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Abstract

This paper characterizes the performance of massive multiuser spatial modulation MIMO systems,

when a regularized form of the least-squares method is used for detection. For a generic distortion

function and right unitarily invariant channel matrices, the per-antenna transmit rate and the asymptotic

distortion achieved by this class of detectors is derived. Invoking an asymptotic characterization, we

address two particular applications. Namely, we derive the error rate achieved by the computationally-

intractable optimal Bayesian detector, and we propose an efficient approach to tune a LASSO-type detector.

We further validate our derivations through various numerical experiments.

Index Terms

Multiple-active spatial modulation, box-LASSO, regularized least-squares, massive MIMO, maximum-

a-posteriori-probability detection

I. INTRODUCTION

Spatial modulation (SM) is a multiple-antenna transmission technique in which information is

conveyed not only through transmitted symbols, but also via the indices of the transmit antennas

[2]–[6]. Initial realizations of SM mainly performed index modulation1 and are often referred to

as space shift keying (SSK) techniques in the literature. Later developments extended the idea to
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more generalized schemes, some of which can be followed in [7]–[15] and the references therein.

Among the various available schemes, multiple-active SM (MA-SM) is the most generic form in

which the transmitter performs index modulation over a subset of multiple transmit antennas. The

active antennas further transmit information using a generic constellation set [16]–[18].

This paper investigates the large-system performance of a classic MA-SM system, when the

receiver detects the transmitted data symbols jointly via a regularized least-squares (RLS)-based

algorithm. The motivation behind such a study is demonstrated in the shadow of two main

facts: (i) Compatibility of MA-SM with massive multiple-input multiple-output (MIMO) systems.

(ii) Generality of RLS-based detection. In the sequel, we briefly discuss these motivational facts.

A. Massive SM MIMO Systems

Theoretical analyses and implementational validations indicate that massive MIMO technology

will be a key element in future generations of cellular networks [19]–[25]. Efforts for enabling this

technology as a cost-efficient standard that can be commercialized have led to several paradigm-

shifts in MIMO designs, among which hybrid architectures [26]–[30], nonlinear precoding schemes

[1], [31]–[33], user and antenna selection techniques [34]–[41], and single radio frequency (RF)

chain MIMO [42]–[45] are prominent examples.

From implementational viewpoints, SM addresses the same issue as antenna selection: Reducing

the overall RF cost by using fewer RF chains than the number of transmit antennas. The key

difference here is that SM increases the data rate, compared to the antenna selection technique,

by transmitting extra information bits via index modulation. This enhancement is achieved at the

expense of loosing some diversity gain at the transmitter side. This trade-off was investigated in

[46]. The results show that SM is a suitable technique when it is employed in multiuser massive

MIMO systems with sufficiently many receive antennas1.

The findings of [46] anticipate that SM will, in practice, be deployed for uplink transmission in

massive MIMO systems. This motivates us to characterize the performance of SM in its generic

form, i.e., MA-SM, in the large-system limit.

B. RLS-based Detection

Detection of a spatially modulated signal mainly deals with two tasks: support recovery, and

symbol detection. In fact, given noisy and linearly projected observations obtained through the

1See the concluding points of [46].
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channel, the receiver needs to detect both the indices of active antennas and their corresponding

transmitted symbols. The former is used to recover the information conveyed via index modulation,

while the latter recovers the information transmitted via conventional modulation.

In the Bayesian framework, the optimal approach for detection is to find the realization of the

transmit signals whose posterior probability conditioned on the received signal is maximized, i.e.,

maximum-a-posteriori-probability (MAP) detection [4], [47]. However, due to the sparse nature of

spatially modulated signals, optimal detection reduces to an integer programming problem whose

complexity grows exponentially with signal dimension, and hence, is not tractable in practice. An

alternative approach is to look at the detection task as a sparse recovery problem1 in which a

sparse signal is to be recovered from a set of noisy linear observations [48], [49]. Following this

alternative viewpoint, several lines of work have proposed low-complexity detection algorithms

using sparse recovery techniques; see for example [50]–[53].

For Gaussian channels, both Bayesian and sparse recovery techniques are formulated similarly:

The detector minimizes the residual sum of squares, i.e., the error between the received signal and

the projection of possible transmit signals over the given channel, subject to some side constraints

restricting the sparsity and constellation. In the context of linear regression, this approach is called

the method of RLS. Most SM detection algorithms are mathematically equivalent to RLS. Hence,

analyzing a generic RLS-based detection scheme characterizes of a large scope of algorithms.

Following this, we consider a generic RLS-based detector and investigate its performance in

various respects. The generality of this setting enables us to address multiple special cases, among

which we discuss the optimal Bayesian detector and the box-constrained least absolute shrinkage

and selection operator (LASSO) detector in details.

C. Contributions and Organization

This work characterizes the asymptotic performance of a multiuser MIMO setting in which

users employ the MA-SM for uplink transmission and the receiver uses an RLS-based detector to

jointly detect the transmitted signals. There are some earlier works that investigate special cases

of this setting; e.g., [54]–[57]. Nevertheless, the analyses and results of this paper are new in

various respects:

1Despite mathematical equivalency of the two tasks, a conventional sparse recovery problem differs from SM detection in the

fact that the latter is not necessarily underdetermined.
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• The standard approach to the analysis of massive SM MIMO systems is to model the transmit

signal as an independent and identically distributed (i.i.d.) sparse sequence; see for example

[54]. Although this assumption simplifies large-system analyses and can lead to a good

approximation, it does not precisely model an SM system. In fact, using index modulation

via a pre-defined codebook, the transmit signals are not necessarily i.i.d., even if the codebook

is generated randomly; see Example 1 in Section II-A. We address this issue by deviating

from the classic approach and considering a precise model for SM signals. Invoking our prior

results on asymmetric MAP estimation [58], we characterize the asymptotic performance by

considering this more accurate model.

• In contrast to earlier works in the literature, we study the SM system by considering a generic

model for the channel matrix. Namely, we consider the channel matrix to be a complex-

valued right unitarily invariant random matrix. This includes various well-known models for

the fading process, e.g., the standard Rayleigh fading model.

• The analysis in this work considers a generic form of RLS-based detection. This not only

allows us to derive error bounds for optimal and sub-optimal detection algorithms, but also to

address various design tasks. As an example, we discuss the particular application of tuning

box-constrained LASSO detectors in this paper.

The remaining parts of this manuscript are organized as follows: The setting is modeled in

Section II. The main results and derivations are presented in Section III. As an application of

the results, the optimal Bayesian detection algorithm is characterized in Section IV. Applications

of the results to the analysis and tuning of box-constrained LASSO detectors are discussed in

Section V. The paper is finally concluded in Section VI.

D. Notation and Basic Definitions

Scalars, vectors and matrices are represented with non-bold, bold lower-case and bold upper-

case letters, respectively. HH indicates the transposed conjugate of H, and IN is an N×N identity

matrix. The ℓp-norm of x is denoted by ‖x‖p and ‖x‖0 is the “ℓ0-norm” of x which counts the

number of non-zero entries. log and ln (·) indicate the binary and natural logarithm, respectively.

Ex {} is expectation with respect to x. The binary entropy function H2 (p) is defined as

H2 (p) = −p log (p)− (1− p) log (1− p) , (1)

for some p ∈ (0, 1) and is zero if p ∈ {0, 1}. ⌊x⌋ denotes the floor function that rounds x to the

nearest integer i ≤ x. R and C refer to the real axis and the complex plane, respectively. For
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z ∈ C, z∗, Re {z} and Im{z} denote the complex conjugate, real part and imaginary part of z,

respectively. CN (η, σ2) represents the complex Gaussian distribution with mean η and variance

σ2. For a given set S, we use the notation S0 to denote S0 := {0}∪S. XC denotes the complement

of X with respect to a mother set. For sake of brevity, {1, . . . , N} is abbreviated as [N ].

For sake of brevity, we further define the Stieltjes transform and the R-transform for large

random matrices as follow: Consider matrix A ∈ CN×M , and let ϑ1, . . . , ϑM denote the eigenvalues

of AH
A, i.e., the singular values of A. Define the density of the states as

p
(M)
A

(ϑ) =
1

M

M
∑

m=1

1 {ϑ = ϑm} (2)

and let pA (ϑ) be its limit when M and N go to infinity with a fixed ratio, i.e, N/M is fixed. We

refer to pA (ϑ) as the asymptotic singular value distribution A. For this distribution, the Stieltjes

transform is defined as

GA (s) =

∫

pA (ϑ)

ϑ− s
dϑ (3)

for some complex s with Im{s} ≥ 0. Denoting the inverse of GA (·) with respect to composition

with G−1
A

(·), the R-transform is then defined as RA (ω) = G−1
A

(−ω)− ω−1, such that

lim
ω→0

RA (ω) =

∫

ϑpA (ϑ) dϑ. (4)

We use these transforms to represent the main results.

II. PROBLEM FORMULATION

We consider a Gaussian MIMO broadcast channel, in which K users transmit uplink signals to

a single base station (BS). Each user is equipped with Mu antennas and Lu transmit RF chains.

This means in each transmission time interval, only Lu transmit antennas are active at each user

terminal. We denote the fraction of active antennas by η = Lu/Mu and refer to it as the activity

ratio. The BS is equipped with N receive antennas. The uplink channel in this case is compactly

represented by

y = H x+ n (5)

where H, x and n represent the channel matrix, transmit signal and additive white Gaussian noise

(AWGN), respectively, and fulfill the following constraints:

(a) H ∈ C

N×M with M = KMu being the total number of available transmit antennas in the

network. The entries of H represent channel gains between transmit and receive antennas

over a single time-frequency resource.
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The channel is assumed to experience quasi-static fading with slow time variations, meaning

that the gains are fixed within the given frequency band during a coherence time interval

which is considerably larger than a symbol interval. We consider a generic stochastic model

for the fading process. Namely, it is assumed that H is a right unitarily invariant random

matrix. This means that H has a singular value decomposition (SVD)

H = UΣV
H, (6)

where Σ ∈ R

N×M contains the singular values of H on the main diagonal and zeros

elsewhere, U ∈ C

N×N is a unitary matrix, and V ∈ C

M×M is a Haar-distributed unitary

matrix, i.e., V is distributed uniformly over the set of unitary matrices.

The ensemble of right unitarily invariant random matrices includes a variety of fading models

including the standard i.i.d. Rayleigh fading model.

(b) Transmit signal x ∈ CM is given by

x =
[

x
T

1 , . . . ,x
T

K

]T

(7)

where xk ∈ CMu represents the transmit signal of user k and is constructed by mapping the

information symbols of the user to symbols from the constellation set.

(c) n ∈ CN is a complex-valued i.i.d. random vector whose entries are Gaussian with zero-mean

and variance σ2, i.e. n ∼ CN (0, σ2
IN).

(d) y ∈ CN denotes the receive signal whose entries are in general mutually coupled.

It is assumed that the system operates in the time division duplexing (TDD) mode, which is

typical for massive MIMO systems. The uplink channels are estimated prior to data transmission

by sending K orthogonal pilot sequences within the training phase. To keep the analysis tractable,

we neglect the impact of estimation errors and assume that the channel state information (CSI) is

perfectly available at the BS.

A. Spatial Modulation

To construct transmit signals x1, . . . ,xK from the information symbols, the users employ

MA-SM: Each user selects a subset of Lu transmit antennas and sends Lu independent modulated

symbols over them using a standard modulation scheme, e.g. phase shift keying (PSK). The key

difference to the conventional transmission is that the index of the selected subset is further

specified by data symbols, and hence it carries information.
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To illustrate the modulation scheme precisely, let dk denote the sequence of information symbols

being sent by user k. Assume dk is an i.i.d.1 binary sequence with uniform distribution. The RF

chains at the user terminals are assumed to transmit complex signals whose constellation points

are taken from S. We assume that S contains 2S distinct points, which is the case in practice, e.g.

in PSK. Given the information sequence dk, user k constructs xk as follows:

1) Codebook generation: Consider all possible tuples of Lu antennas selected out of Mu available

antennas at each user. A subset of 2I distinct tuples is selected, where

I =

⌊

log

(

Mu

Lu

)⌋

. (8)

To each of these subsets a modulation index is assigned. We refer to this indexed subset as

the codebook.

2) Index modulation: For given sequence dk, user k chooses modulation index ik ∈ [2I ] from

the codebook, such that the first I bits of dk are the binary representation of ik.

3) Modulating multiple streams: Over the active antennas selected by index ik, user k transmits

sk (m) ∈ S, with m ∈ L (ik), where L (ik) ⊆ [Mu] denotes the subset of Lu antennas which

correspond to modulation index ik and is referred to as the active support of user k.

The m-th transmit entry of user k, i.e. xk,m for m ∈ [Mu], is therefore written as

xk,m =











sk (m) m ∈ L (ik)

0 m /∈ L (ik)
. (9)

From (9), it is concluded that xk is an Lu-sparse vector, i.e. only Lu entries are non-zero. The

transmit signal x is hence an L-sparse vector, where L = KLu. This means that the sparsity

factor of the transmit signal is

η =
‖x‖0
M

=
L

M
=

Lu

Mu
. (10)

It is worth to indicate that the transmit signal is in general not i.i.d. distributed. In fact, by

index modulation, the entries of xk become statistically dependent. Furthermore, following the

asymmetry imposed by codebook generation, the marginal distributions of transmit entries are not

necessarily identical. This point is clarified through the following toy-example.

Example 1: Consider a scenario with a single user equipped with Mu = 5 antennas and Lu = 2

RF chains. We assume binary PSK (BPSK) transmission over the active antennas, i.e. S = 1. For

1We assume that the information symbols are interleaved, such that the temporal correlation is negligible.



8

this setting, I = 3 which means that the codebook consists of 8 distinct pairs of antennas each

indexed by a modulation index from 0 to 7. Let the codebook be

C = {(j, ℓ) : j ∈ {1, 2} and j < ℓ ≤ 5} ∪ {(3, 4)} (11)

with some indexing. The user in this case maps a binary symbol sequence of length I + Lu = 5

into a transmit signal x where the first I = 3 symbols specify the index of active antennas, and

the remaining Lu = 2 bits are transmitted via the selected antennas using the BPSK constellation.

Let us define conditional distribution qm (x|x0) for m ∈ [5] as

qm (x|x0) := Pr
{

xm = x
∣

∣x\m = x0

}

(12)

where xm is entry m of x, and x\m denotes a four-dimensional vector constructed from x by

dropping xm, respectively.

For this setting, it is straightforward to write

qm (x|x0) =











1 {x = 0} ‖x0‖0 = 2

1

2
1 {x = ±1} ‖x0‖0 6= 2

(13)

which indicates that the entries of x are mutually dependent. Given the codebook, we can write

px1
(x) =











0.5 x = 0

0.25 x = ±1
and px5

(x) =











0.75 x = 0

0.125 x = ±1
(14)

where pxm
(x) denotes the marginal distribution of xm. This observation indicates that the entries

of x are not identically distributed1.

B. RLS-based Detection Algorithms

The BS detects the transmit signal from the received signal by employing a generic RLS-based

detection algorithm. This algorithm first determines a soft estimation of the transmit signal, for

the given CSI, using the RLS recovery

RLS
X

(y|H) := argmin
v∈XM

0

‖y −Hv‖2 + freg (v) . (15)

1The necessary condition for identical marginal distributions is that the total number of tuples be an integer power of 2. This

is however not the case for many choices of Mu and Lu.
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Here, X is a superset1 of the constellation set S, i.e., S ⊆ X, and freg (·) is some regularization

function. The soft estimation is hence determined as

x
⋆ = RLS

X

(y|H) (16)

The detected signal is then given by mapping the soft estimation to a vector in SM
0 . This means

x̂ = fdec (x
⋆) (17)

where fdec (·) : XM
0 7→ S

M
0 is a decision function, e.g. the sign function.

C. Special Forms of RLS-Detectors

The considered recovery scheme includes a large scope of detection algorithms. From the

Bayesian points of view, the algorithm reduces to the optimal detector, i.e. MAP detector, by

setting fdec (·) to be the identity function, i.e. x̂ = x
⋆, X = S and

freg (v) = −σ2 ln px (v) (18)

with px denoting the prior distribution of x imposed by the statistical model of data. By changing

freg (·), while keeping X = S and fdec (·) to be the identity function, the algorithm is interpreted

as a mismatched MAP detector.

For X = S and large M , the algorithm is computationally intractable, and hence, it is infeasible

to implement it, in practice. As a result, convex forms of the algorithm are often used in practice.

A well-known example of such detectors is the box-constrained LASSO. In the box-constrained

LASSO, X is set to a convex set which contains the constellation points. The regularization term

is set proportional to the ℓ1-norm of x which approximates the sparse prior of the transmit signal

with a Laplace distribution. Using the RLS recovery algorithm, the soft estimation of the transmit

signal contains entries which are either zero or a complex number in X. For decision, fdec (·) is

set to be an entry-wise hard thresholding operator which maps the points within a certain decision

region to a corresponding constellation point. An example of the box-constrained LASSO is given

below:

1
X is usually set to the convex hull of S.
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Example 2: Assuming a binary PSK transmission, the constellation set is S = {−
√
P,+

√
P},

for some positive real P . In this case, a possible choice for X is X = [−B,B] for some B ≥
√
P .

The soft estimation is then given by

x
⋆ := argmin

v∈[−B,B]M
‖y −Hv‖2 + λ‖v‖1 . (19)

The detected signal is given by setting the M − L entries of x
⋆ with smallest absolute values

zero and detecting the rest as x̂m =
√
P sign (x⋆m) . An equivalent representation of the decision

function in this case is

fdec (x) =
√
P sign (x) 1 {|x| > ǫ} (20)

for some ǫ ∈ [0, B], where 1 {·} is the indicator function.

D. Performance Measures

Using spatial modulation, the data rate is increased by I bits per transmission compared to the

conventional antenna selection approach [39]. In fact, the data rate per user in this case is

Ru = I + LuS = I + ηMuS. (21)

This increase is obtained at the expense of reducing the diversity gain. To characterize the per-

formance of this transmission technique over the noisy channel, a distortion metric is further

considered. The common metric is the average error rate which is defined as the probability of

bit flips averaged over the block size, i.e. M . Nevertheless, for a general case, the distortion can

be determined with respect to a generic distortion measure.

We characterize the performance by defining two metrics, namely the per-antenna transmit rate

and average distortion, as following:

Definition 1 (Per-antenna transmit rate): For each user in the network, the per-antenna transmit

rate is defined as

R̄ :=
Ru

Mu

. (22)

R̄ determines the number of bits achieved per transmit antenna, regardless of whether it is

active or passive. To characterize the distortion, we consider a generic metric which includes

conventional distortion metrics.
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Definition 2 (Average distortion): Consider the soft estimation x
⋆. The average distortion is

defined as

D (M) :=
1

M

M
∑

m=1

E {FD (x⋆m; xm)} (23)

for some distortion function FD (·; ·) : X0 × S0 7→ R.

Definition 2 reduces to several distortion metrics including the conventional error probability

and the mean square error (MSE). In fact, by setting

FD (x⋆m; xm) = 1 {fdec (x⋆m) 6= xm} , (24)

D (M) calculates the average error rate. An alternative is

FD (x⋆m; xm) = |x⋆m − xm|2, (25)

which determines the average MSE of the soft estimation.

E. Asymptotic Analysis

We study the system performance in the asymptotic regime. To this end, we assume a sequence

of settings indexed by N , such that the number of transmit antennas per receive antenna is fixed.

This means that N grows large in this sequence, while

ξ =
M

N
(26)

is kept fixed. We refer to ξ as the effective load. For this sequence of settings, a corresponding

sequence of performance metrics, with respect to a given measure of performance, is derived.

Each entry of this new sequence gives the performance metric of its corresponding setting in the

former sequence. The asymptotic performance is then characterized by the limit of this sequence

when N tends to infinity.

In general, the asymptotic performance is interpreted in two different ways:

1) It describes a case in which a massive number of ordinary multi-antenna users, with small

antenna arrays, transmit uplink signals to a BS with a large antenna array. In this case, the

effective load is

ξ =
KMu

N
= α Mu. (27)

where α := K/N is the system load.
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2) An alternative interpretation is given by considering a scenario in which few sophisticated

terminals communicate with a BS. In this case, the system load converges asymptotically to

zero, and Mu ≫ K. The effective load is hence given by

ξ =
KMu

N
= Kξu, (28)

where ξu :=Mu/N is the per-user load.

The results of this work address both interpretations. Nevertheless, whenever needed, we refer to

these interpretations as massive user case and massive array case, respectively.

III. LARGE-SYSTEM CHARACTERIZATION

In this section, we derive the asymptotic limits of the performance metrics, i.e., the per-antenna

transmit rate and the average distortion. For the per-antenna rate, the exact value of the metric

is calculated for any dimension. The study of this metric aims to characterize the rate growth

in terms of the transmit array size, asymptotically. We follow the derivation in this case by a

standard algebraic approach.

In contrast to the per-antenna rate, the average distortion is not necessarily determinable in

a tractable way. In this respect, the large-system analysis of this metric intends to calculate the

limiting value of the distortion using some advanced analytical tools. To this end, we invoke the

replica method which has been developed in the context of statistical mechanics, and is accepted

as an analytical tool in information theory and signal processing.

A. Per-antenna transmit rate

Theorem 1 describes variations of the per-antenna transmit rate with respect to the transmit

array size at user terminals, i.e. Mu. This result does not consider the large-system limit, and is

valid for any dimension.

Theorem 1: For any transmit array size Mu, there exists a constant C ∈ (Cd, Cu], such that the

per-antenna transmit rate is given by

R̄ = η S +H2 (η) +
C − logMu

2Mu
(29)

where

Cd = log
π

2e4
− log

(

η − η2
)

(30a)

Cu = log
e2

4π2
− log

(

η − η2
)

. (30b)
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Sketch of the Proof. Using Stirling’s formula, it is shown in Appendix A that I is bounded as

Id < I ≤ Iu, (31)

where Ii for i ∈ {d, u} are given by

Ii :=
Ci − logMu

2
+MuH2 (η) . (32a)

Invoking these upper and lower bounds, the result in (29) is concluded straightforwardly using

the method of intervals. The detailed derivations are given in Appendix A.

Theorem 1 depicts that the per-antenna transmit rate tends to η S +H2 (η), as the number of

transmit antennas at user terminals grows large. Hence, the gain achieved via index modulation,

compared to simply applying antenna selection, is approximately H2 (η). For the massive array

case, this gives an accurate approximation, while in the massive user case, it requires further

modification via the residual terms.

Theorem 1 characterizes the rate loss caused by deactivating antennas at the user terminals

[59]. In fact, by considering the case with full transmit complexity as the reference, one observes

MA-SM reduces the rate loss by H2 (η), compared to the antenna selection technique.

B. Average distortion

Using asymptotic characterization via the replica method, we derive a closed-form expression

for the asymptotic average distortion. The validity of the results depends on the replica continuity

and replica symmetry assumptions. Despite the lack of concrete theoretical proofs, various results

in the literature confirm the validity of these assumptions in this setting.

We start representing the large-system result by defining a decoupled setting of the under-study

system. This setting is a tunable scalar system whose average distortion, for any choice of tuning

factors, is analytically calculated. Our main result indicates that for a specific choice of the tuning

factors, the average distortion of the decoupled setting is equal to the average distortion in the

original system.

Definition 3 (Decoupled setting): Let pH (ϑ) be the asymptotic singular value decomposition of

the channel matrix H whose R-transform is R (·). For tuning parameters c and q, define

τ (c) :=
1

R (−c) (33a)

θ (c, q) :=
1

R (−c) ,
√

∂

∂c
[(σ2c− q) R (−c)]. (33b)
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Let x = ψs, where s is a uniform random variable on S, and ψ is a Bernoulli random variable,

independent of s, with

Pr {ψ = 1} = 1− Pr {ψ = 0} = η. (34)

Then, the decoupled output y (c, q) is defined as

y (c, q) = x + θ (c, q) z (35)

with z ∼ CN (0, 1). The decoupled RLS estimation is further given by

x⋆ (c, q) = rls
X

(y (c, q) |τ (c)) , (36)

where the scalar RLS recovery algorithm rls
X

(·|τ) for a given τ is defined as

rls
X

(y|τ) := argmin
v∈X0

1

τ
|y − v|2 + freg (v) . (37)

The decoupled distortion is moreover calculated as

Dasy (c, q) := E {FD (x⋆ (c, q) ; x)} . (38)

Definition 3 defines y (c, q) which is the output of a scalar AWGN channel. The input to this

channel is x whose distribution describes the empirical distribution of a significantly large transmit

vector x. The noise variance of the channel is controlled with tuning factors c and q. From this

decoupled output, the estimation x⋆ (c, q) is calculated, which is an RLS recovery of x from y (c, q)

via the scalar RLS estimator rls
X

(·|τ (c, q)). The distortion term Dasy (c, q) determines the mean

distortion between decoupled estimation x⋆ (c, q) and input x.

For any choice of X and freg (·), the derivation of RLS estimation in the decoupled setting, i.e.

x⋆ (c, q), deals with solving a scalar program. Hence, in contrast to the original setting, the average

distortion of RLS recovery is analytically tractable for all choices of X and freg (·) in this case.

Theorem 2 indicates that for specific choices of c and q, Dasy (c, q) gives the asymptotic average

distortion in the original setting. The values of c and q, for which this equivalency happens, are

given in the following theorem via a system of fixed-point equations.

Theorem 2: Consider the multiuser MIMO setting in Section II, and let the receive signal be

detected via an RLS-based detector with X ⊆ C. Assume that the technical conjectures for validity

of the replica symmetric solution, including replica continuity and replica symmetry, hold. Then,

lim
M↑∞

D (M) = Dasy (c
⋆, q⋆) (39)
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where c⋆ and q⋆ are solutions to the fixed-point equations

c θ (c, q) = τ (c) E {Re {(x⋆ (c, q)− x) z∗}} (40a)

q = E

{

|x⋆ (c, q)− x|2
}

. (40b)

Sketch of the Proof. The proof follows the asymmetric decoupling property of MAP estimation

investigated in [58]. We start by rewriting the average distortion as

D = Ei {D (i)} (41)

where i := [i1, . . . , iK ]
T

is the vector of modulation indices, and

D (i) :=
1

M

M
∑

m=1

E {FD (x⋆m; xm) |i} (42)

is the average distortion for a given realization of modulation indices. Conditioned on a realization

of i, the transmit signal consists of two non-identical blocks1: a block of length (1− η)M with

all the entries being zero, and a block of length ηM whose entries are uniformly distributed on S.

Let us denote the entry indices of the latter block, i.e. the block with xm 6= 0, by Supp (i) ⊆ [M ].

It is hence clear that |Supp (i)| = ηM . The asymmetric form of the decoupling principle, given

in [58], indicates that for any m ∈ Supp (i), as M ↑ ∞, the conditional distribution p (x⋆m, xm|i)
converges to the joint distribution of (ŝ (c⋆, q⋆) , s), where

ŝ (c⋆, q⋆) := rls
X

(s + θ (c⋆, q⋆) z|τ (c⋆, q⋆)) , (43)

and s is uniform on S. For m ∈ Supp (i)C, p (x⋆m, xm|i) converges to the distribution of (x̂0 (c
⋆, q⋆) , 0),

where

x̂0 (c
⋆, q⋆) := rls

X

(θ (c⋆, q⋆) z|τ (c⋆, q⋆)) . (44)

1Note that by a block, we mean the set of entries whose indices are in an index set L ⊆ [M ]. The index set L could be any

subset of [M ] and does not need to necessarily include adjacent integers.
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Hence, D (i) is given by

D (i) =
1

M

M
∑

m=1

E {FD (x⋆m; xm) |i} (45a)

=
1

M





∑

m∈Supp(i)

E {FD (x⋆m; xm) |i}+
∑

m∈Supp(i)C

E {FD (x⋆m; xm) |i}



 (45b)

=
1

M
[ηM E {FD (ŝ (c⋆, q⋆) ; s)}+ (1− η)M E {FD (x̂0 (c

⋆, q⋆) ; 0)}] (45c)

= E {FD (x⋆ (c⋆, q⋆) ;ψs)} (45d)

= Dasy (c
⋆, q⋆) . (45e)

As D (i) is constant in i, we infer that D = Dasy (c
⋆, q⋆) which concludes the proof. The detailed

derivations are given in Appendix B.

Remark 1: Comparing the result of Theorem 2 to the asymptotic distortion of sparse recovery

algorithms, e.g., [60], one observes that these asymptotic characterizations are identical. This

observation indicates that the earlier derivations based on the mismatched prior assumption of

i.i.d. sparse transmit signals closely approximate the performance.

The asymptotic characterization enables us to study various aspects of MA-SM systems. In

the sequel, we address two examples: First, we use the results to asymptotically characterize the

optimal detector. We then study the recovery performance of box-constrained LASSO algorithms

and discuss the optimal tuning strategy for these detectors.

IV. APPLICATION I: BOUNDS ON OPTIMAL ERROR RATE

From Bayesian points of view, the optimal detector, which minimizes the probability of erro-

neous detection, is the MAP detector which recovers x as

x̂ = argmax
v∈SM

0

px (v|y,H) (46)

where px (·|y,H) denotes the posterior distribution of transmit signal x conditioned on receive

signal y and CSI H. Given H, the receiver observes an AWGN channel. Hence, it is straightfor-

ward to show that the MAP detector in this case reduces to

x̂ = argmin
v∈SM

0

‖y −Hv‖2 − σ2 ln px (v) (47)
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where px (·) is the prior distribution of transmit signal x. The MAP detector in (47) is interpreted

as an RLS-based detector in which X = S, the regularization function is given by (18), and the

decision function is fdec (x) = x.

Given the equivalent RLS form of the MAP detector, it is not straightforward to formulate

it, since the prior distribution px (·) is not of a simple form; see Example 1. Nevertheless, in

the large-system limit, the detector can be approximated by a mismatched detector whose RLS

formulation has a simple form. We discuss this approximated form in the sequel.

A. An Approximately Equivalent Mismatched MAP Detector

Despite the complicated form of the exact prior distribution, x can be approximated by an i.i.d.

distribution in the large-system limit: As M grows large, the transmit signal is approximately

distributed as an the i.i.d. sequence x̃m = ψ̃ms̃m for m ∈ [M ], where ψ̃m is a Bernoulli random

variable with1

Pr
{

ψ̃m = 1
}

= 1− Pr
{

ψ̃m = 0
}

= η (48)

and s̃m is uniformly distributed on S. The consistency of this approximation in the large-system

limit can be investigated via the asymptotic equipartition property (AEP)2. In the sequel, we

illustrate this approximation through an example.

Example 3: Consider a scenario with K = 10 users, each equipped with Mu = 16 antennas and

Lu = 2 RF chains transmitting BPSK symbols, i.e., S = {±1}. For this setting, I = 6, and thus in

each symbol interval I+LuS = 8 bits of information are transmitted by each user. The codebook

is generated by a random selection of 2I = 64 distinct antenna pairs out of the available 120

distinct pairs. This randomly generated codebook is shared among the users and the BS.

For this setting, we numerically realize the transmit signal J times with the given codebook.

Realization j is denoted by x (j). Given the realizations, we determine the following two statistics

for transmit entry m:

1) The empirical distribution p̃m (x), defined as

p̂m (x) =
1

J

J
∑

j=1

1 {xm (j) = x} (49)

1One could show that for some random codebook generations, the transmit signal in massive array case converges in distribution

to this i.i.d. sequence.

2We skip detailed discussions in this respect, as it is out of the scope of this study.
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with xm (j) being the m-th entry of x (j).

2) The empirical (ℓ, t) joint moment function, defined as

ρ̂ℓtm (δ) :=
1

J

J
∑

j=1

xm(j)
ℓxm+δ (j)

t
(50)

for δ ∈ {−m+ 1, . . . ,M −m} and integers ℓ and t.

The given functions are numerical evaluations of the marginal distribution of entry m and its

pair-wise joint moments with other entries in the transmit signal. From the classical method of

moments [61], one could argue that if the analytical terms for the marginal distributions, and all

joint moments1 are equal to their corresponding functions in sequence {x̃m}, for m ∈M and all

moment exponents; then, the transmit entries and sequence {x̃m} have identical distributions. This

constraint is however intractable to be checked, even numerically. We hence consider only the

given empirical measures and compare them to their corresponding metrics in sequence {x̃m};

namely, to distribution of x̃m, shown by px̃m (x), and joint moment ρ̃ℓtm (δ), defined as

ρ̃ℓtm (δ) := E

{

x̃ℓmx̃
t
m+δ

}

. (51)

Fig. 1 and 2 show numerical results for J = 105 realizations considering transmit entry m = 80.

In Fig. 1, the empirical distribution is sketched showing close consistency with px̃m (x), even for

moderate dimensions.

Fig. 2 further shows joint moment functions for multiple choices of ℓ and t. In theory, ρ̃ℓtm has

three different forms, depending on the values of ℓ and t. Fig. 2 contains an empirical sample of

each form. It is observed that the joint moments closely track ρ̃ℓtm (δ) for the corresponding values

of ℓ and t.

The observations in Example 3 numerically justify the fact that the i.i.d. sequence {x̃m} is

a good approximation of the true transmit signal. Considering this finding, we approximate the

optimal performance by the performance of a mismatched MAP detector which postulates the

prior distribution

px,pos (v) =

M
∏

m=1

px (vm) , (52)

for the transmit signal. Here, px (·) denotes the distribution of x̃m
2 and is given by

px (v) = (1− η)1 {v = 0}+ 2−Sη 1 {v 6= 0} . (53)

1This means not only the pair-wise joint moments, but also joint moments of more entries.

2This distribution is equivalent to the distribution of the decoupled input x given in Definition 3.
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Fig. 1: Empirical marginal distribution of transmit entry m = 80. Numerical simulations are denoted by blue crosses closely

tracking px̃m (x) shown by red squares. Here, the number of users is K = 10. Each user has Mu = 16 antennas and transmits

BPSK symbols over Lu = 2 active antennas.

Invoking Theorem 2, we characterize the performance of this mismatched detector in the sequel.

B. Asymptotic Performance of the Mismatched MAP Detector

For the postulated prior distribution in (52), we have

−σ2 ln px,pos (v) = −σ2
M
∑

m=1

ln px (vm) (54a)

= a‖v‖0 + b (54b)

assuming that 0 < η < 1, where a and b are given by

a := σ2 [S ln 2 + ln (1− η)− ln η] (55a)

b := −σ2 ln (1− η) . (55b)

Hence, the regularization function of the mismatched detector is1

freg (v) = a‖v‖0. (56)

1Note that constant b does not play any role in the optimization problem. Thus, it is dropped.
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Fig. 2: Joint moment function of transmit entry m = 80 for multiple choices of ℓ and t. The number of users is K = 10, each

having Mu = 16 antennas and Lu = 2 RF chains. The BPSK constellation is considered for transmission. The red squares denote

ρ̃ℓtm (δ) while blue crosses show numerical results.

freg (v) regularizes the least-squares, i.e. ‖Hv − y‖2, with respect to the sparsity of the transmit

signal imposed via index modulation. With this regularization function, the mismatched detector

reduces to the so-called ℓ0-norm minimization algorithm with regularization parameter a, consid-

ered in compressive sensing for sparse recovery.

Using Theorem 2, we now determine the average error rate of the mismatched detector in the

large-system limit. To this end, we first derive an analytical expression for the error rate of the

decoupled setting. The asymptotic error rate is then calculated from the derived expression using

the solution of the fixed-point equations. Detailed derivations are given below:

Decoupled setting: The decoupled RLS estimation for the mismatched detector is determined

by setting

freg (v) = a 1 {v 6= 0} (57)
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in (37). Moreover, as fdec (x) = x, we can conclude that

x̂ (c, q) = fdec (x
⋆ (c, q)) = x⋆ (c, q) . (58)

Hence, we have

x̂ (c, q) =











0 Umax (c, q) ≤ τ (c) a

smax (c, q) Umax (c, q) > τ (c) a
(59)

where Umax (c, q) and smax (c, q) are given by

Umax (c, q) := max
s∈S

[

2Re {y∗ (c, q) s} − |s|2
]

(60a)

smax (c, q) := argmax
s∈S

[

2Re {y∗ (c, q) s} − |s|2
]

. (60b)

Asymptotic average error: We set the distortion function to (24). The asymptotic error rate is

then given by the decoupled distortion when c and q are set to c⋆ and q⋆, respectively. For the

decoupled estimation in (59), Dasy (c, q) is given by

Dasy (c, q) = E {1 {x̂ (c, q) 6= x}} = 1− PC (c, q) (61)

where PC (c, q) is given by

PC (c, q) := E {1 {x̂ (c, q) = x}} (62a)

= (1− η)G0 (c, q) + 2−Sη
∑

s∈S

Gs (c, q) (62b)

with Gs (c, q) being defined as

Gs (c, q) := Pr {x̂ (c, q) = s|y (c, q) = s+ θ (c, q) z} (63)

for s ∈ S0. Noting that z ∼ CN (0, 1), Gs (c, q) is a Gaussian integral, which can be straightfor-

wardly calculated.

Solving the fixed-point equations: By substituting the decoupled estimation into Theorem 2,

the fixed-point equations are given by

c θ (c, q) = τ (c) C (c, q) (64a)

q = E (c, q) . (64b)

where C (c, q) and E (c, q) are given by

C (c, q) := E {Re {(x̂ (c, q)− x) z∗}} (65a)

E (c, q) := E

{

|x⋆ (c, q)− x|2
}

. (65b)
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Similar to the decoupled distortion, C (c, q) and E (c, q) are written as sums of Gaussian integrals.

For instance,

E (c, q) = (1− η) E0 (c, q) + 2−Sη
∑

s∈S

Es (c, q) (66)

where Es (c, q) is defined as

Es (c, q) := Ez

{

|x̂ (c, q)− x|2
∣

∣ y (c, q)= s+θ (c, q) z
}

. (67)

Consequently, to solve the fixed-point equations, we calculate C (c, q) and E (c, q) explicitly from

the Gaussian integrals, and plug them into (64a) and (64b). The resulting equations are then solved

numerically1.

C. Numerical Investigations

The achievable average error rate for the mismatched MAP detector is plotted against the P/σ2

in Fig. 3. Here, the number of transmit antennas and RF chains at user terminals are set to Mu = 8

and Lu = 1, respectively. Hence, the activity ratio evaluates to η = Lu/Mu = 1/8. The system

load is α = 1/4 meaning that there are four receive antennas per user terminal at the BS, i.e.

N/K = 4. The figure shows the error rate for three different scenarios with different constellation

sets. Namely,

• 4-quadrature amplitude modulation (4-QAM) transmission, in which

SQAM =

{

±
√

P

2
± j

√

P

2

}

, (68)

• BPSK transmission with

SBPSK =
{

±
√
P
}

, (69)

• SSK transmission for which

SSSK =
{√

P
}

. (70)

For the shown results the i.i.d. Rayleigh fading model is assumed in which the channel gains

are i.i.d. zero-mean complex Gaussian random variables with variance 1/M . The R-transform of

the asymptotic squared singular values of this channel matrix is given by [62]

R (c) =
ξ−1

1− c
. (71)
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Fig. 3: Asymptotic error rate for the mismatched MAP estimator vs. P/σ2. Here, Mu = 8 and Lu = 1. The system load is set

to α = 1/4. The curves are good approximations of the minimum error rate.

To sweep over the x-axis, we set P = 1, and σ2 is appropriately scaled for a given P/σ2.

The figure shows that the performance of the detector degrades, as the constellation size

increases. This is an intuitive observation, since the energy efficiency reduces if the constellation

size is raised at a fixed power. Following earlier discussions, Fig. 3 is considered as a good

approximation of the minimum error rate bound.

V. APPLICATION II: TUNING LASSO-TYPE DETECTORS

In practice, suboptimal detectors are used for data recovery in MA-SM MIMO systems which

are often RLS-based detectors. The performance of these detectors usually depends on a set of

parameters which need to be effectively tuned. The tuning task aims to find these parameters,

such that a desired distortion metric is minimized.

In general, the optimal parameters of a detector depend on the factors at which the system

operates, e.g. signal-to-noise ratio (SNR). Therefore, the detector should be re-tuned frequently

over time. A direct approach for tuning can hence burden the system computationally. Motivated

by this, we propose a tuning strategy based on the large-system characterization.

1An alternative approach is to iteratively find the stability point of the corresponding replica simulator; see [60] for detailed

discussions.
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Tuning Approach: Consider a distortion metric, with respect to which an RLS-based detector

is to be tuned. Using Theorem 2, derive the asymptotic limit of this metric for generic tuning

parameters. Then determine the parameters, such that the given metric is minimized.

The advantage of this approach is that the optimal values of tunable parameters are analytically

determined in terms of system factors. Hence, it imposes almost no additional computational

complexity to the system. On the other hand, noting that the given detector is tuned asymptotically,

the efficiency of the approach is questionable. In this section, we demonstrate how efficient this

approach performs by considering LASSO-type detectors for signal recovery in MA-SM systems.

A. LASSO-Type Detectors

A LASSO-type detector corresponds to an RLS-based detection algorithm in which the regu-

larization function is linearly proportional to the ℓ1-norm. This means that in these detectors

freg (v) = λ‖v‖1 (72)

for some λ ∈ R+ which is referred to as the regularization parameter.

LASSO is known to be an effective regularization for sparse recovery [48]. From computational

points of view, ℓ1-norm regularization results in a convex objective function. Thus, for convex

choices of X, the RLS optimization is tractably solved via convex programming.

LASSO-type detectors for SM relax S0 into a convex set X in order to get a computationally

tractable recovery algorithm. Depending on the choice of X, there are various LASSO-type

detection algorithms. These algorithms are roughly divided into two types:

1) Classic LASSO in which S0 is relaxed into either C or R, depending on the constellation.

2) Box-LASSO in which X is a convex subset of the complex plane comprising S0.

In contrast to the classic LASSO, box-LASSO detectors are not investigated widely in the

literature. This follows the observation that the box relaxations give negligible gains in several

applications of sparse recovery. The study in [54] has however shown that for spatially modulated

signals, the box-LASSO algorithm achieves a considerable enhancement in some scenarios.

B. Tuning Task for LASSO-Type Detectors

The performance of LASSO-type detectors depends on the regularization parameter λ. Although

the detection algorithm performs effectively for a proper choice of λ, setting λ to some other value

can significantly degrade the performance. This is observed through a numerical experiment:
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Fig. 4: MSE of a classic LASSO detector vs. λ. In the underlying scenario, K = 10 users, each equipped with Mu = 8 antennas

and a single RF chain, transmit SSK signals. The BS has N = 160 antennas and receives the signals at logP/σ2 = 11 dB.

Example 4: K = 10 users transmit unit-power SSK signals, i.e., S = 0 and P = 1. Each

user terminal is equipped with Mu = 8 antennas and Lu = 1 RF chain. The uplink channels

experience i.i.d. Rayleigh fading with zero-mean and variance 1/M , and logP/σ2 = 11 dB. The

BS has N = 160 antennas and employs a classic LASSO detector which determines

x
⋆ = argmin

v∈XM
0

‖y −Hv‖2 + λ‖v‖1 (73)

for X = R. The transmit signal is then recovered by setting all entries of x⋆ whose values are

less than ǫ = 0.5 to zero, and the rest to one.

In practice, this detector is tuned such that the average MSE of the soft estimation is minimized,

i.e, the average distortion with the distortion function given in (25). Choosing the MSE as the

tuning metric follows its high robustness. For this setting, we plot in Fig. 4 the average MSE

against λ. The simulations are averaged over 103 independent realizations of the setup. As the

figure shows, the optimal choice for the regularization parameter is approximately λ⋆ ≈ 0.56 at

which logMSE = −20.73 dB. However, in the case of using a mismatched parameter λ = 0.06,

the MSE increases by 4 dB.

The observation in Example 4 indicates the importance of accurate tuning for LASSO-type de-

tectors. For sake of simplicity, we investigate our proposed approach in the sequel, by considering
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the special case of SSK transmission.

C. Analysis of LASSO-Type Detectors for SSK Transmission

In this section, we investigate the LASSO-type detection of SSK transmission, i.e., S = {
√
P},

by considering the following box-constrained LASSO scheme:

• The regularization function is

freg (v) = λ‖v‖1 (74)

for some regularization parameter λ which is tunable.

• Set X is set to

X = [−ℓ, u] (75)

for some ℓ ≥ 0 and u ≥
√
P .

• The decision function is given by

fdec (x) =
√
P 1 {x ≥ ǫ} =











√
P x ≥ ǫ

0 x < ǫ
(76)

for some given threshold ǫ.

The given detector can be observed as a mismatched MAP detector which postulates the signal

prior distribution to be

px,pos (v) =
1

Z











exp {−‖v‖1} v ∈ H

0 otherwise

(77)

with constant Z = 2 − exp {−ℓ} − exp {−u}, and H denoting an M-dimensional hypercube

constructed by limiting each di-mension to X0 = [−ℓ, u], i.e.,

H =
{

v ∈ RN : −ℓ ≤ vm ≤ u for m ∈ [M ]
}

. (78)

For this particular setting, the asymptotic performance was characterized in [54] for i.i.d.

Gaussian channel matrices1 via the convex Gaussian min-max theorem. Following numerical

simulations and universality results [63], [64], it was then conjectured that the asymptotic results

extend further beyond i.i.d. Gaussian matrices. This conjecture was partially investigated in [56]

by providing some analysis.

1Entries of the channel matrix are however assumed to be real in [54].
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Fig. 5: Asymptotic MSE against regularization parameter for Example 4 when a box-LASSO algorithm with support X = [0, 1]

is employed for detection. The markers show simulation results for the sizes given in Example 4.

In the sequel, we derive the asymptotic average distortion invoking Theorem 2. The results are

valid for right unitarily invariant channel matrices including the formerly studied i.i.d. Gaussian

matrix, as well as other matrices whose corresponding performances were conjectured in [54].

Decoupled setting: For this setting, the decoupled input x is given by x =
√
Pψ with ψ being

a Bernoulli random variable described by Definition 3. The decoupled soft estimation is given in

terms of y (c, q) as

x⋆ (c, q) =



































































u y (c, q) ≥ τ (c)λ

2
+ u

y (c, q)− τ (c) λ

2

τ (c)λ

2
≤ y (c, q) ≤ τ (c)λ

2
+ u

0 − τ (c)λ

2
≤ y (c, q) ≤ τ (c)λ

2

y (c, q) +
τ (c)λ

2
−τ (c) λ

2
− ℓ ≤ y (c, q) ≤ −τ (c) λ

2

−ℓ y (c, q) ≤ −τ (c) λ
2

− ℓ

(79)

Fixed-point Equations: Following the approach in Section IV-B, the fixed-point equations are

derived as sums of Gaussian integrals which are straightforward to calculate.
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Fig. 6: Asymptotic error rate vs. λ for Example 4.

D. Numerical Investigations

We consider the setting of Example 4 but replace the classic LASSO detector is replaced

by a box-constrained LASSO detector with support X = [0, 1]. For this example, we plot the

asymptotic average MSE against λ in Fig. 5, using Theorem 2, where we set α = K/N = 1/16

and ξ =Muα = 0.5. In addition, the result for classic LASSO detector is shown for comparison.

As the figure shows, the asymptotic results closely track finite-dimensional numerical simulations

which are averaged over 103 realizations.

We now tune these LASSO-type detectors using our tuning approach. To this end, we first plot

the asymptotic error rate for the detectors against regularizer λ in Fig. 6. As the figure shows, the

error rate is minimized for the box-LASSO and classic LASSO at

λ1 ≈ 0.17, (80a)

λ2 ≈ 0.206, (80b)

with values

P̄
(1)
E ≈ 1.9× 10−4, (81a)

P̄
(2)
E ≈ 3.1× 10−4, (81b)

respectively. We now repeat this procedure while sweeping logP/σ2 from 5 dB to 13 dB. The

optimized error rates for both the detectors are sketched in Fig. 7 against P/σ2. For sake of
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Fig. 7: The minimum achievable error rate for box-LASSO detection vs. P/σ2.

comparison, the optimal error bound derived in Section IV-A is further sketched. It is observed

that the box-LASSO detector achieves roughly an error rate in between of the optimal rate and

the classic LASSO rate. For sake of comparison, the tuned detectors are simulated numerically for

the sizes given in Example 4. The results are shown by the markers in the figure. The simulations

show close consistency with the asymptotic results.

We finally show the tuned regularizer in terms of P/σ2 in Fig. 8. Such a curve can be seen

as a dictionary, which is derived analytically prior to system setup. During the transmission, the

regularizer is continuously updated to the tuned value corresponding to the operating point at

which the system operates.

VI. CONCLUSIONS

Considering the precise non-i.i.d. model of the transmit signals, the analytical results have

demonstrated that the system asymptotically behaves identically to a scenario in which i.i.d.

sparse signals with similar sparsity are transmitted. This finding validates earlier analyses in the

literature, e.g., [54], and was further observed through numerical investigations of some special

cases in Sections IV and V.

Together with our earlier investigations in [46], this work draw a clear picture of SM MIMO

systems and their use cases. The results further indicate that in SM MIMO systems, using a
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Fig. 8: Optimal regularization parameter for box-LASSO detection vs. P/σ2.

tuned box-constrained LASSO detector achieves a close-to-optimal error rate with a tractable

computational complexity.

APPENDIX A

PROOF OF THEOREM 1

From Stirling’s formula we know that for any integer M

√
2π exp {−M} ≤ M !

MM+0.5
≤ exp {−M + 1} . (82)

Hence, we can write
√
2π

e2
Θ0 Θ1 ≤

(

Mu

Lu

)

≤ e

2π
Θ0 Θ1 (83)

where we define Θ0 and Θ1 as

Θ0 :=

√

Mu

Lu (Mu − Lu)
(84a)

Θ1 :=
MMu

u

LLu
u (Mu − Lu)

Mu−Lu
. (84b)

From the definition of Ru = I + Lu S, we can conclude that

log

√
2π

e2
− 1 + Ξ

⋆
< Ru ≤ log

e

2π
+ Ξ (85)
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where Ξ is given by

Ξ = logΘ0 + logΘ1 + Lu S (86)

and ⋆ follows the fact that

I =

⌊

log

(

Mu

Lu

)⌋

> log

(

Mu

Lu

)

− 1. (87)

Considering the definition of the activity ratio, log Θ0 is given by

logΘ0 = −1

2
logMu −

1

2
[log η + log (1− η)] . (88)

Moreover, for the term logΘ1, we have

log Θ1 =Mu log
Mu

Mu − Lu
− Lu log

Lu

Mu − Lu
(89a)

= −Mu η log η −Mu (1− η) log (1− η) (89b)

=MuH2 (η) . (89c)

Substituting into (85), and noting that R̄ = Ru/Mu, we have

Id < R̄ ≤ Iu (90)

with Id and Iu defined in Theorem 1. Defining the function

ffix (x) := R̄−H2 (η)− η S +
logMu − x

2Mu
(91)

for a given Mu and η, we conclude from (90) that ffix (Cd) ≥ 0 and ffix (Cu) < 0. The method of

intervals implies that there exist a constant C ∈ (Cd, Cu], such that ffix (C) = 0. This concludes

the proof.

APPENDIX B

PROOF OF THEOREM 2

The proof of Theorem 2 follows Proposition 1 in [58]. To start with the proof, let us define

i = [i1, . . . , iK ]
T

, with ik being the modulation index of user k. For a given realization of i, the

average distortion is defined as

D (i) := lim
M↑∞

1

M

M
∑

m=1

E {FD (x⋆m; xm) |i} (92a)

= lim
M↑∞

1

M

M
∑

m=1

∫

FD (x⋆m; xm) dP (x⋆m, xm|i) (92b)



32

with P (x⋆m, xm|i) denoting the cumulative joint distribution of (x⋆m, xm) conditioned on realization

i. The joint distribution of the transmit symbols conditioned on i is given by

p (x|i) = p (x1, . . . ,xK |i) (93a)

=
K
∏

k=1

∏

ℓ∈L(ik)

ps (xk,ℓ)
∏

ℓ /∈L(ik)

1 {xk,ℓ = 0} (93b)

where xk,ℓ denotes the ℓ-th entry of xk and L (ik) is the activity support of user k. By defining

Supp (i) = {m ∈ [M ] : xm 6= 0} , (94)

one can write the conditional distribution as

p (x|i) =
∏

m∈Supp(i)

ps (xm) . (95)

One can view p (x|i) as a vector of two i.i.d. blocks. The entries of the first block are those

belonging to Supp (i). This block is distributed i.i.d. with ps (xm). The second block consists of

the remaining entries and is i.i.d. with δ (xm).

For an asymmetric transmit signal with i.i.d. blocks, the asymptotic performance of a MAP

estimator is characterized in [58]. Using Proposition 1 in [58], we conclude that under the given

assumptions1

D (i) := lim
M↑∞

1

M

M
∑

m=1

E {FD (x⋆m; xm) |i} (96)

where x⋆m is defined for a complex zero-mean unit-variance Gaussian z as

x⋆m := rls
X

(xm + θ (c⋆, q⋆) z|τ (c⋆)) . (97)

θ (c, q) and τ (c) are defined by (33a) and (33b) in Definition 3, respectively, and c⋆ and q⋆ are a

pair of solutions to the fixed-point equations

θ (c, q)

τ (c)
c = lim

M↑∞

1

M

M
∑

m=1

E {Re {(x⋆m − xm) z
∗} |i} (98a)

q = lim
M↑∞

1

M

M
∑

m=1

E

{

|x⋆m − xm|2|i
}

. (98b)

Following the structure of p (x|i), we conclude that

D (i) = lim
M↑∞

[ |Supp (i)|
M

E {FD (s⋆; s) |i}+
(

1− |Supp (i)|
M

)

E {FD (s⋆0; 0) |i}
]

(99)

1These assumptions include replica continuity and replica symmetry. For details, see [58, Section 5].
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where s is a random variable distributed with ps (·), and s⋆ and s⋆0 are defined as in (97) by setting

xm = s and xm = 0, respectively. Noting that |Supp (i)|/M = η, and that the expectation does

not depend on the realization of i, we have

D (i) = ηE {FD (s⋆; s)}+ (1− η)E {FD (s⋆0; 0)} . (100)

By defining x = ψs for the Bernoulli random variable ψ of Definition 3, D (i) is given by

D (i) = E {FD (x⋆ (c⋆, q⋆) ; x)} (101)

for x⋆ (c, q) given in Definition 3. By some lines of derivations analogous to those given in (99)-

(101), it is shown that the fixed-point equations in (98a) and (98b) reduce to those given in

Theorem 2.

Finally, by noting that the asymptotic expression for D (i) does not depend on i, we can write

D = Ei {D (i)} (102a)

= Dasy (c
⋆, q⋆) . (102b)

This concludes the proof.
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