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Abstract

A cloud radio access network (C-RAN) is a promising cellular network, wherein densely deployed multi-antenna

remote-radio-heads (RRHs) jointly serve many users using the same time-frequency resource. By extremely high

signaling overheads for both channel state information (CSI) acquisition and data sharing at a baseband unit (BBU),

finding a joint transmission strategy with a significantly reduced signaling overhead is indispensable to achieve

the cooperation gain in practical C-RANs. In this paper, we present a novel sparse joint transmission (sparse-JT)

method for C-RANs, where the number of transmit antennas per unit area is much larger than the active downlink

user density. Considering the effects of noisy-and-incomplete CSI and the quantization errors in data sharing by a

finite-rate fronthaul capacity, the key innovation of sparse-JT is to find a joint solution for cooperative RRH clusters,

beamforming vectors, and power allocation to maximize a lower bound of the sum-spectral efficiency under the

sparsity constraint of active RRHs. To find such a solution, we present a computationally efficient algorithm that

guarantees to find a local-optimal solution for a relaxed sum-spectral efficiency maximization problem. By system-

level simulations, we exhibit that sparse-JT provides significant gains in ergodic spectral efficiencies compared to

existing joint transmissions.
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I. INTRODUCTION

A. Motivation

Next-generation cellular networks, including 6G, require to support demands on high speed and uniform

data services [1]. The ever-growing demands for higher bit rates and more uniform data services necessitate

novel cellular network architectures that can yield high network capacity within a limited spectrum.

The new cellular architectures providing an increased network capacity are expected to have two key

ingredients: 1) densely deployed base stations (BSs) topologies that aggressively reuse spectrum [2] and

2) the coordination among the BSs to eliminate both inter-user and inter-cell interference [3]–[5].

A cloud radio access network (C-RAN) [1], [3]–[6] is a promising cellular architecture to achieve high

energy and spectral efficiencies by both network densification and BS cooperation gains. A cloud-RAN

consists of distributed antennas, called remote radio heads (RRHs), connected to a centralized baseband

unit (BBU) pool via high-speed fronthaul links. This network virtually forms a large-scale distributed and

cooperative MIMO system. The centralized BBU pool can jointly perform user selection, beamforming,

and power allocation for both downlink and uplink communications to eliminate interference between

scheduled users. As the network density increases, this joint processing allows to achieve a high cell-

splitting gain by reducing the communication distance between the network and the mobile users; thereby,

it can significantly dwindle the transmission power.

Unfortunately, in practice, the promising gain by the joint transmission comes at the cost of prohibitively

high signaling overhead. Specifically, for downlink communications, BBU needs to acquire global channel

state information (CSI) and to share the precoded data with RRHs. As the network becomes denser, the

amount of signaling overheads for CSI acquisition and data sharing increases tremendously. Moreover,

acquiring global CSI perfectly and sharing the precoded data without any error is impossible due to a finite-

rate fronthaul capacity. For instance, in C-RAN operating with time-division-duplexing (TDD) mode, each

RRH estimates users’ channels via uplink pilots and sends them to BBU via a finite-rate fronthaul link.

Therefore, the accuracy of CSI at BBU is fundamentally limited by both channel estimation errors and the

fronthaul capacity. Furthermore, the precoded data symbols at BBU are shared with RRHs through finite-

rate fronthaul links for the downlink transmission. A low-rate fronthaul link introduces a high quantization



3

error on the downlink data; this leads to the degradation of the downlink performance. Considering the

signaling overheads and limited fronthaul capacity constraints, the effective gain of the joint processing

offered by C-RANs can be very marginal.

To enhance the effective gain in practice, the joint transmission exploiting a few dynamically selected

RRHs is a promising solution because it can considerably reduce the signaling overheads associated with

the joint processing. For example, from the users’ viewpoint, it is better to receive the downlink signals

from all RRHs to increase data rates. Whereas, from the network perspective, the use of all RRHs increases

the associated signaling overheads for joint transmission. In particular, when the active user density is

much smaller than the total number of antennas per unit area in the network, the use of sparsely chosen

RRHs would be sufficient for joint transmission, while it considerably reduces the overheads. In this sense,

it is essential to use a sparse RRH cooperation method to form a large-scale C-RAN. Unfortunately, finding

the jointly optimal solution for the sparsely chosen cooperative RRH sets per user, precoding vectors, and

transmit power, which maximizes the downlink sum-spectral efficiency, is a well-known NP-hard problem

[7]–[9], even under assumptions of the perfect and global CSI and the infinite-rate fronthaul capacity.

Considering the practical constraints of a finite-rate capacity of fronthaul links and noisy and partial CSI,

finding a local-optimal solution for the sum-spectral efficiency maximization problem is highly non-trivial.

To tackle this problem, this paper introduces a novel sparse joint downlink transmission technique that

maximizes a lower bound of the sum-spectral efficiency under practical constraints.

B. Related Works

The joint transmission by a sparsely chosen set of RRHs is proposed as an energy-efficient solution

for downlink transmissions of C-RANs [10]–[13]. The common approach is to design the network-wide

sparse precoding vector to minimize a total number of active RRHs (equivalently network-wide power

consumption) under a set of user rate constraints [10]–[13]. Specifically, a novel group-sparsity beam-

forming framework is presented in [10], in which the weighted ℓ1 and ℓ2-norm minimization techniques

are taken to promote the group sparsity using a successive convex approximation technique. In [11], an

efficient group-sparsity beamforming algorithm is introduced by using the reweighted ℓ1 minimization

[14]. In [13], a two-stage algorithm is presented, in which the set of active RRHs is initially identified
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in a user-centric manner, and BBU designs joint precoding vectors for the chosen RRH set to mitigate

the inter-user interference. However, these prior studies focused on the precoding design to minimize the

total transmission power rather than sum-spectral efficiency maximization. Therefore, it is unclear how

the sum-spectral efficiency behaves as the number of active RRHs becomes sparse in the network.

The sparse-beamforming algorithm is also proposed to maximize the sum-spectral efficiency under

limited fronthaul capacity [15]. This algorithm uses both the generalized weighted minimum mean squares

error (WMMSE) technique in [16], and the reweighted ℓ1 minimization method [14] to find the beamform-

ing solution under a finite-rate fronthaul link constraint. These studies, however, assume perfect and global

CSI at BBU, thereby it cannot reflect the effects of channel estimation and fronthaul quantization errors in

practical systems. In addition, by the nature of the WMMSE optimization framework, the computational

complexity to implement the sparse-beamforming algorithm in [15] is the order of O
(
(𝐾𝐿𝑁)3.5

)
per

iteration, where 𝐾 , 𝐿, and 𝑁 are the number of users, RRHs, and the number of antennas per RRH,

respectively. The high computational complexity hinders to use the WMMSE method for large-scale

C-RAN systems.

Another popular approach to reducing the signaling overheads for the joint transmission is to exploit

edge-computing capabilities with local caches [17]–[19]. For instance, content-centric sparse multicast

beamforming is proposed in [17], where users who request the same content are clustered and apply the

sparse multicast precoding using local caches at each RRHs. In addition, a three-stage layered group sparse

beamforming (LGSBF) algorithm [18] is introduced to obtain a joint solution of adaptive RRH selection,

backhaul content assignment, and multicast beamforming. Although these studies show the benefits of

the content-based clustering and transmission in reducing the signaling overheads associated with the

joint transmission, they require additional resources such as local caches at RRHs, which is a different

assumption from our work.

The most relevant prior work from the viewpoint of the optimization framework is [20]. In contrast

to [20], in which CSI sharing is only assumed for coordinated beamforming, in this paper, we consider

both data and CSI sharing for joint transmission by incorporating the quantization error effects by limited

fronthaul capacity. In addition, we also consider sparse joint transmission unlike [20]. The block sparsity
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constraint imposed by the sparse joint transmission yields a unique challenge in the design of the precoding

algorithm compared to the algorithm in [20]. The first-order optimality condition differs from that in [20];

thereby, our algorithm finding the stationary point is distinct from the algorithm introduced in [20], albeit

they share a generalized power iteration principle.

C. Contributions

This paper considers a joint RRH clustering, beamforming, and power optimization problem for down-

link C-RAN. The main contributions of this paper are summarized as follows:

• We derive a lower bound expression of a downlink sum-spectral efficiency for C-RAN considering

effects of noisy CSI and quantization error in data sharing by finite-rate fronthaul links. In particular,

using the notion of generalized mutual information [21]–[24], we establish a lower bound expression

as a function of relevant system parameters, including channel estimation error and a finite-rate

fronthaul capacity.

• We propose a unified optimization framework that finds the network-wide sparse precoding vector to

maximize the lower bound of sum-spectral efficiency. Unlike the WMMSE optimization framework,

[15], the key innovation is to convert the sum-spectral efficiency maximization problem under the

sparsely cooperative RRHs constraint into a tractable non-convex optimization by mapping all opti-

mization variables into a high dimensional space using the recently developed large-scale optimization

techniques in [20], [25], [26]. The tractable non-convex optimization is the form of maximizing

the product of Rayleigh quotients under the sparse RRH activation constraint. This formulation

can be regarded as a generalized sparse principal component analysis (sparse-PCA) problem. By

relaxing the sparse active RRH constraint into a non-convex function, we formulate a unified non-

convex optimization problem that finds the network-wide sparse precoding vector while reducing the

quantization errors to maximize the spectral efficiency.

• We derive the local optimality conditions for the reformulated non-convex optimization problem. To

accomplish this, we characterize the first- and the second-order necessary conditions for the local

optimality. In particular, we derive a condition in a closed-form to verify that a saddle point can be

a local optimum.
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• Using the derived optimality conditions, we present a sparse joint transmission algorithm that jointly

identifies a set of active RRHs, the precoding vectors (for beamforming and compression), and

the power allocation for RRHs. The sparse joint transmission (sparse-JT) algorithm guarantees to

find a local-optimal solution for the reformulated non-convex optimization problem. Besides, the

computational complexity of the proposed algorithm increases linearly with the number of downlink

users, quadratically with both the number of RRHs 𝐿, and the antennas per RRH 𝑁 . This complexity

implies that the proposed algorithm is scalable to use C-RANs.

• We show numerically that the proposed sparse joint transmission algorithm considerably outperforms

the existing user-centric RRH clustering with WMMSE and zero-forcing (ZF) precoding methods

in different CSI and fronthaul link capacity conditions. This confirms that sparse-JT can achieve a

higher synergetic gain of clustering and precoding than the existing methods in C-RANs.

II. SYSTEM MODEL

We consider a C-RAN network where 𝐿 RRHs, each equipped with 𝑁 antennas, jointly send downlink

signals to 𝐾 single-antenna users. We assume that the ℓth RRH is connected to a BBU via fronthaul links

with a finite-rate 𝐶ℓ bits per second. Each RRH has a transmit power budget 𝑃.

A. Noisy-and-Incomplete Downlink CSIT Acquisition

We present a noisy downlink CSIT acquisition model as shown in Fig. 1. Let hℓ,𝑘 =
[
ℎ1
ℓ,𝑘
, . . . , ℎ𝑁

ℓ,𝑘

]T

be the downlink channel vector from the ℓth RRH to the 𝑘th user. This channel vector is modeled as

hℓ,𝑘 = 𝛽1/2
ℓ,𝑘

gℓ,𝑘 ∈ C𝑁×1, (1)

where 𝛽ℓ,𝑘 ∈ R and gℓ,𝑘 ∈ C𝑁×1 are a large-scale fading coefficient and a small-scale fading vector,

respectively. The distribution of gℓ,𝑘 is assumed to be the complex Gaussian, i.e., gℓ,𝑘 ∼ CN
(
0,Rℓ,𝑘

)
,

where Rℓ,𝑘 = E
[
gℓ,𝑘gH

ℓ,𝑘

]
∈ C𝑁×𝑁 is the spatial covariance matrix of the channel.

MMSE channel estimation per RRH: Thanks to channel reciprocity in TDD mode, the ℓth RRH

estimates downlink channel hℓ,𝑘 by estimating the uplink channel vector hH
ℓ,𝑘

. Under the premise that
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Fig. 1. An illustration of noisy-and-incomplete CSI acquisition model. In our model, each RRH estimates the noisy channels, selects a few
strongest channels, and quantizes the selected channels to meet the finite-rate fronthaul capacity.

each user sends orthogonal pilot sequences with length 𝜏 ≥ 𝐾 , the minimum mean square error (MMSE)

estimation of hℓ,𝑘 , i.e., ĥℓ,𝑘 =
[
ℎ̂1
ℓ,𝑘
, . . . , ℎ̂𝑁

ℓ,𝑘

]T
, is given by

ĥℓ,𝑘 = hℓ,𝑘 + eℓ,𝑘 , (2)

where eℓ,𝑘 =
[
𝑒1
ℓ,𝑘
, . . . , 𝑒𝑁

ℓ,𝑘

]T
is the estimation error vector. Assuming the Gaussian noise in the channel

estimation, eℓ,𝑘 is distributed by zero-mean Gaussian with covariance matrix 𝚽ℓ,𝑘 = E
[
eℓ,𝑘eH

ℓ,𝑘

]
∈ C𝑁×𝑁 ,

and it is statistically independent of ĥℓ,𝑘 . Assuming that 𝑝ul is the uplink pilot transmission power, the

channel estimation error covariance matrix is given as a function of spatial covariance matrix Rℓ,𝑘 , large-

scale fading coefficient 𝛽ℓ,𝑘 , pilot length 𝜏, and pilot transmission power 𝑝ul [27], [28]:

𝚽ℓ,𝑘 = 𝛽ℓ,𝑘Rℓ,𝑘 − 𝛽2
ℓ,𝑘Rℓ,𝑘

(
𝛽ℓ,𝑘Rℓ,𝑘 +

𝜎2

𝜏𝑝ul
I𝑁

)−1

Rℓ,𝑘 . (3)

Channel selection: We present two channel selection methods using 1) instantaneous CSI and 2)

average received signal power at the RRHs. First, using the MMSE channel estimator, RRH ℓ ∈ L

has knowledge of noisy versions of channel vectors, i.e., {ĥℓ,1, . . . , ĥℓ,𝐾}. Sending all estimated channel

vectors perfectly from the RRH to BBU is infeasible under a finite-rate fronthaul constraint. To compress

CSI information, we consider a simple channel selection method. The key idea is to choose the best

𝑈ℓ (≤ 𝐾) channel vectors in the order of the channel gains. Let ĥℓ,𝜋ℓ (𝑘) be the estimated channel vector of

the ℓth RRH with the 𝑘th largest channel gain, where 𝜋ℓ (𝑘) ∈ K = {1, . . . , 𝐾} be the index function such

that ‖ĥℓ,𝜋ℓ (1) ‖22 ≥ ‖ĥℓ,𝜋ℓ (2) ‖
2
2 ≥ · · · ≥ ‖ĥℓ,𝜋ℓ (𝐾) ‖

2
2. Then, each RRH sends the top-𝑈ℓ channel vectors, i.e.,{

ĥℓ,𝑘
}

for 𝑘 ∈ Kℓ = {𝜋ℓ (1), . . . , 𝜋ℓ (𝑈ℓ)} to BBU, where 𝑈ℓ is chosen as a function of the fronthaul link
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capacity 𝐶ℓ. For instance, the fronthaul capacity is extremely limited, RRH ℓ can select 𝑈ℓ = 1, implying

that the best user channel only is sent to BBU. For ease of explanation, we define a subset RRHs that

has knowledge of the channel vector for user 𝑘 by L𝑘 = {ℓ | 𝑘 ∈ Kℓ,∀ℓ} ⊂ L. This index set will be

used in the sequel.

In addition, to reduce the CSI acquisition overhead, we propose a simple strategy that estimates the

channels for a few strongest channel links in the received power at RRHs. Specifically, each RRH

periodically measures the uplink received power of all users, and selects 𝑈ℓ (≤ 𝐾) users in the order

of received power at RRH ℓ for ℓ ∈ L. Then, RRHs perform the channel estimation to acquire CSI for

the selected users, and send the limited CSI to the BBU to generate a precoding solution. To validate the

effect of this limited CSI acquisition strategy, we compare the ergodic sum-spectral efficiency performance

with the case of using full CSI acquisition at RRHs in Section VI.

Channel quantization: The selected estimated channel,
{
ĥℓ,𝜋ℓ (1) , . . . , ĥℓ,𝜋ℓ (𝑈ℓ )

}
, is quantized by using a

simple uniform scalar (element-wise) quantizer with 𝐵ℓ bits resolution. Then, the quantized CSI is sent to

BBU via a finite rate fronthaul link 𝐶ℓ bits per channel use. We assume that the quantization is performed

independently across different antennas per RRH, ℎ̂𝑛
ℓ,𝑘

and ℎ̂𝑚
ℓ,𝑘

for 𝑛 ≠ 𝑚. This element-wise uniform

quantization method is not optimal because it ignores the statistical correlation effect among the channel

coefficients across antennas and RRHs [29], [30]. Nevertheless, we ignore the spatial correlation effects

in the quantization error because their impacts are negligible when using a few-bit quantizer, and we

shall focus on this quantization technique because it is more practically relevant from an implementation

perspective.

Using standard rate-distortion theory [31]–[33], we model the quantization process for the estimated

channel of the 𝑛th antenna at the ℓth RRH as

ℎ̄𝑛ℓ,𝑘 = ℎ̂
𝑛
ℓ,𝑘 + 𝑞

𝑛
ℓ,𝑘 , ∀𝑘 ∈ Kℓ, (4)

where 𝑞𝑛
ℓ,𝑘

is the quantization noise of ℎ̂𝑛
ℓ,𝑘

which is assumed to be the complex Gaussian with zero-mean

and variance E[|𝑞𝑛
ℓ,𝑘
|2] = 𝜎2

𝑞𝑛
ℓ,𝑘

, i.e., 𝑞𝑛
ℓ,𝑘
∼ CN

(
0, 𝜎2

𝑞𝑛
ℓ,𝑘

)
. When using the uniform scalar quantizer with
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𝐵ℓ ≥ 6 bits, it has shown in [31], [33] that the variance of quantization noise is tightly approximated as

𝜎2
𝑞𝑛
ℓ,𝑘
' 𝜋
√

3
2

2−2𝐵ℓE
[
| ℎ̂𝑛ℓ,𝑘 |

2
]

=
𝜋
√

3
2

2−2𝐵ℓ

[
𝛽2
ℓ,𝑘Rℓ,𝑘

(
𝛽ℓ,𝑘Rℓ,𝑘 +

𝜎2

𝜏𝑝ul
I𝑁

)−1

Rℓ,𝑘

]
𝑛,𝑛

. (5)

Therefore, the quantized signals {ℎ̄1
ℓ,𝜋ℓ (1) , . . . , ℎ̄

𝑁
ℓ,𝜋ℓ (1) , . . . , ℎ̄

𝑁
ℓ,𝜋ℓ (𝑈ℓ )}, each with 2𝐵ℓ bits, are reliably

delivered from BBU to the ℓth RRH with the rate of

∑︁
𝑘∈Kℓ

𝑁∑︁
𝑛=1

𝐼 ( ℎ̄𝑛ℓ,𝑘 ; ℎ̂
𝑛
ℓ,𝑘 ) =

∑︁
𝑘∈Kℓ

𝑁∑︁
𝑛=1

log2
©­­«1 +

E
[
| ℎ̂𝑛
ℓ,𝑘
|2
]

𝜎2
𝑞𝑛
ℓ,𝑘

ª®®¬
' 𝑈ℓ𝑁 log2

(
1 + 2

𝜋
√

3
22𝐵ℓ

)
, (6)

where the first equality follows from the differential entropy of complex Gaussian random variables

ℎ̄𝑛
ℓ,𝑘
∼ CN

(
0,E

[
| ℎ̂𝑛
ℓ,𝑘
|2
]
+ 𝜎2

𝑞𝑛
ℓ,𝑘

)
and ℎ̂𝑛

ℓ,𝑘
∼ CN

(
0, 𝜎2

𝑞𝑛
ℓ,𝑘

)
, and the second approximation holds from

𝜎2
𝑞𝑛
ℓ,𝑘

' 𝜋
√

3
2 2−2𝐵ℓE

[
| ℎ̂𝑛
ℓ,𝑘
|2
]

in (5). When 𝐵ℓ is sufficiently large, i.e., 𝐵ℓ ≥ 3, it boils down to

𝑈ℓ𝑁 log2

(
1 + 2

𝜋
√

3
22𝐵ℓ

)
' 𝑈ℓ𝑁 log2

(
2
𝜋
√

3
22𝐵ℓ

)
= 𝑈ℓ𝑁

{
log2

(
22𝐵ℓ

)
− log2

(
𝜋
√

3
2

)}
= 𝑈ℓ𝑁 (2𝐵ℓ − 1.444) . (7)

Assuming the equal quantization bit allocation strategy per antenna, RRH requires to select the max-

imum number of quantization bits 𝐵 to minimize 𝜎2
𝑞𝑛
ℓ,𝑘

, while ensuring the fronthaul capacity constraint

of 𝑈ℓ𝑁 log2

(
1 + 2

𝜋
√

3
22𝐵ℓ

)
≤ 𝐶ℓ. This condition leads to the choice of the number of quantization bits per

fronthaul link

𝐵★ℓ =

⌊
1
2

log2

(
𝜋
√

3
2

(
2

𝐶ℓ
𝑈ℓ 𝑁 − 1

))⌋
. (8)

When we denote qℓ,𝑘 =

[
𝑞1
ℓ,𝑘
, . . . , 𝑞𝑁

ℓ,𝑘

]T
, the covariance matrix becomes E

[
qℓ,𝑘qH

ℓ,𝑘

]
= Qℓ,𝑘 (𝐵ℓ) '
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diag
(
𝜎2
𝑞1
ℓ,𝑘

, . . . , 𝜎2
𝑞𝑁
ℓ,𝑘

)
. By setting 𝐵★

ℓ
as in (8), it is possible to meet the fronthaul capacity constraints

for a given number of antennas and selected users 𝑈ℓ. If the quantization bit 𝐵ℓ is fixed, to satisfy the

constraint, one may alternatively choose 𝑈★
ℓ

such that

𝑈★ℓ =


𝐶ℓ

𝑁 log2

(
1 + 2

𝜋
√

3
22𝐵ℓ

)  . (9)

As a result, our CSI compression strategy, including the channel selection and quantization, can meet

the fronthaul capacity constraint 𝐶ℓ by flexibly choosing both the number of selected channels to share

𝑈ℓ and the number of quantization bits to represent each selected channel values 𝐵ℓ. The effect of the

trade-off between 𝑈ℓ and 𝐵ℓ for given 𝐶ℓ will be shown numerically in the simulation section.

B. Downlink Transmission with Limited Fronthaul Capacity

Using the proposed CSI estimation and compression strategy, BBU has noisy-and-incomplete CSIT

{h̄ℓ,𝑘 }ℓ∈L,𝑘∈Kℓ . This subsection explains how BBU performs joint precoding to send downlink data symbols

using this partial downlink channel knowledge.

Linear precoding: Let 𝑠𝑘 [𝑡] and fℓ,𝑘 be a downlink transmit symbol to user 𝑘 in the 𝑡th time slot and

the linear precoding vector being used at the ℓth RRH to deliver 𝑠𝑘 [𝑡]. When the coherence time interval

is given by 𝜏𝑐, we assume that 𝑠𝑘 [𝑡] is drawn from a complex Gaussian codebook with the average power

𝑃 = E
[
|𝑠𝑘 [𝑡] |2

]
in the 𝑡th time slot where 𝑡 ∈ [𝜏𝑐]. Then, the precoded complex downlink signal of RRH

ℓ is represented by a linear superposition of precoder fℓ,𝑘 𝑠𝑘 [𝑡] for 𝑘 ∈ K, i.e.,

xℓ [𝑡] =
∑︁
𝑘∈K

fℓ,𝑘 𝑠𝑘 [𝑡], ∀ℓ ∈ L. (10)

Precoded signal quantization: In the similar manner of the channel quantization process, the precoded

signal xℓ [𝑡] is quantized using a simple uniform scalar quantizer with 𝐵̄ℓ bits quantization levels. The

transmitted signal of the 𝑛th antenna at RRH ℓ after applying the quantization is given by

𝑥𝑛ℓ [𝑡] = 𝑥
𝑛
ℓ [𝑡] + 𝑣

𝑛
ℓ [𝑡], (11)
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Fig. 2. The proposed sparse-JT for C-RANs.

where 𝑣𝑛
ℓ
[𝑡] is the quantization noise of 𝑥𝑛

ℓ
[𝑡] which is assumed to be the complex Gaussian with zero-

mean and variance E[|𝑣𝑛
ℓ
[𝑡] |2] = 𝜎2

𝑣𝑛
ℓ

, i.e., 𝑣𝑛
ℓ
[𝑡] ∼ CN

(
0, 𝜎2

𝑣𝑛
ℓ

)
. From [31]–[33], the quantization noise

variance when using the 𝐵̄ℓ bits uniform scalar quantizer with 𝐵̄ℓ ≥ 6 is tightly approximated as

𝜎2
𝑣𝑛
ℓ
' 𝜂ℓ (𝐵̄ℓ) · E

[
|𝑥𝑛ℓ [𝑡] |

2] = 𝜂ℓ (𝐵̄ℓ) · ( 𝐾∑︁
𝑘=1
| 𝑓 𝑛ℓ,𝑘 |

2𝑃

)
, (12)

where 𝜂ℓ (𝐵̄ℓ) = 𝜋
√

3
2 2−2𝐵ℓ . Therefore, the quantized signals

{
𝑥1
ℓ
[𝑡], . . . , 𝑥𝑁

ℓ
[𝑡]

}
, each with 2𝐵̄ℓ bits, are

reliably delivered from BBU to the ℓth RRH with the rate of

𝑁∑︁
𝑛=1

𝐼 (𝑥𝑛ℓ [𝑡]; 𝑥
𝑛
ℓ [𝑡]) =

𝑁∑︁
𝑛=1

log ©­«1 +
∑𝐾
𝑘=1 | 𝑓 𝑛ℓ,𝑘 |

2𝑃

𝜎2
𝑣𝑛
ℓ

ª®¬ ' 𝑁 log
(
1 + 𝜂ℓ (𝐵̄ℓ)−1

)
. (13)

Using the rate expression in (13), BBU selects the number of quantization bits 𝐵ℓ to minimize 𝜎2
𝑣𝑛
ℓ

while

ensuring the fronthaul capacity constraint such that

𝐵̄★ℓ =

⌊
1
2

log2

(
𝜋
√

3
2

(
2
𝐶ℓ
𝑁 − 1

))⌋
. (14)

It is remarkable that the quantization bits 𝐵̄★
ℓ

derived in (14) allows us to satisfy the fronthaul capacity

constraints regardless of precoding strategies because it alters the quantization levels as a function of the

norm of precoding vectors to meet the constraint. From the relationship between 𝜎2
𝑣𝑛
ℓ

and 𝐵̄ℓ in (12), the

effective quantization noise variance 𝜎2
𝑣𝑛
ℓ

reduces by designing the precoding vectors
∑𝐾
𝑘=1 | 𝑓 𝑛ℓ,𝑘 |

2 for each

𝑛 ∈ [𝑁] and ℓ ∈ L with a small norm. Therefore, our precoding strategy aims at minimizing the norm

of precoding vectors
∑𝐾
𝑘=1 | 𝑓 𝑛ℓ,𝑘 |

2 for each 𝑛 ∈ [𝑁] and ℓ ∈ L. To explicitly represent 𝜎2
𝑣𝑛
ℓ

as a function
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of precoding vectors, we define a precoding matrix for RRH ℓ ∈ L by Fℓ = [fℓ,1, . . . , fℓ,𝐾]. Then, the

covariance matrix for the quantization noise in a compact form is

Vℓ (Fℓ, 𝐵̄★ℓ ) = E[vℓ [𝑡]vℓ [𝑡]
H] = 𝑃 · 𝜂★ℓ (𝐵̄

★
ℓ ) · diag

(
𝐾∑︁
𝑘=1
| 𝑓 1
ℓ,𝑘 |

2, . . . ,

𝐾∑︁
𝑘=1
| 𝑓 𝑁ℓ,𝑘 |

2

)
, (15)

where 𝜂★
ℓ
(𝐵̄★

ℓ
) = 𝜋

√
3

2 2−2𝐵̄★
ℓ and vℓ [𝑡] =

[
𝑣1
ℓ
[𝑡], . . . , 𝑣𝑁

ℓ
[𝑡]

]T.

Ergodic spectral efficiency: The received signal of the 𝑘th user is

𝑦𝑘 [𝑡] =
𝐿∑︁
ℓ=1

hH
ℓ,𝑘 x̄ℓ [𝑡] + 𝑧𝑘 [𝑡]

=

𝐿∑︁
ℓ=1

hH
ℓ,𝑘 fℓ,𝑘 𝑠𝑘 [𝑡] +

𝐿∑︁
ℓ=1

∑︁
𝑖≠𝑘

hH
ℓ,𝑘 fℓ,𝑖𝑠𝑖 [𝑡] +

𝐿∑︁
ℓ=1

hH
ℓ,𝑘vℓ [𝑡] + 𝑧𝑘 [𝑡], (16)

where 𝑧𝑘 [𝑡] is the noise signal of the 𝑘th user, which is distributed as CN(0, 𝜎2). Then, the signal-to-

interference-plus-noise ration (SINR) of the 𝑘th user is defined as

SINR𝑘 =

���∑𝐿
ℓ=1 hH

ℓ,𝑘
fℓ,𝑘

���2∑
𝑖≠𝑘

���∑𝐿
ℓ=1 hH

ℓ,𝑘
fℓ,𝑖

���2 +∑𝐿
ℓ=1 hH

ℓ,𝑘
Vℓ (Fℓ, 𝐵̄★ℓ )hℓ,𝑘/𝑃 + 𝜎2/𝑃

. (17)

With noisy-and-incomplete CSIT, H̄ = {h̄ℓ,𝑘 }ℓ∈L,𝑘∈Kℓ , the BBU estimates the instantaneous spectral

efficiency of the 𝑘th downlink user, i.e.,

𝑅𝑘
(
H̄

)
= EH|H̄

[
log2 (1 + SINR𝑘 ) |H̄

]
, 𝑘 ∈ Kℓ, (18)

where the expectation is taken over both channel estimation and quantization errors. Therefore, by taking

the expectation over every fading states, we obtain the ergodic spectral efficiency

𝑅̄𝑘 =

(
1 − 𝜏𝑢 + 𝜏𝑑

𝜏𝑐

)
EH̄

[
𝑅𝑘

(
H̄

) ]
=

(
1 − 𝜏𝑢 + 𝜏𝑑

𝜏𝑐

)
E

[
log2 (1 + SINR𝑘 )

]
, (19)

where 𝜏𝑢 and 𝜏𝑑 denote the uplink and downlink channel training lengths respectively.
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III. SUM-SPECTRAL EFFICIENCY MAXIMIZATION PROBLEM

In this section, we shall formulate a sum-spectral efficiency maximization problem with noisy-and-

incomplete CSIT under a sparsely active RRH constraint. To accomplish this, we first derive a lower bound

of the instantaneous spectral efficiency. Then, we formulate the spare precoding optimization problem that

maximizes the obtained lower bound of the instantaneous spectral efficiency under the sparsely active RRH

constraint.

A. A Lower Bound of Instantaneous Spectral Efficiency

We begin by rewriting the received signal in (16) in terms of the noisy-and-quantized CSIT at BBU,

i.e., hℓ,𝑘 = ĥℓ,𝑘 + eℓ,𝑘 = h̄ℓ,𝑘 + eℓ,𝑘 + qℓ,𝑘 , which yields

𝑦𝑘 [𝑡] =
𝐿∑︁
ℓ=1

[ (
h̄ℓ,𝑘 + eℓ,𝑘 + qℓ,𝑘

)H

(
fℓ,𝑘 𝑠𝑘 [𝑡] +

∑︁
𝑖≠𝑘

fℓ,𝑖𝑠𝑖 [𝑡] + vℓ [𝑡]
)]
+ 𝑧𝑘 [𝑡]

=

𝐿∑︁
ℓ=1

h̄H
ℓ,𝑘 fℓ,𝑘 𝑠𝑘 [𝑡] +

𝐿∑︁
ℓ=1

∑︁
𝑖≠𝑘

h̄H
ℓ,𝑘 fℓ,𝑖𝑠𝑖 [𝑡] + 𝑧𝑘 [𝑡], (20)

where 𝑧𝑘 [𝑡] is the effective noise term, i.e.,

𝑧𝑘 [𝑡] =
𝐿∑︁
ℓ=1

𝐾∑︁
𝑖=1

(
eℓ,𝑘 + qℓ,𝑘

)H fℓ,𝑖𝑠𝑖 [𝑡] +
𝐿∑︁
ℓ=1

(
h̄ℓ,𝑘 + eℓ,𝑘 + qℓ,𝑘

)H vℓ [𝑡] + 𝑧𝑘 [𝑡] . (21)

Unfortunately, the effective noise 𝑧𝑘 [𝑡] is non-Gaussian because the product of two Gaussian random

variables 𝑠𝑖 [𝑡] and eℓ,𝑘 +qℓ,𝑘 is not Gaussian. Harnessing the generalized mutual information [21]–[24], in

which the non-Gaussian noise is simply modeled as the Gaussian noise with a proper moment matching,

we characterize a lower bound of the instantaneous spectral efficiency [20], [25]. To accomplish this, we

need to compute the variance of the effective noise 𝑧𝑘 [𝑡]. Since E[𝑧𝑘 [𝑡]] = 0, the effective noise variance

is

𝜎̃2
𝑘 = E[|𝑧𝑘 [𝑡] |2]

= 𝑃

𝐿∑︁
ℓ=1

𝐾∑︁
𝑖=1

fH
ℓ,𝑖E

[
eℓ,𝑘eH

ℓ,𝑘 + qℓ,𝑘qH
ℓ,𝑘 + eℓ,𝑘qH

ℓ,𝑘 + qℓ,𝑘eH
ℓ,𝑘

]
fℓ,𝑖 +

𝐿∑︁
ℓ=1
E

[
hH
ℓ,𝑘vℓ [𝑡]vℓ [𝑡]

Hhℓ,𝑘
]
+ 𝜎2 (22)

= 𝑃

𝐿∑︁
ℓ=1

𝐾∑︁
𝑖=1

fH
ℓ,𝑖

(
𝚽ℓ,𝑘 +Qℓ,𝑘 (𝐵★ℓ )

)
fℓ,𝑖 +

𝐿∑︁
ℓ=1

Tr
(
Rℓ,𝑘Vℓ (Fℓ, 𝐵̄★ℓ )

)
+ 𝜎2, (23)
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where the last equality follows from the fact that the channel estimation error noise is independent of the

channel quantization noise, i.e., E
[
eℓ,𝑘qH

ℓ,𝑘

]
= 0. Invoking this effective noise variance, a lower bound of

instantaneous spectral efficiency when using noisy-and-incomplete CSIT is

𝐾∑︁
𝑘=1

𝑅low
𝑘 =

𝐾∑︁
𝑘=1

log2
©­­«1 +

���∑𝐿
ℓ=1 h̄H

ℓ,𝑘
fℓ,𝑘

���2∑
𝑖≠𝑘

���∑𝐿
ℓ=1 h̄H

ℓ,𝑘
fℓ,𝑖

���2 + 𝜎̃2
𝑘
/𝑃

ª®®¬ . (24)

The sum-spectral efficiency in (24) is the estimate of the instantaneous sum-spectral efficiency with limited

channel knowledge, which will be used to find a joint solution for user clustering, beamforming, and power

allocation in the sequel.

B. Sparsely Active RRH Constraint

Let 𝑆 be the maximum number of active RRHs per the joint transmission, and it is assumed to be

smaller than a total number of RRHs 𝐿 in the network, i.e., 𝑆 ≤ 𝐿. We also define an index set of active

RRHs as

A = {ℓ : ‖xℓ [𝑡] ‖22 ≠ 0} ⊂ L. (25)

It is true that
∑𝐾
𝑘=1 ‖fℓ,𝑘 ‖22 > 0 if ‖xℓ [𝑡] ‖22 ≠ 0. Using this relation, to perform sparse-JT, we need to

design the precoding vectors to satisfy the following group-sparsity condition:

𝐿∑︁
ℓ=1

1{∑𝐾
𝑘=1 ‖fℓ,𝑘 ‖22>0} ≤ 𝑆, (26)

where 1C is an indicator function such that 1C = 1 if an event C is true and 1C = 0 otherwise. Our

optimization task is to identify precoding vectors, {fℓ,𝑘 }ℓ∈L,𝑘∈K , to maximize the lower bound of the

instantaneous spectral efficiency (24) under the group-sparsity constraints (26). This optimization problem

is formulated as
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𝒫
1 : arg max

{fℓ,𝑘 }ℓ∈L,𝑘∈K

𝐾∑︁
𝑘=1

log2
©­­«1 +

���∑𝐿
ℓ=1 h̄H

ℓ,𝑘
fℓ,𝑘

���2∑
𝑖≠𝑘

���∑𝐿
ℓ=1 h̄H

ℓ,𝑘
fℓ,𝑖

���2 + 𝜎̃2
𝑘
/𝑃

ª®®¬ , (27a)

subject to
𝐾∑︁
𝑘=1
‖fℓ,𝑘 ‖22 ≤ (1 + 𝜂

★
ℓ (𝐵̄

★
ℓ ))
−1, ∀ℓ ∈ L, (27b)

𝐿∑︁
ℓ=1

1{∑𝐾
𝑘=1 ‖fℓ,𝑘 ‖22>0} ≤ 𝑆, (27c)

where the 𝐿 inequalities in (27b) correspond to the per-RRH power constraint, E[‖x̄ℓ‖22] ≤ 𝑃. Obtaining

the global optimal solution for this optimization problem even without a group-sparsity constraint is highly

non-trivial, because the objective function is non-convex with respective to precoding vectors. Additionally,

the group-sparsity constraint makes the problem a combinatorial optimization.

C. Reformation to a Generalized Sparse-PCA Problem

We explain how the optimization problem (27) can be reformulated in a generalized sparse-PCA

problem. The following proposition elucidates the connection between them.

Proposition 1. Let f ∈ C𝐿𝑁𝐾×1 be a network-wide precoding vector by concatenating all precoding vectors

to form a large-dimensional optimization variable, namely,

f = [fH
1,1, · · · , f

H
𝐿,1︸         ︷︷         ︸

fH
1

, · · · , fH
1,𝑘 , · · · , f

H
𝐿,𝑘︸         ︷︷         ︸

fH
𝑘

, · · · , fH
1,𝐾 , · · · , f

H
𝐿,𝐾︸          ︷︷          ︸

fH
𝐾

]H ∈ C𝐿𝑁𝐾×1. (28)

We also define large-dimensional positive semidefinite matrices A𝑘 ∈ C𝐿𝑁𝐾×𝐿𝑁𝐾 and B𝑘 ∈ C𝐿𝑁𝐾×𝐿𝑁𝐾

such that fHA𝑘 f and fHB𝑘 f are the total received power and the interference power received at user 𝑘th,

which are

A𝑘 = I𝐾 ⊗
(
h̄𝑘 h̄H

𝑘 +𝚽𝑘 +Q𝑘

(
𝐵★ℓ

) )
+

∑𝐿
ℓ=1 Tr

(
Rℓ,𝑘Vℓ (Fℓ, 𝐵̄★ℓ )

)
+ 𝜎2

𝑃 ·∑𝐿
ℓ=1(1 + 𝜂★ℓ (𝐵̄

★
ℓ
))−1

I𝐿𝑁𝐾 ∈ C𝐿𝑁𝐾×𝐿𝑁𝐾 , (29)

B𝑘 = A𝑘 − a𝑘aT
𝑘 ⊗ h̄𝑘 h̄H

𝑘 ∈ C
𝐿𝑁𝐾×𝐿𝑁𝐾 , (30)

where h̄𝑘 =
[
h̄H

1,𝑘 , . . . , h̄
H
𝐿,𝑘

]H
, 𝚽𝑘 = diag

(
𝚽1,𝑘 , . . . ,𝚽𝐿,𝑘

)
, and Q𝑘 (𝐵★ℓ ) = diag(Q1,𝑘 (𝐵★ℓ ), . . . ,Q𝐿,𝑘 (𝐵★ℓ )).
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Then, the optimization problem 𝒫
1 is equivalent to the following problem:

𝒫
2 : arg max

f∈C𝐿𝑁𝐾×1
log2

(
𝐾∏
𝑘=1

fHA𝑘 f
fHB𝑘 f

)
, (31a)

subject to
𝐿∑︁
ℓ=1

1{∑𝐾
𝑘=1 ‖fℓ,𝑘 ‖22>0} ≤ 𝑆. (31b)

Proof: The key idea is that we reformulate the objective function (27a) to a product of the Rayleigh

quotients by representing the optimization variables in a high dimensional space as in [20], [25], [26].

Specifically, using the aggregated vectors, h̄𝑘 and f𝑘 , we arrange the received signal representation of the

𝑘th user in (16) to a compact form as

𝑦𝑘 [𝑡] = h̄H
𝑘 f𝑘 𝑠𝑘 [𝑡] +

𝐾∑︁
𝑖≠𝑘

h̄H
𝑘 f𝑖𝑠𝑖 [𝑡] + 𝑧𝑘 [𝑡], (32)

where the effective noise 𝑧𝑘 [𝑡] is defined with the aggregated channel estimation and quantization error

vectors e𝑘 =
[
eH

1,𝑘 , . . . , e
H
𝐿,𝑘

]H
, q𝑘 =

[
qH

1,𝑘 , . . . , q
H
𝐿,𝑘

]H
and v[𝑡] =

[
v1 [𝑡]H, . . . , v𝐿 [𝑡]H

]H
as

𝑧𝑘 [𝑡] =
𝐾∑︁
𝑖=1
(e𝑘 − q𝑘 )H f𝑖𝑠𝑖 [𝑡] + hH

𝑘 v[𝑡] + 𝑧𝑘 [𝑡], (33)

Then, the variance of effective noise can be rewritten with respective to the aggregate precoding vectors

as

𝜎̃2
𝑘 = E

[
|𝑧𝑘 [𝑡]2 |

]
= 𝑃

𝐾∑︁
𝑖=1

fH
𝑖

(
𝚽𝑘 +Q𝑘

(
𝐵★ℓ

) )
f𝑖 +

𝐿∑︁
ℓ=1

Tr
(
Rℓ,𝑘Vℓ (Fℓ, 𝐵̄★ℓ )

)
+ 𝜎2. (34)

Note that eℓ,𝑘 , qℓ,𝑘 , 𝚽ℓ,𝑘 , and Qℓ,𝑘 (𝐵★ℓ ) becomes zero vectors and matrices when ℓ ∉ L𝑘 . Furthermore,

we relax the per-RRH power constraint,
∑𝐾
𝑘=1 ‖fℓ,𝑘 ‖22 ≤ (1+ 𝜂

★
ℓ
(𝐵̄★

ℓ
))−1 for all ℓ ∈ L, to the network-wide

sum-power constraint, i.e.,
∑𝐿
ℓ=1

∑𝐾
𝑘=1 ‖fℓ,𝑘 ‖22 = ‖f‖22 =

∑𝐿
ℓ=1(1 + 𝜂★ℓ (𝐵̄

★
ℓ
))−1. This relaxation reduces 𝐿

equality constraints to a single equality constraint. Then, harnessing the large-dimensional network-wide

precoding vector f, our objective function in (27a) is written in a form of the product of Rayleigh quotients
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as

𝐾∑︁
𝑘=1

log2
©­­«1 +

���∑𝐿
ℓ=1 h̄H

ℓ,𝑘
fℓ,𝑘

���2∑
𝑖≠𝑘

���∑𝐿
ℓ=1 h̄H

ℓ,𝑘
fℓ,𝑖

���2 + 𝜎̃2
𝑘
/𝑃

ª®®¬ =

𝐾∑︁
𝑘=1

log2
©­­«
∑𝐾
𝑖=1

���∑𝐿
ℓ=1 h̄H

ℓ,𝑘
fℓ,𝑖

���2 + 𝜎̃2
𝑘
/𝑃∑𝐾

𝑖≠𝑘

���∑𝐿
ℓ=1 h̄H

ℓ,𝑘
fℓ,𝑖

���2 + 𝜎̃2
𝑘
/𝑃

ª®®¬
= log2

(
𝐾∏
𝑘=1

fHA𝑘 f
fHB𝑘 f

)
. (35)

Since the objective function (35) is invariant to scale of any real value 𝛼 ∈ R on f, i.e,. log2

(∏𝐾
𝑘=1

fHA𝑘 f
fHB𝑘 f

)
=

log2

(∏𝐾
𝑘=1

𝛼fHA𝑘𝛼f
𝛼fHB𝑘𝛼f

)
, we discard the sum-power constraint to further simplify the optimization problem.

Therefore, the sum-spectral efficiency maximization problem in (27) is equivalent to (31), which completes

the proof.

This reformulated optimization problem is interesting because it can be interpreted with a lens through

a generalized sparse-PCA problem in machine learning [34]. To shed further light on the significance of

the reformulation in (31), we will provide a more detailed explanation at the end of this section.

D. Tractable Relaxation for Group-Sparsity Constraint

Unfortunately, the reformulated optimization problem (31) in Proposition 1 is still a non-convex and

combinatorial optimization problem. In this section, we take a non-convex approximation to relax the

group-sparsity constraint in a tractable quadratic form.

Proposition 2. Let Cℓ ∈ C𝐿𝑁𝐾×𝐿𝑁𝐾 be a positive semidefinite matrix with a block diagonal structure

defined as Cℓ = I𝐾 ⊗ C̃ℓ, where C̃ℓ = aℓaT
ℓ
⊗ 𝜖−1I𝑁 + 1

𝐿
I𝑁𝐿 . Using this matrix, the approximation for the

group-sparsity constraint has a form of the product of Rayleigh quotients, i.e.,

𝐿∑︁
ℓ=1

1{∑𝐾
𝑘=1 ‖fℓ,𝑘 ‖22>0} ≈ log2

𝐿∏
ℓ=1

(
fHCℓf

)𝜇𝜖
. (36)

Then, the optimization problem 𝒫
2 with the approximate constraint boils down to the following opti-
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mization problem:

𝒫
3 : arg max

f∈C𝐿𝑁𝐾×1
log2

(
𝐾∏
𝑘=1

fHA𝑘 f
fHB𝑘 f

)
, (37a)

subject to log2

𝐿∏
ℓ=1

(
fHCℓf

)𝜇𝜖
≤ 𝑆. (37b)

Proof: From [35], the indicator function for event set {|𝑥 | > 0} is

1{|𝑥 |>0} = lim
𝜖→0

log2(1 + |𝑥 |/𝜖)
log2(1 + 1/𝜖) . (38)

Using this limiting value, for sufficiently small 𝜖 > 0, it is possible to make a tight approximation for the

group-sparsity constraint in a quadratic form with respective to the precoding vectors:

𝐿∑︁
ℓ=1

1{∑𝐾
𝑘=1 ‖fℓ,𝑘 ‖22>0} ≈ log2

[
𝐿∏
ℓ=1

(
1 + 𝜖−1

(
𝐾∑︁
𝑘=1

fH
ℓ,𝑘 fℓ,𝑘

))𝜇𝜖 ]
,

= log2

𝐿∏
ℓ=1

(
fHCℓf

)𝜇𝜖
, (39)

where 𝜇𝜖 = 1/log2 (1 + 𝜖−1). With this non-convex relaxation, our optimization problem (31) simplifies

as (37).

Notice that the relaxed group-sparsity constraint is still a non-convex function with respective to f.

Nevertheless, this relaxation is a tractable form for our optimization framework, which will be explained

in the next section.

E. Interpretation

We provide a detailed explanation to clearly provide the motivation for the reformulation of a sparse-

PCA form. Suppose a single-user case, i.e., 𝐾 = 1. In this case, finding the sparse precoding vector

f ∈ C𝐿𝑁×1 to maximize the sum-spectral efficiency under a block sparsity constraint as in (31) can be
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reformulated as a well-known sparse-PCA problem:

arg max
f∈C𝐿𝑁×1

fH
(
A1 + (𝜎2𝑃)−1I

)
f, (40a)

subject to ‖f‖22 = 𝑃, (40b)

‖ f̃‖0 ≤ 𝑆, (40c)

where f̃ =
[
‖f1,1‖22, · · · , ‖fℓ,1‖

2
2, · · · , ‖f𝐿,1‖

2
2
]T ∈ R𝐿×1. The optimal precoding solution f★ for (40) is a

principal eigenvector of A1 + (𝜎2𝑃)−1I with the block sparsity constraint 𝑆. Since it is a NP-hard problem

[7]–[9], there is no algorithm to find the optimal solution with a polynomial time complexity. To overcome

this challenge, the use of the ℓ1 norm convex relaxation method, which provides a convex lower bound of

the ℓ0 norm function, has been used, which reformulates the problem as a convex optimization problem:

arg max
f∈C𝐿𝑁×1

fH
(
A1 + (𝜎2𝑃)−1I

)
f, (41a)

subject to ‖f‖22 = 𝑃, (41b)

‖ f̃‖1 ≤ 𝑆 + 𝛿, (41c)

for some 𝛿 > 0. Thanks to the convexity, the problem (41) can be solved by applying the algorithm

introduced in [36] with computational complexity O(𝐽𝐿2𝑁2).

We generalize this single-user case to a multi-user case 𝐾 ≠ 1. Then, our sparse joint precoding design

problem becomes

arg max
f∈C𝐿𝑁𝐾×1

log2

𝐾∏
𝑘=1

fHA𝑘 f
fHB𝑘 f

, (42a)

subject to ‖f‖22 = 𝑃, (42b)

‖ f̄‖0 ≤ 𝑆, (42c)

where f̄ =
[
‖ f̄1‖22, · · · , ‖f̄ℓ‖

2
2, · · · , ‖ f̄𝐿 ‖

2
2
]T ∈ R𝐿×1 and f̄ℓ =

[
fH
ℓ,1, · · · , f

H
ℓ,𝑘
, · · · , fℓ,𝐾

]H
∈ C𝑁𝐾×1. Contrast

to the single-user case, our optimization task is to find a common block-sparse principal vector f that

simultaneously maximizes fHA𝑘 f
fHB𝑘 f

for 𝑘 ∈ [𝐾]. When interpreting the identification of sparse vector f to
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maximize fHA𝑘 f
fHB𝑘 f

as a task that finds a sparse linear classifier separating two classes in linear discriminant

analysis (LDA), this problem can be interpreted as a generalized sparse LDA problem in a multi-task

setting. Unfortunately, finding such f is non-trivial even using the convex relaxation technique in (41),

because the optimization problem still remains non-convex. Therefore, instead of applying the ℓ1 norm

convex relaxation method, we approximate the sparsity constraint in (42c) into a log-product form, which

is a tractable non-convex function for our optimization framework, as ‖f̄‖0 =
∑𝐿
ℓ=1 1{∑𝐾

𝑘=1 ‖fℓ,𝑘 ‖22>0} ≈

log2
∏𝐿
ℓ=1

(
fHCℓf

)𝜇𝜖
. Using this non-convex approximation method, we finally arrive at (37).

IV. LOCAL OPTIMALITY CONDITIONS

This section devotes to derive local optimality conditions for the relaxed sum-spectral efficiency maxi-

mization problem (37). The following theorems show the first- and the second-order necessary conditions

for a local optimal solution.

Theorem 1. (The first-order necessary condition) Let 𝛾(f, 𝜆) =
∏𝐾
𝑘=1 fHA𝑘 f∏𝐾

𝑘=1 fHB𝑘 f
∏𝐿
ℓ=1(fHCℓ f)𝜇𝜖 𝜆

. Any stationary

point f ∈ C𝐿𝑁𝐾×1 for problem (37) is an eigenvector of the following functional generalized eigenvalue

problem:

Ā (f) f = 𝛾 (f, 𝜆) B̄ (f, 𝜆) f, (43)

where

Ā (f) =
(
𝐾∏
𝑘=1

fHA𝑘 f

)
𝐾∑︁
𝑖=1

A𝑖

fHA𝑖f
,

B̄ (f, 𝜆) =
(
𝐾∏
𝑘=1

fHB𝑘 f
𝐿∏
ℓ=1

(
fHCℓf

)𝜇𝜖 𝜆) (
𝐾∑︁
𝑖=1

B𝑖
fHB𝑖f

+
𝐿∑︁
𝑖=1

𝜇𝜖𝜆C𝑖

fHC𝑖f

)
.

In addition, the Lagrange multiplier 𝜆 is chosen so that f satisfies

log2

𝐿∏
ℓ=1

(
fHCℓf

)𝜇𝜖
= 𝑆. (44)

Proof: See Appendix A.

Theorem 1 implies that one can find a stationary point of the non-convex optimization problem in (37)

by solving the functional generalized eigenvalue problem. In particular, the objective function normalized
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by the sparsity level, i.e., 𝛾(f, 𝜆) =
∏𝐾
𝑘=1 fHA𝑘 f∏𝐾

𝑘=1 fHB𝑘 f
∏𝐿
ℓ=1(fHCℓ f)𝜇𝜖 𝜆

, can be interpreted as an eigenvalue for the

functional generalized eigenvalue problem (37). Since both
[∑𝐾

𝑖=1
A𝑖

fHA𝑖f

]
and

[∑𝐾
𝑖=1

B𝑖
fHB𝑖f

+∑𝐿
𝑖=1

𝜇𝜖 𝜆C𝑖
fHC𝑖f

]
matrices are full-rank with probability one, there are 𝐿𝑁𝐾 distinct eigenvectors, i.e., stationary points, each

with distinct objective function value. This fact allows us to roughly visualize the global landscape of this

non-convex function. Since we need to maximize 𝛾(f, 𝜆), we postulate that the eigenvector corresponding

to the maximum eigenvalue can be globally optimal solution. Finding the maximum eigenvector, however,

is a very challenging task over all possible f ∈ C𝐿𝑁𝐾×1 and 𝜆 ∈ R. Instead, we find a local optimal solution

that satisfies the first-order condition in Theorem 1 and the following second-order condition.

Theorem 2. (The second-order necessary condition) Let f★ and 𝜆★ be the solution Theorem 1. This

stationary point f★ is a local-optimal solution, provided that

𝜌min

(
𝐾∑︁
𝑖=1

AH
𝑖

f★(f★)HA𝑖(
(f★)HA𝑖f★

)2

)
> 𝜌max

(
𝐾∑︁
𝑖=1

BH
𝑖

f★(f★)HB𝑖(
(f★)HB𝑖f★

)2 +
𝐿∑︁
𝑖=1

𝜇𝜖𝜆
★

CH
𝑖

f★(f★)HC𝑖

((f★)HC𝑖f)2

)
. (45)

Proof: See Appendix B.

Theorem 2 implies that to have a direction of strictly negative curvature at the saddle point f★, it is

sufficient that the minimum eigenvalue of
∑𝐾
𝑖=1

AH
𝑖

f★(f★)HA𝑖
( (f★)HA𝑖f★)2

is greater than the maximum eigenvalue of∑𝐾
𝑖=1

BH
𝑖

f★(f★)HB𝑖
( (f★)HB𝑖f★)2

+ ∑𝐿
𝑖=1 𝜇𝜖𝜆

★CH
𝑖

f★(f★)HC𝑖
((f★)HC𝑖f)2

. This allows us to check whether a saddle point f★ is the local

optimal solution for the non-convex optimization problem with the eigenvalue test. The maximum and

the minimum eigenvalues can be computed using both power and inverse power iteration algorithms.

V. SPARSE JOINT TRANSMISSION

From Theorem 1 and Theorem 2, we have established the local-optimality conditions for the network-

wide precoding vector. To obtain such f★, however, we need to solve a large-dimensional nonlinear

system of equations. As a result, it is essential to design an algorithm that finds the local-optimal solution

in a computationally efficient manner. By generalizing the method in [20], [25], [26], we propose a

computationally efficient algorithm to find such a local-optimal solution.

The proposed sparse-JT algorithm finds a sparse network-wide precoding vector in an iterative manner.

In the 𝑡th iteration, using the previously identified sparse precoding vector f (𝑡−1) and the Lagrange multi-
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Algorithm 1: SPARSE JOINT TRANSMISSION ALGORITHM.

Initialization: 𝑛 = 𝑡 = 0, f (0) = ZF, 𝜆(0)+ , 𝜆(0)− and 𝜖

while
����log2

∏𝐿
ℓ=1

((
f (𝑡)

)H
Cℓf (𝑡)

)𝜇𝜖
− 𝑆

���� ≥ 𝜖 do

𝑛← 𝑛 + 1
𝜆(𝑛) ← 𝜆

(𝑛−1)
+ +𝜆 (𝑛−1)

−
2

while ‖𝛾
(
f (𝑡−1)

)
− 𝛾

(
f (𝑡)

)
‖2 ≥ 𝜖 do

𝑡 ← 𝑡 + 1

f (𝑡) ←
[
B̄

(
f (𝑡−1) , 𝜆(𝑛)

)]−1
Ā

(
f (𝑡−1)

)
f (𝑡−1)

f (𝑡) ←
√︃∑𝐿

ℓ=1 (1+𝜂★ℓ (𝐵̄
★
ℓ
))−1·f (𝑡)

max
{{
[∑𝐾

𝑘=1 ‖fℓ,𝑘 ‖22]
1/2}

ℓ∈L

}
end
if sign(𝑔(𝜆(𝑛−1)

− )) ≠ sign(𝑔(𝜆(𝑛))) then
𝜆
(𝑛)
+ ← 𝜆(𝑛)

𝜆(𝑛)− ← 𝜆(𝑛−1)
−

else
𝜆
(𝑛)
+ ← 𝜆

(𝑛−1)
+

𝜆(𝑛)− ← 𝜆(𝑛)

end
end

plier 𝜆(𝑛) , we construct the functional matrices Ā
(
f (𝑡−1)

)
and B̄

(
f (𝑡−1) , 𝜆(𝑛)

)
. Then, using the generalized

power iteration algorithm initially introduced in [37], we update the sparse precoding vector such that

f (𝑡) =:
[
B̄

(
f (𝑡−1) , 𝜆(𝑛)

)]−1
Ā

(
f (𝑡−1)

)
f (𝑡−1) , (46)

with normalization
√
𝐿f (𝑡)
‖f (𝑡) ‖2

until it converges on the first eigenvector within a sufficiently small positive

value 𝜖 , i.e., ‖f (𝑡−1) − f (𝑡) ‖2 ≤ 𝜖 . Using this convergent solution f (𝑡) , the algorithm checks whether it

satisfies the group-sparsity condition:�����log2

𝐿∏
ℓ=1

(
(f (𝑡))HCℓf (𝑡)

)𝜇𝜖
− 𝑆

����� ≤ 𝜖 . (47)

If the group-sparsity condition is satisfied, the algorithm moves to next step. Otherwise, Algorithm 1

updates 𝜆(𝑛) using the bisection method, which is a simple root-finding technique for any continuous mono-

tonic function. Applying this method, Algorithm 1 repeatedly bisects an interval
[
𝜆
(𝑛)
+ , 𝜆

(𝑛)
−

]
with the func-

tion values 𝑔
(
𝜆
(𝑛)
+

)
=

(
log2

∏𝐿
ℓ=1

(
(f (𝑡))HCℓf (𝑡)

)𝜇𝜖
− 𝑆

)
> 0 and 𝑔

(
𝜆(𝑛)−

)
=

(
log2

∏𝐿
ℓ=1

(
(f (𝑡))HCℓf (𝑡)

)𝜇𝜖
− 𝑆

)
<
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TABLE I
SYSTEM LEVEL SIMULATION ASSUMPTIONS.

Parameters Value
Topology of RRH Densely deployed in [2000m × 2000m]
Topology of User Randomly distributed in [2000m × 2000m]
Bandwidth 10MHz
Carrier frequency 2GHz
RRH transmission power 40dBm
Noise power -113dB
Spatial channel model Spatially correlated model
Path-loss model Okumaura-Hata model
RRH/UE height 32m/1.5m
Channel estimation Imperfect
Quantization bits 𝐵★ 3∼6 bits

0, where f (𝑡) =
[
B̄

(
f (𝑡−1) , 𝜆(𝑛−1)

)]−1
Ā

(
f (𝑡−1)

)
f (𝑡−1) . The iterations of the bisection method end when the

function value approaches an interval [−𝜖, +𝜖], where 𝜖 is a predetermined precision error constant. After

finishing the iterations, in the last step, we apply project the sparse precoding vector onto the per-RRH

power constraint sets to ensure the power constraint per RRH as

(1 + 𝜂★
ℓ
(𝐵̄★

ℓ
))−1/2 · f (𝑡)

max
{{[∑𝐾

𝑘=1 ‖fℓ,𝑘 ‖22
]1/2}

ℓ∈L

} . (48)

The proposed algorithm is summarized in Algorithm 1.

Remark 1 (Validation for local optimality): Using system-level simulations, we numerically validate

the local optimality of the sparse-JT solution for the proposed algorithm. Interestingly, the solution f★

obtained from Algorithm 1 satisfies the local optimality condition derived in Theorem 2 in every fading

realization when the algorithm starts with zero-forcing (ZF) precoding solution as the initial point.

Remark 2 (Downlink data sharing overhead reduction): Our sparse joint downlink transmission

can reduce the downlink data sharing overhead because BBU sends downlink data symbols xℓ [𝑡] to the

selected 𝑆 RRHs via a finite-rate fronthaul links, each with 𝐶ℓ for ℓ ∈ A. Therefore, the downlink data

sharing overhead diminishes as the number of active RRHs 𝑆 decreases.

Remark 3 (CSI acquisition overhead reduction): Our sparse joint transmission can also reduce the

CSI sharing overhead. RRH ℓ ∈ L estimates CSI for 𝑈★
ℓ
< 𝐾 users that provide the highest received

power, and share them with BBU for the precoding construction. Then, the uplink overhead for the CSI
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Fig. 3. The illustration of a dynamic clustering under (𝐶ℓ ,𝑈★ℓ , 𝐵
★
ℓ
, 𝐵̄★
ℓ
) = (3 𝐺𝑏𝑝𝑠, 6, 6, 12) and 𝑆 = 6.

acquisition can be diminished by the factor of
∑𝐿
ℓ=1𝑈

★
ℓ

𝐾𝐿
.

Remark 4 (Computational complexity reduction in precoding): Our precoding algorithm requires the

computational complexity order of O(𝐽𝐿2𝑁2𝐾), while the WMMSE-based sparse beamforming algorithm

needs the computational complexity of O
(
𝐽 (𝐾𝐿𝑁)3.5

)
. Therefore, our algorithm is much less complex

as 𝐾 , 𝐿, and 𝑁 increase.

VI. SIMULATIONS RESULTS

In this section, we provide system-level simulation results to compare the performance of the proposed

sparse-JT with those of the existing transmit precoding schemes. The topology and simulation parameters

are summarized in Table I.

To understand the joint transmission solution f★ obtained from our algorithm, we provide an illustrative

example. Consider a simulation setting in which (𝐶ℓ,𝑈★ℓ , 𝐵
★
ℓ
, 𝐵̄★

ℓ
) = (3 Gbps , 6, 6, 12) and [𝐿, 𝐾, 𝑆] =

[30, 10, 6]. In this case, as depicted in Fig. 3, the solution f★ obtained from our algorithm provides a set

of active RRHs as A = {6, 9, 12, 14, 19, 29}. To be specific, RRH 9 and 29 perform single-cell MU and

SU MIMO transmissions, while RRH 6, 12, 14, and 19 perform the joint transmission by partially sharing

the transmit data streams. Here, the data sharing pattern for the joint transmission is depicted by different

group colors. For instance, RRH 12 serves three users in cell 6 and 12. Meanwhile, RRH 6 supports two

users in the cells. In addition, the users in cells 15 and 26 are discarded because the number of active

RRHs 𝑆 can be less than 𝐾 .
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Fig. 4. The ergodic sum-spectral efficiency comparison when decreasing the number of cooperative RRHs. We consider the system
configuration of (𝐿, 𝑁, 𝐾) = (30, 4, 12) under noisy-and-incomplete CSIT with (𝐶ℓ ,𝑈★ℓ , 𝐵

★
ℓ
, 𝐵̄★
ℓ
) = (3, 6, 6, 12).

To fairly compare with the proposed method, we consider the following existing RRH clustering and

precoding methods:

• RRH-centric clustering with zero-forcing beamforming (RCC-ZF): This scheme first selects a set

of active RRHs with the 𝑆 most significant aggregated channel gains from all users. Then, the

conventional ZF precoding is applied using the selected RRH set.

• Sparse-JT clustering with zero-forcing beamforming (SC-ZF): In this method, a set of active RRHs

and corresponding serving users are chosen from the proposed sparse-JT precoding method. Specifi-

cally, from the obtained solution f★ of the proposed sparse-JT, the SC-ZF searches activated fℓ,𝑘 for

all ℓ ∈ L and 𝑘 ∈ Kℓ. Then, the conventional ZF precoding is applied using the selected cluster set.

• WMMSE [16]: We also consider the WMMSE based sparse precoding method. After obtaining the

precoding vector, it choose the best 𝑆 precoding vector in terms of power allocation and the other

precoding vectors are set to be zero.

Trade-off between ergodic sum-spectral efficiency and the number of active RRHs: Fig. 4 shows

how the ergodic sum-spectral efficiency alters when the number of cooperative RRHs decreases. To

elucidate the effect of the number of cooperative active RRHs for JT under the limited fronthaul capacity,

we assume that the fronthaul capacity is 𝐶ℓ = 3 Gbps and choose the (𝑈★
ℓ
, 𝐵★

ℓ
, 𝐵̄★

ℓ
) = (6, 6, 12). As can be
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Fig. 5. The ergodic sum-spectral efficiency comparison as the number of cooperative RRHs decreases under diverse CSIT assumptions;
perfect CSIT, noisy CSIT, and noisy-and-incomplete CSIT.

seen in Fig. 4, the proposed sparse-JT method provides significant gains compared to all existing methods

regardless of the number of active RRHs. In particular, the proposed sparse-JT achieves a better trade-

off performance (i.e., less performance degradation) than all other existing JT strategies when increasing

the number of deactivated RRHs. One interesting observation from Fig. 4 is that, on the one hand, the

beamforming and the power allocation strategies are more crucial than the RRHs clustering strategy

because the inter-RRH interference is a major bottleneck when all RRHs are active. On the other hand,

the clustering strategy becomes more significant than the beamforming and power allocation as the number

of active RRHs decreases.

Effects of noisy-and-incomplete CSIT: Fig. 5 shows the effects of noisy-and-incomplete CSIT on

the ergodic sum-spectral efficiency. To see the effects on the channel estimation errors, we consider the

perfect CSIT case as a benchmark (a black dotted line). As can be seen in Fig. 5, the ergodic sum-

spectral efficiency obtained in the noisy CSIT (a black solid line) shows the performance degradation

compared to the perfect CSIT case, but the performance loss decreases as the activated RRHs become

sparse. Furthermore, to gauge the effects on both the quantization noise and incomplete channel knowledge

under the finite-rate fronthaul capacity, i.e., 𝐶ℓ = 3 Gbps, we consider three different channel compression

parameter sets; (𝑈★
ℓ
, 𝐵★

ℓ
, 𝐵̄★

ℓ
) = (6, 6, 12), (9, 4, 12), and (12, 3, 12). Fig. 5 shows that the ergodic sum-
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Fig. 6. (a) The possible quantization bits 𝐵ℓ in a specific fronthaul capacity 𝐶ℓ and the number of selected users 𝑈ℓ and (b) the cumulative
distribution function of channel gain and channel quantization noise levels.

spectral efficiency additionally degrades by both quantization noise and incomplete channel knowledge.

When (𝑈★
ℓ
, 𝐵★

ℓ
, 𝐵̄★

ℓ
) = (6, 6, 12), the performance loss caused by quantization noise and absent channel

knowledge becomes negligible. In contrast, we observe a severe performance degradation when the

compression parameters are chosen as (𝑈★
ℓ
, 𝐵★

ℓ
, 𝐵̄★

ℓ
) = (9, 4, 12) and (12, 3, 12), respectively. To interpret

these results, we provide numerical results in the next subsection.

Effects of CSIT compression strategies: Fig. 6-(a) illustrates a trade-off between 𝐵ℓ and 𝑈ℓ when

the fronthaul capacity has finite rates, 𝐶ℓ ∈ {1, 3, 5} Gbps. As can be seen in Fig. 6-(a), the quantization

bits 𝐵ℓ is inversely proportional to the number of selected users. To suitably choose the CSI compression

parameters, (𝑈★
ℓ
, 𝐵★

ℓ
), we need to understand the channel gain distribution compared to the quantization

noise level according to different 𝐵ℓ, which is depicted in Fig. 6-(b). When 𝐵ℓ = 6, the probability that the

channel gain is greater than the quantization noise level, 𝜎2
𝑞 = 5.9869𝑒−14, is approximately 0.5, which

implies that 𝑈ℓ = 0.5𝐾 = 6 users should be selected to quantize their channels. However, when 𝐵ℓ = 4,

the probability that the channel gain is greater than the quantization noise level, 𝜎2
𝑞 = 1.4519𝑒−12, is about

0.1. This means that only 𝑈ℓ = b0.2𝐾c = 3 user should be selected for the quantization. Nevertheless,

when 𝐵ℓ = 4, the nine users are selected under 𝐶ℓ = 3 Gbps as shown in Fig. 6-(a). Therefore, the CSI of



28

0 5 10 15 20 22 24 26

# of deactivated RRHs

25

30

35

40

45

50

55

60

65

70

75

E
rg

o
d
ic

 S
u
m

-S
p
e
c
tr

a
l 
E

ff
ic

ie
n
c
y
 [
b
it
/s

e
c
/H

z
]

Full CSI acquisition

Limited CSI acquisition

Fig. 7. The ergodic sum-spectral efficiency comparison under different CSI acquisition assumptions when (𝐶ℓ ,𝑈★ℓ , 𝐵
★
ℓ
, 𝐵̄★
ℓ
) = (3, 6, 6, 12).

the most users disappears by the high quantization noise level except for the CSI of three users. In other

words, for a fixed 𝐶ℓ, we need to carefully select both 𝑈ℓ and 𝐵ℓ so that the CSI are efficiently delivered

to the BBU.

Effects of limited CSI acquisition: To elucidate the effects of the limited CSI acquisition on the ergodic

sum-spectral efficiency performance, we provide a numerical comparison with the full CSI acquisition

case. As shown in Fig. 7, there is no performance loss when the number of activated RRHs is sufficiently

larger than the number of users, i.e., 𝑆 > 𝐾 . However, as the activated RRHs are sparse compared with

the total number of users 𝐾 , the method harnessing full CSI acquisition achieves a higher ergodic spectral

efficiency. This result implies that more CSI overhead is required when activating RRHs sparse to increase

the spectral efficiency in C-RANs.

VII. CONCLUSION

This paper presented a novel sparse joint transmission method for a scalable C-RAN with noisy-and-

incomplete CSIT and limited fronthaul capacity. The proposed sparse-JT aimed at maximizing a lower

bound of the sum-spectral efficiency by jointly identifying a set of cooperative RRHs, precoding for

beamforming and compression, and power control solutions. To accomplish this, a novel tractable non-

convex optimization problem for the sum-spectral efficiency maximization was introduced under sparsely
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active RRH constraints. To solve the optimization problem, the sparse-JT algorithm that guarantees to

identify a local-optimal solution was proposed. Simulation results demonstrated that the proposed sparse-JT

offers significant gains over the existing joint transmission techniques in terms of the ergodic sum-spectral

efficiency regardless of all system parameters.

One promising future research direction would investigate the sparse-JT with a user-centric clustering

method and the benefits of using deep-learning in the design of the sparse-JT.

APPENDIX

A. Proof for Theorem 1

Proof. We commence by defining the Lagrange function:

L(f, 𝜆) = log2

(
𝐾∏
𝑘=1

fHA𝑘 f
fHB𝑘 f

)
− 𝜆

(
log2

𝐿∏
ℓ=1

(
fHCℓf

)𝜇𝜖
− 𝑆

)
= log2

( ∏𝐾
𝑘=1 fHA𝑘 f∏𝐾

𝑘=1 fHB𝑘 f
∏𝐿
ℓ=1

(
fHCℓf

)𝜇𝜖 𝜆
)
+ 𝜆𝑆, (49)

where 𝜆 is the Lagrange multiplier. To find a stationary point, we take the partial derivatives of L(f, 𝜆)

with respective to f and 𝜆 and set to them zero. Let 𝑓 (f) = ∏𝐾
𝑘=1 fHA𝑘 f, 𝑔(f) = ∏𝐾

𝑘=1 fHB𝑘 f, and ℎ(f, 𝜆) =∏𝐿
ℓ=1

(
fHCℓf

)𝜇𝜖 𝜆
. Then, the first condition ∇fHL(f, 𝜆) = 0 is an equivalent one to solve ∇fH𝛾(f, 𝜆) = 0

by discarding the invariant constant 𝜆𝑆.

∇fH𝛾(f, 𝜆) = 0

⇔ 𝛾(f, 𝜆)
{
𝐾∑︁
𝑖=1

A𝑖f
fHA𝑖f

−
𝐾∑︁
𝑖=1

B𝑖f
fHB𝑖f

−
𝐿∑︁
𝑖=1

𝜇𝜖𝜆C𝑖f
fHC𝑖f

}
= 0. (50)

Rearranging the condition (50), we obtain

Ā (f) f = 𝛾 (f, 𝜆) B̄ (f, 𝜆) f. (51)

We also take the partial derivatives of L(f, 𝜆) with respective to 𝜆 and set to them zero.

∇𝜆L(f, 𝜆) = log2

𝐿∏
ℓ=1

(
fHCℓf

)𝜇𝜖
− 𝑆 = 0. (52)
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The condition in (52) simplifies to

log2

𝐿∏
ℓ=1

(
fHCℓf

)𝜇𝜖
= 𝑆. (53)

This completes the proof. �

B. Proof for Theorem 2

Proof. To prove the local-optimality claim, it is sufficient to show that the extended Hessian matrix

considering constraint sets at a stationary point is negative definite. To accomplish this, we first derive

the extended Hessian matrix evaluated at an arbitrary point f ∈ C𝐿𝑁𝐾×1, which is given by

∇2
fH𝛾(f, 𝜆) = 2

{
∇fH𝛾(f, 𝜆)

} (
𝐾∑︁
𝑖=1

A𝑖f
fHA𝑖f

−
𝐾∑︁
𝑖=1

B𝑖f
fHB𝑖f

−
𝐿∑︁
𝑖=1

𝜇𝜖𝜆C𝑖f
fHC𝑖f

)H

+ 2𝛾(f, 𝜆)
{
∇fH

(
𝐾∑︁
𝑖=1

A𝑖f
fHA𝑖f

−
𝐾∑︁
𝑖=1

B𝑖f
fHB𝑖f

−
𝐿∑︁
𝑖=1

𝜇𝜖𝜆C𝑖f
fHC𝑖f

)}
. (54)

By plugging a stationary point f★ and 𝜆★obtained from Theorem 1 into (54), it follows that

∇2
fH𝛾(f★, 𝜆★) = 2𝛾(f★, 𝜆★)

{
𝐾∑︁
𝑖=1

A𝑖(
(f★)HA𝑖f★

) − 𝐾∑︁
𝑖=1

B𝑖(
(f★)HB𝑖f★

) − 𝐿∑︁
𝑖=1

𝜇𝜖𝜆
★C𝑖(

(f★)HC𝑖f★
) }

+ 2𝛾(f★, 𝜆★)
{
𝐾∑︁
𝑖=1

−2A𝑖f★
(
f★

)H A𝑖

((f★)H A𝑖f★)2
+

𝐾∑︁
𝑖=1

2B𝑖f★
(
f★

)H B𝑖
((f★)H B𝑖f★)2

+
𝐾∑︁
𝑖=1

2𝜇𝜖𝜆★C𝑖f★
(
f★

)H C𝑖

((f★)H C𝑖f★)2

}
. (55)

In (55), the terms in first line 2𝛾(f★, 𝜆)
{∑𝐾

𝑖=1
A𝑖

( (f★)HA𝑖f★) −
∑𝐾
𝑖=1

B𝑖
( (f★)HB𝑖f★) −

∑𝐿
𝑖=1

𝜇𝜖 𝜆
★C𝑖

( (f★)HC𝑖f★)
}

become zero

from the result of Theorem 1. As a result, the extended Hessian matrix simplifies to

∇2
fH𝛾(f★, 𝜆★) = 4𝛾(f★, 𝜆★)

{
𝐾∑︁
𝑖=1

B𝑖f★
(
f★

)H B𝑖
((f★)H B𝑖f★)2

+
𝐾∑︁
𝑖=1

𝜇𝜖𝜆
★C𝑖f★

(
f★

)H C𝑖

((f★)H C𝑖f★)2
−

𝐾∑︁
𝑖=1

A𝑖f★
(
f★

)H A𝑖

((f★)H A𝑖f★)2

}
. (56)

In (56), the first term 𝛾(f★, 𝜆★) is a positive scalar value and all the remaining terms are the summation of

positive-definite matrices due to the fact that 𝐴𝑖, 𝐵𝑖, and 𝐶𝑖 are Hermitian matrices for all 𝑖 ∈ {1, . . . , 𝐾}.

It means that if the minimum eigenvalue of
∑𝐾
𝑖=1

A𝑖f★(f★)HA𝑖
((f★)HA𝑖f★)2

is bigger than the maximum eigenvalue

of the
∑𝐾
𝑖=1

B𝑖f★(f★)HB𝑖
((f★)HB𝑖f★)2

+ ∑𝐾
𝑖=1

𝜇𝜖 𝜆
★C𝑖f★(f★)HC𝑖
((f★)HC𝑖f★)2

, then the Hessian matrix ∇2
fH𝛾(f★, 𝜆) is sufficient to be a

negative-definite matrix. This completes the proof. �
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