local variable set of InP m is
denoted as πm = (β�m,α

�
m, δ

�
m). Accordingly, we are able to

express the local utility function which is shown in (17). Then,
P3 is reformed as

P4 : min
β�m,α�m,δ�m

M∑
m

$m(β�m,α
�
m, δ

�
m) (18)

s.t. β�m − β = 0. (19)

One can see that P4 is a global consensus problem, as dis-
cussed in [31]. Utilizing ADMM to address a global consensus
problem needs to establish an augmented Lagrangian with
corresponding global consensus constraint. Accordingly, λm
is defined as the Lagrange multiplier associate with the cor-
responding consensus constraint in P4. Then, the augmented
Lagrangian can be expressed as

L% ({β�m,α�m, δ�m},β,λ) =

M∑
m=1

$m(β�m,α
�
m, δ

�
m)

+

M∑
m=1

λm(β�m − β) +
%

2

M∑
m

‖β�m − β‖22,

(20)

where λ = {λm} and ρ ∈ R++ is a positive constant parameter
which is used to adjust the convergence rate [31]. Similar
to other applied ADMM-based scheme [31], our proposed
ADMM method for addressing P4 with consensus constraints
has the following iterative optimization steps.

1) Updating {β�m,α�m, δ�m}: As we can see, the local
decisions for resource allocation and user association
are decoupled across differents BSs. Therefore, Find-
ing {β�m,α�m, δ�m} is able to be decomposed into M
subproblems, each of which is addressed locally at BS
level. At each iteration, the optimization problem in (21)
is solved by InP m.

2) Updating λ and β: Generally, updating β and λ is an
unconstrained quadratic optimization problem, and the
specific updating process can be found in (22) and (23).

3) Convergence performance: Due to the fact that our
objective function is closed, proper and convex, and
the Lagrangian L% has saddle point, as proved in [31],
the proposed ADMM-based scheme satisfies residual
convergence, objective convergence and dual variable
convergence as iteration t→∞, .

As the objective function of P3 is convex, we are able to
reach optimal solution. However, as β is defined as a set
of binary variables, the relaxed value should be recovered
to boolean. Similar to one widely applied approach, we
can first compute the marginal benefits for each βm,j

u , i.e.,
Hm,j

u = ∂L%/∂β
m,j
u [33]. Then, user association decision is

able to be obtained as follows,

βm,j
u =

{
1, if Hm,j

u = maxj H
m,j
u , and Hm,j

u > 0;
0, Otherwise;

(23)
After obtaining βm,j∗

u , we can obtain the optimal solution of

θ̃m,j∗
u accordingly and then ωm,j∗

u .

B. Proposed Solution for p
After obtaining β, δ, and α, and their values are fixed,

we then turn to achieve the optimal solution of p. Then, P1
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$m(β�m,θ
�
m, δ

�
m) =


−
∑

i∈I
∑

u∈Ui ςuU
m
u (β�m,θ

�
m) +

∑
i∈I Υm(β�m,θ

�
m)+∑

i∈I Q
m
i (β�m,θ

�
m), β�m,α

�
m, δ

�
m ∈ πm

+∞, else;
(17)

{β�m,α�m, δ�m}[t+1] : = arg min
{
$m(β�m,α

�
mδ
�
m) + λm

(
β�m − β[t]

)
+
ρ

2
‖β�m − β[t]‖22

}
(21)

β[t+1] : = arg min

{
M∑

m=1

λ[t]m

(
β�[t+1]
m − β

)
+
ρ

2

M∑
m=1

‖β�[t+1]
m − β‖22

}
(22)

λ[t+1] : = λ[t] + ρ
(
β�[t+1]
m − β[t+1]

)
(23)

becomes

P5 : max
p

Σmvno (p)

s.t. C2,C3
(24)

We can see that the objective function of P5 is convex
with respect to p. It can be observed P5 is then a convex
optimization problem with unique global optimal solution.
There are some classical approaches that can address such
a problem. We advocate the steepest descent method for fast
convergence to solve it in this work.

V. PROPOSED DRL-BASED SOLUTION

In this section, we will adopt the DRL framework into
the development of virtual resource management in WVN
and present a DRL-based scheme to address the formulated
problem. As we can see, over a certain amount of time slots,
the formulated problem should have the complete knowledge
about the future time slots to reach the optimal solution of the
next time slot. Therefore, absence of prior information about
channel state and energy arrival may lead to a degraded system
performance. Correspondingly, we will use a RL framework
to address such a problem without prior knowledge. In the
following, the basics of DRL are first presented, including
the defined state, action and reward strategies. To avoid high
dimensionality problem, DNN is applied and a DQN scheme
is used to perform Q-learning action-value function estimation.

A. RL Framework Formulation
In the RL framework, the agent can chose actions to

interact with the environment. In general, there are 3 basic
elements: state, action and reward. In the presented WVN, the
network controller is the agent and all the other entities can
be considered as the environment. Within the action space,
the network controller chooses an action in each time slot
from the action space, which decides the user association
and resource allocation, and then emerges to next state. After
action execution, a reward or punishment can be obtained
from the environment. Such a framework aims to maximize
the cumulative received rewards of the system during the
interactions with the environment.

B. State, Action and Reward

As presented, it is important to properly define the state
space, action space and reward for applying the DRL to
solve the formulated problem. In the following, the specific
definitions are given.

1) State: In the WVN, the network controller is able to have
the necessary information of BSs, e.g., battery level, maximum
transmit power, EH capability, and channel information. Thus,
we are able to define the state at time slot l as follows,

sl = [E1
l , B

1
l , C

1
l , D

1
l , ..., E

N
l , B

N
l , C

N
l , D

N
l ], (25)

which indicates the controller will know the battery levels,
harvested energy levels, throughput and transmission delays of
the BSs. N is the total amount of BSs, i.e., N = M(J + 1).

2) Action: In the presented WVN, the action space contains
different strategies, i.e., the resource allocation factors α and
δ, power allocation p and user association β. Then, the action
space A comprises of all the possible strategies.

3) Reward: The network controller can obtain a reward
after executing action. The definition of reward is crucial as it
can enforce the network controller to take proper action. As
shown in P1, the main target of the formulated problem is to
optimize the utility of all MVNOs while satisfying each user’s
QoS. In order to link the reward to the objective function,
following points are explicitly considered.

• Since the goal of RL framework is maximizing the
reward, there should be a positive relations between the
objective function and the defined reward;

• In order to meet the the users’ QoS requirements,the
reward will be decreased if there is any loss of the QoS.

Therefore, we can define the immediate reward as follows,

r(sl, al) = ϕaΣmvno + ϕb(R
m,j
u − ru), (26)

where ϕa and ϕb are the weights of objective function and
QoS loss, respectively.
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Algorithm 1 The proposed Q-learning scheme
1: Initialize Q(s, a)

2: for each episode do
3: Initialize s of each BS randomly.
4: for each time do
5: Select al from all actions of state sl;
6: Execute selected al, observe reward and next state

sl+1;
7: Q(sl, al)← κr(sl, al)+κξmaxal+1

Q(sl+1, al+1)+
(1− κ)Q(sl, al);

8: Let sl ← sl+1.
9: end for

10: end for

C. Q-Learning Method

At time slot l, the network controller first watches the state
sl ∈ S of all the BSs, and then chooses an action al ∈ A
according to a stochastic policy π. After selecting an action,
the network controller can transmit the action information to
the BSs via control signaling and a reward r(sl, al) can be
achieved. Then the network will take a transition to sl+1.

Therefore, each pair of state-action has a value Q(sl, al)
for time slot l. Q(sl, al) is the expected cumulative future
discounted reward at state sl and action al, which can be
expressed as

Q(sl, al) = E [r̂l|sl, al] , (27)

where r̂l =
∑T

t=l ξr(st, at) and ξ, 0 ≤ ξ ≤ 1 is a discount
parameter. If ξ → 1, the future is the main focus and if ξ → 0,
the immediate reward will be mainly considered. The network
controller computes Q(sl, al), the value of which is stored in
a Q-table for each time slot.

By considered a learning rate κ, the presented Q-learning
scheme is shown in Alg. 1. In this algorithm, the value of
Q(sl, al) is iterated in each step. When the optimal policy
π(sl) = maxal

Q(sl, al) is satisfied, the optimal function
Q∗(sl, al) for action al is obtained and it should follow the
Bellman optimality equation:

Q∗(sl, al) = r(sl, al) + ξmax
al+1

Q∗((sl+1, al+1)|sl, al), (28)

D. Proposed DRL-based Solution

In the Q-learning, there should be a Q-table which consists
of all possible states as its rows and actions as its columns for
each BS. This Q-table will be the reference for the network
controller to select the proper action according to the Q-value.
Although using such a table relieves the dependence on full
network statistics information, but Q-learning still needs to
confront the problem of a huge state space.

In the considered WVN, as many different entities are
involved, the possibility that a very large amount of states
and actions co-exist will be very high. Then, the dimension of
Q-table will be very high if all the state and actions are stored.
Consequently, the algorithm may not be working properly as

it is difficult to get enough samples to traverse each state.
Therefore, we can utilize the Q-learning with neural network
(NN) to estimate Q(s, a) instead of calculating each pair’s Q-
value, which leads to the concept of Deep Q-Network (DQN).

Denoting θ as the weight, we can use a NN Q(s, a; θ) to
represent Q-function, which results in the Q-network. We can
train the Q-network to approximate the real Q-values by updat-
ing the value of θ at each iteration. When incorporating with
the NN, the performance of the Q-learning on flexibility is able
to be improved [7]. When it comes to the DQN, DNN is used
in stead of NN in Q-network and it has been proved as a robust
learning approach with better performance[36]. Comparing
with the Q-network, there are three major improvements in
the DQN [36][37].

The first one is that DNN can replace the ordinary NN with
a multiple layer structure. In the DNN, the multiple layers of
convolution filters are used to explore the local spatial correla-
tions. Therefore, DQN is able to extract the high-level features
of input raw data. In addition, the experience replay in DQN
is able to save the experience tuple e(l) = (sl, al, rl, sl+1)
into a replay memory O. Then from the memory, a randomly
sample batch Ô can be used to train the DNN. In this way,
DQN can learn from past experience instead of only from the
current one. Moreover, a second network is adopted and it
can compute target Q-values which can be used to compare
with the estimated Q-values to obtain the loss of each action.
Using one network for the target Q-values and estimated ones
can fall into feedback loops between the target and estimated
values.

As explained, in each iteration, a DNN is used to represent
Q(sl, al) in the DQN. Ba sed on the sample batch Ô taken
from experience memory, policy π and θ are updated to train
the DQN in a online manner. DQN can be optimized by
minimizing L(θ). Denoting Ωl as the target Q-value,L(θ) is
expressed as

L(θ) = E[Ωl −Q(sl, al; θ)
2], (29)

where

Ωl = r(sl, al) + max
al+1

Q∗(sl+1, al+1.θ
−). (30)

In (30), when the online network −Q(s, a; θ) is updated by
gradient descent, target network parameter θ− is frozen for
some iterations. Specially, according to (28), the network
controller selects action al, gets reward rl at time slot l and
then transitions to sl+1. A experience replay memory O is
used by network controller to save (sl, al, rl, sl+1). In order
to achieve the balance between exploration and exploitation,
the ε-greedy policy can be applied. That is, we aim at
balancing the reward maximization according to the known
information with selecting new actions to obtain unknown
information. We present the proposed DRL-based scheme in
Alg. 2 and its flow is illustrated in Fig. 4. As the network
controller in the WVN can manage the radio resources, and
collect the corresponding information from the environment
via e.g., physical networks, the proposed DRL solution can
be executed in the network controller in the centralized way.
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Fig. 4. Flow of the proposed scheme

Algorithm 2 DRL-based user association and resource allo-
cation method

1: Initialize experience replay memory O and parameter of
the DNN θ with random weights

2: for each episode do
3: Initialize the parameters of WVN scenario
4: Obtain observations on the state s1.
5: for each time slot l do
6: Choose al randomly with probability ε, otherwise,

select al = arg maxaQ(x, a, θ);
7: Execute selected al, observe reward and sl+1;
8: Save (sl, al; rl, sl+1) in replay memory O;
9: Sample a random batch of Y vectors (si, ai; ri, si+1)

from O;
10: Calculate the target Q-value Ωi from the target DQN,

as follows,

Ωi = ri + ξmax
al+1

Q(si+1, arg max
a′

Q(si+1, a
′
, θ), θ−)

(31)

11: Update the main DQN by minimizing L(θi),

L(θ) =
1

Z

∑
i

(Ωi −Q(si, ai, θ))
2). (32)

12: Execute a gradient descent step on L(θ) with respect
to θ.

13: end for
14: end for
15: Output: the optimal user association strategy β, resource

allocation factors α and δ, and power allocation p

The information exchange and updates (e.g. reward and action)
in the DRL can be realized by the signalling exchange in the
virtualization process.

VI. PERFORMANCE EVALUATIONS AND DISCUSSIONS

In this section, we will present the simulation results to
illustrate the proposed schemes. Here, we consider there are 2

Fig. 5. Impact of transmit power of BS on the utility performance.

Fig. 6. Impact of transmit power and ratio of RES of BS on the utility
performance.

InPs, 4 SBSs, and 15 users unless specified. The profit of the
user is set to 5 unit/b/s. The price of backhaul of InP 1 is 1
unit/b/s, while the price of backhaul of InP 2 is 1.2 units/b/s.
The prices for requesting virtual resources from InP 1 are
20 units/w/Hz, 18 units/w/Hz, and 15 units/w/Hz, and from
InP 2 are 18 units/w/Hz, 16 units/w/Hz, and 13 units/w/Hz,
respectively. The transmit power of 49 dBm is assumed for
MBS and the maximum transmit power of SBS is 20 dBm.
The channel bandwidth is 20 MHz. The parameter setting of
price is basically according to [15]. To implement the DRL,
TensorFlow is used. First, we examine the impact of various
factors on the system utility to see their impact. Then we
evaluate the proposed schemes and show their performance.

First, to examine the impact of transmit power of SBS,
we vary the transmit power and plot utility of the MVNOs
in Fig. 5 using the proposed ADMM-based scheme without
power allocation (’No PA’). In addition, we also evaluate the
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Fig. 7. Convergence performance of proposed ADMM-based scheme.

proposed ADMM scheme without power allocation and with
random user association (’Random UA’) and the proposed
ADMM scheme without power allocation and with random
user association and spectrum allocation (’Random UA and
SA’). From this figure, we can observe that the system utility
first becomes larger as the transmit power increases, then
reaches its maximum and decreases. Such an observation
evidences the necessity of investigating the power allocation
scheme for the considered system. Moreover, we can also
find the proposed user allocation and spectrum can effectively
improve the utility of MVNOs.

In Fig. 6, we jointly change the transmit power and the
usage of RES and plot the utility performance of MVNOs
in three dimension figure. It can be observed that with the
variation of the transmit power, the utility of MVNOs has an
optimal value. Such a observation also evidences the findings
of Fig. 5. We can also find that incremental of ratio of
RES usage results in the increase of system utility. Such
a phenomenon indicates RES usage should be encouraged,
which conforms to the pricing strategies in (9). In Fig. 7,
the convergence performance of the proposed ADMM-based
algorithm is examined, where there are 30 users. It can be
found by properly choosing the parameters, the proposed
ADMM-based algorithm can converge with a fast rate.

We present the convergence performance of DRL-based
scheme in Fig. 8. In this figure, we also show the effectiveness
of power allocation and user association, by comparing the
proposed DRL-based scheme with the one without power
allocation (’No PA’) and the one with random user association
(random UA). One can observe that the proposed DRL-based
scheme has a good convergence rate and outperform the others.
From this figure, it can also be found that utility of MVNOs
of all cases are low at the beginning. As the time goes
on, the utility all three cases become larger until reaching a
relatively stable value. In addition, the proposed DRL-based
scheme outperform the other two, which shows the necessity
of investigating the power allocation and user association.

To evaluate the effects of the number of users, Fig. 9 and

Fig. 8. Convergence performance of different DRL-based schemes.

Fig. 9. Utility of MVNO vs. number of users.

Fig. 10 vary the number of users and plots the utility per-
formance and system throughput, respectively. Moreover, we
compare the proposed DRL-based scheme and the proposed
ADMM-based scheme. In addition, we also plot the proposed
ADMM-based scheme with random user association (Random
UA). We can see our proposed DRL scheme outperform the
ADMM-based scheme in both cases. This is mainly because
the proposed ADMM-based scheme may fail to perform
accurate resource allocation in a dynamic scenario and then
results in performance loss.

VII. CONCLUSION AND FUTURE

We have investigated resource allocation and user associa-
tion schemes for a wireless virtualized heterogeneous network
with hybrid energy supply in this work. In particular, in
order to maximize the utility for all the MVNOs, a joint
spectrum and power allocation, and user association problem
is introduced. We first present a ADMM-based optimization
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Fig. 10. Throughput vs. number of users

scheme to find the solution in a static manner. Moreover,
based on deep reinforcement learning, we also propose to
learn the optimal strategy without having the priori information
of network dynamics. Extensive simulation studies have been
conducted and the performance evaluation demonstrates the
advantages of our proposed schemes. In the future, we will
take multi-antenna effects into consideration when designing
the virtual resource allocation scheme. When considering
multi-antenna effects, the overhead of estimating all involved
channels should be carefully considered and the problems
related to CSI uncertainty should be addressed [39] [40]. We
will focus on developing learning-based scheme to address the
induced problems.
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