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Abstract— Intelligent reflecting surface (IRS) has emerged as
a competitive solution to address blockage issues in millimeter
wave (mmWave) and Terahertz (THz) communications due to
its capability of reshaping wireless transmission environments.
Nevertheless, obtaining the channel state information of IRS-
assisted systems is quite challenging because of the passive
characteristics of the IRS. In this paper, we develop an effi-
cient downlink beam training/alignment method for IRS-assisted
mmWave/THz systems. Specifically, by exploiting the inherent
sparse structure of the base station-IRS-user cascade channel,
the beam training problem is formulated as a joint sparse sensing
and phaseless estimation problem, which involves devising a
sparse sensing matrix and developing an efficient estimation
algorithm to identify the best beam alignment from compressive
phaseless measurements. Theoretical analysis reveals that the
proposed method can identify the best alignment with only a
modest amount of training overhead. Numerical results show
that, for both line-of-sight (LOS) and NLOS scenarios, the
proposed method obtains a significant performance improvement
over existing state-of-the-art methods. Notably, it can achieve
performance close to that of the exhaustive beam search scheme,
while reducing the training overhead by 95%.

Index Terms— Intelligent reflecting surface, millimeter wave
communications, beam training/alignment.

I. INTRODUCTION

Intelligent reflecting surface (IRS) has emerged as a com-

petitive solution to address blockage issues and extend the

coverage in millimeter wave (mmWave) and Terahertz (THz)

communications [1]–[4]. To reap the gain brought by the

large number of passive elements, instantaneous channel state

information (CSI) is required for joint active and passive

beamforming for IRS-assisted systems [5]–[12]. Nevertheless,

CSI acquisition is challenging for IRS-assisted mmWave/THz

systems due to the passive characteristics of the IRS and

the large size of the channel matrix. Recently, some studies

proposed to utilize the inherent sparse/low-rank structure of
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the cascade base station(BS)-IRS-user mmWave channel, and

cast channel estimation into a compressed sensing framework

[13]–[16]. The proposed methods, however, suffer several

drawbacks. Firstly, sparse/low-rank signal recovery via opti-

mization methods or other heuristic methods usually incurs

a high computational complexity which might be excessive

for practical systems. Secondly, compressed sensing methods

require accurate phase information of the received measure-

ments. While in mmWave bands, the carrier frequency offset

(CFO) effect and the random phase noise are more significant

than that in sub-6GHz bands [17]–[19]. As a result, the phase

of the measurements might be corrupted and unavailable for

channel estimation. In [20], an aggregated channel estimation

approach was proposed for IRS-assisted cell-free massive

MIMO systems, where the reflecting coefficients of the IRS are

pre-configured and thus only the equivalent channel between

the access point and the user (also referred to as aggregated

channel) needs to be estimated. The aggregated channel can

then be estimated via traditional channel estimation methods.

Nevertheless, this approach needs to pre-configure IRS’s re-

flecting coefficients based on statistical CSI, thus may suffer a

beamforming gain loss as compared with those beamforming

approaches that are based on instantaneous CSI.

To address the above difficulties, instead of obtaining the

full CSI, we focus on the problem of beam training whose

objective is to acquire the angle of departure (AoD) and the

angle of arrival (AoA) associated with the dominant path

between the BS and the user. Beam training/alignment is

an important topic that has been extensively investigated in

conventional mmWave systems, e.g. [18], [21]–[26]. Never-

theless, beam alignment for IRS-assisted systems is more

challenging as we need to simultaneously align the BS-IRS

link as well as the IRS-user link. So far there are only

a few attempts made on beam alignment for IRS-assisted

mmWave systems, e.g. [27]–[30]. Specifically, [27] proposed

a hierarchical beam search scheme for IRS-assisted THz

systems. The proposed scheme, however, requires the BS

to interact with each user individually, which may not be

feasible at the initial channel acquisition stage. In [28], a multi-

beam sweeping method based on grouping-and-extracting was

proposed for beam training for IRS-assisted mmWave systems.

This work assumes that the BS has aligned its beam to

the LOS component between the BS and the IRS, and then

focuses on the beam training between the IRS and the user.

Nevertheless, in practice, the location information of the IRS

may not be available to the BS, in which case one needs

to perform a joint BS-IRS-user beam training. Recently, [29]

proposed a random beamforming-based maximum likelihood

http://arxiv.org/abs/2103.05812v2
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Fig. 1. IRS-assisted mmWave downlink multi-user systems.

(ML) estimation method to estimate the parameters associated

with the LOS component, by treating other NLOS components

as interference. In [30], an uplink beam training scheme

was proposed for IRS-based multi-antenna multicast systems,

where the IRS is used as a component of the transmitter.

In this paper, we propose an efficient beam training scheme

for IRS-assisted mmWave/THz downlink systems. The key

idea of our proposed method is to let both the transmitter and

the IRS form multiple narrow beams to scan the angular space.

Specifically, the proposed beam training process consists of a

few rounds of “full-coverage scanning”, where in each full-

coverage scanning, the entire space is efficiently scanned using

pre-designed multi-directional beam training sequences. Also,

in different rounds of full-coverage scanning, we use different

combinations of directions to scan the angular space. Such

a diversity allows us to identify the best beam alignment via

an efficient set-intersection-based scheme. Theoretical analysis

suggests that the proposed method can identify the best

alignment with only a modest amount of training overhead.

It should be noted that although both the current work and

[31] employ multi-directional beam sequences for downlink

training, there are some major distinctions between these

two works. Specifically, the work [31] considered downlink

training in OFDM systems, where a same directional beam

can be scaled by different factors at different subcarriers. This

feature was utilized such that different directional beams can

be distinguished from each other, and thus the CSI can be

conveniently extracted. Nevertheless, such a scheme fails when

single-carrier systems are considered because the modulation

vector degenerates into a scalar which is no longer an effective

fingerprint to distinguish different directional beams. In con-

trast, our proposed method does not rely on any modulation

vector to identify the correct beam and works for single-carrier

systems.

The rest of the paper is organized as follows. In Section II,

the system model and the problem formulation are discussed.

In Section III, we study how to devise the active and passive

beam training sequences. In Section IV and Section V, we

develop efficient set-intersection-based methods for LOS and

NLOS scenarios to identify the best alignment based on

compressive phaseless measurements. Simulation results are

provided in Section VI, followed by concluding remarks in

Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Downlink Training and System Model

We consider the problem of downlink training and beam

alignment in an IRS-assisted mmWave/THz multi-user system,

where an IRS is deployed to assist the data transmission from

the BS to a number of single-antenna users (see Fig. 1).

Before proceeding, we first provide a discussion of our

proposed downlink training protocol. In the downlink beam

training stage, the BS periodically broadcasts a pre-designed

common beam training sequence {f(t)}Tt=1, and at the same

time the IRS uses a common reflection beam sequence

{v(t)}Tt=1 to reflect the signal coming from the BS. For

simplicity, we assume that the direct link from the BS to

each user is blocked due to unfavorable conditions, and the

transmitted signal arrives at each user via the reflected BS-IRS-

user channel1. Each user receives signals reflected from the

IRS, and estimates the angular parameters associated with the

dominant path of its own downlink channel. This information

is then sent by this user to the BS via a dedicated channel.

A connection can thus be established between the BS and

each user after the BS receives the related channel information

associated with this user. The schematic of the downlink

training protocol is also illustrated in Fig. 2.

In this downlink training framework, we are interested in

studying how to jointly devise the active/passive beam training

sequences and estimate the channel parameters to achieve fast

beam alignment between the BS and each user. Note that since

channel estimation is performed at each user and the design

of beam training sequences is independent of users, our study

can be simplified to single-user scenarios. Therefore in the rest

of the paper, we consider the scenario where there is only a

single user in the system. Also, in our setup, we assume that

the BS has no knowledge of the geographical location of all

facilities, including the IRS, the user and the BS itself.

To more rigorously formulate our problem, we now proceed

to discuss our system model. The BS is equipped with Nt

antennas and R ≪ Nt radio frequency (RF) chains. At the

BS, a digital baseband precoder fBB ∈ CR is first applied to a

broadcast signal s, then followed by an analog RF beamformer

F RF ∈ CNt×R. The transmitted training signal at the tth time

instant can be written as

x(t) = F RF(t)fBB(t)s(t) = f(t)s(t), (1)

where f(t) , F RF(t)fBB(t) is the transmitter’s beamforming

vector, and we set s(t) = 1 in the beam training stage. Let

G ∈ CM×Nt denote the channel from the BS to the IRS, and

hr ∈ CM denote the channel from the IRS to the user. The

IRS is a planar array consisting of M = My × Mz passive

reflecting elements. Each reflecting element of the IRS can

reflect the incident signal with a reconfigurable phase shift

and amplitude via a smart controller. Let φm(t) ∈ [0, 2π] and

ζm(t) ∈ [0, 1] denote the phase shift and amplitude coefficients

1When the direct link between the BS and the user is available, we can
first switch off the IRS and perform downlink training of the direct link using
conventional mmWave beam training schemes. The effect of the direct link
can then be canceled when we perform downlink BS-IRS-user training.
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Fig. 2. Frame structure for the proposed joint BS-IRS-user beam training
protocol.

adopted by the mth element at the tth time instant. Define

Φ(t) , diag(ζ1(t)e
jφ1(t), · · · , ζM (t)ejφM (t)) ∈ C

M×M .
(2)

as the IRS reflecting matrix. The training signal received by

the user can thus be expressed as

z(t) =hH
r Φ(t)Gx(t) + n(t)

=vH(t)diag(hH
r )Gf(t) + n(t)

=vH(t)Hf(t) + n(t) (3)

where v(t) , [ζ1(t)e
jφ1(t) · · · ζM (t)ejφM (t)]H is the pas-

sive reflecting vector, H , diag(hH
r )G ∈ CM×Nt is referred

to as the cascade channel, and n(t) ∼ CN (0, σ2) represents

the additive white Gaussian noise.

B. Channel Model

It is well-known that the narrowband mmWave channel

can be characterized by a widely-used Saleh-Valenzuela (S-V)

geometric model [32], [33]. As for THz channels, some initial

channel measurements at THz frequencies [34]–[37] reported

that THz channels also exhibit sparse scattering characteristics,

an effect that is observable at mmWave frequencies. The main

difference between the mmWave and THz channels lies in

the path loss. Specifically, THz channels suffer more severe

free spreading loss due to the extremely high frequency. In

addition, the high attenuation caused by molecular absorption

is no longer negligible and has to be taken into account at

THz frequencies. On the other hand, due to the severe path

loss of THz frequencies, THz channels may exhibit a higher

degree of sparsity than mmWave communications. As a result,

THz channels can also be characterized by the S-V model.

Specifically, the BS-IRS channel can be modeled as

G =

√

NtM

P

(

̺0ar(ϑ
r
0, γ

r
0)a

H
t (φt

0)

+

P−1
∑

p=1

̺par(ϑ
r
p, γ

r
p)a

H
t (φt

p)
)

(4)

where P is the total number of paths between the BS and the

IRS, ̺0 denotes the complex gain of the LOS path, ̺p, ∀p =
1, . . . , P−1 represents the complex gain of the pth NLOS path,

ϑr
p (γr

p) for p = 0, 1, . . . , P−1 denotes the associated azimuth

(elevation) AoA, φt
p for p = 0, . . . , P − 1 is the associated

AoD, and ar (at) denotes the normalized receive (transmit)

array response vector. For simplicity, we define

a(φ,N) ,
1√
N

[1 ejπφ . . . ejπ(N−1)φ]T . (5)

Suppose the BS employs a uniform linear array (ULA). The

transmit array response vector can be expressed as

at(φ) = a

(

2d

λ
sinφ,Nt

)

. (6)

Also, since the IRS is an My ×Mz uniform planar array, the

receive array response vector can be written as

ar(ϑ, γ) = a

(

2d

λ
sinϑ sin γ,My

)

⊗ a

(

2d

λ
cos γ,Mz

)

.

(7)

where ⊗ denotes the Kronecker-product, d is the antenna

spacing and λ denotes the wavelength of the signal.

Owing to the sparse scattering nature of mmWave channels,

the BS-IRS channel has a sparse representation in the angular

(beam-space) domain:

G =

√

NtM

P
(DMy

⊗DMz
)ΣDH

Nt
=

√

NtM

P
DRΣDH

Nt

(8)

where DR , DMy
⊗DMz

∈ C
M×M , DMy

, DMz
, and DNt

are defined as

DN , [a(η(1), N), . . . ,a(η(N), N)] ∈ C
N×N , (9)

with N = My,Mz, Nt respectively, η(i) = −1 + 2i−1
N

, i =
1, . . . , N , and Σ ∈ CM×Nt is a sparse matrix with P nonzero

entries. Here we suppose that the true AoA and AoD lie on the

discretized grid. In the presence of grid mismatch, the number

of nonzero elements in the sparse matrix will increase as a

result of power leakage.

Similarly, the IRS-user channel can be modeled as

hr =

√

M

P ′

(

α0ar(ϑ
t
0, γ

t
0) +

P ′−1
∑

p=1

αpar(ϑ
t
p, γ

t
p)

)

, (10)

where P ′ is the number of signal paths between the IRS

and the user, α0 denotes the complex gain of the LOS path,

αp, ∀p = 1, . . . , P ′ − 1 denotes the complex gain associated

with the pth NLOS path, and ϑt
p (γt

p) for p = 0, 1, . . . , P ′− 1
denotes the associated azimuth (elevation) AoD. Due to sparse

scattering characteristics, the IRS-user channel can be written

as

hr =

√

M

P ′
DRα, (11)

where α ∈ CM×1 is a sparse vector with P ′ nonzero entries.

It is easy to verify that DH
RDR = IM and DH

Nt
DNt

= INt
.

Based on (8) and (11), it was shown in [13] that the cascade

channel admits a sparse representation as follows

H =

√

NtM

PP ′
D̄RΛ̃DH

Nt

=D̄RΛDH
Nt

, (12)

where D̄R , D̃R(:, 1 : M) is a submatrix of D̃R constructed

by its first M columns, and D̃R ,
√
MD∗

R • DR, with •
denoting the transposed Khatri-Rao product. It can be readily

verified that D̃R ∈ C
M×M2

has M distinct columns which

are exactly its first M columns. Also, we can verify that D̄R
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is an unitary matrix, i.e. D̄
H

R D̄R = IM , and its column takes

the form of ār(ϕ,̟) , a(ϕ,My)⊗ a(̟,Mz).
Also, we have

Λ ,

√

NtM

PP ′
Λ̃ ∈ C

M×Nt (13)

in which Λ̃ is a merged version of J , α∗⊗Σ, with each of

its rows being a superposition of a subset of rows in J , i.e.

Λ̃(i, :) =
∑

n∈Si

J(n, :) (14)

where Λ̃(i, :) denotes the ith row of Λ̃, Si denotes the set of

indices associated with those columns in D̃R that are identical

to the ith column of D̄R. It is clear that Λ is a sparse matrix

with at most P × P ′ nonzero elements.

C. Problem Formulation

Combining (3) and (12), the received pilot signal at the user

can be expressed as

z(t) =vH(t)Hf(t) + n(t)

=vH(t)D̄RΛDH
Nt

f(t) + n(t) (15)

Note that (15) is an ideal signal model without considering

the CFO and random phase noise. In mmWave/THz bands,

the CFO, i.e., the mismatch in the carrier frequencies at the

transmitter and the receiver, is more significant than sub-6GHz

bands and cannot be neglected. For instance, a small offset of

10 parts per million (ppm) at mmWave frequencies can cause

a large phase misalignment in less than a hundred nanosec-

onds. Besides the CFO, mmWave communication systems also

suffer random phase noise due to the jitter of the oscillators.

The phase noise, together with the CFO, leads to an unknown

phase shift to measurements z(t) that varies across time. In this

case, only the magnitude of the measurement z(t) is reliable.

Define

y(t) , |z(t)| = |vH(t)D̄RΛDH
Nt

f(t) + n(t)| (16)

Based on {y(t)}Tt=1, our objective is to acquire the infor-

mation needed to achieve beam alignment between the BS

and the user. Note that identifying the best beam alignment

is equivalent to acquiring the location index of the largest (in

magnitude) element in the sparse matrix Λ. This is because

Λ is a beam-space representation of the cascade channel H .

Hence the largest element in Λ actually corresponds to the

strongest path of the BS-IRS-user channel.

To identify the largest element in Λ, a natural approach is

to exhaustively search all possible beam pairs. Specifically, at

each time instant t, choose f(t) , F RF(t)fBB(t) as a certain

column from DNt
, and choose v(t) as a certain column from

D̄R, i.e.

v(t) =
√
MD̄R(:, i), (17)

f(t) =DNt
(:, j), (18)

Here the scaler
√
M in v(t) is used to ensure that entries of

v(t) are of constant modulus. Then the received measurement

y(t) is given by

y(t) = |
√
Mλi,j + n(t)| (19)

where λi,j denotes the (i, j)th entry of Λ. After an exhaustive

search, we can identify the largest (in magnitude) entry in

Λ. This exhaustive search scheme, however, has a sample

complexity of MNt, which is prohibitively high since both M
and Nt are large for mmWave and THz systems in order to

combat severe path loss. In the following sections, we develop

a more efficient method to perform joint BS-IRS-user beam

training.

Specifically, since the period of time for beam training is

proportional to the number of measurements T , the problem

of interest is how to devise the active/passive beam training

sequences {f(t),v(t)}Tt=1 and develop a computationally ef-

ficient estimation scheme such that we can identify the best

beam alignment using as few measurements as possible.

Remark: Different from our work that neglects the phase in-

formation of the received measurements, we noticed that some

other works, e.g. [17], [18], model the CFO as an unknown

parameter and perform joint CFO and channel estimation.

III. BEAM TRAINING SEQUENCE DESIGN

To more efficiently probe the channel, we propose to let the

BS and the IRS form multiple pencil beams simultaneously

and steer them towards different directions. Specifically, the

precoding vector f(t) is chosen to be

f(t) =FRF(t)fBB(t) = DNt
S(t)fBB(t) = DNt

a(t),
(20)

where S(t) ∈ {0, 1}Nt×R is a column selection matrix

which has only one nonzero element in each column and

a(t) , S(t)fBB(t) is a sparse vector with at most R nonzero

entries. Note that each column of DNt
can be considered as

a beamforming vector steering a beam to a certain direction.

Hence, the hybrid precoding vector in (20) can form at most R
beams towards different directions simultaneously. The passive

reflecting vector v(t) can be generated in a similar way. We

let

v(t) = D̄Rc(t), (21)

where c(t) is a sparse vector containing at most Q nonzero

elements. Here Q is a parameter of user’s choice. We will

discuss its choice later in this paper.

Substituting (20)-(21) into (16), we obtain

y(t) = |cH(t)Λa(t) + n(t)| (22)

A. Sensing Matrix Design

In this subsection, we discuss how to devise a set of

sparse sensing vectors {c(t),a(t)}Tt=1 to efficiently probe

the channel. Let Sc(t) , {i|ci(t) > 0} denote the set of

indices associated with the nonzero elements in c(t), and

Sa(t) , {j|aj(t) > 0} denote the set of indices of the nonzero

elements in a(t). Also, for simplicity, we assume that the

nonzero entries in {c(t)} are all set to β > 0, and the nonzero

entries in {a(t)} are all set to γ > 0. Therefore, we have

y(t) =
∣

∣βγ
∑

i∈Sc(t),j∈Sa(t)

λi,j + n(t)
∣

∣ (23)
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To find the strongest signal path, we need to make sure

that each element in Λ will be scanned at least once. We first

introduce the concept of “a round of full-coverage scanning” as

a basic building block for our beam training process. Define

U , M/Q and V , Nt/R and assume both of them are

integers. Each round of full-coverage scanning consists of

T0 = U × V measurements, and these T0 measurements are

generated according to:

Y = |CH
ΛA+N | (24)

where C ∈ R
M×U , A ∈ R

Nt×V , and Y ∈ R
U×V is a matrix

constructed by {y(t)}T0
t=1. Specifically, the (u, v)th entry of

Y is equal to Y (u, v) = y((u− 1)V + v), and (u, v)th entry

of N is equal to N(u, v) = n((u − 1)V + v). Therefore,

once C and A are specified, the set of sparse sensing vectors

{c(t),a(t)}T0
t=1 can be accordingly determined. Let

C =[c1 c2 . . . cU ]

A =[a1 a2 . . . aV ] (25)

From the relation between Y and {y(t)}, it is clear that we

have cu = c((u−1)V +v), ∀v and av = a((u−1)V +v), ∀u.

The set of sparse encoding vectors {cu} and {av} are devised

to satisfy the following two conditions:

C1 Those nonzero entries in {cu} and {av} are respectively

set to β and γ. Also, we have ‖cu‖0 = Q, ∀u, and

‖av‖0 = R, ∀v.

C2 The sparse vectors in {cu} are orthogonal to each other,

i.e. cTu1
cu2 = 0, ∀u1 6= u2; and vectors in {av} are

orthogonal to each other, i.e. aT
v1
av2 = 0, ∀v1 6= v2.

Let S(t) , {λi,j}i∈Sc(t),j∈Sa(t) denote the set of elements that

are simultaneously sensed/hashed at the tth time instant. Such

a set of elements is also called as a bin, as illustrated in Fig.

3. Clearly we have |S(t)| = QR. Also, condition C2 ensures

that the sets of elements sensed at different time instants are

disjoint, i.e.

S(t1) ∩ S(t2) = ∅, ∀t1 6= t2 (26)

In addition, since we have UQ = M and RV = Nt, the union

of the sets is equal to the whole set of elements of Λ, i.e.

S(1) ∪ . . . ∪ S(T0) = {λi,j}i=M,j=Nt

i=1,j=1 (27)

After a single round of full-coverage scanning, no element

in Λ is left unscanned. Nevertheless, since each element in

Λ is scanned along with other elements at each time, we

still cannot identify the exact location of the largest com-

ponent from the measurements Y . To identify the strongest

component, we need to perform a few rounds, say L rounds,

of full-coverage scanning, and for each round of scanning,

we randomly generate A and C by altering locations of the

nonzero entries in {cu} and {av}. We will show that we

can identify the largest element in Λ via a simple decoding

scheme from these L rounds of measurements {Y l}Ll=1. Here

Y l denotes the measurement matrix collected at the lth round

of scanning, and we have

Y l = |CH
l ΛAl +N l| (28)

where Cl , [cl1 . . . clU ] and Al , [al
1 . . . al

V ] are sparse

encoding matrices used in the lth round of scanning.

B. Practical Considerations of Devising {cu}
As discussed in the previous subsection, the vectors {cu}

are devised to be strictly sparse with Q nonzero elements.

To fulfill this requirement, we need to have an independent

control of the reflection amplitude for each IRS element, which

increases not only the hardware complexity but also the energy

consumption [38], [39]. Moreover, to generate a strictly sparse

vector cu, many of the reflection amplitudes have to be set far

less than one, which reduces the reflection efficiency.

To cope with these issues, we wish to find a set of passive

beamforming vectors {vu} with constant modulus, and the

corresponding vectors {cu = D̄
H

Rvu} are approximately-

sparse vectors with Q dominant entries. Mathematically, this

problem can be formulated as follows. Given any Q columns

from D̄R, denoted as {pq}Qq=1, let Q be a matrix constructed

by these Q columns and Q̄ be a matrix obtained by removing

those Q columns from D̄R. We seek a constant-modulus

vector v such that |vHQ| is a quasi-constant magnitude vector

with its magnitude as large as possible, whereas ‖vHQ̄‖2 is

as small as possible. There are different approaches to tackle

this problem. Inspired by [6], here we formulate the above

problem into the following optimization:

max
v

Q
∑

q=1

log2(1 + vHpqp
H
q v)

s.t. |vi| = 1, ∀i = 1, . . . ,M (29)

where vi denotes the ith entry of the vector v. It was shown

in [6] that the solution to (29) is nearly orthogonal to Q̄.

Moreover, entries of the vector vHQ have quasi-constant

magnitudes thanks to the logarithmic function. As a result, the

resulting vector c = D̄
H

Rv is an approximately sparse vector

with Q dominant entries. Note that the generated vectors

{cu} cannot be strictly orthogonal to each other since they

are no longer strictly sparse vectors. Nevertheless, for each

round of full-coverage scanning, it is not difficult to attain

near-orthogonality by making sure that the sets of dominant

elements sensed at different time instants are disjoint. Also,

as will be shown later in this paper, our proposed algorithm

requires the indices of those nonzero elements in {cu} to

identify the best alignment. As {cu} generated from (29) are

approximately sparse, we only consider these Q prominent

entries as nonzero elements of cu.

The above optimization can be efficiently solved by a

manifold-based algorithm, which has a very low computational

complexity of O(M) [6]. Besides, the reflecting vectors {vu}
can be calculated and stored in advance. It will not exert an

extra computational burden on the beam alignment task.

IV. PROPOSED BEAM ALIGNMENT METHOD: LOS

SCENARIOS

In the previous section, we have discussed how to devise

the active and passive beam training sequences {f(t)}Tt=1 and

{v(t)}Tt=1. In this section, we discuss how to identify the best

beam alignment (i.e., identify the largest element in Λ) from

the received phaseless measurements {y(t)}Tt=1 for the LOS
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Ground Truth Direction

Round-1 Round-2 Round-3

Recovered Direction

Intersection

bin-1 bin-2 bin-3 bin-4

bin-5 bin-6 bin-7 bin-8

Fig. 3. An illustrative example to show how the proposed scheme recovers the location of the largest element in Λ. A bin consists of those entries in Λ that
are simultaneously sensed at each time instant. For different rounds, we randomize the entries that fall into different bins. In each round, the bin associated
with the largest measurement y(t) is highlighted with a rectangular box. By performing the intersection operation, the entry associated with the dominant
path can be estimated as the common element of those rectangular boxes.

scenario. Note that this estimation task is performed at the

receiver, i.e. user.

We first consider the scenario where there is only one

nonzero element or only one prominent nonzero element in the

matrix Λ. This scenario has important practical implications

and arises as a result when both the BS-IRS channel and the

IRS-user channel are LOS-dominated. As reported in many

real-world channel measurements [40], [41], the power of

mmWave LOS path is much higher (about 13 dB higher)

than the sum of the power of NLOS paths. When it comes

to the THz bands, the power of the LOS component is about

20dB higher than the power of the scattering components

[42]. Therefore it can be expected that Λ contains only one

dominant element when the LOS path is available for both the

BS-IRS and the IRS-user links.

To better illustrate the idea of the proposed scheme, we

consider a noiseless case where the measurements {Y l} are

not corrupted by noise. When Λ contains only one dominant

element, it is clear that the measurement matrix Y l collected

at the lth round of scanning contains only one prominent

component whose location can be easily determined. Suppose

that, for each l, Y l(ul, vl) is the largest element in Y l. From

(28), we have

Y l(ul, vl) = (clul
)HΛal

vl
(30)

Let S
(l)
ul

, {i|clul
(i) > 0} denote the indices of the nonzero

elements in clul
, and S

(l)
vl , {j|al

vl
(j) > 0} denote the indices

of the nonzero elements in al
vl

.

Let (i∗, j∗) denote the location index of the dominant entry

in Λ. It is clear that we have

i∗ ∈ S(l)
ul
, j∗ ∈ S(l)

vl
, ∀l (31)

As a result, we have

i∗ ∈
L
⋂

l=1

S(l)
ul

j∗ ∈
L
⋂

l=1

S(l)
vl

(32)

On the other hand, since clul
and al

vl
are randomly generated

for each round of scanning, it is unlikely that there exists

another location index (i, j) which lies in the intersection of

these sets, particularly when L is large. Therefore we can

determine the location index of the dominant entry, (i∗, j∗),
as

i∗ =

L
⋂

l=1

S(l)
ul

j∗ =

L
⋂

l=1

S(l)
vl

(33)

In Fig. 3, we provide an illustrative example to show how to

identify the largest element via an intersection scheme.

Our following theorem shows that such an intersection

scheme can recover the true location of the dominant element

with a high probability. The main results are summarized as

follows.

Theorem 1: Suppose Q < M and R < Nt. After L rounds

of full-coverage scanning, from (33), we can identify the

location of the nonzero element in Λ with a probability greater

than

P ≥
(

1− (M − 1)

(

Q − 1

M − 1

)L
)

×
(

1− (Nt − 1)

(

R− 1

Nt − 1

)L
)

=P (Q,L,M)× P (R,L,Nt) (34)

where the function P (x, y, z) is defined as

P (x, y, z) , 1− (z − 1)

(

x− 1

z − 1

)y

(35)

Proof: See Appendix A.

A. Sample Complexity Analysis

We now analyze the sample complexity of the proposed

scheme. To ensure that we can recover the index of the dom-

inant element of Λ with a probability exceeding a predefined

threshold p0, we need

P ≥P (Q,L,M)× P (R,L,Nt) ≥ p0 (36)

For simplicity, we set p0 = p1 × p2, and let

P (Q,L,M) ≥ p1 (37)

P (R,L,Nt) ≥ p2 (38)
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From (37), it is easy to verify that

L ≥
log 1−p1

M−1

log Q−1
M−1

=
log(M − 1) + c1

log M−1
Q−1

, L1 (39)

where c1 , log((1− p1)
−1) > 0 is a constant. On the other

hand, from (38), we have

L ≥
log 1−p2

Nt−1

log R−1
Nt−1

=
log(Nt − 1) + c2

log Nt−1
R−1

, L2 (40)

where c2 = log((1 − p2)
−1) is a constant.

Therefore, the total number of measurements T required for

identifying the strongest component with a probability at least

p0 can be calculated as

T = UV L ≥ UV max{L1, L2} (41)

Since L1 (L2) is in the order of O(log(M)) (O(log(Nt))), the

proposed intersection-based scheme has a sample complexity

of O(UV max{log(M), log(Nt)}). Recall that U = M/Q,

where Q is a parameter of user’s choice. Thus, we can choose

a proper Q to obtain a small value of U . To be specific,

given T and other system parameters, we can try different

combinations of (Q,L) to determine the one which yields

the highest probability of correct beam alignment. Here we

provide an example to show how many measurements are

exactly required to achieve perfect beam alignment with a

decent probability. Suppose Nt = 128, M = 256, R = 4.

For different choice of Q and L, our proposed method can

identify the best beam alignment with a probability no less

than:

• Q = 32, L = 4, T = UV L = 1024: P ≥ 94.43%
• Q = 16, L = 3, T = UV L = 1536: P ≥ 94.65%
• Q = 16, L = 4, T = UV L = 2048: P ≥ 99.69%

From this example, we see that the proposed scheme can

achieve a substantial training overhead reduction as compared

with the exhaustive search scheme which requires a total

number of measurements up to T = MNt = 32768.

B. Extension To The Noisy Case

The proposed intersection scheme may not work well in the

presence of noise. In the sequel, inspired by [24], we develop

a noisy version of the intersection scheme. The basic idea is

to assign each element in Λ a probability instead of a 0/1-

hard vote, and turn the intersection operation into a product

of probabilities.

Specifically, for each round of scanning and each index

(i, j) of the element in Λ, we define an indicator matrix,

I
(l)
(i,j) ∈ {0, 1}U×V , with its (u, v)th entry defined as

I
(l)
(i,j)(u, v) ,

{

1 if clu(i)× al
v(j) 6= 0

0 otherwise.
(42)

where x(j) denotes the jth element of the vector x. Clearly, if

the element Λ(i, j) is sensed at the time instant ((u−1)V +v)
of the lth round, the value in (42) would be 1; otherwise it

would be 0.

Based on the indicator matrix, we can further calculate the

“probability” matrix P
(l) with its (i, j)th entry defined as

P
(l)(i, j) ,

(

vec(I
(l)
(i,j))

)T

vec(Y l ◦ Y ∗
l ) (43)

where vec(·) denotes the vectorization operator and ◦ repre-

sents the Hadamard product. Here (43) uses the received mag-

nitude measurement as a weight to calculate the probability of

the element Λ(i, j) being a dominant entry in Λ.

Generally, if P
(l)(i, j) ≥ ǫ, where ǫ is a pre-specified

threshold, then (i, j) is regarded as a candidate index of the

dominant entry in Λ. Let Fl = {(i, j)|P(l)(i, j) ≥ ǫ} denote

the set of candidate indices obtained from the lth round. After

L rounds of scanning, we can determine the location index of

the dominant entry (i∗, j∗) via a maximum likelihood (ML)

estimation

(i∗, j∗) = max
(i,j)∈F

L
∏

l=1

P
(l)(i, j) (44)

where F , ∪L
l=1Fl denotes the set comprising all candidate

indices. The overall algorithm for LOS scenarios are summa-

rized in Algorithm 1.

Algorithm 1 Proposed beam alignment algorithm for LOS

scenarios

1: Generate {Al}Ll=1 according to Section III.A;

2: Generate {Cl}Ll=1 according to Section III.B;

3: Obtain received signals {Y l}Ll=1 for L rounds;

4: for l = 1, . . . , L do

5: Calculate the “probability” function via (43) for all

indices (i, j).
6: end for

7: Determine the best beam direction index (i∗, j∗) of the

dominant element in Λ via (44).

C. Computational Complexity Analysis

The major computational task of our proposed beam esti-

mation method is to calculate the probability matrix defined in

(43). According to (43), each entry of the probability matrix is

calculated as an inner product of two UV -dimensional vectors.

Since each element in Λ is sensed only once in each round, the

indicator matrix I
(l)
(i,j) contains only one nonzero entry. There-

fore each entry of the probability matrix can be calculated by

multiplying this nonzero entry with its corresponding entry in

vec(Y l ◦ Y ∗
l ). As a result, calculating this entire probability

matrix P
(l) ∈ RM×Nt involves a computational complexity of

O(MNt). Note that our proposed method requires to compute

a set of probability matrices {P(l)}Ll=1, which has a compu-

tational complexity in the order of O(MNtL), where L is the

number of rounds of full-coverage scanning. After obtaining

{P(l)}Ll=1, we need to calculate the objective function defined

in (44), which is a Hadamard product of the set of probability

matrices {P(l)}Ll=1 and involves a computational complexity

of O(MNt(L − 1)). From the above discussion, we see that

the overall computational complexity of our proposed method

is in the order of O(MNtL).
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As a comparison, as analyzed in [13], if we employ a

compressed sensing-based method to recover the cascade

channel, the method needs to solve a sparse signal recovery

problem of size T ×(MNt), whose computational complexity

is of O(MNtTK̄) for greedy methods and of O(M3N3
t ) for

more sophisticated methods such as the basis pursuit. Here

T denotes the number of measurements used for channel

estimation, and K̄ is the sparsity level of the cascade channel

matrix. Our analysis shows that for our proposed method,

only a few rounds of full-coverage scanning (say, L < 10)

are sufficient to identify the best beam alignment with a

probability close to 1. Hence generally we have L ≪ TK̄.

Therefore, our proposed method has a much lower complexity

even compared with the least computationally demanding

compressed sensing method.

V. PROPOSED BEAM ALIGNMENT METHOD FOR NLOS

SCENARIOS

In this section, we extend our proposed method to a more

general case where there are multiple comparable nonzero ele-

ments in the sparse matrix Λ. Such a scenario arises as a result

of NLOS transmissions when either the BS-IRS’s LOS path

or the IRS-user’s LOS path is blocked by obstacles. For the

case where multiple paths of comparable qualities are available

from the BS to the user, the signals from different paths may

combine destructively at the receiver, thus creating difficulties

to identify the strongest path. Due to this destructive multi-path

effect, a direct application of the above proposed method may

result in beam misalignment. To address this issue, we propose

a modified version of the set intersection-based method for

identifying the strongest component in Λ.

We first consider a noiseless case to illustrate the idea of

the proposed estimation scheme. Recalling (23), we have

y(t) =

∣

∣

∣

∣

βγ
∑

S(t)

λi,j

∣

∣

∣

∣

(45)

where S(t) = {λi,j}i∈Sc(t),j∈Sa(t) denotes the set of elements

that are simultaneously sensed at the tth time instant. Ac-

cording to the number of nonzero elements in the set S(t),
the associated received signal y(t) is called as a nullton, a

singleton, and a multiton if:

• Nullton: The received signal y(t) is a nullton if its

associated set S(t) contains no nonzero element.

• Singleton: The received signal y(t) is a singleton if

its associated set S(t) includes only a single nonzero

element.

• Multiton: The received signal y(t) is a multiton if its

associated set S(t) includes more than one nonzero

elements.

Also, if the measurements collected within a certain round

of scanning, say Y l, only contain singleton and nullton

measurements, then this round of scanning is referred to as

a no-multiton (NM) round.

The basic idea of our proposed scheme is to utilize the

measurements associated with those NM rounds of scanning

to identify the largest component in Λ. Since the NM rounds

consist of only singleton and nullton measurements, it means

that signals from different paths are separately sensed and will

not be hashed to contribute to a same measurement. Thus the

signals from different paths will not be combined destructively

at the receiver.

Nevertheless, we first need to differentiate NM rounds from

those rounds of scanning which include multiton measure-

ments. Suppose that the sparse matrix Λ contains K nonzero

elements, where K ≪ MNt. Recall that for each round

of scanning, the sets of elements sensed at different time

instants are disjoint, i.e. S(t1) ∩ S(t2) = ∅, ∀t1 6= t2, and

the union of the sets is the whole set of elements of Λ, i.e.

S(1) ∪ . . . ∪ S(T ) = {λi,j}i=M,j=Nt

i=1,j=1 . Therefore for an NM

round, it should contain exactly K singleton measurements

and UV −K nullton measurements. On the other hand, if a

round of scanning is not an NM round, then it should include

more than UV − K nullton measurements because some of

the K nonzero elements in Λ are sensed simultaneously.

Motivated by this observation, we can consider those rounds

with the smallest number of nulltons as NM rounds, without

assuming the knowledge of K . Note that determining whether

y(t) is a nullton measurement or not is simple in the noiseless

case because we have y(t) = 0 if y(t) is a nullton. In the

noisy case, an energy detector can be employed to differentiate

nulltons from singletons and multitons.

After those NM rounds are identified, we can employ the

intersection-based scheme to find the strongest component in

Λ. Suppose there are L̄ NM rounds among all L rounds, and

denote the set of NM rounds as L. Suppose that, for each

l ∈ L, Y l(ul, vl) is the largest (in magnitude) element in Y l.

From (28), we have

Y l(ul, vl) = (clul
)HΛal

vl
(46)

Let S
(l)
ul

, {i|clul
(i) > 0} denote the indices of the nonzero

elements in clul
, and S

(l)
vl , {j|al

vl
(j) > 0} denote the indices

of the nonzero elements in al
vl

. Let (i∗, j∗) denote the location

index of the largest (in magnitude) component in Λ. It is clear

that we have

i∗ ∈ S(l)
ul
, j∗ ∈ S(l)

vl
, ∀l ∈ L (47)

As a result, we can estimate (i∗, j∗) as

i∗ =
⋂

l∈L

S(l)
ul

j∗ =
⋂

l∈L

S(l)
vl

(48)

A. Theoretical Analysis

From the above discussion, we see that our proposed method

relies on those measurements collected within the NM rounds

of scanning to find the best beam alignment. A natural question

is: how likely a round of full-coverage scanning is an NM-

round of scanning? We have the following results regarding

this question.

Proposition 1: Suppose the location indices of the K
nonzero components in Λ ∈ CM×Nt are uniformly distributed.

The sparse encoding matrices Cl ∈ {0, 1}M×U and Al ∈
{0, 1}Nt×V for the lth round of scanning are designed to

satisfy conditions C1 and C2. Let E denote the event that
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the lth round of scanning is an NM round. Then we have

P (E) = (RQ)K
(

UV

K

)

(

MNt

K

) , p, (49)

where R = Nt/V , and Q = M/U .

Proof: This result is an extension of Proposition 1 in

[26]. The proof is thus omitted here.

Here we provide an example to show the probability of

a round of full-coverage scanning being an NM-round of

scanning. Suppose Nt = 128, M = 256, and R = 4. For

different values of Q and K , we have

• Q = 64, K = 4: p = 95.40%
• Q = 32, K = 4: p = 97.69%
• Q = 32, K = 2: p = 99.61%

We see that with a reasonable choice of Q, the measurement

matrix Y l is very likely to contain only singleton and nullton

measurements. Hence after a few rounds of scanning, it can

be expected that most of these rounds of scanning are NM

rounds.

Based on Proposition 1, the probability with which the set-

intersection estimator (48) can find the largest (in magnitude)

element in Λ can be characterized as follows.

Theorem 2: Suppose there are 1 < K ≪ MNt nonzero el-

ements in the sparse matrix Λ. After L rounds of full-coverage

scanning, from (48), the proposed method can identify the

location of the largest element in Λ with a probability P′ that

can be bounded as

P′ ≥
L
∑

l=0

g(Q, l,M)× g(R, l,Nt)×
((

L

l

)

pl(1 − p)L−l

)

(50)

where p is defined in (49) and the function g(Q, l,M) is

defined as

g(Q, l,M) , 1−
Q−1
∑

j=1

(−1)(j−1)

(

M − 1

j

)(

(

M−1−j
Q−1−j

)

(

M−1
Q−1

)

)l

.

(51)

Proof: See Appendix B.

Here we provide an example to show the probability (50) of

identifying the largest component in Λ. Suppose Nt = 128,

M = 256, and R = 4. For different values of Q, K and L,

we have

• Q = 32, K = 4, L = 4, T = 1024: P′ ≥ 91.52%
• Q = 32, K = 4, L = 5, T = 1280: P′ ≥ 98.63%
• Q = 16, K = 2, L = 4, T = 2048: P′ ≥ 99.65%

Compared this example with the one in Section IV.B, we

can see that the proposed method for the NLOS scenario can

achieve a decent probability of exact recovery with a sample

complexity similar to (or slightly higher than) that of the LOS

scenario.

B. Extension To The Noisy Case

We now extend our proposed estimation method to the noisy

case. When the measurements are corrupted by noise, the

received signal can be expressed as

Y l(u, v) = |(clu)HΛal
v + nl

uv| ∀u, v (52)

where nl
uv ∼ CN (0, σ2) denotes the additive noise. We first

need to determine whether Y l(u, v) is a nullton measurement

or not. Such a problem can be formulated as a binary hypoth-

esis test problem:

H0 : Y l(u, v) = |nl
uv|,

H1 : Y l(u, v) =

∣

∣

∣

∣

βγ
∑

i∈S
(l)
u ,j∈S

(l)
v

λi,j + nl
uv

∣

∣

∣

∣

(53)

where S
(l)
u , {i|clu(i) > 0} denote the indices of the nonzero

elements in clu, and S
(l)
v , {j|al

v(j) > 0} denote the indices

of the nonzero elements in al
v. A simple energy detector can

be used to perform the detection

Y l(u, v)
H1

≷
H0

ǫ (54)

Given a specified false alarm probability, the threshold ǫ
can be easily determined since Y l(u, v) follows a Rayleigh

distribution under H0. Since the received signals are corrupted

by noise, the selection of ǫ can result in different performance.

To harness the advantage of multiple full-coverage scanning

rounds, we often set ǫ to be a small value. Next, we choose

those rounds of scanning with the least number of nulltons as

NM rounds. Specifically, let L with |L| = L̄ denote the set

of NM rounds. We can utilize the robust scheme developed in

Section IV.C to estimate the location of the largest entry in

Λ, i.e.,

(i∗, j∗) = max
(i,j)∈F

∏

l∈L

P
(l)(i, j) (55)

where P
(l)(i, j) is defined in (43).

For clarity, the algorithm is summarized in Algorithm 2.

Following a similar analysis in Section IV.C, we know that

the proposed scheme has a computational complexity of order

O(MNtL̄), where L̄ denotes the number of NM rounds.

Algorithm 2 Proposed beam alignment algorithm for NLOS

scenarios

1: Generate {Al}Ll=1 according to Section III.A;

2: Generate {Cl}Ll=1 according to Section III.B;

3: Obtain received signals {Y l}Ll=1 for L rounds;

4: for l = 1, . . . , L do

5: Determine whether the received signal Yl(ul, vl) is a

nullton or not via the energy detector (54). Count the

number of nulltons for each round.

6: end for

7: Find rounds with the smallest number of nulltons and

regard them as NM rounds.

8: for l = 1, . . . , L do

9: if the round-l is an NM round then

10: Calculate the “probability” function via (43) for all

indices (i, j).
11: end if

12: end for

13: Determine the best beam direction index (i∗, j∗) of the

dominant element in Λ via (55).
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(a) Success rate versus T for LOS scenarios.
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(b) BGR versus T for LOS scenarios.
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(c) Success rate versus T for NLOS scenarios.
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(d) BGR versus T for NLOS scenarios.

Fig. 4. Success rate and beamforming gain ratio versus T for LOS and NLOS scenarios in the noisy case, SNR = −20dB.

VI. SIMULATION RESULTS

In this section, we provide simulation results to illustrate the

performance of our proposed method. In our simulations, we

consider a mmWave system operating at a carrier frequency

of 28GHz. For the large-scale path loss, the reference channel

power gain at a distance of 1m is set as g0 = −61.3dB,

the path loss exponents of the BS-IRS and IRS-user links

are set as γBI = 2.3 and γIU = 2 respectively [28]. The

small-scale fading is modeled by Rician fading, with the BS-

IRS Rician factors set as 13.2dB and the IRS-user Rician

factors set as 13.2dB for LOS scenarios and 0dB for NLOS

scenarios. Also, we assume the IRS adopts a UPA with M =
My × Mz = 16 × 16 = 256 elements, and the BS employs

a ULA with Nt = 128 antennas. Two metrics are used to

evaluate the performance of the proposed method, namely, the

success rate which is computed as the ratio of finding the

correct index of the largest (in magnitude) component in Λ,

and the beamforming gain ratio (BGR) which is defined as

γbf , E

[

‖vHHf‖2
‖vH

optHfopt‖2

]

(56)

where vopt and fopt are optimally devised by assuming the

full knowledge of the cascade channel H via the method

developed in [7], v and f are devised to align the BS’s and

IRS’s beams to the strongest path, i.e., v =
√
MD̄R(:, i

∗),

f = DNt
(:, j∗), and (i∗, j∗) denotes the estimated index of

the largest component in Λ. For a fair comparison, the transmit

beamforming vectors f(t) used by our proposed method and

other competing beam alignment schemes are normalized to

unit norm throughout our simulations. The signal-to-noise ratio

(SNR) is defined as 10 log10(‖H‖2F /(NtMσ2).
We now examine the performance of our proposed method

and compare it with the exhaustive beam search scheme

discussed in Section II.C and the state-of-the-art AgileLink

scheme [24]. AgileLink is a beam alignment scheme which

also relies on the magnitude of measurements for recovery of

signal directions. Although originally developed for conven-

tional mmWave systems, its variant for array transmitter and

receiver (see Section 4.4 of [24]) can be readily applied to

IRS-assisted mmWave systems since the IRS-assisted signal

model can be thought of as a conventional MIMO model.

AgileLink divides both the BS antennas and IRS elements

into several subarrays to form hashing beam patterns. For

our proposed method, the sparse encoding matrices {Cl} are

generated via the optimization-based method (29) such that

the corresponding passive beamforming vectors are of constant

modulus. In our simulations, we set P = 2, P ′ = 2, and the

AoAs and AoDs are randomly generated without assuming

lying on the discretized grid. For the LOS scenario, we assume

that the Rician factors for both the BS-IRS channel (4) and

the IRS-user channel (10) are set to 13.2dB [32], [40]. For the
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(a) Success rate versus SNR for LOS scenarios.
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(b) BGR versus SNR for LOS scenarios.
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(c) Success rate versus SNR for NLOS scenarios.
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(d) BGR versus SNR for NLOS scenarios.

Fig. 5. Success rate and beamforming gain ratio versus SNR for LOS and NLOS scenarios in the noisy case, T = 1024.

NLOS scenario, the Rician factor for the IRS-user channel is

set to 0dB to simulate the scenario where there are multiple

comparable paths from the IRS to the user.

In Fig. 4, we plot the success rates and beamforming gain

ratios of respective methods as a function of the total number

of measurements T , where the SNR is set to SNR = −20dB.

For our proposed method, we set R = 8 and Q = 16
and vary L from 2 to 8, while for the AgileLink, for each

value of T , its parameters are carefully adjusted to achieve its

best performance. The exhaustive search scheme is included

to provide the best achievable performance for any beam

alignment schemes, but it requires as many as T = MNt =
32768 measurements in total. From Fig. 4, it can be seen

that the proposed method achieves a significant performance

improvement over the AgileLink scheme for both the LOS and

NLOS scenarios. Also, we observe that our proposed method,

with only a mild number of measurements (say, T = 1792),

can achieve a beamforming gain close to the exhaustive search

scheme. Specifically, to achieve performance similar to the

exhaustive search scheme, the training overhead required by

our proposed method is only about 5% of that needed by the

exhaustive search scheme.

In Fig. 5, we plot the success rates and beamforming

gain ratios of respective methods as a function of the SNR,

where the number of measurements is set to T = UV L =
16×16×4 = 1024. From Fig. 5, we can see that our proposed

method performs well even when the SNR is as low as −35dB.

Also, the performance of our proposed method is close to that

of the exhaustive search scheme while the proposed method

requires only 1024 measurements, thus enjoying a substantial

training overhead reduction compared to the exhaustive search

scheme of T = MNt = 32768. Moreover, the proposed

method outperforms the AgileLink scheme by a big margin

across different SNR regimes.

To examine the impact of the number of reflecting elements

on the proposed beam training method, in Fig. 6 , we plot

the success rates and beamforming gain ratios of respective

algorithms versus the number of reflecting elements for LOS

scenarios, where the SNR is set to −20dB and the total number

of measurements used for training (except the exhaustive

search scheme) is set to T = 1024. For our proposed method,

we set U = 16, V = 16, and L = 4. Note that to make U =
M/Q unchanged, we adjust the value of Q accordingly for

different choices of M . It can be observed that the success rate

of the proposed method keeps almost unaltered as the number

of reflecting elements M increases, whereas the AgileLink

incurs a certain amount of performance loss as M grows.

Finally, to compare with SwiftLink, a fast compressed

sensing-based beam alignment algorithm that is robust against

the CFO [18], we consider a simplified scenario where the

BS has the knowledge of the location of the IRS and has

aligned its beam to the LOS component between the BS and
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the IRS. In this case, we only need to focus on beam training

between the IRS and the user. Our proposed method can be

readily applied to this scenario. Unlike AgileLink, SwiftLink

cannot be straightforwardly extended to joint BS-IRS-user

beam training. But it can be directly applied to this simplified

scenario by treating the IRS as an active transmitter. In our

simulations, we set CFO = 20ppm, the carrier frequency is

set to 28GHz, the bandwidth is set to 30MHz and the phase

noise is set to zero. Also, due to the limitation inherent in the

trajectory design, SwiftLink only allows a limited number of

measurements for training, i.e. T ∈ {T ≤ 4My − 2, and T =
4x, x is an integer.}. To satisfy this condition, we set T = 60
for SwiftLink. For a fair comparison, the number of measure-

ments for Agilelink and our proposed method is set to T = 64.

Fig. 7 depicts success rates and beamforming gain ratios of

respective algorithms. It can be observed that our proposed

method presents a substantial performance improvement over

Swiftlink, particularly in the low SNR regime. Since SwiftLink

comprises several sequential stages, the estimation accuracy

of both the CFO and the channel depends on the estimation

results obtained in the previous stages. Also, it is known

that compressed sensing algorithms tend to be fragile in low-

SNR scenarios. In contrast, our proposed method uses multi-

directional beams to probe the channel and relies on prominent

measurements to identify the beam directions, and thus is more

resilient to low SNRs. This is probably the reason why our

proposed method outperforms SwiftLink, particularly in the

low SNR regime.

VII. CONCLUSIONS

In this paper, we studied the problem of beam alignment for

IRS-assisted mmWave/THz downlink systems. By exploiting

the inherent sparse structure of the BS-IRS-user cascade

channel, we devised multi-directional beam training sequences

to scan the angular space and proposed an efficient set-

intersection-based scheme to identify the best beam alignment

from compressive phaseless measurements. Theoretical and

numerical results show that the proposed method can perform

reliable beam alignment in the low SNR regime with a

substantially reduced beam training overhead.

APPENDIX A

PROOF OF THEOREM 1

We first define

S ,

{

(i, j)|i ∈
L
⋂

l=1

S(l)
ul

, j ∈
L
⋂

l=1

S(l)
vl

}

(57)

From (32), we have (i∗, j∗) ∈ S. Let Bx , {|S| = x} denote

the event that the set S contains RQ ≥ x ≥ 1 elements in

total, and Z denote the event of identifying the location of the

largest element in λ. We therefore have

Pr(Z) =

RQ
∑

x=1

Pr(Z|Bx) Pr(Bx) (58)

where

Pr(Z|Bx) =
1

x
(59)

Clearly, we have Pr(Z) ≥ Pr(B1). For simplicity, we only

analyze the probability that the intersection set S contains only

one element.

Let Cl , S(l)
ul

− {i∗} and Al , S(l)
vl − {j∗}. Define Sc ,

⋂L

l=1 Cl as the intersection set of the row indices, and Sa ,
⋂L

l=1 Al as the intersection set of column indices. Then we

have

Pr(B1) = Pr(Sc = ∅)× Pr(Sa = ∅) (60)

Since the two events Sc = ∅ and Sa = ∅ are mutually

independent, we can first calculate Pr(Sc = ∅) and the latter

can be obtained similarly.

Note that

Pr(Sc = ∅) = 1− Pr(Sc 6= ∅) (61)

we now derive the probability of the event that the intersection

set Sc is non-empty. Without loss of generality, we assume

i∗ = M . Let Dm denote the event of m ∈ Sc. It can be easily

verified that

Pr

(

⋂

m∈J

Dm

)

=

(

(

M−1−j
Q−1−j

)

(

M−1
Q−1

)

)L

,

J ⊂ {1, 2, . . . ,M − 1}, |J | = j, j = 1, . . . , Q− 1 (62)

The probability of the set Sc being non-empty can be

calculated as

Pr(Sc 6= ∅) = Pr

(

M−1
⋃

m=1

Dm

)

(a)
=

M−1
∑

j=1

(−1)j−1
∑

J⊂{1,2,...,M−1},|J|=j

Pr

(

⋂

m∈J

Dm

)

(b)
=

Q−1
∑

j=1

(−1)j−1
∑

J⊂{1,2,...,M−1},|J|=j

Pr

(

⋂

m∈J

Dm

)

(c)
=

Q−1
∑

j=1

(−1)(j−1)

(

M − 1

j

)(

(

M−1−j

Q−1−j

)

(

M−1
Q−1

)

)L

(d)

≤ (M − 1)

(

Q − 1

M − 1

)L

(63)

where (a) follows from the principle of inclusion-exclusion,

in (b), we utilize the property that

Pr

(

⋂

m∈J

Dm

)

= 0, ∀|J | ≥ Q (64)

since the intersection set Sc contains at most Q− 1 elements,

(c) comes from the fact that there are
(

M−1
j

)

ways to select

j elements from the set {1, 2, . . . ,M − 1} to make |J | = j,

and (d) follows from

Pr

(

M−1
⋃

m=1

Dm

)

≤
M−1
∑

m=1

Pr(Dm) = (M − 1)Pr(Dm) (65)
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(a) Success rate versus M for LOS scenarios
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(b) BGR versus M for LOS scenarios.

Fig. 6. Success rate and beamforming gain ratio versus the number of reflecting elements M for LOS scenarios.
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(a) Success rate versus SNR for LOS scenarios
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(b) BGR versus SNR for LOS scenarios.

Fig. 7. Success rate and beamforming gain ratio versus SNR for LOS scenarios when the BS-IRS channel is perfectly aligned.

As a result, we have

Pr(Sc = ∅) = 1− Pr(Sc 6= ∅)
(a)

≥1− (M − 1)

(

Q− 1

M − 1

)L

=P (Q,L,M) (66)

where (a) is derived from (63).

Similarly, we have

Pr(Sa = ∅) ≥ 1− (Nt − 1)

(

R− 1

Nt − 1

)L

= P (R,L,Nt)

(67)

Therefore the probability of identifying the location of the

largest component in Λ is no smaller than

P = Pr(Z) ≥ P (Q,L,M)× P (R,L,Nt) (68)

This completes our proof.

APPENDIX B

PROOF OF THEOREM 2

Let X denote the number of NM rounds out of the total

L full-coverage rounds of scanning, and Z̃ denote the event

of exact recovery of the location of the largest element.

Specifically, define a random variable

Xl ,

{

1, if round l is a NM round

0, if round l is not a NM round
(69)

Thus X can be expressed as

X ,
L
∑

l=1

Xl. (70)

Clearly, the random variables {Xl} are mutually independent

and identically distributed with Pr(Xl = 1) = p,Pr(Xl =
0) = 1 − p. The random variable X , therefore, follows a

binomial distribution, i.e., X ∼ B(L, p). Thus we have

Pr(Z̃) =

L
∑

l=0

Pr(Z̃|X = l) Pr(X = l)

(a)
=

L
∑

l=0

Pr(Z̃|X = l)

(

L

l

)

pl(1− p)L−l

(b)

≥
L
∑

l=0

g(Q, l,M)× g(R, l,Nt)×
((

L

l

)

pl(1− p)L−l

)

(71)
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where (a) is obtained from the probability mass function

of the binomial distribution; and in (b), we directly apply the

equality (c) of (63).
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