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Abstract—We develop two distributed downlink resource allo-
cation algorithms for user-centric, cell-free, spatially-distributed,
multiple-input multiple-output (MIMO) networks. In such net-
works, each user is served by a subset of nearby transmitters that
we call distributed units or DUs. The operation of the DUs in a
region is controlled by a central unit (CU). Our first scheme is
implemented at the DUs, while the second is implemented at the
CUs controlling these DUs. We define a hybrid quality of service
metric that enables distributed optimization of system resources
in a proportional fair manner. Specifically, each of our algorithms
performs user scheduling, beamforming, and power control
while accounting for channel estimation errors. Importantly, our
algorithm does not require information exchange amongst DUs
(CUs) for the DU-distributed (CU-distributed) system, while also
smoothly converging. Our results show that our CU-distributed
system provides 1.3- to 1.8-fold network throughput compared
to the DU-distributed system, with minor increases in complexity
and front-haul load - and substantial gains over benchmark
schemes like local zero-forcing. We also analyze the trade-offs
provided by the CU-distributed system, hence highlighting the
significance of deploying multiple CUs in user-centric cell-free
networks.

Index Terms—Distributed resource allocation, user scheduling,
user-centric clustering, cell-free MIMO, cooperative cellular net-
works, distributed antenna system, scalable resource allocation,
fairness.

I. INTRODUCTION

Scalability requires a system to accommodate growing de-

mands gracefully [1]. Scalability is critical motivation for user-

centric, cell-free, spatially-distributed, multiple-input multiple-

output (MIMO) networks [2], [3] , where users can be served

by many transmitters [4], [5], denoted herein as distributed

units (DUs). In these networks, a serving cluster of DUs is

defined for each user based on a metric, e.g., channel power [5]

or serving distance [6]; each user is effectively located at the

center of its serving cluster, thereby eliminating conventional

cell edges.

Designing flexible distributed resource allocation schemes

for cell-free networks is still an open issue [7] due to the
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difficulties arising from the lack of a regular cell structure and

the overlapping serving clusters for the users. Theoretically,

centralized resource allocation, wherein all transmissions are

jointly optimized, provides the performance upper bound.

However, such a scheme implies an enormous overhead in

terms of real-time exchange of channel state information (CSI)

and computation load. Furthermore, since the optimization

problems involved are usually non-convex, even effective

solutions may not lead to the global optimum.

A distributed system, on the other hand, provides a trade-

off between performance and scalability. Compared to a

centralized scheme, it provides an advantage due to lower

front-haul load as well as lower computational and stor-

age complexity per network node. Importantly, it allows for

lower communication overhead with limited exchange of CSI.

Hence, a distributed system is more practical to deploy than

a centralized one [8]. On the other hand, such an approach

may provide worse performance than a centralized scheme [9],

because the resource allocation is performed without a global

view of the network and with limited coordination.

A major challenge in designing a distributed resource

allocation scheme is that the crucial signal-to-interference-

plus-noise ratio (SINR) metric is coupled between all the

transmitters. Hence, SINR-based approaches, like in [10], [11],

are not suitable for distributed resource allocation. One alter-

native is to use metrics like the signal-to-leakage-plus-noise

ratio (SLNR) [12] which decouples the allocation problem

between the different transmitters. However, SLNR does not

allow for effective power allocation because the beam power

scales equally in both the signal and leakage terms. Here, we

modify the approach proposed for cellular networks [13] based

on a mix of of inter-cell leakage and intra-cell interference.

Specifically, for the cell-free MIMO network at hand, the com-

binatorial approach to user scheduling in [13] is not possible.

Additionally, unlike most works in distributed processing, we

include fairness as a key criterion for user-scheduling, thereby

avoiding repeatedly serving the same users with strongest

channels.

The available efforts to implement a distributed resource

allocation scheme in cell-free networks have been based on

algorithms that require iterative exchange of signals between

the base stations [14]. The investigation in [15] studies a

distributed framework for cooperative precoding in cell-free

MIMO requiring over-the-air signaling between the base sta-

tions instead of front-haul\back-haul signaling. Similarly, the

work in [16] maximizes the weighted sum rate (WSR) within

joint transmission clusters without centralized beamformer
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processing. However, the problem is solved through an equiva-

lent minimum square error-based problem that requires a feed-

back channel to update weights during algorithm iterations.

The authors in [17] maximize the uplink minimum SINR

by decoupling the problem into two sub-problems, one that

designs the receiver filter and another that optimizes the power

allocation, using an alternating optimization. The study in [18]

propose two distributed variants of zero-forcing (ZF); however,

this work does not consider user scheduling. The authors

of [19] optimize the energy efficiency in the uplink of cell-

free massive MIMO networks under different scenarios of

signal quantization. The investigations in [2] and [20] study a

suboptimal but scalable power control policy that uses large-

scale fading decoding. Moreover, the study in [21] uses dual

decomposition and the gradient method for resource alloca-

tion in a relaying system by relaxing the binary scheduling

variables. Furthermore, the work in [8] analyzes the uplink

spectral efficiencies under four different levels of cooperation

in cell-free implementations. However, this work does not

optimize resource allocation, but rather numerically studies

the performance under minimum mean-square error (MMSE)

combining.

Distributed resource allocation can also be tackled through

a game-theoretic framework. The studies in [22], [23] use

a distributed form of auction theory for user scheduling in

conventional networks. Briefly, the users compete for the

resources through bidding and assignment phases [24]. One

disadvantage of such approaches is the considerable com-

munications required between the network nodes before an

allocation occurs, hence leading to a substantial overhead.

Furthermore, these have been developed for simple schemes

like carrier sense multiple access.

The DUs that connect to users are, themselves, controlled

by central units (CUs). While some models use a single CU to

control all DUs [9], [20], this would limit the scalability of the

network. As in [18], we consider a system of multiple central

units (CUs), each controlling the DUs in its region. Under

the user-centric cell-free MIMO scheme at hand, a serving

cluster of DUs is defined specifically for each user. In contrast

to the schemes available in the literature, we develop two

totally distributed resource allocation schemes that perform

user scheduling, beamforming, and implicit power control in a

user-centric MIMO network. The first solution is implemented

on the DUs, while the second one is deployed on the CUs1. We

acquire local CSI between each DU and its users, an approach

shown to be scalable [26]. We then define a weighted pseudo-

rate function that depends on a hybrid leakage and intra-

(DU\CU) interference; the weights implement user fairness.

Our objective decouples the problem between the different

network nodes, with each node making decisions independent

of the other nodes in the network.

To solve our formulated problem, we employ tools such

as block coordinate descent, fractional programming, and

1Although this study is not concerned with the core-network protocols that
should be used to deploy a distributed CU system under the user-centric cell-
free network architecture, the authors note that distributed software defined
network (SDN) [25] is a promising avenue to implement the flexible network
architecture suggested in this paper.

compressive sensing to develop an algorithm that converges

smoothly in a non-decreasing manner. In addition to standard

CSI estimation, we further propose using either statistical

CSI or the spatial traffic distribution to compute the leakage

needed to construct our objective function. These alternative

approaches further reduce any required information exchange

amongst processing nodes. Notably, our results show that the

proposed methods to compute the leakage are very effective

with a dense distribution of users.

To the best of the authors’ knowledge, this work is one

of the first studies to consider fully distributed resource

allocation, and is the first study which investigates fully

distributed user-scheduling and beamforming (not only power

control) for user-centric cell-free MIMO networks. In most

of the literature, user scheduling is neglected and the users

are assumed pre-selected. Hence, our work fills two gaps

by focusing on distributed schemes and on user scheduling.

Our scheme is different from the literature, e.g., [15], in

the sense that it conducts resource allocation without using

feedback channels between the network entities. Additionally,

to maintain scalability, we use a network with distributed

CUs [9], [20].

A few works in the literature focus on scalability. The

study in [9] proposes a simple sub-optimal power allocation

using conjugate beamforming (to be able to perform a dis-

tributed beamforming), but this study does not optimize user

scheduling or beamforming. In [2] the authors study the uplink

of a single-CU network, using large-scale fading decoding

and power control; however, the scheme is not distributed.

The authors of [27] employ a combinatorial search for user-

association based on the position of the access points. The

system uses conjugate beamforming and maximizes the sum

rate, however, this scheme is also not distributed. The scheme

sacrifices performance to enable a low fronthaul load. Thus,

our developed schemes are fundamentally different from those

found in literature.

The theory developed here sets the foundation for deploy-

ment of an optimized resource allocation scheme. Specifically,

the contributions of our paper are:

• Developing two distributed resource allocation schemes

that optimize resources, including user scheduling and

beamforming (not only power allocation) in a cell-free,

user-centric, MIMO network. These schemes are based

on a hybrid leakage and interference metric that elimi-

nates the need for information exchange and implements

fairness amongst users.

• Proposing and testing three approaches to calculate the

leakage term in the metric. These approaches require

different levels of computational complexity and required

real-time information while producing comparable perfor-

mance, especially at high user densities.

• Analyzing the computation complexity of our two pro-

posed approaches, illustrating the substantial reduction in

complexity compared to a centralized resource allocation

scheme, with, in some cases, improved performance.

• Highlighting the importance of a multiple-CU user-

centric cell-free network by illustrating trade-offs in

performance and front-haul load provided by the CU-
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distributed system compared to DU-distributed and cen-

tralized systems.

The rest of the paper is organized as follows. Section II

presents the system model. Section III formulates the resource

allocation problem in a DU-distributed system and develops

the steps required to solve this problem. Section IV casts the

problem as a CU-distributed system and develops an approach

to perform the resource allocation. Section V proposes further

methods to enhance the scalability of calculating the leakage

term. Section VI reports on our numerical results and findings.

Finally, Section VII concludes our discussion.

Notation: a lower or upper case letter, e.g., a or A, repre-

sents a scalar, a bold lower case letter, e.g., a, represents a

vector, while a bold upper case letter, e.g., A, represents a

matrix. The term [A]ij is the (i, j)th entry of matrix A. The

operators (·)−1, (·)T and (·)H , used as superscripts, denote the

inverse, transpose, and conjugate transpose, respectively. ‖ ·‖2
and | · | are the vector and scalar Euclidean norms (ℓ2 norm),

‖ · ‖p is the ℓp norm, and Im is the m-dimensional identity

matrix. Calligraphic letters, e.g., A, are used to indicate sets

with its cardinality represented by |A|. We use A = [A] to

construct a matrix or vector using the elements of set A.

The spaces B, Cm, and Cm×n represent the set of binary

numbers, complex m×1 column vectors, and complex m×n
matrices, respectively. E{·} is the expectation operator, and

x ∼ CN (m,R) indicates that x is a complex Gaussian

random vector with mean m and covariance R.

II. SYSTEM MODEL

A. Network and Signal Model

We consider a user-centric cell-free MIMO network, which

operates in time-division duplex (TDD) mode. Our network,

illustrated in Fig. 1, comprises Q CUs, each controlling

N DUs represented by the set Bq. We denote the region

containing the DUs in Bq as a virtual cell. Accordingly,

we have a total of NQ DUs represented by the set of sets

B = {B1, B2, . . . ,BQ}. Each DU is equipped with M
antennas, while each user is equipped with a single antenna.

We use U to represent the set of users that need to be

served, where |U| is a random number, but is much larger

than the number of available resources. The DUs serve users

coherently2.

Based on this model, for each user u, we define a serving

cluster Cu comprising the DUs that can potentially serve the

user. Specifically, here we define Cu based on the criterion

{ψruβ(dru) ≥ ρ : r ∈ B}, where the term ψru accounts for

the (lognormal) shadowing, β(dru) accounts for the path loss,

which depends on the distance dru between DU r and user

u. If no DU can meet this connection criterion, Cu comprises

the DU providing the highest average received power, i.e.,

largest ψruβ(dru). Based on this scheme, we can formally

2Coherent transmission requires phase synchronization across the DUs,
which can be achieved through synchronization protocols like the IEEE
1588v2 (Precision Time Protocol PTP) [28]. The system can achieve this
synchronization by properly choosing the serving clusters and the use of a
cyclic prefix [6]. We note that synchronization issues are out of the scope of
this paper; they need to be studied in a dedicated work using different tools
from those used in this paper.

DU

User

Serving
cluster

CU

Front�haul

Back�haul

Network core

Fig. 1: User-centric cell-free network with either DU-

distributed or CU-distributed processing.

define Cu = {r : ψruβ(dru) ≥ ρ} ∪ {arg maxr ψruβ(dru)}.

The set Cu, therefore excludes DUs that cannot contribute

significantly to the user’s useful signal while also limiting the

number of users each DU serves. We assume a low-mobility

profile for the users and hence we use the popular block

fading model for the channel. Hence, the channel (small-scale

and large-scale fading) is assumed static within each channel

coherence interval. The large-scale fading also changes much

more slowly than the small-scale fading, and hence stays

constant for many coherence intervals. The block fading model

is widely accepted and used in the literature when high-

mobility scenarios are not being studied [4] as the case of

this paper.

We develop two different distributed algorithms for resource

allocation. The first variant runs on the DUs, while the second

variant runs on the CUs. The developed algorithms pro-

vide user scheduling and perform resource allocation. These

procedures include channel estimation, formation of serving

clusters, user scheduling, beamforming, and fairness control

for the users. Finally, it is worth noting that we will be using

the global indices q, r, and u to, respectively, refer to the CUs,

DUs and users found in the network.

In the downlink, the signal received by user u ∈ U can be

written as

yu =
∑

r∈Cu

√
sruh

H
ruwruxu

+
∑

u′∈U ,u′ 6=u

∑

r′∈Cu′

√
sr′u′hH

r′uwr′u′xu′ + zu. (1)

The first term in (1) is the useful signal, the second term is

the interference, and the third is the additive white Gaussian

noise (AWGN) zu ∼ CN (0, σ2
z). The scalar sru ∈ B is the

scheduling decision at DU r for user u (that is, when sru = 1,

DU r schedules user u, otherwise sru = 0), hru ∈ CM×1

is the channel vector between the two peers, wru is the

beamforming weight or the transmit precoder used by DU r
to serve the user with an overall power budget of p for the

DU, and xu is the zero-mean data symbol intended for user

u with E{|xu|2} = 1.

We model the channel between DU r and user u as hru =√
ψruβ(dru)gru ∈ CM×1, where the term gru ∼ CN (0, IM )

accounts for the small-scale fading, and as noted earlier, ψru
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and β(dru) account for lognormal shadowing and path loss,

respectively. We define the set Er representing the users that

need to be served by DU r. These sets {Er : r ∈ B} can

obtained directly from the sets {Cu : u ∈ U}. Crucially,

because of user-centric clustering, each Er can partially or

totally overlap with other Er′ , for r′ 6= r; similarly, the same

user may “belong” to multiple CUs.

B. Channel Estimation

For a TDD system, channel estimation is performed in the

uplink and the estimated channel is used in downlink assuming

channel reciprocity. In the pilot-training phase of length τp, the

signal Yr ∈ CM×τp observed at DU r can be written as

Yr =
∑

u∈U

√
puhruφu + Zr, (2)

where φu ∈ C1×τp is the unit norm (φuφ
H
u = 1) pilot

sequence used by user u, pu is the transmit power, and Zr

is the noise with entries distributed as CN
(
0, σ2

Z

)
. Following

the assumptions in [4], [5], we assume the knowledge of the

the large-scale fading and the transmit power used.

Unfortunately, using pilots that are orthogonal among the

users, i.e., φuφ
H
u′ = 0, ∀u′ 6= u, requires having τp ≥ |U|

which is unlikely to be feasible. We assume that the users

are grouped such that the pilot sequences inside each group

are orthogonal, while the same pilot sequences are used

across groups. Specifically, as in [29], we use the hierarchical

agglomerative clustering (HAC) algorithm to cluster the users

into subsets each containing a number of users less than or

equal to τp, the length of the pilot sequence. The available

orthogonal pilot sequences are randomly assigned to the users

inside each subset. The intuition is to keep users sharing the

same pilot sequence as far as possible from each other, thus

minimizing pilot contamination in our user-centric cell-free

network [30]. Additionally, the choice of HAC is based on

its consistency and its lack of sensitivity to the choice of the

distance-metric used to construct the subsets [31].

We can extract the channel of user u at DU r by first

defining y̆ru = 1√
pu
Yrφ

H
u , hence eliminating all users’

contributions other than the ones using the same pilot sequence

φu. The channel {hru : u ∈ U} can then be estimated using

linear MMSE as [32]

ĥru = Dru

(
∑

u′∈Uu

Dru′ +
σ2
Z

pu
IM

)−1

y̆ru, (3)

where Dru ∈ CM×M is a diagonal matrix with entries

[Dru]mm , ψruβ(dru), and Uu are the users using the same

pilot sequence as user u (including user u).

Remark 1. Due to path loss, each DU r only needs to estimate

the channel vectors of nearby users. In Section V, we show

that each DU need only estimate the channels to users u ∈ Er,

i.e., its own users and it can use large-scale fading statistics or

a traffic distribution model for the other users, thus enhancing

the scalability of the required channel estimation.

The estimated channel ĥru is distributed according to

CN (0,Ψru), with Ψru defined as

Ψru , Dru

(
∑

u′∈Uu

Dru′ +
σ2
Z

pu
IM

)−1

Dru. (4)

It is known from the theory of MMSE estimation that the

channel estimation error eru = hru − ĥru is distributed as

CN (0,Θru), where Θru , Dru −Ψru [32].

Based on this, the model for the signal received at user u
can be written as

yu =
∑

r∈Cu

√
sruĥ

H
ruwruxu +

∑

r∈Cu

√
srue

H
ruwruxu

+
∑

u′∈U ,u′ 6=u

∑

r′∈Cu′

√
sr′u′ ĥH

r′uwr′u′xu′

+
∑

u′∈U ,u′ 6=u

∑

r′∈Cu′

√
sr′u′eHr′uwr′u′xu′ + zu. (5)

Including the random estimation error, eru, in (5) allows

us to implement robust beamforming that exploits the error

covariance matrix Θru and hence compensate for some of the

error.

We now define hybrid expressions that account for both

the leakage and intra-(DU\CU) interference. For distributed

implementation, these expressions use locally constructed

beamformers.

III. DU-DISTRIBUTED SYSTEM

A. Hybrid Leakage-Interference

Let U−r = U\Er, represent the set of users that do not

belong to Er, i.e., U−r = {u | u /∈ Er}. We define an

expression for the average power (leakage) experienced by

the users U−r from DU r by serving user u. Averaged over

the random channel estimation error this power is given by

Lru (wru)

= Ee

{
∑

u′∈U−r

tr,u′

∣∣∣ĥH
ru′wru

∣∣∣
2

+
∑

u′∈U−r

tr,u′

∣∣eHru′wru

∣∣2
}

=
∑

u′∈U−r

tr,u′

∣∣∣ĥH
ru′wru

∣∣∣
2

+
∑

u′∈U−r

tr,u′wH
ruΘru′wru. (6)

The vector ĥru′ for u′ ∈ U−r is the estimated leakage channel

between DU r and user u′ ∈ U−r. The term tr,u′ ∈ B is

defined at DU r and represents the assumption about user

u′ ∈ U−r being scheduled by at least one of its serving DUs

r′ ∈ Cu′ .

We also define our optimization variables as the ma-

trix Wr = [{wru : u ∈ Er}] ∈ CM×|Er|, and sr =
[{sru : u ∈ Er}]T ∈ B|Er|×1 the beamformers and scheduling

variables used by DU r. For each pair of DU r and user

u, we now define a hybrid signal-to-leakage-and-intra-DU-

interference-and-noise ratio (SLINR-D) as

ξru ,
sruw

H
ruĥruĥ

H
ruwru

Aru (sr,Wr)
, (7)

where Aru (sr,Wr), used to simplify the notation, is the
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leakage plus intra-DU interference and noise averaged over

the unknown random channel estimation error, and it is defined

in (8).

In (7) we treat channel estimation error eru as additional

noise with covariance Θru as defined earlier. The first term

in (8) is the power leakage to the users not served by DU

r, the second is the self-interference resulting from imperfect

CSI of the serving channel, the third and fourth terms are the

intra-DU interference experienced by user u, and the final term

is the noise power.

Remark 2. It is worth commenting on the role of self-

interference in (8). Previous works based on leakage, do

not mix in interference. However, from (7) and (8), using

purely leakage means that the beam power (||wru||2) would

effectively cancel out in all but the noise term. This effectively

takes away the role of power allocations, to the detriment of

performance [13].

Remark 3. Even for a user served by a cluster of DUs, we

can still define an SLINR-D for each DU-user pair. Also, (7)

is still indirectly coupled across the scheduling decisions

of the other DUs through the terms {tr,u′ : u′ ∈ U−r}.

In centralized resource allocation, the scheduling of users

is performed by a single entity, hence we can simply set

tr,u = min
(
1,
∑

r′∈Cu
sr′u

)
. However, in a DU-distributed

system, a DU cannot know which users are scheduled by

the other DUs, complicating the development of a distributed

scheduling algorithm. In Section V, we address this issue by

introducing different methods to calculate the leakage.

Based on (7), we define a weighted pseudo-rate between

each DU r and its user u ∈ Er as

WPSru , δu log (1 + ξru) . (9)

As the name suggests, the weighted pseudo-rate employs the

SLINR-D metric in a rate-like function while providing for

fairness. We will optimize this pseudo-rate. Here, δu is a term

that accounts for the proportional fairness of user u. At time

slot i+1, these weights are the inverse of the long-term expo-

nentially averaged achieved data rate, i.e., δ
(i+1)
u = 1

R̄
(i)
u

[33],

where R̄
(i)
u = ηR

(i)
u +(1−η)R̄(i−1)

u is the user’s exponentially

weighted rate averaged over the previous time slots. Here,

0 < η < 1 acts as a forgetting factor, and R
(i)
u is the data

rate at time slot i.

The motivation to optimize the weighted pseudo-rate is, in

fact, two-fold. First, by only using local variables, it allows

for the development of a DU-distributed system. Second, it

acknowledges that maximizing the useful signal while min-

imizing the leakage and intra-DU interference is a prudent

practice. Although the SLINR lacks an operational meaning

(from an engineering viewpoint) still it can be interpreted as

a proxy to enhance the performance [12]. Specifically, when

a DU r minimizes the leaked interference to users U−r, it

minimizes the interference terms experienced by these users,

and hence it enhances the SINR for these users. The same

applies for the intra-DU interference experienced by users Er.

The mix between the leakage and the intra-DU interference

instead of using the leakage only prevents the power of the

beam of the DU from scaling equally in both the signal and

leakage terms when it is being optimized. In our numerical

results, we compare our approach to an SINR-based approach

which, unfortunately, requires centralized deployment, and we

show that our approach is effective.

B. Problem Definition

For each DU r, we define the following optimization

problem:

(P1)(r) max
Wr,sr

∑

u∈Er

δu log (1 + ξru) (10a)

s.t.
∑

u∈Er

sru ≤M (10b)

∑

u∈Er

||wru||22 ≤ p (10c)

ξru =
sruw

H
ruĥruĥ

H
ruwru

Aru (sr,Wr)
, u ∈ Er

(10d)

sru ∈ {0, 1}, u ∈ Er.
(10e)

The term Aru (sr,Wr) is defined in (8). We note that, in

(10d), {tr,u′ : u′ ∈ U−r} are not decision variables, but

rather they represent the assumptions of DU r about the

scheduled users served by other DUs. When this knowledge is

not available by any means, {tr,u′ : u′ ∈ U−r} are simply set

to 1. In Section V, we evaluate alternative methods to handle

this important issue.

The aim in (10) is to optimize, at DU r, the decision

variables sr and Wr, respectively the user scheduling and

beamforming vectors. The constraint in (10b) restricts the

number of users served by DU r to the number of antennas

M , (10c) specifies the power budget of DU r, (10d) treats the

SLINR-D expression as an auxiliary variable, and (10e) shows

that a user may be either scheduled or not. It is well established

that problems having the form of (10) are NP-hard [34], thus

obtaining the global optimum is computationally prohibitive,

and only a local optimum can be obtained. The problem is

mixed-integer and non-convex due to the binary variables and

Aru (sr,Wr) = Lru (wru) + Ee

{
sru
∣∣eHruwru

∣∣2 +
∑

u′∈Er,u′ 6=u

sru′

∣∣∣ĥH
ruwru′

∣∣∣
2

+
∑

u′∈Er,u′ 6=u

sru′

∣∣eHruwru′

∣∣2 + σ2
z

}

= Lru (wru) + sruw
H
ruΘruwru +

∑

u′∈Er,u′ 6=u

sru′wH
ru′ĥruĥ

H
ruwru′ +

∑

u′∈Er,u′ 6=u

sru′wH
ru′Θruwru′ + σ2

z . (8)
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their presence in both the numerator and denominator of the

utility function.

Using fractional programming, the problem in (10) can be

reformulated and written as

(P2)(r) max
Wr,sr,ξr,ζr

f2 (sr,Wr, ξr, ζr) (11a)

s.t.
∑

u∈Er

sru ≤M (11b)

∑

u∈Er

||wru||22 ≤ p (11c)

sru ∈ {0, 1}, u ∈ Er. (11d)

with the function f2 (sr,Wr, ξr, ζr) found in (11a) is de-

fined as

f2 (sr,Wr, ξr, ζr) =
∑

u∈Er

δu (log (1 + ξru)− ξru)

+
∑

u∈Er

(
2Re

{
ζ∗ru
√
δu (1 + ξru)sruw

H
ruĥru

}

− |ζru|2
(
sruw

H
ruĥruĥ

H
ruwru +Aru (sr,Wr)

))
. (12)

where ζr ∈ C|Er|×1 is a new auxiliary variable vector

introduced by fractional programming [10]. Fractional pro-

gramming refers to optimizing functions composed of ratios.

The function can be composed of a single ratio, or, as in

our case, a sum of ratios. The numerator and denominator

can be nonlinear. Techniques used to obtain local optimum

for such optimization problems include the Charnes-Cooper

method [35], Dinkelbach’s method [36], and quadratic trans-

form [10].

The reformulation in (11) is based on the Lagrangian formu-

lation and fractional programming. Please refer to Appendix A

for details.

In what follows, we obtain optimal expressions for the

optimization variables, one set of variables at a time, i.e.,

we use block coordinate descent. As for the scheduling vari-

ables sr, we optimize them using a combinatorial search as

described below.

When the variables other than ζru are fixed, the first

optimality condition of (12) with respect to ζru results in the

optimal value as

ζru =
sru
√
δu (1 + ξru)w

H
ruĥru

sruwH
ruĥruĥH

ruwru +Aru (sr,Wr)
. (13)

We write the Lagrangian formulation of (11), and when vari-

ables (sr, ξr, ζr) are fixed, we derive the optimality condition

to obtain the optimal expression for the transmit precoder wru

as shown in (14).

The variable µr denotes the Lagrange multiplier for the

power budget constraint (11c), and is inversely related to the

beamformers’ power at DU r; µr can be determined through

the complementary slackness condition for the power budget.

Specifically, let wru(µr) denote the right-hand side of (14).

If
∑

u∈Er
‖wru(0)‖22 ≤ p, then µr = 0, otherwise the value

of µr can be determined through a bisection search to satisfy∑
u∈Er

‖wru(µr)‖22 = p.

Algorithm 1: Distributed resource allocation at each

DU r

1 Initialize Wr for all users.

2 Initialize sr by selecting M users with max (9).

3 while NOT converged do

4 Update {ξru : u ∈ Er} using (10d).

5 Update {ζru : u ∈ Er} using (13).

6 Update {wru : u ∈ Er} using (14) and µr through

the complementary slackness condition of power

budget.

7 Update Vr by solving (15) using Hungarian

algorithm, then {sru =
∑M

m=1 vru,m : u ∈ Er}
8 end

When the variables (Wr, ξr, ζr) are fixed, the problem

of optimizing sr at each DU r is a combinatorial problem,

where the users are matched to the available non-zero beams

{w̃rm : m ∈ {1, . . . , M}} found at the DU. Thus, the prob-

lem of optimizing the scheduling is cast as a combinatorial

problem as follows.

Constraint (15b) states that a user can be assigned at most

one non-zero beam, and constraint (15c) states that all non-

zero beams are assigned. In (15a), Ãru,m is the term that

contains the leakage, interference and noise terms resulting

from assigning the non-zero beam m on DU r to user u, and

is defined as (16).

It is important to note that, Ãru,m is not affected if the

non-zero beams other than m are assigned to different users,

because in the scheduling phase the beamformers are fixed.

This problem in (15) is an agent-task assignment

problem [37], and can be written as finding an

(|Er| × M) column-permutating matrix Vr that maximizes

([1 . . . 1]ArV
T
r [1 . . . 1]

T ) for a given matrix Ar. A column-

permuting matrix is binary with a single 1 in each column in

a unique location. Here, [Vr]um = vru,m and the entries of

Ar ∈ R|Er|×M are the pseudo-rates in (15a) representing the

utility of the users served by DU r. The matrix Vr, hence,

serves to assign each non-zero beam (column of Vr) to a

specific user (row of Vr).

This assignment problem can be solved efficiently in poly-

nomial time using the Hungarian algorithm [38] (also known

as the Kuhn–Munkres algorithm). This algorithm executes a

series of iterative manipulations for the rows and columns of

the matrix Ar (or alternatively a cost matrix), which allows us

to find the maximum (or minumum for cost matrix) entries for

the assignment of the rows of Ar to the columns (agent-task

assignment). Implementations for the Hungarian algorithm can

be readily found in many scripting languages.

Finally, user u is scheduled by DU r if it is assigned a non-

zero beam, i.e., sru =
∑M

m=1 vru,m. After defining the optimal

expression for each variable type when the other variables are

fixed, we can construct Algorithm 1 that uses block coordinate

descent to optimize the resource allocation in a distributed

fashion on each DU. The initialization of the beamforming in

Step 1 can be performed using conjugate beamforming, while

Steps 3-7 optimize one variable at a time until convergence.
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We will analyze convergence in our section on numerical

results.

IV. CU-DISTRIBUTED SYSTEM

The previous section designed an algorithm that allows

each DU to perform its own allocation decisions. However,

if a CU can coordinate the DUs under its control, we can

include the intra-CU interference, i.e., inside the virtual cell

of each CU. A CU-distributed algorithm would, therefore,

provide a balance between some coordination (and information

exchange) and the completely centralized case where all CUs

are jointly optimized. Additionally, the CU would decide

on user scheduling for all the DUs under its control. We

emphasize, however, that a user may be associated with DUs

under the control of different CUs (user-centric clustering).

A user may, therefore, be scheduled by one CU, but not

by the other. For each CU q, we define the set of users

Ūq , ∪
r′∈Bq

Er′ that includes all the users connected to at

least one DU under the control of CU q. Due to user-centric

clustering, the different sets {Ūq}Qq=1 overlap.

For each user u ∈ Ūq and DUs Dqu = (Cu ∩ Bq), we

define the concatenation of beamformers, estimated channels,

channel estimation error and scheduling variables as

w̄qu =
[{
wT

ru : r ∈ Dqu

}]T ∈ C
M|Dqu|×1 (17)

h̄qu,u′ =
[{

ĥT
ru′ : r ∈ Dqu

}]T
∈ C

M|Dqu|×1 (18)

ēqu,u′ =
[{
eTru′ : r ∈ Dqu

}]T ∈ C
M|Dqu|×1 (19)

Squ = (diag ({sru : r ∈ Dqu})⊗ IM ) ∈ B
M|Dqu|×M|Dqu|

(20)

We note that (18) and (19) represent the estimated channel and

estimation error, respectively, between user u′ and the serving

DUs Dqu for user u. As in the previous section, we define an

expression for the power leakage experienced by the users in

Ū−q = U\Ūq from all the DUs due to serving user u. Averaged

over the random channel estimation error this leakage is given

by (21), where the term E
{
ēqu,u′ ēHqu,u′

}
= Θ̄qu,u′ in (21)

represents the covariance of the channels’ estimation error

obtained from treating the unknown random Gaussian error

as additional noise.

As before, we define the hybrid signal-to-leakage-and-intra-

CU-interference-and-noise-ratio (SLINR-C) between each CU

q and user u ∈ Ūq as

ξ̄qu ,
w̄H

quS
1/2
qu h̄qu,uh̄

H
qu,uS

1/2
qu w̄qu

Bqu (Sq,Wq)
, (22)

where the leakage plus intra-CU interference and noise, av-

eraged over the random estimation error, is defined as (23).

Here in (23), Squ is defined in (20) with diagonal entries

sru ∈ B denoting the scheduling variable of user u at DU r,
and t̄q,u ∈ B is defined at CU q to represent the assumption

for user u being scheduled by at least one of its serving DUs

r′ /∈ Bq not under the control of CU q.

Similar to the previous section, for each CU q we can opti-

mize the pseudo-rates as (24). The set Wq = {Wr : r ∈ Bq}
in (24) represents the matrix of beamformers used by the

DUs Bq , where, as noted earlier, Wr = [{wru : u ∈ Er}] ∈
CM×|Er| are the beamformers used by each DU r to serve its

users. Similarly, the scheduling variables Sq = {Squ : u ∈

wru = sruζ
∗
ru

√
δu (1 + ξru)

(
|ζru|2

(
sru

(
ĥruĥ

H
ru +Θru

)
+

∑

u′∈U−r

tr,u′ĥru′ ĥH
ru′ +

∑

u′∈U−r

tr,u′Θru′

)

+ sru
∑

u′∈Er,u′ 6=u

|ζru′ |2
(
ĥru′ĥH

ru′ +Θru′

)
+ µrIM

)−1

ĥru

= sruζ
∗
ru

√
δu (1 + ξru)

(
|ζru|2

( ∑

u′∈U−r

tr,u′ ĥru′ĥH
ru′ +

∑

u′∈U−r

tr,u′Θru′

)
+ sru

∑

u′∈Er

|ζru′ |2
(
ĥru′ĥH

ru′ +Θru′

)
+ µrIM

)−1

ĥru, (14)

(P3)(r) max
{vru,m:u∈Er,1≤m≤M}

M∑

m=1

vru,m
∑

u∈Er

δu log

(
1 +

w̃H
rmĥruĥ

H
ruw̃rm

Ãru,m

)
(15a)

s.t.

M∑

m=1

vru,m ≤ 1, u ∈ Er (15b)

∑

u∈Er

vru,m = 1, m = 1, . . . ,M (15c)

vru,m ∈ {0, 1}, u ∈ Er,m = 1, . . . ,M (15d)

Ãru,m =
∑

u′∈U ,u′ /∈Er

tr,u′w̃H
rm

(
ĥru′ ĥH

ru′ +Θru′

)
w̃rm + w̃H

rmΘruw̃rm +
M∑

m′=1,m′ 6=m

w̃H
rm′

(
ĥruĥ

H
ru +Θru

)
w̃rm′ + σ2

z .

(16)
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Ūq}, where Squ contains the scheduling variables sru by each

DU r ∈ Dqu. Wq and Sq are the optimization variables.

Because of the coupling across DUs under the control of CU

q, we require a new approach to the scheduling problem. The

scheduling variables can be related to the indicator function of

the beamformer which, in turn, can be written as an ℓ0-norm,

i.e., sru = 1{‖wru‖22} = ‖‖wru‖22‖0. From compressive

sensing [39], we can approximate the ℓ0-norm as a weighted

ℓ1-norm that is easier to work with as ‖x‖0 ≃∑m αm|xm| =
‖αTx‖1, [40]. The variables αm are weights that can be

updated iteratively. For our problem, we can define the weights

αru as

αru =
1

‖wru‖22 + ǫ
, (25)

where ǫ > 0 provides stability and ensures that a zero-valued

component in ‖wru‖22 does not strictly prohibit a nonzero

estimate in the next iteration; importantly, the results are

not very sensitive to ǫ and it can be chosen to be slightly

smaller than the expected value of ‖wru‖22 for the scheduled

users [40].

Based on this, we can define the following optimization

problem at each CU q

(P5)(q) max
Wq

∑

u∈Ūq

δu log
(
1 + ξ̄qu

)
(26a)

s.t.
∑

u∈Er

αru‖wru‖22 ≤M, r ∈ Bq (26b)

∑

u∈Er

‖wru‖22 ≤ p, r ∈ Bq (26c)

ξ̄qu =
w̄H

quh̄qu,uh̄
H
qu,uw̄qu

Cqu (Wq)
, u ∈ Ūq (26d)

where the auxiliary variable (26d) does not contain the

scheduling variables in the set Sq because the expression

includes the beamformers Wq which will be zero for the users

not scheduled, thus, the expression of Cqu is the same as Bqu

without including Sq.

Using fractional programming, our optimization problem

in (26) can be reformulated as

(P6)(q) max
Wq,ξ̄q,ζ̄q

f2
(
Wq, ξ̄q, ζ̄q

)
(27a)

s.t.
∑

u∈Er

αru‖wru‖22 ≤M, r ∈ Bq (27b)

∑

u∈Er

‖wru‖22 ≤ p, r ∈ Bq. (27c)

with the function f2
(
Wq, ξ̄q, ζ̄q

)
in (27a) defined as

f2
(
Wq, ξ̄q, ζ̄q

)
=
∑

u∈Ūq

δu
(
log
(
1 + ξ̄qu

)
− ξ̄qu

)

+
∑

u∈Ūq

(
2Re

{
ζ̄∗qu

√
δu
(
1 + ξ̄qu

)
w̄H

quh̄qu,u

}

− |ζ̄qu|2
(
w̄H

quh̄qu,uh̄
H
qu,uw̄qu + Cqu (Wq)

)
)
, (28)

where ζ̄q = [ζ̄qu1 . . . ζ̄qu|Uq |
]T are required auxiliary vari-

ables. In Appendix B we provide the details of the reformu-

lation leading to (27).

Using the first optimality condition of (28) with respect to

ζ̄qu. The optimal value of ζ̄qu is

ζ̄qu =

√
δu
(
1 + ξ̄qu

)
w̄H

quh̄qu,u

w̄H
quh̄qu,uh̄H

qu,uw̄qu + Cqu (Wq)
. (29)

Now, using the constraints (27b) and (27c), we define the

L̄qu (w̄qu) = Ee

{
∑

u′∈Ū−q

t̄q,u′

∣∣h̄H
qu,u′w̄qu

∣∣2 +
∑

u′∈Ū−q

t̄q,u′

∣∣ēHqu,u′w̄qu

∣∣2
}

=
∑

u′∈Ū−q

t̄q,u′

∣∣h̄H
qu,u′w̄qu

∣∣2 +
∑

u′∈Ū−q

t̄q,u′w̄H
quΘ̄qu,u′w̄qu, (21)

Bqu (Sq,Wq) = L̄qu (w̄qu) + Ee

{ ∣∣∣ēHqu,uS1/2
qu w̄qu

∣∣∣
2

+
∑

u′∈Ūq,u′ 6=u

w̄H
qu′S

1/2
qu′ h̄qu′,uh̄

H
qu′,uS

1/2
qu′ w̄qu′

+
∑

u′∈Ūq,u′ 6=u

w̄H
qu′S

1/2
qu′ ēqu′,uē

H
qu′,uS

1/2
qu′ w̄qu′ + σ2

z

}
,

= L̄qu (w̄qu) + w̄H
quS

1/2
qu Θ̄qu,uS

1/2
qu w̄qu +

∑

u′∈Ūq,u′ 6=u

w̄H
qu′S

1/2
qu′ h̄qu′,uh̄

H
qu′,uS

1/2
qu′ w̄qu′

+
∑

u′∈Ūq,u′ 6=u

w̄H
qu′S

1/2
qu′ Θ̄qu′,uS

1/2
qu′ w̄qu′ + σ2

z (23)
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following Lagrangian function

f3(Wq,µq,λq) = −
∑

r∈Bq

λr

(
∑

u∈Er

αru‖wru‖22 −M

)

−
∑

r∈Bq

µr

(
∑

u∈Er

‖wru‖22 − p

)

(a)
= −

∑

u∈Uq

∑

r∈Dqu

λrαru‖wru‖22 +M
∑

r∈Bq

λr

−
∑

u∈Uq

∑

r∈Dqu

µr‖wru‖22 + p
∑

r∈Bq

µr

= −
∑

u∈Uq

∑

r∈Dqu

ωru‖wru‖22 +
∑

r∈Bq

(pµr +Mλr) , (30)

where ωru = µr + λrαru, and (a) follows from∑
r∈Bq

∑
u∈Er

(·) =∑u∈Uq

∑
r∈Dqu

(·).
When the variables other than Wq are fixed, using the

Lagrangian formulation of (27), we can write the correspond-

ing expression for the optimal beamformer wru as (31),

where Ωqu = (diag ({ωru : r ∈ Cu})⊗ IM ). Note that the

beamformer wru is obtained from w̄qu using (17).

The Lagrangian multipliers µr ≥ 0 and λr ≥ 0 found in

Ωqu and (30) can be determined using their power budget

in (27c) and capacity (27b) constraints, respectively. Impor-

tantly, both constraints are related to the power used at DU

r, where constraint (27b) can be seen as a weighted power

constraint. Hence, both cannot be tight simultaneously; from

complementary slackness, one of these Lagrangian multipliers

needs to be zero. Unfortunately, we do not know, a priori,

which constraint will remain tight. Therefore, we propose

a heuristic that, at each iteration, the algorithm checks for

whether the capacity constraint is satisfied (allowing λr = 0);

if it is not satisfied, we update λr to a small value. As fo

µr, we update it using the bisection search method as was

discussed in the previous section for a DU-distributed system.

It is worth noting that the off-diagonal entries of the terms

of the inverse term in (31) are very small compared to the

diagonal entries; this directly follows from summing up a

large number of multiplied independent zero-mean random

elements. Hence, in practice, changing µr has little effect on

the other beamformers {wr′u : r′ ∈ Dqu\r} in (31) (see (17)).

Finally, we implement Algorithm 2 on each CU to perform

the resource allocation and the user scheduling. The discussion

Algorithm 2: Distributed resource allocation at each

CU q

1 Initialize W and αru for all users.

2 while NOT converged do

3 Update {ξ̄qu : u ∈ Uq} using (26d).

4 Update {ζ̄qu : u ∈ Uq} using (29).

5 Update W using (31).

6 Update {λr, µr : r ∈ Bq} as described using

complementary slackness.

7 Update weights α using (25).

8 end

of Algorithm 2 is similar to that in the DU-distributed system

and is omitted for brevity.

V. SCALABILITY OF CALCULATING THE LEAKAGE

The main issue in calculating the leakage expressions in (6)

or (21), is that each DU needs to estimate the channels to

all the users in the network. This is, likely, impractical and

not scalable. Another issue is that in a distributed algorithm, a

DU in the DU-distributed system (or CU in the CU-distributed

system) cannot know which users will be scheduled by other

DUs (or CUs), i.e., does not know the value of the terms sr,u′

(or s̄q,u′ ) to accurately choose tr,u′ (or t̄q,u′ ). As such, for a

practical implementation, alternative methods to calculate the

leakage are needed.

In this section, we exploit the fact that leakage is a conve-

nience we use to estimate the impact a DU (CU) has on other

DUs (CUs). We propose here three methods to calculate this

impact:

• Standard CSI estimation: assume all the users U−r in

DU-distributed system (or Ū−q in CU-distributed system)

are scheduled and estimate the CSI to all of them. This

means that for each DU r, we set {tr,u = 1 : u ∈ U−r};

similarly for t̄q,u for the CU-distributed system. This

technique is already used above in the development of

our algorithms.

• Statistical CSI: similar to the first method, except using

only the large-scale fading statistics to calculate the

leakage, eliminating the need for continual training of

the leakage channels.

(P4)(q) max
Wq,Sq

∑

u∈Ūq

δu log
(
1 + ξ̄qu

)
(24a)

s.t.
∑

u∈Er

sru ≤M, r ∈ Bq (24b)

∑

u∈Er

||wru||22 ≤ p, r ∈ Bq (24c)

ξ̄qu =
w̄H

quS
1/2
qu h̄qu,uh̄

H
qu,uS

1/2
qu w̄qu

Bqu (Sq,Wq)
, r ∈ Bq, u ∈ Er (24d)

sru ∈ {0, 1}, r ∈ Bq, u ∈ Er (24e)
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• Traffic distribution: use traffic distribution to calculate the

leakage. Based on the statistical distribution of traffic,

this completely eliminates the need for real-time leakage

information.

Statistical CSI: Each DU r uses the large-scale fading

statistics to calculate the leakage to all the users u′ ∈ U−r

other than the ones it serves. This means that the leakage term

in the DU-distributed system can be alternatively defined as

Lru (wru) =
∑

u′∈U−r

wH
ruΛru′wru,

where Λru′ = ψru′β(dru′)IM . (32)

Similarly, for the CU-distributed system, we define the leakage

in the CU-distributed system as

L̄qu (w̄qu) =
∑

u′∈U−Ūq

w̄H
quΛ̄qu,u′w̄qu,

where Λ̄qu,u′ = (diag ({ψru′β(dru′ ) : r ∈ Dqu})⊗ IM ) .
(33)

Traffic distribution: Instead of calculating the leakage to all

the users that may or may not be scheduled, each node in the

network can use a spatial traffic distribution for the network

region around it. Such an approach can be easily based

on a simple traffic survey, resulting in a traffic probability

density function (PDF), Υn(x̃u, ỹu) at location (x̃u, ỹu). we

can redefine the leakage terms found in (8) and (23) to use the

PDF of the traffic distribution in the region around the node

instead of calculating the leakage to the users in these regions.

Hence, for the DU-distributed system, the leakage term can be

written as

Lru (wru) = Ex̃u,ỹu

{
wH

ruΛ̃ruwru

}

=

∫∫

x̃u,ỹu∈ιr

wH
ruΛ̃ruwruΥ(x̃u, ỹu) dx̃u dỹu, (34)

where ιr is the boundary of the region considered to calculate

the leakage. Essentially, (34) calculates the average leakage

power weighted by the traffic PDF, i.e., it emphasizes the

regions with hotspots. The term Λ̃ru =
(
β(d̃ru + dexcl)

)
IM ,

with d̃ru =

√
(x̃r − x̃u)

2
+ (ỹr − ỹu)

2
written as a function

of the location of the DU (x̃r, ỹr) and the point (x̃u, ỹu)
used to calculate the leakage, and dexcl is an exclusion region

around the DU, which is chosen to be larger than the reference

distance of the path loss.

Parameter Value

Cell con-
fig.

Q, N , M , density of PPP
λusers when no hotspots exist

7, 10, 8, 200 users/km2

Power,
pilots

p, pu, τd, τp 30 dBm, 20 dBm, 200,
(32 or 64)

Noise noise spectral efficiency Sz ,
noise figure Fz , Bandwidth

−174 dBm/Hz,
8 dBm, 180 KHz

Fading σshadowing, ρ 4 dB, β(0.4)

TABLE I: Simulation parameters.

Similarly, in the CU-distributed system, the leakage term

can be defined as

L̄qu (w̄qu) = Ex̃u,ỹu

{
w̄H

quΛ̆quw̄qu

}

=

∫∫

x̃u,ỹu∈ῑq

w̄H
quΛ̆quw̄quΥ(x̃u, ỹu) dx̃u dỹu, (35)

where Λ̆qu =
(
diag

({
β
(
d̃ru + dexcl

)
: r ∈ Dqu

})
⊗ IM

)

is the concatenated path loss between the serving cluster of

user u found in cell q, i.e., Dqu, and locations (x̃u, ỹu) ∈ ῑq .

We emphasize that the traffic distribution eliminates the need

for any inter-node information exchange.

VI. NUMERICAL RESULTS

In this section, we illustrate the efficacy of the proposed

algorithms. We simulate a network of 7 hexagonal virtual

cells, i.e., 7 CUs, each has a radius of 500 meters. We assume

that the N DUs in each virtual cell are uniformly distributed

inside the cell boundaries. We use wraparound to eliminate

the network border effect. As stated in the system model, the

user-centric clustering is applied, thus the concept of cells is

only applicable on the front-haul, hence the term “virtual”.

We use an exclusion region of radius 20 m around each DU

and model the user locations as a Poisson point process (PPP)

with local density determined by the traffic model.

In this paper, we model the traffic distribution as a mix of

a uniform distribution, chosen with a probability Ph, and a

number (Nh) of hotspots. The hotspot traffic is modeled as

bivariate normal distributions. Based on this, we define the

PDF of the traffic used to calculate the leakage on a node n
(DU or CU) as [41]

Υn(x̃u, ỹu) , fh

(
Ph

(
1

an

)
+ (1− Ph)

× 1

Nh2πσ2
h

Nh∑

i=1

(
exp

(
− (x̃k − x̃hi

)
2
+ (ỹk − ỹhi

)
2

2σ2
h

)))

(36)

w̄qu = ζ̄∗qu

√
δu
(
1 + ξ̄qu

)(
|ζ̄qu|2

(
h̄qu,uh̄

H
qu,u + Θ̄qu,u +

∑

u′∈Ū−q

t̄q,u′

(
h̄qu,u′ h̄H

qu,u′ + Θ̄qu,u′

) )

+
∑

u′∈Ūq,u′ 6=u

|ζ̄qu′ |2
(
h̄qu,u′ h̄H

qu,u′ + Θ̄qu,u′

)
+Ωqu

)−1

h̄qu,u

= ζ̄∗qu

√
δu
(
1 + ξ̄qu

)(
|ζ̄qu|2

∑

u′∈Ū−q

t̄q,u′

(
h̄qu,u′ h̄H

qu,u′ + Θ̄qu,u′

)
+
∑

u′∈Ūq

|ζ̄qu′ |2
(
h̄qu,u′ h̄H

qu,u′ + Θ̄qu,u′

)
+Ωqu

)−1

h̄qu,u,

(31)
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Fig. 2: Evolution of objection function. Subplots in each system: (Left) standard CSI est. case, (center) statistical CSI for

out-of-cluster users case, (right) traffic distribution case.

The value of Ph can be used to control the density of

the hotspots that are centered at locations [x̃h, ỹh] =[[
x̃h1 , . . . , x̃hNh

]T
,
[
ỹh1 , . . . , ỹhNh

]T]
∈ RNh×2. These

hotspots have equal variances σ2
h in both x and y dimensions.

The term an is the area of the considered region around each

node, and fh is a normalizing factor that can be calculated

numerically to normalize the PDF.

We simulate path loss using the COST231 Walfisch-Ikegami

model [42], at carrier frequency f = 1800 MHz, in a

typical urban environment, where we define β(dru) (dB) =
−112.4271−38 log10 (dru) with dru in km. We use τd = 200
symbols as the length of the downlink transmission phase, and

we simulate the cases of pilot lengths τp = 32 and 64. We

average our results using Monte Carlo simulations over both

network realizations and time slots.

Simulating multiple time slots captures the effect of the

fairness on user scheduling. In this regard, we simulate 30 time

slots and average the results over the last 20 time slots after

the transient in the fairness weights. These results represent the

network steady state performance and is denoted as the long-

term performance. In Table I, we summarize the parameters

used in all simulations unless specified otherwise.

In Fig. 2, we plot the evolution of the objective func-

tion in the DU-distributed system (Fig. 2(a)) and the CU-

distributed one (Fig. 2(b)) for different realizations of channels

and networks. For each system, we show as subplots the

three different methods proposed to calculate the leakage.

Additionally, we plot many runs for each case different choices

of the pilot length, τp. As is clear, the results show that the

algorithms converge in a smooth, non-decreasing, pattern.

To test the efficacy of our developed approaches and to

benchmark them, we compare our results with three schemes

defined as follows.

• Centralized [29]: we use a similar approach to the CU-

distributed system but with some differences that include

the use of the weighted sum rate objective function, i.e.,

SINR-based. The implication of this is the need for a

centralized unit to gather all the information about the

network and run the algorithm, which means that the

scheme is not as scalable as the distributed schemes.

In theory, a centralized solution should outperform a

distributed solution. However, since the optimization

problem is non-convex, any solution is a local optimum. It

is, therefore, not guaranteed that the centralized solution

outperforms the distributed solution in practice.

• Local zero-forcing (ZF): we use ZF constructed locally

on each DU with round-robin scheduling for the users.

Note that the ZF matrix needs to be constructed locally

at the DUs, because the sets of users to be served by the

DUs overlap with each other. Hence, no disjoint regions

can be defined to construct a ZF matrix across multiple

DUs.

• Conjugate: we use conjugate beamforming with round-

robin scheduling.

Sum Rate: In Fig. 3(a), we plot the network sum of

spectral efficiency (SE) averaged over network realizations for

a single time slot when the fairness weights are equal for

all the users (max sum rate). As expected, the CU-distributed

system provides better performance than the DU-distributed

system because it implements more coordination. Compared

to a centralized approach, the CU-system provides comparable

performance, with only a slight loss in network sum SE. This

is a very important result because it illustrates the importance

of deploying multiple CUs in the cell-free MIMO scheme.

Note that unlike the DU- and CU-distributed systems, the

centralized scheme is not scalable because it requires gathering

all the CSI, including inter-CU CSI, at a central node in the

network to perform the optimization.

Clearly, round-robin scheduling and the benchmark beam-

forming systems provide poor performance due to scheduling

the users irrespective of their channel conditions and without

any consideration of interference cancellation. Compared to

the benchmark schemes, our proposed approaches provide

a huge gain. Moreover, the results show the efficacy of

the different methods of calculating the leakage, denoted as
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Fig. 3: Network sum SE for the two distributed systems under

different techniques to calculate leakage.

standard CSI, statistical CSI and traffic distribution; these three

approaches provide approximately equal performance. One

note though is that using the traffic distribution to calculate

the leakage is more reasonable when the number of users

requesting access is very large, which is the main theme for

this study. When the number of users requesting access is

small, using the traffic distribution will lead to some loss in

performance.

In Table II, we compare the gains of our proposed schemes

to the benchmark schemes, where our two distributed systems

are able to provide different degrees of performance. Note

that the CU-distributed system provides a 1.28- and 1.77-

fold performance gain compared to the DU-distributed system

using τp = 32 and τp = 64, respectively.

Including Fairness: In Fig. 3(b), we plot the long-term

network sum SE, averaged over both network realizations and

time slots. The importance of this figure is in capturing the

effect of the evolution of fairness weights and steady state

algorithm performance. The results show that on the long-term,

using the statistical CSI provides the best performance among

the other methods used to calculate the leakage. Also, the

CU-distributed system provides a 1.3-fold performance gain

over the long-term compared to the DU-distributed system.

Furthermore, the results show that over the long-term the CU-

distributed system can outperform the centralized scheme.

As mentioned, both the centralized scheme and the ones

proposed here result in local optima; given the complexity of

the objective function and constraints, it is impossible to bound

the distance from the optimal solution. However, as in the

DU-distributed system CU-distributed system
τp = 64 τp = 32 τp = 64 τp = 32

Centralized 0.64-fold 0.72-fold 0.88-fold 0.9-fold

Local ZF 9-fold 7.6-fold 12.5-fold 9.5-fold

Conjugate 12.7-fold 12-fold 17.5-fold 15-fold

TABLE II: Performance of our proposed systems compared to

different schemes at equal fairness weights.

proposed distributed schemes, fewer variables are optimized at

each DU/CU. We speculate that the fewer variables required

for the CU-distributed system lead to a solution closer to the

global optimum. This is consistent with results for a traditional

cellular network [43]. Another possible reason for this is

that the fairness weights of the users are different in each

system, after the allocation of time slots, which may affect

the set of users being scheduled concurrently in the latter time

slots. For the DU-distributed system, the centralized scheme

still provides a better performance in any scenario. This is

also reasonable because the DU-distributed sytem restricts its

performance to the knowledge found at the DU, so it is less

cooperative than the CU-distributed system.

All in all, the results show that both schemes are very

efficient in performing the resource allocation, though, as

expected, the CU-distributed system provides substantially

better performance. Our results highlight the importance of

deploying multiple CUs in the user-centric cell-free network

while the DU-distributed system can still be used if the front-

haul is overloaded.

Using Traffic Distribution: We use the traffic distribution

defined in (36) with σh = 50 m, Ph = 0.5, and the number

of hotspots Nh randomly generated as uniformly random

variables between four and six hotspots within the studied

network area. User locations are then generated from this

traffic distribution. An example of a typical network is shown

in Fig. 4 which also plots a realization of DU locations. In

Fig. 5, we plot the long-term network sum SE under the

scenario of hotspots, where N = 5 and density of users is

λusers = 400 users/km2. As before, the results are averaged

over network realizations and time slots. Most importantly,

the results show that the case using the traffic distribution to

calculate the leakage provides comparable performance to the

other two methods. We conclude that using the traffic distri-

bution to calculate the leakage can be a promising approach

to completely eliminating any information exchange between

DUs/CUs.

CDF: In Figs. 6 and 7, we plot the cumulative distribution

function (CDF) of the long-term network sum SE and the long-

term SE per user, respectively. Note that for the SE per user,

we average the SE over all the simulated time slots even if the

user is not scheduled; this provides a true measure of the user’s

overall throughput. The results show the superiority of the

CU-distributed system over the DU-distributed system in both

network sum SE and SE per user. Notably, for the scenario

considered, a pilot length of τp = 32 provides better a trade-

off between pilot contamination and pilot training overhead

compared to τp = 64.

Algorithm Complexity Analysis: We now discuss the com-

plexity of the algorithms developed. For Algorithm 1 ex-
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ecuted on each DU, per iteration, we have complexity of

O (|Er|) and O (|Er|) to update ξr and ζr, respectively. The

combinatorial search step using the Hungarian algorithm has

a polynomial time of complexity O
(
|Er|3

)
. To finish, the

complexity of the beamforming step is equal to the com-

plexity of the weighted MMSE which can be derived to

be O
(
|Us|2M2 + |Us|M3

)
[44], where |Us| ≤ M is the

number of scheduled users. This means that the complexity

per iteration of the algorithm is at most O
(
M4 + |Er|3

)
at

each DU.

For Algorithm 2 executed on each CU, we have a com-

plexity of O (|Uq|), O (|Uq|), O (N |Eavg|), O (N) to update

ξ̄q , ζ̄q , α, and {λr : r ∈ Bq} respectively, where |Eavg|
is the average number of users to be served by a DU. To

compare both systems, we can set Er = Eavg in the DU-

distributed system. Note that Uq ≪ NEr due to the users

overlapped between the clusters {Er : r ∈ Bq}. The complex-

ity of the beamforming step is at most O
(
N2M4 +NM4

)

assuming |Us| ≤ NM . Hence, we obtain a total complexity

of O
(
N2M4 +N |Eavg|+ |Uq|

)
per CU.

As a point of comparison, if we are to construct a centralized

resource allocation scheme, we end up with complexity of

O (|U|), O (|U|), O (QN |Eavg|), O (QN) to update ξ̄, ζ̄, α,

and {λr : r ∈ B}, respectively. Hence, we end up with a total

complexity per iteration as O
(
Q2N2M4 +QN |Eavg|+ |U|

)

on the centralized node that will run the algorithm. Impor-

tantly, such a centralized system requires rapidly increasing

computation capabilities in the sense that when the network

area grows, the number of virtual cells Q grows. The dis-

tributed cases do not suffer from this issue.

From a communication point of view, in a centralized

system, all the DUs and the CUs in the network need to

communicate the algorithm data with a centralized node at the

network core to be able to perform the allocation. All in all, the

DU-distributed system is the most distributed scheme, while

the CU-distributed system provides a balance between the DU-

distributed system and the centralized one in both complexity,

scalability and performance.

Front-haul Footprint: To analyze the front-haul communi-

cations imposed by the algorithms, the DU-distributed system

does not require exchanging information with the CU dur-

ing the execution of the algorithm to perform the resource

allocation. For the CU-distributed system, the N DUs need

to exchange, with their CU, the CSI for their users, and

then receive the scheduling decisions for |Eavg| users, and the

constructed beamformers for at most M users that will be

scheduled.

Regarding the CSI exchange, for the standard CSI estima-

tion method used to calculate the leakage, each DU needs

to exchange the CSI for |Ung| users with the CU, where

Ung represents the users within an area around the DU that

have a non-negligible reachable signal, which can simply

be based on distance or selected regions. For the statistical

CSI approach used to calculate the leakage, we need to

exchange |Eavg| ≤ |Ung| CSI vectors for the users. For the

approach that uses the traffic distribution, we do not need to

exchange the leakage CSI, because we use a surveyed spatial

traffic distribution to calculate the leakage; however the DUs

still need to exchange |Eavg| ≤ |Ung| CSI vectors for their

users. Note that the size of these data to be exchanged can

be reduced using signal quantization techniques [45], [46]

proposed for the front-haul. In Table III, we compare the

complexity and front-haul footprint of our distributed systems

with a centralized one.

Finally, whether to implement the DU-distributed or the

CU-distributed system is a system preference, and it depends

on the tradeoff between performance and both computational

complexity and fronthaul load. However, we believe that

the CU-distributed system (in a multi-CU network) is better

because it provides a tradeoff between complexity per node

and performance compared to the centralized scheme and the

DU-distributed system. Moreover, it allows simple design for

the DUs.



14

0 100 200 300 400 500 600

Long-term Network Sum SE (nats/s/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

DU-system, Standard CSI est., 
p
 = 64

CU-system, Standard CSI est., 
p
 = 64

DU-system, Standard CSI est., 
p
 = 32

CU-system, Standard CSI est., 
p
 = 32

(a) Using standard CSI estimation.

0 100 200 300 400 500 600

Long-term Network Sum SE (nats/s/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

DU-system, Statistical CSI, 
p
 = 64

CU-system, Statistical CSI, 
p
 = 64

DU-system, Statistical CSI, 
p
 = 32

CU-system, Statistical CSI, 
p
 = 32

(b) Using statistical CSI.

0 100 200 300 400 500 600

Long-term Network Sum SE (nats/s/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

DU-system, Traffic dist., 
p
 = 64

CU-system, Traffic dist., 
p
 = 64

DU-system, Traffic dist., 
p
 = 32

CU-system, Traffic dist., 
p
 = 32

(c) Using traffic distribution.

Fig. 6: CDF of the network sum of spectral efficiency averaged over all the time slots.
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Fig. 7: CDF of the user spectral efficiency averaged over all the time slots.

System Complexity per node and iteration Front-haul overhead for algorithm
Standard CSI est. Statistical CSI Traffic dist.

DU-distributed system O
(

M4 + |Eavg|3
)

0 0 0

CU-distributed system O
(

N2M4 +N |Eavg|+ |Uq|
)

O (|Ung|+N |Eavg |) O (N |Eavg |) O (N |Eavg|)
Centralized O

(

Q2N2M4 +QN |Eavg|+ |U|
)

O (Q|Ung|+QN |Eavg|)

TABLE III: Comparison of algorithm complexity and front-haul overhead for different systems.

VII. CONCLUSION

In this paper, we developed two distributed algorithms that

perform user scheduling, beamforming, and implicit power

control for user-centric cell-free MIMO networks. The first

system is implemented at the DUs, while the second one

is implemented at the CUs. Both use a hybrid metric that

depends on the leakage and intra-node interference allowing a

distributed allocation. Additionally, exploiting the fact that the

notion of leakage is a tool to measure a transmission has on

neighboring “cells”, we proposed three approaches to calculate

the leakage, each requiring a different level of CSI exchange.

We present possible deployment scenarios for user-centric cell-

free network with manageable complexity with respect to the

network size.

In terms of performance, the CU-distributed system pro-

vides 1.3- to 1.8-fold network throughput gain compared to

the DU-distributed system, with a slight increase in com-

plexity and front-haul load - and can outperform centralized

solutions. Further, our results measure the performance gain,

computational complexity, and front-haul overhead compared

to benchmark schemes and a centralized resource allocation.

Finally, by analyzing the trade-offs provided by the CU-

distributed system compared to DU-distributed and centralized

ones, we highlight the importance of deploying multiple CUs

in user-centric cell-free networks.

APPENDIX A

PROBLEM REFORMULATION FOR DU-DISTRIBUTED

SYSTEM

Using the objective function (10a) and the equality con-

straint in (10d), we define the Lagrangian formulation as

f1 (Wr, ξr,νr) =
∑

u∈Er

δu log (1 + ξru)

−
∑

u∈Er

νru

(
ξru − sruw

H
ruĥruĥ

H
ruwru

Aru (sr,Wr)

)
, (37)

where ξr = [{ξru : u ∈ Er}]T ∈ R|Er|×1. To satisfy the first-

order optimality condition of ξru, we set the derivative of (37)

with respect to ξru to zero, thereby obtaining an expression
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for νru that satisfies this condition. Then, we substitute this

expression for νru back in (37) to obtain

f1 (sr,Wr, ξr) =
∑

u∈Er

δu (log (1 + ξru)− ξru)

+
∑

u∈Er

δu

(
(1 + ξru) sruw

H
ruĥruĥ

H
ruwru

sruwH
ruĥruĥH

ruwru +Aru (sr,Wr)

)
. (38)

The importance of this procedure is that the variables (sr,Wr)
are now found outside the logarithmic function, while ξru acts

as an auxiliary variable or proxy to emulate their effect. When

the variables (sr,Wr) are fixed, we can set the derivative

of (38) with respect to ξru to zero, to obtain the optimal

expression for the SLINR auxiliary variable ξru, which, as

expected, equals (10d). The expression in (38) can be shown

to be equivalent to (37) by substituting the optimal expression

of ξru back into (38), thereby resulting in the same objective

function in (10).

We use the fractional programming approach developed

in [10] to write (38) as

f2 (sr,Wr, ξr, ζr) =
∑

u∈Er

δu (log (1 + ξru)− ξru)

+
∑

u∈Er

(
2Re

{
ζ∗ru
√
δu (1 + ξru)sruw

H
ruĥru

}

− |ζru|2
(
sruw

H
ruĥruĥ

H
ruwru +Aru (sr,Wr)

))
. (39)

where ζr ∈ C|Er|×1 is a new auxiliary variable vector intro-

duced by fractional programming [10]. The formula in (12)

becomes the objective function of the newly formulated prob-

lem in (11).

APPENDIX B

PROBLEM REFORMULATION FOR CU-DISTRIBUTED

SYSTEM

Using the objective function (26a) and the equality con-

straint in (26d), we can write the following Lagrangian for-

mulation.

f1
(
Wq, ξ̄q,νq

)
=
∑

u∈Ūq

δu log
(
1 + ξ̄qu

)

−
∑

u∈Ūq

νqu

(
ξ̄qu − w̄H

quh̄qu,uh̄
H
qu,uw̄qu

Cqu (Wq)

)
. (40)

To satisfy the first-order optimality condition of ξ̄qu, we

differentiate (40) with respect to ξ̄qu and set to zero to obtain

the corresponding value for νqu. Substituting νqu back in (40)

we obtain

f1
(
Wq, ξ̄q

)
=
∑

u∈Ūq

δu
(
log
(
1 + ξ̄qu

)
− ξ̄qu

)

+
∑

u∈Ūq

δu

( (
1 + ξ̄qu

)
w̄H

quh̄qu,uh̄
H
qu,uw̄qu

w̄H
quh̄qu,uh̄H

qu,uw̄qu + Cqu (Wq)

)
. (41)

When Wq is fixed, the first optimality condition for ξ̄qu yields

the optimal value of ξ̄qu as

ξ̄qu =
w̄H

quh̄qu,uh̄
H
qu,uw̄qu

Cqu (Wq)
. (42)

Equation (41) can be shown to be equivalent to (40) as

discussed in the previous section for a DU-distributed system.

Again, using fractional programming [10], we write (41) as

f2
(
Wq, ξ̄q, ζ̄q

)
=
∑

u∈Ūq

δu
(
log
(
1 + ξ̄qu

)
− ξ̄qu

)

+
∑

u∈Ūq

(
2Re

{
ζ̄∗qu

√
δu
(
1 + ξ̄qu

)
w̄H

quh̄qu,u

}

− |ζ̄qu|2
(
w̄H

quh̄qu,uh̄
H
qu,uw̄qu + Cqu (Wq)

)
)
, (43)

where ζ̄q = [ζ̄qu1 . . . ζ̄qu|Uq |
]T are introduced auxiliary

variables. The formula in (43) becomes the new objective

function of our reformulated problem in (11).
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