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Abstract—Phase-noise (PN) estimation and compensation are
crucial in millimeter-wave (mmWave) communication systems to
achieve high reliability. The PN estimation, however, suffers from
high computational complexity due to its fundamental character-
istics, such as spectral spreading and fast-varying fluctuations.
In this paper, we propose a new framework for low-complexity
PN compensation in orthogonal frequency-division multiplexing
systems. The proposed framework also includes a pilot allocation
strategy to minimize its overhead. The key ideas are to exploit
the coherence bandwidth of mmWave systems and to approx-
imate the actual PN spectrum with its dominant components,
resulting in a non-iterative solution by using linear minimum
mean squared-error estimation. The proposed method obtains a
reduction of more than 2.5× in total complexity, as compared to
the existing methods. Furthermore, we derive closed-form expres-
sions for normalized mean squared-errors (NMSEs) as a function
of critical system parameters, which help in understanding the
NMSE behavior in low and high signal-to-noise ratio regimes.
Lastly, we study a trade-off between performance and pilot-
overhead to provide insight into an appropriate approximation
of the PN spectrum.

Index Terms—Coherence bandwidth, millimeter-wave
(mmWave) systems, orthogonal frequency-division multiplexing
(OFDM), phase noise, pilot.

I. INTRODUCTION

The range of frequencies from 30 GHz to 300 GHz is
usually referred to as the millimeter-wave (mmWave) band.
A key feature is that there is an abundant spectrum available
to support ultra-high data rate transmission. Owing to this, the
mmWave bands have attracted considerable attention [2]–[5].
A critical issue, however, is that severe phase-noise (PN) arises
from a local oscillator (LO) in practical mmWave systems.
The PN increases with the carrier frequency [6], resulting
in a 20–40 times higher PN than LOs for sub-6 GHz [7].
The non-negligible amount of PN inevitably leads to signifi-
cant performance degradation in coherent systems [8]. New
modulation techniques, such as orthogonal time frequency
modulation (OTFS) [9] and frequency-domain multiplexing
with a frequency-domain cyclic prefix (FDM-FDCP) [10],
have been recently introduced to tackle this problem in
mmWave communications. In orthogonal frequency-division
multiplexing (OFDM) systems, the performance drop by PN
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has been demonstrated using various metrics, such as signal-
to-interference-plus-noise ratio (SINR) [11]–[15], bit error rate
(BER) [11], [16], and channel capacity [17]. To perform co-
herent detection in mmWave OFDM systems, it is imperative
to estimate and compensate the combined effect of PN and the
wireless channel, which is a multiplicative process in the time
domain, and a circular convolution process in the frequency
domain [15]. Unfortunately, this is not a simple task due to
the following characteristics of PN in OFDM systems:

• Spectral spreading: PN brings about spectral spreading
of the ideal Dirac-delta impulse at the LO’s frequency.
The spectral spreading of PN has two detrimental effects
on the performance of OFDM systems. One is the com-
mon rotation on all subcarriers of an OFDM symbol,
called common phase error (CPE); the other is inter-
carrier interference (ICI), which destroys orthogonality
of subcarriers. As PN increases, it results in higher ICI
from neighboring subcarriers.

• Fast-varying fluctuations: The PN process is fast-varying
so that there is a low correlation across consecutive
OFDM symbols, resulting in estimation and compen-
sation for each OFDM symbol. It requires a stringent
latency requirement or high buffer cost for PN estimation.

The problem of simultaneously dealing with both spectral
spreading and fast-varying fluctuations is especially challeng-
ing in the presence of severe PN. In the OFDM system, the
effective channel coefficient is entanglement of two unknown
variables of PN and wireless channel components. For this
reason, the required estimation problem of effective chan-
nel coefficients is formulated as an underdetermined system,
which generally has infinitely many solutions. Obtaining an
accurate solution is, therefore, not guaranteed. One could argue
that, it is possible to solve this problem by using a Bayesian
approach [18]. However, it might require high-computational
complexity, which makes it more challenging to meet the
requirement that the PN estimate must be updated every
OFDM symbol.

The problem of severe PN continues to be a significant chal-
lenge in multi-antenna systems, i.e, multiple-input multiple-
output (MIMO), based on coherent beamforming. Recently,
[19]–[23] have investigated the impact of such PN at large-
scale antenna systems, so-called massive MIMO. [19], [20]
have analytically shown the PN impact on the performance
of precoders /equalizers at massive MIMO base station (BS).
It has been generalized with hardware impairments including
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multiplicative phase-drifts and additive distortion noise [21]–
[23]. A common observation in the previous research is
that, increasing the number of antennas can be beneficial for
PN mitigation since the phase-drifts average out. However,
separate LOs for each antenna are required to obtain such
benefits, resulting in high-cost hardware architecture.

Plenty of methods for PN estimation and compensation have
been investigated in [24]–[34]. Early studies on PN compensa-
tion have used quite strong assumptions such as small PN [24],
[25] and perfect channel state information [26], [27] at the
receiver. In the case where both PN and channel state infor-
mation are unknown, joint channel and PN estimation [28],
[29], iterative joint PN estimation and data detection [30], [31]
have been presented. However, such techniques may be too
complicated to be implemented in practical wireless systems.

Pilot-assisted transmission simplifies the challenging task
of receiver design for coherent processing in general. The use
of pilots may also be beneficial to achieve low-complexity
estimation or to acquire the instantaneous channel coefficients.
In this regard, a dedicated pilot symbol for phase tracking,
called Phase Tracking Reference Signal (PTRS), has been
introduced in the 3rd Generation Partnership Project (3GPP)
New Radio (NR) [35]. Motivated by this fact, [32]–[34] have
designed the dedicated pilot pattern for PN tracking so that
it has a high density in the time domain to tackle the low
correlation of PN across OFDM symbols. These solutions,
however, have been focused on tracking only CPE while there
is no consideration to estimate the performance limiting ICI
components in mmWave systems.

Contributions: We develop a novel framework for low-
complexity PN compensation for OFDM systems. The key
ideas are to exploit the coherence bandwidth of mmWave
systems and to approximate the actual PN spectrum with its
dominant components. Our main contributions are summarized
as follows:
• We reformulate the joint estimation problem of PN and

channel from an underdetermined system into a system
with the same number of observations and unknowns,
which enables low-complexity PN estimation by using
least-squares (LS) and linear minimum mean squared-
error (LMMSE) estimators. The proposed algorithm ob-
tains a reduction of more than 2.5× in total complexity,
as compared to the existing method.

• We design a pilot pattern that has a carefully selected set
of symbols to estimate the combined effect of dominant
PN components and channel frequency response. Further-
more, the minimum pilot-overhead ratio for our proposed
method is quantified with a set of system parameters
related to the channel coherence structure.

• We derive closed-form expressions for normalized mean
squared-errors (NMSEs) of each estimator for joint PN
and channel estimation. These expressions are repre-
sented as a function of OFDM parameters, LO quality,
signal-to-noise ratio (SNR), and approximation order of
the PN spectrum. Further, this helps in understanding the
NMSE behavior in low and high SNR regimes, providing
an informative guideline for pilot allocation in mmWave
OFDM systems.

• We present a trade-off between performance and pilot-
overhead. For the analysis, the BER and throughput
performance of the proposed method are evaluated. This
trade-off provides insight into an appropriate approxi-
mation of the PN spectrum, according to SNR and PN
environments.

Notation: The set of complex numbers is denoted by C.
Lowercase boldface letters stand for column vectors and
uppercase boldface letters designate matrices. For a vector or
a matrix, we denote its transpose, conjugate, and conjugate
transpose (·)T, (·)∗, and (·)H, respectively; the subscript no-
tations (·)t and (·)f stand for the time- and frequency-domain
representations of a vector or a matrix. The N × N identity
matrix is denoted by IN , and the N × M all-zeros matrix
by 0N×M . The expectation operator and Euclidean norm is
denoted by E[·] and ‖·‖2, respectively. Sets are designated by
upper-case calligraphic letters; the cardinality and complement
of the set T is |T | and T c, respectively; the difference between
two sets T and F is denoted by T \ F . The operators for
circular convolution, deconvolution, and Hadamard product are
written as ~, ~−1, and ◦, respectively; bxc and dxe denote
the greatest/least integer less/greater than or equal to x.

Outline: The remainder of this paper is organized as follows:
In Section II, we describe the system model under consid-
eration. Section III describes the proposed PN and channel
compensation algorithm. In Section IV, we analyze the NMSE
performance of the proposed method by numerical evaluation.
Section V addresses the pilot-overhead and the computational
complexity of our proposed algorithm. Section VI present the
trade-off between performance and pilot-overhead. A summary
and concluding remarks appear in Section VII.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

In this section, we briefly overview our basic idea to tackle
the joint estimation problem of PN and channel frequency re-
sponse and compare it with the approach of existing solutions.
Before moving on to this, we first present the system and PN
models that will be used in this paper.

A. System Model

We consider an OFDM system with N subcarriers, a
sampling period Ts, a subcarrier spacing ∆f , and a band-
width B = 1/Ts = N∆f . Let {Xk}N−1

k=0 be the transmitted
symbol sequence across N subcarriers of an OFDM symbol,
with an average per-symbol power constraint E[|Xk|2] = Es.
An N -point unitary inverse discrete Fourier transform (IDFT)
of {Xk}N−1

k=0 provides the time-domain representation of the
OFDM symbol as

xn =
1√
N

N−1∑

k=0

Xke
j2πkn/N , (1)

where time index n ∈ {−Ncp,−Ncp+1, · · · , 0, 1, . . . , N−1}.
Each OFDM symbol is assumed to consist of a cyclic prefix
(CP) of length-Ncp samples.

For our subsequent analysis, we adopt the coherence block
model with a coherence time Tc and a coherence bandwidth
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Bc. In this model, there are two parameters widely used in
the literature [36]–[38]. One is the number of OFDM symbols
within Tc, and the other is the number of subcarriers within
Bc. These parameters are defined as

Nct , bTc/Tsymc, (2)

Ncb , bBc/∆fc, (3)

where Tsym the duration of one OFDM symbol. We assume
that the coherence block spans Nct and Ncb successive OFDM
symbols and subcarriers, over which the channel impulse and
frequency response, respectively, is constant.

B. Phase Noise Model

We consider the model introduced in [39] to illustrate the
PN of a free-running oscillator. The PN is defined as

φ(t) = 2πfoη(t) (4)

where fo denotes an oscillator frequency. A random time shift
η(t) becomes, asymptotically with time, a Wiener process as

η(t) =
√
cW (t), (5)

where c denotes the parameter indicating an oscillator quality;
W (t) represents a Wiener process having an accumulated
Gaussian random variable with i.i.d. N (0, 1), i.e., W (t2) −
W (t1) ∝ N (0,

√
∆t) where ∆t =| t2 − t1 |. The variance

of the Wiener process η(t) increases linearly with the time
difference ∆t, i.e., σ2

η = c∆t. According to (4), φ(t) is also a
Wiener process with zero mean and variance 2πβ∆t, where β
denotes the two-sided 3-dB linewidth of the Lorentzian power
spectral density1 [11].

C. OFDM Signal Model with Phase Noise

The PN at the receiver influences the channel output as an
angular multiplicative distortion in the time domain. Then, the
received signal in the time domain yt ∈ CN×1 is

yt = pt ◦ (xt ~ ht) + zt

= Φt(xt ~ ht) + zt,
(6)

where pt = [ejφ0 , ejφ1 , · · · , ejφN−1 ]T ∈ CN×1 is the PN
realization during one OFDM symbol, xt ∈ CN×1 the
transmitted signal, ht ∈ CN×1 the channel impulse response,
zt ∈ CN×1 the additive white Gaussian noise (AWGN) with
i.i.d. CN

(
0, σ2

z

)
entries, and Φt = diag{ejφn}N−1

n=0 ∈ CN×N
the diagonal matrix with the entries of pt on its main diagonal.
In view of the duality, the discrete Fourier transform (DFT)
of a product of two finite-length sequences is the circular
convolution of their respective DFTs [40]. Thus, the received
signal in the frequency domain yf ∈ CN×1 is

yf = pf ~ (xf ◦ hf) + zf

= ΦfHfxf + zf ,
(7)

where pf = [P0, P1, · · · , PN−1]T ∈ CN×1 is the DFT coeffi-
cient vector of the time-domain PN sequence {ejφn}N−1

n=0 , i.e.,

1In this PN model, the connection between β in the frequency domain and
c in the time domain is described as β = 2πf2

o c.

yt

Φt zt Φ̂−1
t

x̂t

xf
yf

zf

Phase noise / Channel compensation

Phase noise / Channel compensation

Time-domain model

Frequency-domain model

Ĥ−1
f

⊛pf ⊛−1p̂f

⊛−1ĥtxt ⊛ ht

Hf

x̂f

Fig. 1. Basic model of PN/channel compensation and detection in time and
frequency domains.

Pi = 1
N

∑N−1
n=0 e

jφne−j2πni/N ; xf = [X0, X1, · · · , XN−1]T,
hf = [H0, H1, · · · , HN−1]T, zf = [Z0, Z1, · · · , ZN−1]T ∈
CN×1 the transmit symbol, channel frequency fresponse, and
noise, respectively, in the frequency domain; Φf = circ(pf) is
a circulant matrix formed by the spectral PN components,

Φf =




P0 PN−1 PN−2 · · · · · · P1

P1 P0 PN−1 · · · · · · P2

P2 P1 P0 PN−1
. . . P3

...
. . . . . . . . . . . .

...
PN−2 PN−3 · · · P1 P0 PN−1

PN−1 PN−2 · · · P2 P1 P0




, (8)

Hf = diag{Hk}N−1
k=0 is the diagonal matrix with the entries

of hf on its main diagonal. Given the coherence block model,
we denote the number of coherence blocks Nc. Thus, the
channel frequency response consists of Nc different channel
coefficients2, with i.i.d. CN (0, 1) entries, and its index set
is denoted C, i.e., {Hk}Nc−1

k=0 , k ∈ C. To look into the CPE
and the ICI effect on the received signal for each subcarrier
k ∈ {0, 1, · · · , N − 1}, let us rewrite (7) in the sample-wise
form

Yk = P0︸︷︷︸
CPE

HkXk +

N−1∑

`=0, 6̀=k
P(k−`)NH`X`

︸ ︷︷ ︸
ICI

+Zk, (9)

where (·)N denotes the modulo-N operation. In the absence
of PN, by the fact that Pi is a Kronecker delta function δ[i],
the received signal (9) becomes

Yk = XkHk + Zk. (10)

D. Phase Noise and Channel Compensation Model

In this subsection, we provide a brief comparison of the
conventional and proposed approaches for PN and channel

2The parameter Nc , N/Ncb, where we assume that N is divisible by
Ncb, is also called the number of resource blocks in 3GPP.
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α
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}−1
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αΦ̂t
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Fig. 2. Proposed model of PN/channel compensation and detection in time
and frequency domains.

compensation. Fig. 1 displays the basic model of PN/channel
compensation and detection, where (̂·) designates the cor-
responding estimated or decoded vector/matrix. Researchers
have investigated how to efficiently reduce the unknowns to
handle the underdetermined problem of joint PN and channel
estimation, which led to low-complexity estimation methods.
A popular approach is to utilize the fact that the channel
impulse response ht in the time domain has fewer parameters
than in the frequency response, resulting in time-domain chan-
nel estimation with a smaller number of unknowns. Based on
this fact, the joint estimation algorithms for frequency-domain
PN [41], [42], and time-domain PN [43], [44], respectively,
have been presented. The basic technique used in [41]–[44]
is a joint least-squares estimation. Especially, [42] introduced
a new constraint by the geometrical property of spectral PN
components to complement the weakness of the relaxed con-
straint used in [41]. Further, [44] showed to be able to reduce
the computational complexity of least-squares estimation sig-
nificantly by using the majorization-minimization technique.
However, the above least-squares estimation methods require
a full-pilot OFDM symbol to perform joint PN and channel
estimation, translating into significant pilot overhead.

In contrast to the existing approach, we consider channel
coherence in the frequency domain to manage the underde-
termined problem. The coherence bandwidth of a mmWave
system is inherently much larger than those of conventional
systems [45]. It is a promising basis for more suitable PN com-
pensation in mmWave systems. Larger coherence bandwidth
can facilitate the estimation of scaled PN components in the
frequency domain, i.e., αp̂f , α ∈ C, as illustrated in Fig. 2.
The deconvolution by the scaled PN estimates suppresses the
effect of ICI by PN, translating it into a simple estimation
problem for (1/α)hf , which can be estimated by using as
many pilots as there are channel coefficients in hf .

E. Effective Channel with Large Coherence Bandwidth

The effective channel coefficient can be recovered, provided
that there are as many observations as unknowns. To see how
coherence bandwidth could be utilized to meet this condition,

let us go through two examples. Let Np denote the number of
dominant PN components in the frequency domain3.

Example 1: Consider four received samples as shown in (9)
when Ncb = 1 and Np = 3.

Y0 = P0︸︷︷︸
CPE

H0X0 + P1HN−1XN−1 + PN−1H1X1︸ ︷︷ ︸
dominant ICI

+
∑

`∈L\{0,1,N−1}
P(0−`)NH`X` + Z0,

Y1 = P0︸︷︷︸
CPE

H1X1 + P1H0X0 + PN−1H2X2︸ ︷︷ ︸
dominant ICI

+
∑

`∈L\{0,1,2}
P(1−`)NH`X` + Z1,

Y2 = P0︸︷︷︸
CPE

H2X2 + P1H1X1 + PN−1H3X3︸ ︷︷ ︸
dominant ICI

+
∑

`∈L\{1,2,3}
P(2−`)NH`X` + Z2,

Y3 = P0︸︷︷︸
CPE

H3X3 + P1H2X2 + PN−1H4X4︸ ︷︷ ︸
dominant ICI

+
∑

`∈L\{2,3,4}
P(3−`)NH`X` + Z3,

(11)

where subcarrier index ` ∈ L , {0, 1, ..., N − 1}. Assume
that ICI terms represented by the summation operator and
noise components are negligible, and all transmitted symbols
are used as pilots. In the four observations, there are twelve
different unknowns, i.e., {P0Hk}3k=0, {P1Hk}2k=N−1,0, and
{PN−1Hk}4k=1, being underdetermined.

Example 2: Consider the same number of received samples
when Ncb = 6 and Np = 3 as follows.

Y0 = P0︸︷︷︸
CPE

H0X0 + P1Hd(N−1)/6eXN−1 + PN−1H0X1︸ ︷︷ ︸
dominant ICI

+
∑

`∈L\{0,1,N−1}
P(0−`)NHb`/6cX` + Z0,

Y1 = P0︸︷︷︸
CPE

H0X1 + P1H0X0 + PN−1H0X2︸ ︷︷ ︸
dominant ICI

+
∑

`∈L\{0,1,2}
P(1−`)NHb`/6cX` + Z1,

Y2 = P0︸︷︷︸
CPE

H0X2 + P1H0X1 + PN−1H0X3︸ ︷︷ ︸
dominant ICI

+
∑

`∈L\{1,2,3}
P(2−`)NHb`/6cX` + Z2,

Y3 = P0︸︷︷︸
CPE

H0X3 + P1H0X2 + PN−1H0X4︸ ︷︷ ︸
dominant ICI

+
∑

`∈L\{2,3,4}
P(3−`)NHb`/6cX` + Z3.

(12)

3Since the output spectrum of PN has a low-pass characteristic, a few
numbers of significant PN components in the frequency domain provide a
quite good approximation of the PN realization. Essentially, severe spectral
spreading increases Np to be considered. In this paper, therefore, we will deal
with the generalized Np for PN compensation in mmWave systems.
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In this case, it is possible to recover all effective channel
coefficients because there are only as many unknowns as
observations. Fig. 3 shows the total number of effective
channel unknowns involved in the corresponding numbers of
observations, according to Ncb, when Np = 3. For channel
frequency responses with Ncb larger than three, there are fewer
unknowns than observations. With this insight, in the next
section, we describe a low-complexity PN/channel estimation
followed by the NMSE analysis.

III. PROPOSED ALGORITHM

Exploiting the approximation of the PN spectrum and large
coherence bandwidth, the joint estimation problem of PN and
channel can be reformulated from a heavily underdetermined
system into a system with the same number of equations and
unknowns, referred to as a fully determined linear system.
This enables low-complexity PN/channel estimation by using
the LS and LMMSE estimators. In the proposed algorithm,
two kinds of frequency-domain estimations are required. One
is for the Np dominant PN components scaled by α and the
other for the Nc scaled-channel coefficients, as illustrated in
Fig. 2.

To define dominant PN components, we adopt γ as the ap-
proximation order of the PN spectrum, where Np = 2γ+1 for
γ ∈ {0, 1, · · · , N/2}. The index set of dominant PN is defined
as P , {0, 1, · · · , N−1}\{γ+1, γ+2, · · · , N−(γ+1)}. Let
pf,γ ∈ CN×1 be the approximated PN vector where Pi = 0,
i ∈ Pc, and ef,app , pf −pf,γ ∈ CN×1 be the approximation
error vector, e.g., pf,2 = [P0, P1, P2, 0, · · · , 0, PN−2, PN−1]T

and ef,app = [01×3, P3, P4, · · · , PN−(γ+1),01×2]T for γ = 2.
The frequency-domain effective channel component in (7) is
defined as Fi,k , PiHk, which is the element in a set of
multiplications between Pi and Hk for i ∈ P and k ∈ C. We
call this PN-affected channel. With the γ-order approximation,

FFT

PN-Affected-Channel  

Estimation

ICI-Free-Channel  

Estimation

ICI Suppression
yt

yf

yp
f

Qqy
p
f

yf ⊛−1 f̂p

f̂p

yIf

ỹIf

VqỹIf

Decoder

ĥIf

x̂f

Fig. 4. System overview of the proposed PN/channel compensation architec-
ture. For the PN-affected-estimator Qq and ICI-free-channel estimator Vq ,
the LS and LMMSE estimators are applied, i.e., q ∈ {ls, lmmse}.

Time

F
re

q
.

Nct

Ncb

S0

S1

SNc−1

Fp

Fc

Tp Tc

...

...
...

...

...

...

...

...

...

...
...

...

: PN-dedicated pilot

: CH-dedicated pilot

: A coherence block

: Transmitting data

Si

Fig. 5. An example of transmission structure for PN-affected- and ICI-free-
channel estimation. Based on a set of coherence blocks across N subcarriers,
S = S0 ∪ S1 ∪ · · · SNc−1, the pattern for resource allocation is identical.

the PN-affected-channel matrix Fγ and the approximation
error matrix Eγ are, respectively,

Fγ = Φf,γHf , and (13)

Eγ = F− Fγ = Φ̃f,γHf , (14)

where Φf,γ = circ(pf,γ), Φ̃f,γ = circ(ef,app), and F =
ΦfHf . One of the columns in Fγ is estimated for ICI suppres-
sion, which includes Np dominant PN components scaled by
α. As a result of the ICI suppression, the Toeplitz convolution
matrix (13) is converted into a diagonal matrix of which
diagonal elements are called the ICI-free channel in this paper.
Fig. 4 illustrates the proposed architecture with PN-affected-
and ICI-free-channel estimation. Before explaining the details
of proposed algorithm, we first describe the transmission
structure in the following subsection.

A. Transmission Structure
Let us define a coherence block Sk, k ∈ C with cardinality
|Sk| = NcbNct, and S = S0 ∪ S1 ∪ · · · SNc−1 be a set of
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F1 =




F0,0 FN−1,0 0 · · · 0 F1,Nc−1

F1,0 F0,0 FN−1,0
. . . . . . 0

0 F1,0 F0,0 FN−1,0
. . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . F1,Nc−1 F0,Nc−1 FN−1,Nc−1

FN−1,0 0 · · · 0 F1,Nc−1 F0,Nc−1




∈ CN×N . (16)

non-overlapping coherence blocks across N subcarriers, i.e.,
|S| = NcNcbNct, as illustrated in Fig. 5. To describe resource
allocation for pilots and transmitting data, we divide S into two
subsets in the frequency and time domain, respectively; Fp and
Fc in the frequency domain, and Tp and Tc in the time domain,
where S = Fp ∪ Fc = Tp ∪ Tc and Fp ∩ Fc = Tp ∩ Tc = φ.
In the frequency domain, Fp designate the coherence block
set that includes PN-dedicated pilot for PN-affected-channel
estimation, and Fc involves CH-dedicated pilot for ICI-free-
channel estimation. An example of transmission structure
for PN-affected- and ICI-free-channel estimation is shown in
Fig. 5. In the time domain, we consider the fact that the PN
process is fast-varying within channel coherence time while
the wireless channel is invariant, resulting in the PN-affected-
channel estimation of each OFDM symbol. Hence, only the
PN-dedicated pilot is allocated in Tc while both pilots in Tp.
The remainder of the coherence block is used for transmitting
data.

B. PN-Affected-Channel Estimation

In this subsection, we elaborate on the PN-affected-channel
estimation with the following example.

Example 3 (PN-Affected-Channel Estimation): Suppose
Ncb = 6 and Np = 3 in this example. Based on (7), (13),
and (14), the received signal is

yf = F1xf + E1xf + zf︸ ︷︷ ︸
w1

= F1xf + w1, (15)

where F1 is presented in (16) at the top of next page and
denotes the 1-order approximated channel matrix; E1 is its ap-
proximation error matrix; w1 is the ICI by the approximation
error plus AWGN. We denote the PN-affected-channel vector
by fp̄ ∈ CNp×1, which consists of dominant PN components
scaled by a channel coefficient as

fp̄ = [FN−γ,k, FN−γ+1,k, · · · , F0,k, · · · , Fγ−1,k, Fγ,k]T

= Hk [PN−γ , PN−γ+1, · · · , P0, · · · , Pγ−1, Pγ ]T︸ ︷︷ ︸
p̄f,γ

,

(17)

where p̄f,γ ∈ CNp×1 is the dominant PN vector with the γ-
order approximation. Based on (17), the coefficient α in Fig. 2
indicates the channel coefficient Hk in Sk.4 In this example,
fp̄ = [FN−1,k, F0,k, F1,k]T ∈ C3×1. With the three unknowns

4As the element in fp̄ is a subset of element in Fγ , the channel coefficient
index k in (17) depends on the allocation of PN-dedicated pilot.

in fp̄, a fully determined linear system can be constructed as
follows:

yp
f = Fp

1xp
f,1 + wp

1

=



F1,0 F0,0 FN−1,0 0 0

0 F1,0 F0,0 FN−1,0 0
0 0 F1,0 F0,0 FN−1,0




︸ ︷︷ ︸
Fp

1




Xp
0

Xp
1

Xp
2

Xp
3

Xp
4




︸ ︷︷ ︸
xp

f,1

+wp
1 ,

(18)

where yp
f = [Y1, Y2, Y3]T is the three observations in yf , and

wp
1 ∈ C3×1 the corresponding vector in w1; the element in

xp
f,1 is denoted by Xp

k to distinguish the PN-dedicated pilot
from transmitting data. Using the commutative property, (18)
can be rewritten as

yp
f =



Xp

2 Xp
1 Xp

0

Xp
3 Xp

2 Xp
1

Xp
4 Xp

3 Xp
2




︸ ︷︷ ︸
Xp

f,1



FN−1,0

F0,0

F1,0




︸ ︷︷ ︸
fp̄

+wp
1 . (19)

By the PN-dedicated pilot {Xp
k}4k=0 such that rank(Xp

f,1) =
3, all the unknowns in fp̄ can be estimated. Based on (19),
the optimization problem for the optimal PN-dedicated pilot
matrix, with respect to the approximation order of γ, is

minimize
Xp

f,γ

‖wp
γ‖2F

subject to rank(Xp
f,γ) = 2γ + 1.

(20)

The following theorem provides the optimal solution of (20).

Theorem 1. Assume that the PN-dedicated pilot is allocated in
the S0. If a γ-order approximation of PN spectrum is applied,
the optimal PN-dedicated pilot matrix Xp

f,γ ∈ CNp×Np , for
minimizing the ICI by the approximation error, is

Xp
f,γ = INp

(21)

where

Xp
f,γ =




Xp
2γ Xp

2γ−1 · · · · · · Xp
0

Xp
2γ+1 Xp

2γ Xp
2γ−1 · · · Xp

1

Xp
2γ+2 Xp

2γ+1 Xp
2γ

. . .
...

...
. . .

. . .
. . . Xp

2γ−1

Xp
2γ+2γ · · · Xp

2γ+2 Xp
2γ+1 Xp

2γ




(22)
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Proof. See Appendix A �

We consider the LS and LMMSE estimators for the PN-
affected channel. The optimal PN-dedicated pilot matrix (21)
leads to lower computational complexity as compared to the
conventional LS and LMMSE estimators [46]. The LS and
LMMSE PN-affected-channel estimators, respectively, is (see
Appendix B for Qlmmse)

Qls = (Xp
f,γ)−1 = INp , (23)

Qlmmse = Rγ
pp{Rγ

pp + Rγ
ici +

1

SNR
INp
}−1, (24)

where Rγ
pp = E{p̄f,γ(p̄f,γ)H} is the autocorrelation matrix of

p̄f,γ in (17) and Rγ
ici the autocorrelation matrix of ICI vector

arising from the γ-order-approximation error5; SNR , Es/σ
2
z

the average SNR. The LS/LMMSE estimate of fp̄ is

f̂p̄,q = Qqy
p
f , q ∈ {ls, lmmse}. (25)

C. ICI Suppression

In general, the ICI brought on by PN can be suppressed
by the deconvolution between received signals and PN com-
ponents in the frequency domain [47]. In this subsection, we
start with a Lemma that provides our idea behind the ICI
suppression.

Lemma 1. Let z ∈ CN×1 be the output vector of circular
convolution between x ∈ CN×1 and vector y ∈ CN×1. Then
the deconvolution of cx from z, where c ∈ C is a scalar, is
given by

z~−1 cx =
1

c
y (26)

Proof. By the linear property of circular convolution [40],

z = x~ y = c · 1

c
(x~ y) = cx~ 1

c
y. (27)

�

Let fp , αpf,γ = [F0,k, F1,k, · · · , FN−1,k]T be the length-
N PN-affected-channel vector, which has the corresponding
coefficients in (17) for i ∈ P , and Fi,k = 0 for i ∈ Pc.
From Lemma 1, the deconvolution of fp from yf yields
the effective channel (1/α)hf . In other words, the Toeplitz
convolution matrix Fγ is converted into the diagonal matrix
HIf = (1/α)Hf called the ICI-free channel, which means that
the off-diagonal elements causing ICI in Fγ can be canceled.
The ICI-free channel is represented as

HIf =




H0
If 0Ncb×Ncb

· · · 0Ncb×Ncb

0Ncb×Ncb
H1

If

. . .
...

...
. . . . . . 0Ncb×Ncb

0Ncb×Ncb
· · · 0Ncb×Ncb

HNc−1
If



,

(28)

5In practice, the second-order statistics of spectral PN components gener-
ated from a fixed LO are stationary, therefore we assume that Rγ

pp and Rγ
ici

can be estimated by using one-shot or long-term estimation.

where Hm
If = HIf,mINcb

∈ CNcb×Ncb , for m ∈ C, is the
diagonal matrix with coefficient HIf,m , Hm/α.

The complete ICI elimination shown in (28) can be achieved
under the following assumptions: 1) PN components beyond
γ-order are negligible, and 2) perfect PN-affected-channel is
estimated. From a practical perspective, we model the PN-
affected channel estimate with the estimation error vector
ef,est , (1/α)ēf,est as

f̂p = fp + ēf,est = α
(
pf,γ + ef,est

)
, (29)

where ef,est , [Eest
f,0 , E

est
f,1 , · · · , Eest

f,N−1]T ∈ CN×1, Eest
f,i 6=

0 for i ∈ P; otherwise Eest
f,i = 0. The PN-affected-channel

estimate can be expressed as

f̂p = α
{
pf + (ef,est − ef,app)

}
, (30)

where we define the effective error vector as ef,eff , ef,est −
ef,app ∈ CN×1.

To describe the output vector of deconvolution, we adopt
the time-domain representation gp and et,eff of f̂p and ef,eff ,
respectively, as

gp =
√
NDH

N f̂p = [gp,0, gp,1, · · · , gp,N−1]T ∈ CN×1, and
(31)

et,eff =
√
NDH

Nef,eff = [Eeff
t,0, E

eff
t,1, · · · , Eeff

t,N−1]T ∈ CN×1,
(32)

where DN refers to the N × N unitary discrete Fourier
transform (DFT) matrix. The following theorem shows the
output vector yIf after the ICI suppression.

Theorem 2. Let yIf = [YIf,0, YIf,1, · · · , YIf,N−1]T ∈ CN×1

denote the output vector by deconvolving the PN-affected-
channel estimate f̂p from yf . The signal model of yIf taking
into account the approximation error of the PN spectrum and
the estimation error of the PN-affected channel is given by

yIf = yf ~−1 f̂p

= {IN −Υ}HIfxf + z̄f ,
(33)

where

Υ , αDNGpEt,effDH
N , (34)

z̄f , DNGpDH
Nzf , (35)

Gp , diag
{

1/gp,n

}N−1

n=0
, (36)

Et,eff , diag
{
Eeff

t,n

}N−1

n=0
. (37)

Proof. See Appendix C. �

The following lemma provides a constructive proof of the
above theorem.

Lemma 2. Let C ∈ CN×N be a circulant matrix whose
first column is c = [c0, c1, · · · , cN−1]T and each subse-
quent column is obtained by a circular shift of the previ-
ous column. The circulant matrix C has eigenvector dk =
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1√
N

[1, ej2πk/N , · · · , ej2πk(N−1)/N ]H for k = {0, 1, · · · , N −
1}, and corresponding eigenvalues

λk =

N−1∑

`=0

c`e
j2πk`/N , (38)

and can be decomposed as C = DNΛDH
N , where DN is

N-point unitary DFT matrix and Λ is diag{λk}N−1
k=0 .

Proof. See [48]. �

By the expression from Theorem 2, we obtain the sig-
nal model to design the ICI-free-channel estimator in Sec-
tion III-D. The effective error incurs the Υ-dependent term
in the deconvolved output vector. The impact of the Υ-
dependent term is divided into two; one is the distortion of
the ICI-free-channel on each subcarrier, and the other is the
residual interference. To see this impact, let us rewrite the
deconvolution output-vector (33) as

yIf = {IN − (Υdiag + Υoff)}HIfxf + z̄f

= {IN −Υdiag}HIf︸ ︷︷ ︸
,H̄If

xf −ΥoffHIfxf + z̄f , (39)

where Υdiag is the diagonal matrix with the main diagonal
terms of Υ. The diagonal terms are the distorted coefficients
by the effective error. As the Υoff , Υ − Υdiag is its off-
diagonal matrix, the ΥoffHIfxf acts as a residual interference.
Notice that, in practice, H̄If should be estimated to decode the
data symbols, which is described in the following subsection.

D. ICI-Free-Channel Estimation

The main objective of this subsection is to estimate the
diagonal elements of H̄If by using the CH-dedicated pilot. The
following theorem shows that the diagonal terms of Υ have
an identical coefficient, which means that constant channel
frequency response over Ncb successive subcarriers is still
maintained despite the impact of the effective error.

Theorem 3. The ICI-free-channel matrix distorted by the
effective error is a scaled version of HIf as

H̄If = (1− ε̄cd)HIf , ε̄cd ∈ C, (40)

where we call ε̄cd a common distortion coefficient of the ICI-
free channel. The ε̄cd is defined as

ε̄cd , α
{

1

N

N−1∑

n=0

Eeff
t,n

gp,n

}
. (41)

Proof. Note that Υ is a circulant matrix by definition in (34).
Thus, Υdiag can be represented as Υdiag = ε̄cdIN . The
expression for ε̄cd can be simply proved by (34). �

The matrix H̄If has Nc diagonal elements defined as h̃If =
[(1 − ε̄cd)HIf,0, (1 − ε̄cd)HIf,1, · · · , (1 − ε̄cd)HIf,Nc−1]T ∈
CNc×1. To estimate h̃If , one PN-dedicated pilot in Fp can
be reused. Hence (Nc − 1) CH-dedicated pilots are addi-
tionally needed. Let xc

f = [Xp
2γ , X

c
1 , X

c
2 , · · · , Xc

Nc−1]T ∈
CNc×1 be the pilot vector for the ICI-free-channel esti-
mation. Based on Theorem 2, the output vector ỹIf =

[YIf,2γ , YIf,Ncb
, YIf,2Ncb

, · · · , YIf,(Nc−1)Ncb
]T ∈ CNc×1, to es-

timate h̃If , can be expressed as

ỹIf = D̃N{IN − αGpEt,eff}DH
NHIfxf + z̃f

= H̃Ifx
c
f + Υ̃offHIfxf + z̃f ,

(42)

where H̃If = diag{(1 − ε̄cd)HIf,m}Nc−1
m=0 is the diagonal

matrix with entries from h̃If on its main diagonal, Υ̃off ,
D̃N{ε̄cdIN − αGpEt,eff}DH

N , z̃f , D̃NGpDH
Nzf , and

D̃N ∈ CNc×N is a semi-unitary matrix formed by rows
m = {Nγ , Ncb, 2Ncb, · · · , (Nc− 1)Ncb} of DN . The second
equation on the right side in (42) represents the expression by
separating residual interference, i.e., Υ̃offHIfxf .

We employ the LS and LMMSE estimators for the ICI-
free channel. The LS and LMMSE estimators are, respectively,
(See Appendix D for Vlmmse)

Vls = (Xc
f )−1, and (43)

Vlmmse =
1− σ2

ε

1 + (1/SNR)
(Xc

f )H, (44)

where Xc
f ∈ CNc×Nc is a diagonal matrix with entries from

xc
f on its main diagonal and σ2

ε is the variance of the effective
error. The ICI-free-channel estimate ĥIf ∈ CNc×1, which
becomes the last estimate for decoding the transmitting data,
is given by

ĥIf,q = VqỹIf , q ∈ {ls, lmmse} (45)

IV. NORMALIZED MEAN SQUARED-ERROR ANALYSIS

NMSE has been widely used, as a performance metric,
to evaluate channel estimators for fading environments, e.g.,
spatially- or temporally-correlated channels [49]–[51]. Fur-
thermore, Hamila et al. [52] and Liu et al. [53] have derived
closed-from expressions of the NMSE (a modified NMSE
in [53]). These expressions provide useful insights into channel
estimation performance, according to system parameters. This
section presents an NMSE analysis of PN-affected-/ICI-free-
channel estimation. For the NMSE analysis, we offer a simple
closed-form expression for their respective NMSEs, based on
the assumption of PN modeled by a Wiener process. It helps
in understanding the NMSE behavior in low and high SNR
regimes. In the following expressions, the channel coherence
matrix of {Hk}Nc−1

k=0 has an identity matrix, i.e., Rhh = INc ,
by the coherence block model given in Section II.

A. NMSE of PN-affected channel

The NMSE for PN-affected-channel estimation is defined
as

NMSEp,q ,
E[‖f̂p̄,q − fp̄‖22]

E[‖fp̄‖22]
, q ∈ {ls, lmmse}. (46)

From (46), we derive the NMSEs of LS and LMMSE PN-
affected-channel estimators, respectively, as

NMSEp,ls =
E{‖yp

f − fp̄‖22}
E{‖fp̄‖22}

=
tr{Rγ

ici + (1/SNR)INp}
tr{Rγ

pp}
, and

(47)
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Fig. 6. NMSE of LS PN-affected-channel estimator as a function of SNR for β ∈ {500, 5000} and Pd = {1, 3, 7, 15}. Also shown are the error floors
corresponding to the elements in Pd. The error floors are obtained by the NMSE expression in (47) with SNR =∞.
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Fig. 7. NMSE of LMMSE PN-affected-channel estimator as a function of SNR for β ∈ {500, 5000} and Pd = {1, 3, 7, 15}. For comparison, the NMSE
curve of LS estimator corresponding to Np = 1 (dotted blue line) is included. Also shown are the error floors corresponding to the elements in Pd. The
error floors are obtained by the NMSE expression in (48) with SNR =∞.

NMSEp,lmmse=
E{‖f̂p̄,lmmse − fp̄‖22}

E{‖fp̄‖22}

=1−tr
{
Rγ

pp{Rγ
pp+Rγ

ici+( 1
SNR )INp

}−1Rγ
pp

}

tr{Rγ
pp}

,

(48)

In (47) and (48), the matrix Rγ
pp is a submatrix of the

autocorrelation matrix

Rpp = E{pfp
H
f } =

1

N
DNΨTDH

N ∈ CN×N , (49)

where Ψ has entries of ψm,n , e−πβ|m−n|Ts for m,n ∈
{0, 1, · · · , N−1}. The entries in Rγ

ici can be defined as a func-
tion of autocorrelation coefficients in Rpp. (See Appendix E
for the autocorrelation coefficients of Rγ

pp and Rγ
ici)

Remark 1. (NMSE behavior for PN-affected-channel esti-
mation): The LMMSE estimator with the second-order statis-

tics of PN spectrum achieves better NMSE performance as
increasing Np. One remarkable observation is that the LS
estimator has different NMSE behavior depending on the SNR
range. At low SNRs, the NMSE increases with Np while it
is the opposite at high SNRs. To look at the NMSE in the
low and high SNR regimes, we approximate the NMSE of LS
estimator (47) as follows.

NMSEp,ls ≈ NMSEapp
p,ls =

1− Pdom +Np/SNR

Pdom
, (50)

where Pdom , E
{∑

i∈P‖Pi‖22
}

as the power sum of the Np

dominant PN components. The NMSE in the low and high
SNR regimes, respectively, are

lim
SNR→∞

NMSEapp
p,ls =

1− Pdom

Pdom
, and (51)
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lim
SNR→0

NMSEapp
p,ls =

Np/Pdom

SNR
. (52)

The NMSE at high SNRs (51) obviously decreases with Np.
For the low SNR regime, let us define the numerator in (52)
as f(γ) , Np/Pdom. This is an increasing function of the
approximation order γ, i.e., f(γ)′ > 0 for all γ ≥ 1, translating
into an NMSE degradation as Np increases.

To validate our analysis, we compare the NMSE expressions
for LS/LMMSE PN-affected-channel estimation (47) and (48)
with the simulation result in Figs. 6-7. For the numerical
evaluation, the following parameters6 are assumed: N = 4096,
B = 245.76 MHz, ∆f = 60 kHz, which corresponds to one
3GPP NR signaling resource block to support communication
at mmWave frequencies [35]. Also, we consider the set of
dominant PN components Pd = {1, 3, 7, 15} and two kinds
of 3-dB linewidth β ∈ {500, 5000} (Hz) as LO parameters.
The PN model that we adopt for the numerical evaluation is
illustrated in Fig. 8. Both have severe PN spectrum compared
to the one in conventional transceivers [8]. Unless otherwise
stated, the same settings are assumed for numerical evaluation
in this paper. As shown in Figs. 6-7, the agreement is excellent
for all SNR and Np values. Furthermore, it shows that the
NMSE behavior follows the analysis in Remark 1.

6In the 3GPP standard, the 245.76MHz is defined as a sampling frequency,
and the actual transmission bandwidth is less than the sampling frequency
because the transmit data symbol is not fully allocated on the available
subcarriers. We assumed that the sampling frequency and the bandwidth are
equal in this paper.

B. NMSE of ICI-free channel

The NMSE for ICI-free-channel estimation is

NMSEc,q ,
E[‖ĥIf,q − h̃If‖22]

E[‖h̃If‖22]
, q ∈ {ls, lmmse}. (53)

From (53), the NMSEs of the LS and LMMSE ICI-free-
channel estimators can be derived, respectively, as

NMSEc,ls=
tr{Rỹỹ −Rh̃h̃}

tr{Rh̃h̃}

=
tr
{
Ḡ{1 + (1/SNR)}INc

− Ḡ(1− σ2
ε)INc

}

tr{Ḡ(1− σ2
ε)INc}

=
NcḠ{1 + (1/SNR)− 1 + σ2

ε}
NcḠ(1− σ2

ε)
=

1
SNR + σ2

ε

1− σ2
ε

, and

(54)

NMSEc,lmmse=
tr
{
Rh̃h̃ −Rh̃ỹR−1

ỹỹRỹh̃

}

tr{Rh̃h̃}

=
tr
{
Ḡ(1− σ2

ε)INc
− {Ḡ(1−σ2

ε)}2
Ḡ{1+(1/SNR)} (X

c
f )HXc

f

}

tr{Ḡ(1− σ2
ε)INc

}

=
tr
{
Ḡ(1− σ2

ε)
{

1− Ḡ(1−σ2
ε)

Ḡ{1+(1/SNR)}

}
INc

}

tr{Ḡ(1− σ2
ε)INc

}

=
NcḠ(1− σ2

ε)
{

1− 1−σ2
ε

{1+(1/SNR)}

}

NcḠ(1− σ2
ε)

=
σ2
ε + (1/SNR)

1 + (1/SNR)
=

1 + σ2
εSNR

1 + SNR
,

(55)

where Rỹỹ , E{ỹIf ỹ
H
If}, Rh̃h̃ , E{h̃If h̃

H
If}, and Rh̃ỹ ,

E{h̃If ỹ
H
If}. Both NMSE expressions (54) and (55) can be

formulated by only the average SNR and the effective-error
variance.

Remark 2. (NMSE floor of ICI-free-channel estimation):
To present the NMSE floor of ICI-free-channel estimation,
which bounds the achievable NMSE for linear estimators, let
us look at the NMSEs in the high SNR regime. The NMSEs
of LS/LMMSE ICI-free-channel estimators are lower-bounded
by, respectively, i.e., NMSEc,q ≥ NMSElb

c,q, q ∈ {ls, lmmse},

NMSElb
c,ls = lim

SNR→∞
NMSEc,ls =

σ2
ε

1− σ2
ε

, and (56)

NMSElb
c,lmmse = lim

SNR→∞
NMSEc,lmmse = σ2

ε . (57)

In the case where the effective-error variance is small enough
(σ2
ε � 1), the lower bound of LS ICI-free-channel estimation

(56) can be approximated as NMSElb
c,ls ≈ σ2

ε , resulting in the
same NMSE floor as the LMMSE estimator.

Comparisons of the NMSE expressions for LS/LMMSE
ICI-free-channel estimation (54) and (55) with their simulation
results are shown in Fig. 9-10. In the numerical evaluation,
we used the LMMSE PN-affected-channel estimator. All fig-
ures have good agreements. The NMSE gap between LS
and LMMSE estimators decreases as the SNR increases. In
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Fig. 9. NMSE of LS ICI-free-channel estimator as a function of SNR for β ∈ {500, 5000} and Pd = {1, 3, 7, 15}. Also shown are the error floors
corresponding to the elements in Pd. The error floors are obtained by the NMSE expression in (54) with SNR =∞.
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Fig. 10. NMSE of LMMSE ICI-free-channel estimator as a function of SNR for β ∈ {500, 5000} and Pd = {1, 3, 7, 15}. For comparison, the NMSE
curves of LS estimator corresponding to the elements in Pd (dotted blue line) are included. Also shown are the error floors corresponding to the elements in
Pd. The error floors are obtained by (56) and (57), respectively.

Fig. 10(a), it is observed that he LS and LMMSE NMSE floors
are equal (rounded to fourth decimal place), as analyzed in
Remark 2. However, in the more severe PN case (β = 5000),
higher effective-error variance arises, translating into a gap
between LS and LMMSE NMSE floors shown in Fig. 10(b).

V. PILOT OVERHEAD AND COMPLEXITY ANALYSIS

Our proposed algorithm translates into a practical PN esti-
mation/compensation for mmWave OFDM systems. To derive
this, we address the pilot-overhead and the computational
complexity of our proposed method.

A. Pilot Overhead Analysis

Recall that the resource allocation in each S (|S| = NNct)
is identical where S is a set of coherence blocks across
N subcarriers as illustrated in Fig. 5. The pilot overhead is

defined as ρoh , Ntp/NNct where Ntp is the total number
of pilots. The following theorem provides the minimum pilot-
overhead of the proposed algorithm.

Theorem 4. Supposing a set of system parameters
{N,Nct, Nc, Np}, the minimum pilot-overhead for the PN-
affected- and ICI-free-channel estimation is

ρoh =
Nct(2Np − 1) + (Nc − 1)

NNct
. (58)

Proof. Consider the allocation of PN- and CH-dedicated pilots
in the S. It is shown in Theorem 1 that (2Np−1) PN-dedicated
pilots are required to estimate Np PN-affected-channel coef-
ficients. The PN-affected-channel estimation for each OFDM
symbol leads the allocation of Nct(2Np − 1) PN-dedicated
pilots in the S. Recall that (Nc − 1) CH-dedicated pilots are
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON.

Estimation Compensation
Phase Noise Wireless Channel Phase Noise

Proposed¶ LS O(0) O(Nc) O(NNp)
LMMSE O

(
N2

p(Np + 1)
)

O(N2
c )

[41]† O(N3
p +NL) O

(
N(Np + L)

)
O(NNp)

[43] O(NitN
3)‡ O(N)

[44] O(N2log2N +NitN)‡ O(N) O(N)
¶ In the proposed method, the PN-affected and ICI-free channels are applied instead of PN and wireless channel, respectively.
† L denotes the number of effective channel taps in time domain.
‡ Nit denotes the number of iterations required.

additionally needed for ICI-free-channel estimation over Nct

OFDM symbols. Hence (58) can be clearly derived. �

We provide an example below to help the understanding of
how much the pilot overhead for our proposed algorithm is,
as compared to the conventional cellular systems.

Example 4 (Comparison with the Cell-Specific Reference
Symbol Overhead of Conventional Cellular Systems): In this
example, let us consider a set of parameters7 in Long-Term
Evolution (LTE) systems supporting 20 MHz channel band-
width: N = 1200, Nct = 7, Nc = 100. We assume that
one Cell-Specific Reference Symbol (CRS) is allocated for
a resource block, i.e., Ntp = Nc. Based on this parameter
set, therefore, the CRS overhead ρoh,crs , Nc/(NNct) is
1.19 %, which does not include the overhead for PN es-
timation. Consider the set of the number of dominant PN
components Pd = {1, 3, 7, 15}. The corresponding minimum
pilot-overhead ratios from (58) are 1.26 %, 1.60 %, 2.26 %,
and 3.60 %, respectively. These are quite reasonable values
for the practical use of our algorithm.

B. Computational Complexity Analysis

In this subsection, we investigate the computational com-
plexity of the PN-affected-/ICI-free-channel estimation and the
ICI suppression (PN compensation). Since the LS PN-affected-
channel estimator (23) is an identity matrix, no computation is
required for obtaining f̂p̄,ls. The LMMSE PN-affected-channel
estimator (24) and the matrix-vector multiplication (25) have
a complexity of respectively O

(
N3

p

)
and O

(
N2

p

)
, leading to

a total complexity in the order of O
(
N2

p(Np +1)
)
. According

to (43)–(45), the complexity order of the LS/LMMSE ICI-
free-channel estimation is O(Nc) and O(N2

c ), respectively.
As described in Section III-C, the PN compensation in the
proposed method is performed in the frequency domain. Recall
that the PN effect is a circular convolution process in the
frequency domain. Hence the PN compensation process is the
deconvolution8 of the received signal and the PN estimate
in frequency. It results in a complexity of O(N2). Since

7A resource block in LTE systems consists of 12 consecutive subcarriers
and 7 OFDM symbols. 100 resource blocks are used to support 20MHz
bandwidth. Thus, the number of occupied subcarriers is 1200 [54]. In this
example, we use the number of occupied subcarriers for N .

8The deconvolution of two length-N sequences is equivalent to their poly-
nomial division where the polynomial coefficients correspond the coefficients
in each sequence, and its operation has a complexity O(N2).

the length-N PN-affected-channel estimate f̂p includes only
Np nonzero values, the deconvolution (33) has a complexity
O(NNp).

The complexity comparison with existing work on low-
complexity PN estimation and compensation is shown in
Table I. From the relation N � Np, Nc, the proposed method
has lower complexity for both PN and channel estimation
than the existing solutions. Let us consider a total complexity,
including joint PN/channel estimation and PN compensation,
with mmWave system parameters9. For example, if N = 4096,
Np = 7, Nc = 100, L = 5, and Nit = 1, the proposed method
with the LMMSE estimation obtains a reduction of 2.53×,
(1.76×106)×, and (5.15×103)×, respectively, in the total
complexity, as compared to [41], [43], [44]. Furthermore, all
of these existing solutions require a full-pilot OFDM symbol
to perform joint PN and channel estimation, which leads to
significant pilot overhead to tackle the problem of fast-varying
PN estimation.

VI. TRADE-OFF ANALYSIS

This section uses BER and throughput to study the trade-off
between performance and pilot-overhead. For the numerical
evaluation, the following parameters are used: N = 4096,
∆f = 60 kHz, and Nc = 275, which corresponds to one
3GPP NR signaling to support communication at mmWave
frequency [35]. Also, we consider the set of dominant phase-
noise components Pd ∈ {1, 3, 7, 15} and two kinds of 3-dB
linewidth β ∈ {500, 5000}.

A. Bit-Error Rate Performance

Fig. 11 shows the BER performance for an OFDM sys-
tem transmitting uncoded 16-quadrature amplitude modulation
(QAM). The BER curves of Np-perfect PN compensation
serve as a benchmark, where it is assumed that Np ∈ {3, 7}
dominant PN components are perfectly known, and able
to be used for the compensation. The performance curve
without PN is used as another benchmark for comparison.
As illustrated in Fig. 11(a), the proposed method has quite
good BER performance by using the estimation of even only
three significant PN components when β = 500. In case of

9N is a 3GPP NR parameter for mmWave communications [35] and L is
selected based on the measurement campaign result that the mean number of
effective multipath components at 28GHz and 73GHz was 3.3 – 7.2 [55].
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Fig. 11. BER performance of the proposed solutions (blue), Np-perfect PN compensation (red), and no PN case (black) with β ∈ {500, 5000}.

Np ∈ {3, 7}, it is shown that there is around 3dB difference
between perfect Np-perfect phase-noise compensation and
proposed method at a BER of 10−3. In comparison with no
PN case, there is around 3.5dB and 5dB, respectively, for
Np ∈ {3, 7}, at the same BER level. Also, it is observed
that, when Np > 3, the performance improvements by the
proposed method is relatively small. It means that most of
PN energy is focused in three dominant PN components in
the β = 500 case. Whereas the BER performance shown in
Fig. 11(b) (β = 5000 ) is largely improved, as more number
of dominant PN components is considered. For example, as
Np ∈ {1, 3, 7, 15} increases, their BERs at the 30dB SNR
level, are 0.089, 0.048, 0.02, and 0.007, respectively. We can
tell that there is more room to improve the BER performance
by the use of pilot-overhead, as compared to the β = 500.

B. Throughput versus Pilot-Overhead Trade-Off
To study the trade-off between performance and pilot-

overhead, we define the throughput based on 3GPP terminolo-
gies, as follows:

THP = (1− ρoh)× Nc ×Nre ×Nofdm

Tslot
×Mqam × (1− BER),

(59)

where Nc and Nre are the number of resource blocks, re-
source elements in a resource block, respectively; Nofdm is
the number of OFDM symbols per slot, Tslot the slot duration,
Mqam a modulation order per resource element, BER the
average BER. For the numerical evaluation with (59), the
following parameters are assumed: Nre = 12, Nofdm = 14,
Tslot = 0.25 ms, Mqam = 4, which also corresponds to one
3GPP NR signaling resource block to support communication
at mmWave frequency [35]. Fig. 12 shows the throughput
performance as a function of SNR. From (58), the pilot-
overhead10 ρoh, according to Np ∈ Pd, is 1.22%, 1.34%,

10As with Example 4, the number of occupied subcarriers is 3300 in the
corresponding 3GPP NR signaling [35]. Thus, 3300 is applied for N in (58),
instead of 4096.
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Fig. 12. Trade-off between throughput and pilot-overhead with Pd =
{1, 3, 7, 15} and β ∈ {500, 5000}.

1.58%, and 2.06%, respectively. When β = 5000, the higher-
order PN approximation and its estimation lead to the better
throughput performance although the more pilot-overhead is
required. On the other hand, when β = 500, the estimation
of three dominant PN components, i.e., Np = 3, results in
better throughput performance than the others, in the SNR
range more than 6dB. At the high SNRs, the throughput
with Np = 3 is around 5.2Mbits/s higher than the one with
Np = 15, while the Np = 15 case has around 24.4Mbits/s
higher throughput, as compared to the Np = 3. From these
results, it is found that higher-order PN estimation does not
guarantee better throughput performance due to the increase
of the pilot-overhead.

Although the pilot-overhead effort leads to the throughput
improvement when β = 5000, the high-order approximation of
PN spectrum, e.g., Np = 7 or 15, may not always be required.



14

The computational complexity of PN-affected-channel estima-
tion is a function of Np, i.e., O

(
N2

p(Np + 1)
)

with LMMSE
estimator. In case where the throughput difference is marginal
according to Np, the lowest Np could be selected to reduce the
complexity, if not for throughput-sensitive applications. For
example, when β = 5000, the PN spectrum approximation
with Np = 1 could be considered for a SNR of less than
about 2dB, and Np = 3 for a SNR of 2 -5dB.

VII. CONCLUSION

Practically suppressing the effect of PN is a critical aspect
of mmWave communication systems to realize its potential
benefits. This paper has outlined a novel framework for PN
compensation on OFDM systems, which uses LS/LMMSE es-
timators and pilot-assisted transmission. Our main conclusion
is that the large coherence bandwidth in mmWave bands and
an approximation of the PN spectrum enable low-complexity
PN compensation with a reasonable pilot-overhead, which
leads to a very efficient solution for the severe PN problem.
Further, we have derived analytically tractable expressions
for the NMSE performance of our proposed framework, and
studied the trade-off between performance and pilot-overhead.
These expressions and trade-off analysis offer an insight into
an appropriate approximation of the PN spectrum, according
to the SNR and PN environments.

APPENDIX A
PROOF OF THEOREM 1

From (19), we have the generalized form of yp
f with respect

to γ-order approximation as follows:

yp
f = Xp

f,γfp̄ + wp
γ , (60)

where wp
γ = [W p

γ,0,W
p
γ,1, · · · ,W p

γ,Np−1] ∈ CNp×1 is the ICI
by the γ-order-approximation error plus AWGN in yp

f . The
element set in the Xp

f,γ is {Xp
k}

2Np−2
k=0 , which means that

(2Np − 1) PN-dedicated pilots are required to estimate Np

PN-affected-channel components. Regarding each observation
in yp

f , the Np PN-dedicated pilots are multiplied with the fp̄.
The remaining (Np−1)-pilot, however, combines with higher-
order PN components than γ, resulting in being involved in
wp
γ . To meet two conditions for PN-dedicated-pilot pattern,

which are the ICI minimization and rank(Xp
f,γ) = Np, we

employ the fact that the diagonal term Xp
2γ in Xp

f,γ does not
belong to wp

γ and can be used for making the full rank of
Xp

f,γ . Hence, a non-zero pilot symbol is allocated for Xp
2γ

and zero-pilot for the remainder to minimize the ICI, leading
to the optimal PN-dedicated pilot matrix (21).

APPENDIX B
LMMSE ESTIMATOR FOR PN-AFFECTED CHANNEL

The LMMSE PN-affected-channel estimator is defined as

Qlmmse = RfyRyy
−1, (61)

where Rfy = E{fp̄(yp
f )H} is the cross-covariance matrix

between fp̄ and yp
f , Ryy = E{yp

f (yp
f )H} the autocorrelation

matrix of yp
f . Substituting (21) in Theorem 1 into (60) , we

have

Rfy = E{fp̄(Xp
f,γfp̄ + wp

γ)H}
= E{fp̄fp̄

H}+ E{fp̄(Ep
γxf + zf)

H}
︸ ︷︷ ︸

0Np×Np

(a)
= E{‖α‖22}︸ ︷︷ ︸

1

E{p̄f,γ(p̄f,γ)H}︸ ︷︷ ︸
Rγ

pp

= Rγ
pp,

(62)

Ryy = E{(fp̄ + wp
γ)(fp̄ + wp

γ)H}
= Rγ

pp + E{Ep
γxfxf

H(Ep
γ)H}+ E{zfz

H
f }︸ ︷︷ ︸

σ2
zINp

= Rγ
pp + E{Φ̃p

f,γ(Φ̃p
f,γ)H}

︸ ︷︷ ︸
Rici

+σ2
zINp

= Rγ
pp + Rici + (1/SNR)INp .

(63)

where Ep
γ ∈ CNp×N is the γ-order-approximation-error matrix

in yp
f , Φ̃p

f,γ = [Φp
ici,γ 0Np×(2Np−1)] ∈ CNp×N . The Φp

ici,γ ∈
CNp×(N−2Np+1) is given in (64) at the bottom of this page,
where Na , Np+1

2 and Nb , 3Np−1
2 .

APPENDIX C
PROOF OF THEOREM 2

The equivalent time-domain representation of f̂p and ef,app

can be described as follows:

f̂p = α(pf,γ + ef,est)←→ gp = α(pt,γ + et,est), (65)

ef,app = pf − pf,γ ←→ et,app = pt − pt,γ . (66)

where pt ,
√
NDH

Npf = [ejφ0 , ejφ1 , · · · , ejφN−1 ]T, pt,γ ,√
NDH

Npf,γ = [p0, p1, · · · , pN−1]T, et,est ,
√
NDH

Nef,est =

Φp
ici,γ =




PN−Nb
PN−Nb−1 PN−Nb−2 · · · PNa+1 PNa

PN−Nb+1 PN−Nb
PN−Nb−1 · · · PNa+2 PNa+1

...
...

... · · ·
...

...
PN−Nb+(Np−1) PN−Nb+(Np−2) PN−Nb+(Np−3) · · · PNa+Np

PNa+(Np−1)


 . (64)
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[Eest
t,0 , E

est
t,1 , · · · , Eest

t,N−1]T ∈ CN×1. The deconvolution
output-vector of yIf and f̂p is

yIf = DN

{{
diag

{
gp,n

}N−1

n=0

}−1
}

︸ ︷︷ ︸
Gp

DH
Nyf

= DN

{ 1

α

{
diag{pn}N−1

n=0︸ ︷︷ ︸
,Φt,γ

+ diag{Eest
t,n}N−1

n=0︸ ︷︷ ︸
,Et,est

}−1
}

DH
Nyf

(a)
= DN

{ 1

α

{
Φ−1

t,γ −Φ−1
t,γ

{
Φ−1

t,γ + E−1
t,est

}−1
Φ−1

t,γ

}}
DH
Nyf

(b)
=

1

α
DN

{
IN −

{
Φt,γ + Et,est

}−1
Et,est

}
Φ−1

t,γD
H
Nyf

=
1

α
DN

{
IN − αGpEt,est

}
yd

=
1

α
Hf

︸ ︷︷ ︸
,HIf

xf + ῩHIfxf + z̄f = {I + Ῡ}HIfxf + z̄f ,

(67)

where (a) and (b) follow from the matrix identity (A+B)−1 =
A−1 − A−1(A−1 + B−1)−1A−1 and (A−1 + B−1)−1 =
A(A + B)−1B, respectively;

yd = Φ−1
t,γD

H
Nyf = Φ−1

t,γD
H
N

{
Fγxf + Eγxf + zf

}

= Φ−1
t,γD

H
N

{
Φf,γHfxf + {Φf −Φf,γ}︸ ︷︷ ︸

,Φ̃f,γ

Hfxf + zf

}

(c)
= Φ−1

t,γD
H
N

{
DNΛΦDH

NHfxf + DN Λ̃ΦDH
NHfxf + zf

}

= Φ−1
t,γΛΦ︸ ︷︷ ︸
IN

DH
NHfxf + Φ−1

t,γΛ̃ΦDH
NHfxf + Φ−1

t,γD
H
Nzf

= DH
NHfxf + Φ−1

t,γΛ̃ΦDH
NHfxf + Φ−1

t,γD
H
Nzf ,

(68)

Ῡ = DN

{{
IN − αGpEt,est

}{
Φ−1

t,γΛ̃Φ

}
− αGpEt,est

}
DH
N

(d)
= DN

{{
IN − αGpEt,est

}{
Φ−1

t,γEt,app

}
− αGpEt,est

}
DH
N

= DN

{{
IN − αGpEt,est

}
Φ−1

t,γ︸ ︷︷ ︸
αGp

Et,app − αGpEt,est

}
DH
N

= αDNGp

{
Et,app −Et,est

}

︸ ︷︷ ︸
−Et,eff

DH
N

= −αDNGpEt,effDH
N = −Υ.

(69)

In (68) and (69), (c) and (d) follow from Lemma 2 (ΛΦ =
Φt,γ , Λ̃Φ = Et,app); Et,app is the diagonal matrix with entries
from et,app on its main diagonal.

z̄f =
1

α
DN

{
{IN − αGpEt,est}Φ−1

t,γ

}
DH
Nzf

=
1

α
DN

{
αGp

}
DH
Nzf

= DNGpDH
Nzf .

(70)

APPENDIX D
LMMSE ESTIMATOR FOR ICI-FREE CHANNEL

The LMMSE estimator for ICI-free channel vector h̃If is
defined as

Vlmmse = Rh̃ỹR−1
ỹỹ , (71)

where Rh̃ỹ = E{h̃If ỹ
H
If} is the cross-covariance matrix

between h̃If and ỹIf ; Rỹỹ = E{ỹIf ỹ
H
If} is the autocorrelation

matrix of ỹIf . Based on (42), the Rh̃ỹ and Rỹỹ are represented
as (72) and (73), respectively, in the bottom of this page, where
Ḡ , 1

N

∑N−1
n=0 {‖1/gp,n‖22} is the mean of absolute-squared

diagonal coefficients in Gp.

Rh̃ỹ = E{h̃If(H̃Ifx
c
f + Υ̃offHIfxf + z̃f)

H}
= E{h̃If h̃

H
If}(Xc

f )H + E{h̃If(Υ̃offHIfxf)
H}︸ ︷︷ ︸

0Nc×Nc

+E{h̃If z̃
H
f }︸ ︷︷ ︸

0Nc×Nc

= Ḡ(1− σ2
ε)(Xc

f )H

(72)

Rỹỹ = E
{(

D̃N{IN − αGpEt,eff}DH
NHIfxf + z̃f

)(
D̃N{IN − αGpEt,eff}DH

NHIfxf + z̃f

)H}

=
1

‖α‖22
E
{
D̃N{IN − αGpEt,eff}{IN − αGpEt,eff}HD̃H

N

}
+ E{z̃f z̃

H
f }

=
1

‖α‖22
E
{
D̃N{αGpΦt}{αGpΦt}HD̃H

N

}
+ D̃NGpDH

N E{zfz
H
f }︸ ︷︷ ︸

σ2
zIN

DNGH
p D̃H

N

= D̃NGpGH
p D̃H

N + σ2
zD̃NGpGH

p D̃H
N = (1 + σ2

z)D̃NGpGpD̃H
N

= Ḡ
{

1 + (1/SNR)
}
INc

(73)
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APPENDIX E
AUTOCORRELATION COEFFICIENTS OF Rγ

pp AND Rγ
ici

The autocorrelation coefficient Rk,` in Rpp is [47]

Rk,` = E{PkP ∗` }

=
1

N2
E

{
N−1∑

m=0

N−1∑

n=0

ej(φm−φn)e−j
2π
N (mk−n`)

}

=
1

N2

N−1∑

m=0

N−1∑

n=0

E{ej∆φm,n}e−j 2π
N (mk−n`)

(a)
=

1

N2

N−1∑

m=0

N−1∑

n=0

{e−πβ|m−n|Ts}︸ ︷︷ ︸
,ψm,n

e−j
2π
N (mk−n`)

(74)

where (a) is determined using the moment generating function
of ∆φm,n. The autocorrelation coefficient Rici

k,` of Rγ
ici is

Rici
k,` =

N−Nb+k∑

i=Na+k

Ri,i+(`−k) (75)
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