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RIS-aided Zero-Forcing and Regularized
Zero-Forcing Beamfoming in Integrated Information

and Energy Delivery
H. Yu1, H. D. Tuan1, E. Dutkiewicz1, H. V. Poor2, and L. Hanzo3

Abstract—This paper considers a network of a multi-antenna
array base station (BS) and a reconfigurable intelligent surface
(RIS) to deliver both information to information users (IUs)
and power to energy users (EUs). The RIS links the connection
between the IUs and the BS as there is no direct path between the
former and the latter. The EUs are located nearby the BS in order
to effectively harvest energy from the high-power signal from the
BS, while the much weaker signal reflected from the RIS hardly
contributes to the EUs’ harvested energy. To provide reliable
links for all users over the same time-slot, we adopt the transmit
time-switching (transmit-TS) approach, under which information
and energy are delivered over different time-slot fractions. This
allows us to rely on conjugate beamforming for energy links and
zero-forcing/regularized zero-forcing beamforming (ZFB/RZFB)
and on the programmable reflecting coefficients (PRCs) of the
RIS for information links. We show that ZFB/RZFB and PRCs
can be still separately optimized in their joint design, where
PRC optimization is based on iterative closed-form expressions.
We then develop a path-following algorithm for solving our max-
min IU throughput optimization problem subject to a realistic
constraint on the quality-of-energy-service in terms of the EUs’
harvested energy thresholds. We also propose a new RZFB for
substantially improving the IUs’ throughput.

Index Terms—Reconfigurable intelligent surface, transmit
beamforming, conjugate beamforming, zero-forcing beamform-
ing, trigonometric function optimization, concave programming.

I. INTRODUCTION

Jointly supporting both wireless information and power
transfer networking poses challenging problems in signal
processing for communication (see e.g. [1] and references
therein). For information and energy delivery over a single
time slot, simultaneous wireless information and power trans-
fer (SWIPT) apportions the power of the signals received by
the users for energy-harvesting (EH) and information detection
(ID). In the context, the EH performance is dependent on the
power of the received signal, by contrast, the ID performance
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is critically dependent on the signal-to-interference-plus-noise
ratio (SINR). The popular SWIPT systems have primarily
used conjugate beamforming (CB) to deliver sufficient energy
for EH [2], even though this limits the ID performance due
to the multi-user interference (MUI) imposed. By contrast,
zero-forcing beamforming (ZFB) completely eliminates the
MUI, but it is less efficient for SWIPT. To circumvent these
drawbacks, it has been proposed to convey information and
energy over the same time slot by transmitting information
and energy in separate fractions of the time-slot. Termed as
transmit time-switching (transmit-TS), it has been shown to
outperform SWIPT due to its ability to support individual
energy beamforming for EH and information beamforming for
ID (see e.g. [3]–[6]). As a benefit, transmit-TS enables CB for
EH and ZFB or regularized zero-forcing beamforming (RZFB)
for ID [7], [8] [6].

A reconfigurable intelligent surface (RIS) is a planar array
of ”nearly-passive” reflecting elements, which can beneficially
manipulate the reflected signals by programming its reflection
coefficients [9]. By strategically installing a RIS in places such
as building facades so that it can have a line-of-sight (LoS)
path from both the users and a base station (BS), the RIS
facilitates reliable communication when there are no direct
links between them [10]–[13]. A challenging problem in signal
processing for these RIS-aided networks is to jointly design
the BS’s transmit beamformers and the RIS’s programmable
reflecting coefficients (PRCs) to maximizing the sum through-
put [10], [14]–[16] or the users’ minimum throughput [17].
The joint design of power allocation for ZFB and PRCs
to maximize the sum throughput subject to individual user
throughput constraints has been considered in [10]. While
the alternating power allocation optimization with the PRCs
held fixed is simple, the alternating optimization in PRCs
with the power allocation held fixed is very challenging since
the user throughput becomes a complex function due to the
matrix inversion involved in ZFB. As a result, the convergence
behavior of the general purpose gradient descent algorithm
used in [10] is unknown. Thus, the expected computational
tractability of the ZFB design could not be achieved. The
authors of [18] and [19] considered some RIS-aided SWIPT
scenarios which require that the BS, the RIS and the energy
users (EUs) must be located within a small cell radius of about
10m, however the reflected signal by the RIS after undergoing
the associated double path-loss becomes quite weak compared
to that coming directly from the BS to the EUs, which erodes
the benefit of the RIS in EH.
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Against the above background, this paper offers the follow-
ing contributions.

• We reveal that as a benefit of the transmit-TS technique,
the joint optimization of power allocations (for ZFB)
and PRCs may be simplified to optimizing the PRCs
only, because the power allocation for ZFB can be easily
determined. Instead of iterating by relying on convex
problems or using deep Q-learning methods to handle
the unit-modulus constraint on the PRCs which incur
much higher computational complexity [17], [20], [21],
we use the polar form of unit-modulus complex numbers
that allows each descent iteration of the RIS coefficient
calculation to be based on computational efficient closed-
form expressions for the solution of concave trigonomet-
ric function optimization [22]. Accordingly, we develop
efficient computational procedures, which are based on
closed-form expressions for its computation;

• Similarly, we also show that the joint optimization of
power allocations (for RZFB) and PRCs can be decom-
posed into the separate optimization of power allocations
(for RZFB) and optimization of PRCs. Accordingly,
we develop efficient computational procedures for PRC
optimization, which are still based on closed-form expres-
sions. A computational procedure is also proposed for
power allocations optimization, which involves a convex
quadratic problem at each iteration;

• Furthermore, we develop a new RZFB for improving the
throughput of IUs. Our simulations show that the IUs’
throughput using the new RZFB is 15% - 25% higher than
that obtained by the existing RZFB in the challenging
rank-deficient scenario, when the BS only has a few
antennas for serving more IUs;

• We consider a practical scenario of RIS-aided integrated
information and energy deliveries to both information
users (IUs) and energy users (EUs). By adopting the
aforementioned transmit-TS approach, we harness CB for
delivering energy to EUs, and RIS-aided ZFB/RZFB/new
RZFB for delivering information to IUs. Naturally, the
PRCs are still separately optimized in this joint de-
sign problem. We then develop efficient computational
procedures for solving the problem of maximizing the
IUs’ minimum throughput subject to a constraint on the
quality-of-energy-service (QoES) in terms of the EUs’
harvested energy thresholds.

The rest of the paper is organized as follows. Section II and
Section III are respectively devoted to PRC optimization for
ZFB and RZFB with its applications to RIS-aided information
and energy delivery studied in Section IV and V. A new
RZFB is also introduced in Section V. Section VI provides
simulations to support the technical developments of the previ-
ous sections. Section VII concludes the paper. The Appendix
provides several inequalities that are frequently used in the
technical sections. The flow chart of paper organization can
be seen in Fig. 1.

Notation. Only design variables are denoted in bold face;
C(0, a) is the set of circular Gaussian random variables with
zero means and variances a; ∠xi is the argument of the com-
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Fig. 1: Paper organization.

plex number xi and as such ∠x for x = (x1, . . . , xN )T ∈ CN
is understood componentwise: ∠x , (∠x1, . . . ,∠xN )T ∈
CN ; IN is the identity matrix of size N ×N , while OM×N is
a zero matrix of size M×N ; for x = (x1, . . . , xN )T , diag(x)
is a diagonal matrix of size N × N with x1, x2, . . . , xN on
its diagonal; we also write 〈X〉 = trace(X) for notational
simplicity; [X]2 is XXH , so [XH ]2 = XHX , and 〈X,Y 〉 =
〈XHY 〉 for matrices X and Y ; accordingly, the Frobenius
norm of X is defined by ||X|| =

√
〈[X]2〉; the notation X � 0

(X � 0, resp.) used for the Hermitian symmetric matrix
X indicates that it is positive definite (positive semi-definite,
resp.); the maximal eigenvalue of the Hermitian symmetric
matrix X is denoted by λmax(X).

II. RIS-AIDED ZERO-FORCING BEAMFORMING
OPTIMIZATION

Consider a RIS-aided network, which is illustrated by Fig.
2 with a RIS of N reflecting units to assist the downlink
from an M -antenna base station (BS) to K single-antenna
information users (IUs) k ∈ K , {1, . . . ,K} because
there is no direct signal path between the former and the
latter.1 The channel spanning from the BS to the RIS is
H̃B−R ,

√
βB−RHB−R ∈ CN×M , where

√
βB−R models

the path-loss and large-scale fading of LoS and the entries of
HB−R are C(0, 1), modelling small-scale fading. Analogously,
the channel spanning from the RIS to IU k is h̃R−k =√
βR−kh̄R−k ∈ C1×N , where

√
βR−k represents the large-

scale fading, while h̄R−k denotes the small-scale fading having
elements of C(0, 1). Like in many other papers on RIS-aided
communication networks, we assume perfect channel state
information, which can be obtained by channel estimation
[19], [20], [24].

Let θθθ , (θθθ1, . . . , θθθN ) ∈ [0, 2π]N and

eθθθ , (eθθθ1 , . . . , eθθθN )T ∈ CN ,
1According to [17], [23], the networks throughput is hardly improved by

RIS’s, when there are direct paths from the BS to the IUs.
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Fig. 2: Scenario setup with the blockage of the direct path
between the BS and the IUs.

which is a complex-vector function of the variable θθθ. We also
define the diagonal complex-matrix function of the variable
eθθθ as

diag[eθθθ] = diag{eθθθ1 , . . . , eθθθN } ∈ CN×N

representing the matrix of RIS reflection-coefficients.
The received signal at IU k is

yk = hB−k(eθθθ)xI + nk, (1)

where nk ∈ C(0, σ) is the background noise, and

hB−k(θθθ) , h̃R−kR
1/2
RIS−kdiag[eθθθ]H̃B−R ∈ C1×M , (2)

which is the composite channel spanning from the BS to IU
k.

In (2), RRIS−k ∈ CN×N represents the spatial correlation
matrix of the RIS elements with respect to IU k [14]. For

y ,

 y1

. . .
yK

 ∈ CK , n̄ ,

n1

. . .
nK

 ∈ CK ,

and

H(eθθθ) ,

hB−1(eθθθ)
. . .

hB−K(eθθθ)

 = HRdiag[eθθθ]H̃B−R

=

N∑
n=1

eθnHn ∈ CK×M

with
Hn , HRΨnH̃B−R ∈ CK×M

,

HR ,

 h̃R−1R
1/2
RIS−1

. . .

h̃R−KR
1/2
RIS−K

 ∈ CK×N ,

where Ψn is a matrix of size N × N with all-zero entries,
excepts Ψn(n, n) = 1.

We can write

y = H(eθθθ)xI + n̄. (3)

Now, for K ≤M we consider the ZFB, under which the BS
transmits

xI = HH(eθθθ)
(

[H(eθθθ)]2
)−1

diag[pk]k=1,...,Ks, (4)

where s = (s1, . . . , sK)T , sk ∈ C(0, 1) is the information
intended for the IUs having the power of p = (p1, . . . ,pK)T .
Then Equation (3) becomes

y = H(eθθθ)HH(eθθθ)
(

[H(eθθθ)]2
)−1

diag[pk]k=1,...,Ks+ n̄

= [H(eθθθ)]2
(

[H(eθθθ)]2
)−1

diag[pk]k=1,...,Ks+ n̄

= diag[pk]k=1,...,Ks+ n̄ (5)

simplifying (1) to

yk = pksk + n̄k. (6)

The throughput for sk is

ln(1 + p2
k/σ), (7)

and the transmit power is

E(||xI ||2) = 〈HH(eθθθ)
(

[H(eθθθ)]2
)−1

diag[p2
k]k=1,...,K(

[H(eθθθ)]2
)−1

H(eθθθ)〉 (8)

= 〈diag[p2
k]k=1,...,K

(
[H(eθθθ)]2

)−1

〉. (9)

For the IUs’ max-min throughput optimization is employed,
which aims for maximizing the users’ worst-case (minimal)
throughput, where we have pk ≡ p0

2(ln(1+p2
k/σ) ≡ ln(1+

p2
0/σ). Then by (9), the transmit power is p2

0〈
(
[H(eθθθ)]2

)−1〉,
and the problem of max-min IU throughput optimization
subject to a transmit power budget P can be formulated as

max
p0,θθθ

ln(1 + p2
0/σ) s.t. p2

0〈
(

[H(eθθθ)]2
)−1

〉 ≤ P (10)

⇔ max
θθθ

P/〈
(

[H(eθθθ)]2
)−1

〉 (11)

⇔ min
θθθ
f(eθθθ) , 〈

(
H(eθθθ)HH(eθθθ)

)−1

〉. (12)

In fact, it follows from the power constraint in (10) that
p2

0 ≤ P/〈
(
[H(eθθθ)]2

)−1〉. Hence the problem (10) is actually

max ln(1 + P/(σ〈
(

[H(eθθθ)]2
)−1

〉)), which is the same as
(11). Since only the denominator of the fractional objective
function in (11) is dependent on θθθ, its maximization is equiv-
alent to the minimization of its denominator, which is (12).

The rest of this section is devoted to the detailed portrayal
of our algorithms conceived for computing (12), which is very
challenging because its objective function is highly nonlinear
and computationally intractable.

2From (7), the users’ worst-case throughput is mink=1,...,K ln(1+p2
k/σ),

which is maximized at ln(1+p2
1/σ) = ln(1+p2

2/σ) = · · · = ln(1+p2
K/σ)

⇔ pk ≡ p0
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A. Step descent algorithm

Let θ(κ) be a point found during the (κ − 1)-st iteration.
The linearized function of f at eθ

(κ)

is

3f(eθ
(κ)

)− 2<{〈[HH(eθ
(κ)

)
(

[H(eθ
(κ)

)]2
)−2

H(eθθθ)〉} =

3f(eθ
(κ)

)− 2

N∑
n=1

<{eθn〈HH(eθ
(κ)

)A(κ)Hn〉}, (13)

for

A(κ) ,
(

[H(eθ
(κ)

)]2
)−2

. (14)

We seek a step descent by addressing the following problem

max
θθθ

N∑
n=1

<{eθn〈HH(eθ
(κ)

)A(κ)Hn〉}, (15)

which is decomposed into N independent problems:

max
θθθn
<{eθn〈HH(eθ

(κ)

)A(κ)Hn〉}, n = 1, . . . , N,

each of which admits the closed-form solution

θ̃(κ+1)
n = −∠〈HH(eθ

(κ)

)A(κ)Hn〉, n = 1, . . . , N. (16)

We may then choose θ(κ+1) according to one of the following
rules:

• The simplest one

θ(κ+1) = θ̃(κ+1). (17)

• Considering ψ(κ) , θ̃(κ+1) − θ(κ) as a step descent,
we update θ(κ+1) according to the so-called Barzilai-
Borwein (BB) step size of [25] in (18) and (19).

• Considering ψ(κ) , eθ̃
(κ+1) − eθ(κ) we update θ(κ+1)

according to (20) and (21).We will refer this as the
projective Barzilai-Borwein (PBB) step size.

Algorithm 1 provides the pseudo-code for the procedure
iterating (17) or (19), or (21) in order to arrive at the
computational solution of (12). The reader is referred to [25]
for the rationale behind them in locating better feasible points,
which are suitable for unconstrained optimization only. There
is an explicit update of the incumbent point in Algorithm 1
because the updating rules (17)-(21) do not enhance that θ(κ)

is the incumbent. Somewhat surprisingly, the performance of
Algorithm 1 was found to be indifferent with using any of
three aforementioned rules.

Algorithm 1 ZFB step descent algorithm for (12)

1: Initialization: Initial θ(0) and set θopt = θ(0) and γopt =
f(θopt) as the incumbent RIS and value.

2: Repeat until convergence of θ(κ): Generate θ̃(κ+1) by
(16). Then generate θ(κ+1) either by (17) or (19), or
(21). If f(θ(κ+1)) < γopt, set θopt = θ(κ+1) and
γopt = f(θ(κ+1)). Set κ := κ+ 1.

3: Output θopt and γopt.

B. Full step descent algorithms

We express f in (12) as:

f(eθθθ) = α||eθθθ||2 −
(
α||eθθθ||2 − 〈

(
[H(eθθθ)]2

)−1

〉
)

(22)

= αN − g(eθθθ), (23)

where α > 0 is chosen for ensuring that the function

g(eθθθ) , α||eθθθ||2 − 〈
(

[H(eθθθ)]2
)−1

〉

is convex in eθθθ. The problem (12) is equivalent to the follow-
ing problem of unconstrained concave optimization [22]3

max
θθθ

g(eθθθ). (24)

Following [26]–[28] we will develop a local Frank-and-Wolf
(FW) feasible direction algorithm for solving this problem as
it bypasses the line search to give as a full step size of length
1. Moreover, this kind of FW algorithm has proved to be very
efficient in practice [29]. To this end, let θ(κ) be a point found
during the (κ − 1)-st iteration. Note that as g is convex, its
linearized function provides its lower bound formulated as:

g(eθθθ)

≥ α

(
2<{

N∑
n=1

eθne−θ
(κ)
n } −N

)
− 3〈

(
[H(eθ

(κ)

)]2
)−1

〉

+2<{
N∑
n=1

eθn〈HH(eθ
(κ)

)A(κ)Hn〉} (25)

= −αN − 3〈
(

[H(eθ
(κ)

)]2
)−1

〉

+2

N∑
n=1

<{eθn
(
αe−θ

(κ)
n + 〈HH(eθ

(κ)

)A(κ)Hn〉
)
}

, g(κ)(eθθθ), (26)

where A(κ) is defined in (14). For finding the FW feasible
direction, we solve the following problem at the κ-th iteration
to generate θ(κ+1)

max
θθθ

2

N∑
n=1

<{eθn
(
αe−θ

(κ)
n + 〈HH(eθ

(κ)

)A(κ)Hn〉
)
},

(27)
which admits the following closed-form solution similar to
(16):

θ(κ+1)
n = −∠

(
αe−θ

(κ)
n + 〈HH(eθ

(κ)

)A(κ)Hn〉
)
,

n = 1, . . . , N. (28)

We can readily show that

g(eθ
(κ+1)

) ≥ g(κ)(eθ
(κ+1)

) > g(κ)(eθ
(κ)

) = g(eθ
(κ)

), (29)

so θ(κ+1) is a better point than θ(κ), i.e. 1 =

arg max0≤ννν≤1 g(e(θ
(κ)+ννν(θ(κ+1)−θ(κ)))), so the full step size

of length one is achieved. 4 The associated pseudo-code is

3(24) is equivalent to minθθθ(−g(eθθθ), where −g(eθθθ) is a concave function
4Obviously, the step size is not full whenever

argmax0≤ννν≤1 g(e
(θ(κ)+ννν(θ(κ+1)−θ(κ)))) < 1
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θ(κ+1) = θ(κ) +
|〈ψ(κ), ψ(κ) − ψ(κ−1)〉|
||ψ(κ) − ψ(κ−1)||2

ψ(κ) (18)

= θ(κ) +
|〈θ̃(κ+1) − θ(κ), θ̃(κ+1) − θ(κ)−θ̃(κ)+θ(κ−1)〉|

||θ̃(κ+1) − θ(κ) − θ̃(κ) + θ(κ−1)||2
(θ̃(κ+1) − θ(κ)). (19)

θ(κ+1) = ∠

(
eθ

(κ)

+
|〈ψ(κ), ψ(κ) − ψ(κ−1)〉|
||ψ(κ) − ψ(κ−1)||2

ψ(κ)

)
(20)

= ∠

(
eθ

(κ)

+
|〈eθ̃(κ+1) − eθ(κ) , eθ̃(κ+1) − eθ̃(κ) − eθ̃(κ) + eθ

(κ−1)〉|
||eθ̃(κ+1) − eθ̃(κ) − eθ̃(κ) + eθ(κ−1) ||2

(eθ̃
(κ+1)

− eθ
(κ)

)
)
. (21)

provided by Algorithm 2, which iterates incumbent points
bypassing any line search. In contrast to Algorithm 1, the
convergence of Algorithm 2 to at least a locally optimal
solution of (24) can be readily proved [29].

Remark. To efficiently find a reasonable α in (22), we
rely on the following procedure. Initialize the procedure by
using a sufficiently large α(0), solve (27) and update α(κ+1) =

α(κ)/10 until not arrive at g(eθ
(κ+1)

) ≤ g(eθ
(κ)

).
We also propose an alternative full step descent procedure

for (12) by addressing the following problem of perturbed
optimization:

min
θθθ
fα(eθθθ) , 〈

(
[H(eθθθ)]2 + αIK

)−1

〉 (30)

for a sufficient small α > 0. Using the matrix inverse formula
(31) of (see e.g. [30]):(

[H(eθθθ)]2+αIK

)−1

= −α−2H(eθθθ)
(
IM+α−1[HH(eθθθ)]2

)−1

HH(eθθθ)

+α−1IK

= −α−1H(eθθθ)
(
αIM+HH(eθθθ)H(eθθθ)

)−1

HH(eθθθ)

+α−1IK , (31)

the problem in (30) may be shown to be equivalent to

max
θθθ

gα(eθθθ) , 〈H(eθθθ)
(
αIM + [HH(eθθθ)]2

)−1

HH(eθθθ)〉.
(32)

Again, let θ(κ) be a point found during the (κ − 1)-st
iteration. Exploiting the inequality (86) in the Appendix
yields (33) for Ψ(κ) =

(
αIM+[HH(eθ

(κ)

)]2
)
−1, a(κ) ,

−α〈[HH(eθ
(κ)

)]2[Ψ(κ)]2〉, b(κ)(n),〈HnΨ(κ)HH(eθ
(κ)

)〉, n ∈
N , and C(κ)(n,m) , 〈HHn Hm[Ψ(κ)HH(eθ

(κ)

)]2〉, (n,m) ∈
N ×N , while λmax(C(κ)) is the maximum eigenvalue of C(κ),
which is positive because the matrix C(κ) is positive definite.

We thus solve the following problem to generate θ(κ+1)

max
θθθ

g(κ)
α (eθθθ), (34)

which admits the following closed-form solution similar to
(16):

θ(κ+1)
n = −∠(b(κ)(n)−

N∑
m=1

e−θ
(κ)
m C(κ)(m,n)

+λmax(C(κ))e−θ
(κ)
n ), n ∈ N . (35)

Similarly to (29), we can readily show that gα(eθ
(κ+1)

) >

gα(eθ
(κ)

) as far as θ(κ+1) 6= θ(κ), so (35) provides full step
size update. A compact presentation of (34) is also included
in Algorithm 2.

Before concluding this section, observe that after designing
θopt, the throughput of all IUs is defined with the aid of (7)
and (9) as

ln

(
1 +

P

σ〈([H(eθopt)]2)
−1〉

)
. (36)

Algorithm 2 ZFB full step descent algorithm

1: Initialization: Initial θ(0).
2: Repeat until convergence of θ(κ): Generate θ(κ+1) by

(28) or (35). Set κ := κ+ 1.
3: Output θopt = θ(κ).

III. RIS-AIDED REGULARIZED ZERO-FORCING
BEAMFORMING OPTIMIZATION

Now, whenever we have K > M , the matrix
H(eθθθ)HH(eθθθ) becomes singular and it cannot be inverted.
Hence we cannot use the ZFB of (4). Instead, we consider
RZFB, under which the BS transmits

xI = HH(eθθθ)
(

[H(eθθθ)]2+αIK

)
−1diag[pk]k=1,...,Ks

=
(

[HH(eθθθ)]2+αIM

)
−1HH(eθθθ)diag[pk]k=1,...,Ks.(37)

The Equation (3) may be rewritten as

y = H(eθθθ)
(

[HH(eθθθ)]2 + αIM

)−1

HH(eθθθ)diag[pk]Kk=1s+ n̄. (38)

Thanks to the regularization of the ill-posed
part only, we can design θθθ separately, because the
capability of RZFB actually depends on the matrix
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gα(eθθθ) ≥ −α〈[HH(eθ
(κ)

)]2[Ψ(κ)]2〉+ 2<{〈H(eθθθ)Ψ(κ)HH(eθ
(κ)

)〉} − 〈[HH(eθθθ)]2[Ψ(κ)HH(eθ
(κ)

)]2〉

= a(κ) + 2<{
N∑
n=1

eθnb(κ)(n)}+ (eθθθ)HC(κ)eθθθ

≥ a(κ) + 2<

{
N∑
n=1

eθn

(
b(κ)(n)−

N∑
m=1

e−θ
(κ)
m C(κ)(m,n) + λmax(C(κ))e−θ

(κ)
n

)}
− (eθ

(κ)

)HC(κ)eθ
(κ)

−2λmax(C(κ))N

, g(κ)
α (eθθθ), (33)

H(eθθθ)
(
[HH(eθθθ)]2 + αIM

)−1HH(eθθθ) in (38). Note
that we have: [

IK H(eθθθ)
HH(eθθθ) [HH(eθθθ)]2 + αIM

]
�

[
IK H(eθθθ)

HH(eθθθ) [HH(eθθθ)]2

]
=

[
IK

HH(eθθθ)

] [
IK H(eθθθ)

]
� 0.

Upon using the Shur complement (see e.g. [30]), we arrive at:

IK � H(eθθθ)
(

[HH(eθθθ)]2 + αIM

)−1

HH(eθθθ). (39)

It is plausible that the more similar the matrix in the right
hand side (RHS) to the identity matrix in the left hand side
(LHS), the better RZFB performs. Define an ellipsoid in CK :

E(θθθ) , {x ∈ CK : xHH(eθθθ)
(

[HH(eθθθ)]2 + αIM

)−1

HH(eθθθ)x ≤ 1}. (40)

The matrix inequality (39) shows that E(θθθ) always contains
the unit sphere:

E(θθθ) ⊃ U , {x ∈ CK : ||x||2 ≤ 1}. (41)

The rest of this section is devoted to the optimization of θθθ
based on optimizing the shape of E(θθθ).

A. Trace-maximization based algorithm

We aim to minimize the surface of E(θθθ), i.e. we aim to
maximize the trace of the right hand size (RHS) of (39) [31].
As such, the problem is the same as (32), thus it may be solved
by Alg. 2. We repeat it here as Algorithm 3 to emphasize that
it is specifically tailored for RZFB.

Algorithm 3 RZF full step descent algorithm for trace maxi-
mization (32)

1: Initialization: Initial θ(0).
2: Repeat until convergence of θ(κ): Generate θ(κ+1) by

(35). Set κ := κ+ 1.
3: Output θopt.

B. Determinant-maximization algorithms

We aim to minimize the volume of the set E(θθθ) \ U , which
is equivalent to the problem [31]:

min
θθθ
|IK −H(eθθθ)

(
[HH(eθθθ)]2 + αIM

)−1

HH(eθθθ)|

⇔ max
θθθ

φ(eθθθ) , ln |IK +
1

α
[H(eθθθ)]2|, (42)

because according to the matrix inversion formula, we have

IK −H(eθθθ)
(

[HH(eθθθ)]2 + αIM

)−1

HH(eθθθ)

=

(
IK +

1

α
[H(eθθθ)]2

)−1

. (43)

The problem (42) is equivalent to

max
θθθ

ϕ(eθθθ) , ln |αIK + [H(eθθθ)]2|. (44)

As always, let θ(κ) be a point found during the (κ − 1)-st
iteration.

1) Step descent algorithm: The linearization of the function
ϕ at θ(κ) is formulated as:

ϕ(eθ
(κ)

)− 〈A(κ)[H(eθ
(κ)

)]2〉+ 〈A(κ)[H(eθθθ)]2〉, (45)

for

A(κ) ,
(
αIK + [H(eθ

(κ)

)]2
)−1

. (46)

Thus, for A(κ) defined by (46) we address the problem (13)
and then (15) to generate the descent direction θ(κ+1) given by
(16) as per Algorithm 4, which has to update the incumbent
point with the convergence not granted.

Algorithm 4 RZFB step descent algorithm for maximizing
the log determinant (44)

1: Initialization: Initial θ(0) and set θopt = θ(0) and ηopt =
ϕ(θopt) as the incumbent RIS and value.

2: Repeat until convergence of θ(κ): For A(κ) defined by
(46), generate θ(κ+1) by (16). If ϕ(θ(κ+1)) < ηopt, set
θopt = θ(κ+1) and ηopt = ϕ(θ(κ+1)). Set κ := κ+ 1.

3: Output θopt and ηopt.
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φ(eθθθ) ≥ φ(eθ
(κ)

)− ||H(eθ
(κ)

)||2 +
1

α

[
2<{H(eθθθ)HH(eθ

(κ)

)}

−〈H(eθ
(κ)

)(αIm + [HH(eθ
(κ)

)]2)−1HH(eθ
(κ)

), [H(eθθθ)]2〉
]

= a(κ) +
1

α

[
2<{H(eθθθ)HH(eθ

(κ)

)} − 〈[Ψ(κ)H(eθθθ)]2〉
]

= a(κ) +
1

α

[
2<{

N∑
n=1

eθnb(κ)(n)} − (eθθθ)HC(κ)eθθθ

]

≥ a(κ) +
1

α

[
2<

{
N∑
n=1

eθn

(
b(κ)(n)−

N∑
m=1

e−θ
(κ)
m C(κ)(m,n) + λmax(C(κ))e−θ

(κ)
n

)}
−(eθ

(κ)

)HC(κ)eθ
(κ)

− 2λmax(C(κ))N
]

, φ(κ)(eθθθ), (47)

2) Full step descent algorithm: We also can use the in-
equality (88) to address (42) as (47), for a(κ) , φ(eθ

(κ)

) −
||H(eθ

(κ)

)||2, Ψ(κ) , (αIm+[HH(eθ
(κ)

)]2)−1/2HH(eθ
(κ)

),
b(κ)(n) , 〈HnHH(eθ

(κ)

)〉, n ∈ N , C(κ)(n,m) ,
〈HmHHn [(Ψ(κ))H ]2〉, (n,m) ∈ N × N , and λmax(C(κ)) is
the maximum eigenvalue of C(κ), which is positive because
the matrix C(κ) is positive definite.

We thus solve the following problem to generate a better
point θ(κ+1)

max
θθθ

φ(κ)(eθθθ), (48)

which admits the following closed-form solution similar to
(16):

θ(κ+1)
n = −∠(b(κ)(n)−

N∑
m=1

e−θ
(κ)
m C(κ)(m,n)

+λmax(C(κ))e−θ
(κ)
n ), n ∈ N . (49)

Algorithm 5 RZF full step descent algorithm for maximizing
the log determinant (44)

1: Initialization: Initial θ(0).
2: Repeat until convergence of θ(κ): Generate a better point
θ(κ+1) by (49). Set κ := κ+ 1.

3: Output θopt = θ(κ).

Before concluding this section, let us mention that after
designing θopt, we insert it into (38) to consider the problem
of power allocation pk, k = 1, . . . ,K for max-min users rate
optimization. However, we will treat it as a particular case of
the problems in the next section.

IV. ZFB APPLICATIONS TO RIS-AIDED INTEGRATED DATA
AND ENERGY DELIVERY

Now, in addition to IUs we consider a scenario with the
BS serving also KE EUs e`, ` ∈ KE , {1, . . . ,KE}, which
are located near the BS to harvest energy from the BS. We
employ the transmit-TS technique, under which the first time-
slot fraction 1/t1 is used for energy delivery and the second
time-slot fraction 1/t2 is used for information delivery.

-B RH

-R kh

Obstacle
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IU

x

y

z

3
IU

2
IU

4
IU
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IU

8
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3
EU

-Bh

RIS

BS

Fig. 3: Scenario setup for integrated data and energy
networking.

A. Energy delivery during 1/t1

Let us assume that the LoS channel spanning from the BS to
EU e` is h̃B−e` ,

√
βEB−e`hB−e` ∈ C1×M , where

√
βEB−e`

models both the path-loss and the large-scale fading of the
LoS component, where the entries of hB−e` are C(0, 1), to
modelling the small-scale fading.

The signal received at EU e` is

ye` = h̃B−e`xE , (50)

where xE ∈ CM is the transmitted signal carrying the energy.
Note that in (50) we ignore the background noise, as its
power is negligible for EH. Inspired by [6], conjugate energy
beamforming is used, so we have

xE =

KE∑
`=1

h̃HB−e`
√
x`δ`,

where δ` ∈ C(0, 1), which is the energy symbol. The power
of the transmit energy signal is

πE(x) =

KE∑
`=1

||h̃B−e` ||2x`.
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The energy harvested by EU e` during 1/t1 is ζπ`(x) with

π`(x) ,

∑KE
`′=1 |〈h̃B−e` , h̃B−e`′ 〉|

2x`′

t1
, (51)

while ζ is the efficiency of energy conversion, which is set to
0.5 in this paper.

B. Information transmission during 1/t2

The information transmission is implemented during the
time-slot fraction 1/t2, with the signal received at IU k given
by Equation (1), while the corresponding multi-input multi-
output (MIMO) equation is given by (3). Since the specific
design of PRCs has no impact on the EH performance, we
insert θopt found in the previous sections into the equation
(1) and (3) and also into (4) and (37) for ZFB or RZF
beamforming, respectively. When the ZF beamformer of(4)
is used in conjunction with pk ≡ p0, the throughput at IU k
is expressed according to (7) as

r0(p0) = ln
(
1 + p2

0/σ
)
, (52)

and the power used for information transmission according to
(9) is given by

azfp
2
0 (53)

for
azf , 〈

(
[H(eθ

opt

)]2
)−1

〉. (54)

C. Optimal energy and ZF information beamforming

Here we consider the IUs’ max-min throughput optimization
problem subject to the QoES in terms of the EUs’ harvested
energy rate formulated as:

max
p0,x∈R

KE
+ ,γ,ttt=(t1,t2)T∈R2

+

γ s.t. (55a)

πE(x)

t1
+
azfp

2
0

t2
≤ P, (55b)

πE(x) ≤ 3P, azfp
2
0 ≤ 3P, (55c)

1

t1
+

1

t2
≤ 1, (55d)

KE∑
`′=1

|〈h̃B−e` h̃HB−e`′ 〉|
2x`′ ≥ t1emin/ζ, ` ∈ KE , (55e)

r0(p0) ≥ γt2, (55f)

where emin is the harvested energy threshold. The slack
variable γ is introduced in (55a) and (55f) to reflect the
IUs’ minimal throughput; (55b) is the total transmit power
constraint under a given budget P and (55c) is a physical
transmission constraint; (55d) restricts the energy and infor-
mation transfer to a specific time slot, and (55e) represents the
energy constraint of EUs in terms of their minimal required
energy, which in fact reflects the following constraint:

π`(x) ≥ emin/ζ, ` ∈ KE , (56)

with π`(x) defined in (51).
In the problem (55), the constraints (55c)-(55e) are convex

but the constraints (55b) and (55f) are not, making (55) a

nonconvex problem. We now develop inner convex approx-
imations for these nonconvex constraints to propose a path-
following algorithm for computing (55).

Let (p
(κ)
0 , x(κ), t(κ), γ(κ)) be a feasible point for (55) that

is found from the (κ − 1)-st iteration. Then upon using the
following inequality

πE(x) ≤ π(κ)
E (x) ,

1

2

(
π2
E(x)

πE(x(κ))
+ πE(x(κ))

)
, (57)

the nonconvex constraint (55b) is innerly approximated by

π
(κ)
E (x)

t1
+
azfp

2
0

t2
≤ P. (58)

Using the inequality (87) yields the following concave
quadratic minorant of r0(p0) in the LHS of (55f):5

r
(κ)
0 (p0) , r

(κ)
0 (p

(κ)
0 )− (p

(κ)
0 )2

σ
+ 2

p
(κ)
0

σ
p0

− (p
(κ)
0 )2

σ
(

(p
(κ)
0 )2 + σ

) (p2
0 + σ

)
. (59)

Meanwhile, the RHS of (55f) is upper bounded as follows:

γt2 ≤
γ(κ)t

(κ)
2

4

(
γ

γ(κ)
+

t2

t
(κ)
2

)2

. (60)

The nonconvex constraint (55f) is thus innerly approximated
by the following convex quadratic constraint

r
(κ)
0 (p0) ≥ γ(κ)t

(κ)
2

4

(
γ

γ(κ)
+

t2

t
(κ)
2

)2

. (61)

We then solve the following convex optimization
problem for generating the next feasible point
(p

(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1)) for (55):

max
p0,x,γ,ttt=(t1,t2)T∈R2

+

γ s.t. (55c), (55d), (55e), (58), (61).

(62)
As this convex problem involves mc = KE + 3 decision
variables and nv = 5 quadratic constraints, its computational
complexity is on the order of [32]

O[m2.5
c (n2

v +mc)]. (63)

As (p
(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1)) is the optimal solution of

(62), while (p
(κ+1)
0 , x(κ), t(κ), γ(κ)) is its feasible point, it

follows that
γ(κ+1) > γ(κ), (64)

provided that (p
(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1)) 6=

(p
(κ)
0 , x(κ), t(κ), γ(κ)), i.e. (p

(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1)) is a

better feasible point than (p
(κ)
0 , x(κ), t(κ), γ(κ)). The sequence

{(p(κ)
0 , x(κ), t(κ), γ(κ))} of improved feasible points for (55)

converges at least to a locally optimal solution of (55). As
analyzed in [3], this locally optimal solution often turns out
to be the globally optimal one. Algorithm 6 provides the
pseudo-code for the procedure iterating (62).

5r0(p0) ≥ r(κ)0 (p0)
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Algorithm 6 ZF Path-following algorithm for (55)

1: Initialization: Randomly generate a feasible point
(p

(0)
0 , x(0), t(0), γ(0)) for (55). Set κ = 0.

2: Repeat until convergence of γ(κ): Generate
(p

(κ+1)
0 , x(κ+1), t(κ+1), γ(κ+1)) by solving the convex

problem (62). Set κ := κ+ 1.
3: Output (p

(κ)
0 , x(κ), t(κ), γ(κ)).

V. RZFB APPLICATIONS TO RIS-AIDED INTEGRATED
DATA AND ENERGY DELIVERY

A. The conventional RZFB

When the RZFB (37) is used, Equation (38) becomes

yk = h̄B−kH̄rz
K∑
j=1

h̄HB−jpjsj + n̄k (65)

=
K∑
j=1

h̄kjpjsj + n̄k, (66)

for
H̄rz ,

(
HH(θopt)H(θopt) + αIM

)−1

h̄B−j , hB−j(θ
opt), j = 1, . . . ,K.

(67)

and
h̄kj , h̄B−kH̄rzh̄HB−j . (68)

The throughput at IU k is expressed as:

rk(p) = ln

1 + |h̄kk|2p2
k

 K∑
j 6=k

|h̄kj |2p2
j + σ

−1
 . (69)

The transmit power apportioned for information delivery is

πI(p) ,
K∑
j=1

||H̄rzh̄HB−j ||2p2
j . (70)

Thus we consider the following problem of the IUs’ max-min
throughput optimization subject to the QoES in terms of the
EUs’ harvested energy thresholds:

max
p,x,γ,ttt=(t1,t2)T∈R2

+

γ s.t. (55d), (55e), (71a)

πE(x)

t1
+
πI(p)

t2
≤ P, (71b)

πE(x) ≤ 3P, πI(p) ≤ 3P, (71c)
rk(p) ≥ γt2, k ∈ K, (71d)

where like their counterparts in (55), γ in (71a) and (71d) is
a slack variable to express the IUs minimal throughput, (71b)
and (71c) are respectively the total power transmit constraint
under the budget P and a physical transmission constraint,
while as before, (55d) restricts the energy and information
transfer within a time slot, and (55e) is the energy constraint
of EUs in terms of their minimal required energy.

To propose a path-following algorithm for computing (71),
we have to develop inner approximations for its nonconvex
constraints (71b) and (71d).

Let (p(κ), x(κ), t(κ), γ(κ)) be a feasible point for (71) that
is found from the (κ− 1)-st iteration. Based on the inequality
(57), the nonconvex constraint (71b) is innerly approximated
by

π
(κ)
E (x)

t1
+
πI(p)

t2
≤ P. (72)

Using the inequality (87) yields the following concave
quadratic minorant of rk(P) in the LHS of (71d):

r
(k)
k (P) , ˜̃a(κ) + 2

˜̃
b(κ)pk − ˜̃c(κ)

K∑
j=1

|h̄kj |2p2
j , (73)

where

˜̃a
(κ)
k = rk(p(κ))− |h̄kk|2(p

(κ)
k )2

∑
j 6=k

|h̄kj |2(p
(κ)
j )2 + σ

−1

−σ˜̃c
(κ)
k ,

˜̃
b
(κ)
k = |h̄kk|2p(κ)

k

∑
j 6=k

|h̄kj |2(p
(κ)
j )2 + σ

−1

,

˜̃c
(κ)
k =

∑
j 6=k

|h̄kj |2(p(κ)
j )2+σ

−1

−

 K∑
j=1

|h̄kj |2(p(κ)
j )2+σ

−1

.

By (60) and (73), the nonconvex constraint (71d) is innerly
approximated by the following convex quadratic constraint

r
(k)
k (p) ≥ γ(κ)t

(κ)
2

4

(
γ

γ(κ)
+

t2

t
(κ)
2

)2

, k ∈ K. (74)

We then solve the following convex optimization
problem for generating the next feasible point
(p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) for (71):

max
p,x,γ,ttt=(t1,t2)T∈R2

+

γ s.t. (55d), (55e), (71c), (72), (74).

(75)
The computational complexity order of this convex problem is
given by (63) where we have nv = K+KE+3 and mc = K+
4. As (p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) is the optimal solution
of (75) while (p(κ+1), x(κ), t(κ), γ(κ)) is its feasible point, (64)
is satisfied, provided that (p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) 6=
(p(κ), x(κ), t(κ), γ(κ)), i.e. (p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) is a
better feasible point than (p(κ), x(κ), t(κ), γ(κ)). The sequence
{(p(κ), x(κ), t(κ), γ(κ))} of improved feasible points for (71)
converges at least to a locally optimal solution of (71).
Algorithm 7 provides the pseudo-code for solving (71) by
iterating the convex problem (75).

B. New RZFB

Instead of (37), let us now design the transmit signal as

xI = H̄rz
K∑
j=1

h̄HB−j [p1,jsj + p2,js
∗
j ] (76)
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Algorithm 7 Conventional RZF Path-following algorithm for
(71)

1: Initialization: Randomly generate a feasible point
(p(0), x(0), t(0), γ(0)) for (71). Set κ = 0.

2: Repeat until convergence of γ(κ): Generate
(p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) by solving the convex
problem (75). Set κ := κ+ 1.

3: Output (p(κ), x(κ), t(κ), γ(κ)).

with p1,j ∈ C and p2,j ∈ C, so instead of (66) the received
signal by IU k is

yk =

K∑
j=1

h̄kj [p1,jsj + p2,js
∗
j ] + n̄k. (77)

While xI defined by (37) is a proper Gaussian random variable
with E((xI)

2) = 0, that defined by (76) is an improper
Gaussian random variable [33] with E((xI)

2) 6= 0. The
augmented form of (77) is

ȳk =

K∑
k=1

H̄kjV (pj)s̄j + n̄Ak , (78)

where

ȳk ,

[
yk
y∗k

]
, H̄kj =

[
h̄kj 0
0 h̄∗kj

]
, s̄j ,

[
sj
s∗j

]
, n̄Ak ,

[
n̄k
n̄∗k

]
,

and
V (pj) ,

[
p1,j p2,j

p∗2,j p∗1,j

]
,pj , (p1,j ,p2,j).

The throughput of IU k is 1
2ρk(p) [34] with

ρk(p), ln

∣∣∣∣∣∣∣I2+[H̄kkV (pk)]2

 K∑
j 6=k

[H̄kjV (pj)]
2+σI2

−1
∣∣∣∣∣∣∣ .

The transmit power apportioned for information delivery is

π̃I(p) ,
K∑
j=1

||H̄rzh̄HB−j
[
p1,j p2,j

]
||2. (79)

Thus we consider the following problem of the IUs’ max-min
rate optimization subject to the QoES in terms of the EUs’
harvested energy thresholds corresponding to (71):

max
p,x,γ,ttt=(t1,t2)T∈R2

+

γ s.t. (55d), (55e), (80a)

πE(x)

t1
+
π̃I(p)

t2
≤ P, (80b)

πE(x) ≤ 3P, π̃I(p) ≤ 3P, (80c)
ρk(p) ≥ 2γt2, k ∈ K. (80d)

where like their counterparts in (71), the slack variable γ
is introduced in (80a) and (80d) to express the IUs’ min-
imal throughput, (80b) and (80c) are respectively the total
power transmit constraint under the budget P and a physical
transmission constraint, while as before, (55d) restricts the
energy and information transfer within a time slot, and (55e)
is the energy constraint of EUs in terms of their minimal

required energy. To propose a path-following algorithm for
computing (80), we have to develop inner approximations for
its nonconvex constraints (80b) and (80d).

Let (p(κ), x(κ), t(κ), γ(κ)) be a feasible point for (71) that
is found from the (κ− 1)-st iteration.

Using the inequality (87) in the Appendix yields

ρk(p) ≥ a
(κ)
k + 2<{〈V H(p

(κ)
k )H̄H

kk(B
(κ)
k )−1H̄kkV (pk)〉}

−
K∑
j=1

||(C(κ))1/2H̄kjV (pj)||2

, ρ
(k)
k (P), (81)

where

a
(κ)
k , rk(p(κ))− 〈[H̄kkV (p

(κ)
k )]2(B

(κ)
k )−1〉 − σ〈C(κ)

k 〉,
B

(κ)
k ,

∑K
j 6=k[H̄kjV (p

(κ)
j )]2 + σI2,

C
(κ)
k , (B

(κ)
k )−1 −

(
B

(κ)
k + [H̄kkV (p

(κ)
k )]2

)−1

.

We then solve the following convex problem for generating
the next better feasible point

(
p(κ+1), x(κ+1)

)
for (80):

max
p,x,γ,ttt=(t1,t2)T∈R2

+

γ

s.t. (55d), (55e), (72), (80b), (80c), (82a)

ρ
(k)
k (p) ≥ γ(κ)t

(κ)
2

2

(
γ

γ(κ)
+

t2

t
(κ)
2

)2

. (82b)

The computational complexity order of this convex problem
is given by (63) for nv = 2K+KE +3 and mc = K+4. The
pseudo-code for iterating (82) for computing (80) is provided
by Algorithm 8.

Algorithm 8 New RZF Path-following algorithm for (80)

1: Initialization: Randomly generate a feasible point
(p(0), x(0), t(0), γ(0)) for (80). Set κ = 0.

2: Repeat until convergence of γ(κ): Generate
(p(κ+1), x(κ+1), t(κ+1), γ(κ+1)) by solving the convex
problem (82). Set κ := κ+ 1.

3: Output (p(κ), x(κ), t(κ), γ(κ)).

C. Notices on RZFB for information delivery only

When KE = 0, i.e. there are no EUs, we use the whole
time-slot for information transfer. Hence we have t2 = 1, i.e.
the problems (71) and (80) are respectively reduced to

max
p

min
k=1,...,K

rk(p) s.t. πI(p) ≤ P, (83)

and

max
p

min
k=1,...,K

ρk(p) s.t. π̃I(p) ≤ P. (84)

Algorithms 7 and 8 are directly adjusted for their computation.
The pseudo-code is provided by Algorithm 9.
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Algorithm 9 Path-following algorithm for (83)/(84)

1: Initialization: Randomly generate a feasible point p(0) for
(83)/(84). Set κ = 0.

2: Repeat until convergence of γ(κ): Generate
p(κ+1) by solving the convex problem
maxp mink=1,...,K r

(κ)
k (p) s.t. πI(p) ≤

P (for computing (83)) and
maxp mink=1,...,K ρ

(κ)
k (p) s.t. π̃I(p) ≤ P (for

computing (84)) Set κ := κ+ 1.
3: Output p(κ).

VI. NUMERICAL EXAMPLES

In this section, we investigate the performance of our pro-
posed algorithms by numerical examples. The elements of the
BS-to-RIS LoS channel matrix are generated by [HB−R]n,m =

ejπ((n−1) sin θ̄n sin φ̄n+(m−1) sin eθn sinφn), where eθn and φn
are uniformly distributed as eθn ∼ U(0, π) and φn ∼
U(0, 2π), respectively, and θ̄n = π−θn and φ̄n = π+φn [14].
The normalized small-scale fading channel hB−e` spanning
from the BS to EU ` and h̄R−k of the RIS to IU k obeys
Rician distribution with a K-factor of 3 for modeling the LoS
channels. The large scale fading coefficients, βB−R, βR−k,
and βEB−e` , are modeled as [6], [14]

βB−R = GBS+GRIS−35.9−22 log10(dB−R) (in dB),
βR−k = GRIS − 33.05− 30 log10(dRIS−k) (in dB),
βEB−e` = GBS − 30− 20 log10(dB−e`) (in dB),

where GBS = 5 dBi and GRIS = 5 dBi denote the antenna
gain of the BS and the RIS gain, respectively, while dB−R,
dRIS−k, and dB−e` are the distances between the BS and
RIS, the RIS and IU k, and the BS and EU `, respectively.
The signal reflected by the RIS can be ignored for EUs, since
βB−RβR−k � βEB−e` . The spatial correlation matrix is given
by [RRIS−k]n,n′ = ejπ(n−n′) sin φ̃k sin θ̃k , where φ̃k and θ̃
are the azimuth and elevation angle for IU k, respectively.
Unless otherwise stated, K = 10, KE = 3, e0 = −20
dBm and N = 100 are used. The results are multiplied
by log2 e to convert units of nats/sec into units of bps/Hz.
The convergence tolerance of the proposed algorithms is set
to 10−3. All simulations implemented on a Core i7-10875H
2.30GHz processor.

We use the 3D coordinates (x, y, z) to locate all the objects
concerned . The BS is at (20, 0, 10), the RIS is at (0, 30, 40).

A. RIS-aided information delivery

There are K = 10 IUs, which are randomly placed in a
60m × 60m area RHS of the obstacle and the RIS. Unless
stated otherwise, the transmit power of P = 25 dBm is
used. The performance of Algorithm 1 is not sensitive to
which step size from Eqaution (17), (19) and (21) is used.
In the simulated figures, Alg 2A and Alg 2B refer to the
performance of the full step descent algorithm 2 based on
iterating (28) and (35), respectively. Alg 3, Alg 4 and Alg 5
respectively refer to the performance of Algorithm 3 for the
trace-maximization (32), Algorithm 4 and Algorithm 5 for the

log determinant maximization (44). ZFB random θ and RZFB
random θ respectively refer to the performance of ZFB and
RZFB under random PRCs.

Fig. 4 and Fig. 5 plot the achievable minimum throughput
versus the number of BS antennas, M under ZFB and RZFB,
respectively.

Regarding ZFB for M > K, Fig. 4 reveals that Algorithm
2A outperforms Algorithm 2B, and the latter outperforms
Algorithm 1, showing that the concave optimization refor-
mulation (23) is the best option for computing (12), while
Algorithm 1 of common purpose step descent is inefficient.
Furthermore, the average running time for Algorithm 1, Algo-
rithm 2A and Algorithm 2B are 0.24s, 0.06s and 7.96s under
N = 100, respectively.

Regarding RZFB for M > K, Fig. 5 shows that Algorithm
3 achieves the best performance, i.e. the trace-maximization
(32) has a more beneficial impact on the IUs’ throughput than
the log determinant maximization (44). It is not surprising to
see that Algorithm 5 outperforms Algorithm 4 because the
former iterates the incumbent points, while the latter simply
provides a way to locate a beneficial direction.

The worst performance is attained by ZFB random θ and
RZFB random θ in all figures which is a clear indication that
the PRC optimization is absolutely necessary upon using RIS.

B. RIS-aided information and energy delivery

Next, we consider the problem of RIS-aided information
and energy delivery by the network of Fig. 3 with KE = 3
EUs randomly placed within a radius of 10m from the BS.

Alg 1-PGS, Alg 2A-PGS, Alg 2B-PGS and ZFB random θ-
PGS refer to the performance of Algorithm 1, Algorithm 2A,
Algorithm 2B, and ZFB random θ. Alg 3-PGS, Alg 4-PGS,
Alg 5-PGS, and RZFB random θ-PGS refer to the performance
of Algorithm 3, Algorithm 4, Algorithm 5, and RZFB random
θ under RZFB (37), while Alg 3-IGS, Alg 4-IGS and Alg 5-
IGS refer to the performance of Algorithm 3, Algorithm 4,
Algorithm 5 under the new RZFB (76).

The transmit power of P = 31 dBm is set in Fig. 7-Fig.
9 and Fig. 11, but P = 35 dBm is set in Fig. 10 due to the
relative small numbers of BS antennas.

Fig. 6 and Fig. 7 plot the minimum achievable IU through-
put versus the number M of BS antennas under ZFB and
RZFB, respectively. In Fig. 6, Alg 2A-PGS outperforms Alg
1-PGS and Alg 2B-PGS, Alg 2B-PGS outperforms Alg 1-
PGS. Furthermore, all the proposed algorithms outperform
ZFB random θ-PGS. As expected, Figures 5 and 7 exhibit
similar trend. Fig. 6 and Fig. 7 also confirm the gain achieved
by optimizing the PRCs. Furthermore, all algorithms in Fig.
4, Fig. 5, Fig. 6 and Fig. 7 benefit from the spatial diversity,
which is commensurate with the number BS antennas.

In Fig. 8, we now examine the minimum achievable IU
throughput upon varying the BS transmit power budget P
under RZFB for M = 10 . As excepted, the IUs’ minimum
throughput increases upon increasing the available power
budget due to the availability of more power for information
delivery. Naturally, beyond a certain threshold, namely P = 40
dBm in Fig. 8, Alg 3’s performance becomes saturated because
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Fig. 4: Achievable minimum throughput vs the number of
BS antennas M under ZF.
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Fig. 5: Achievable minimum throughput vs the number of
BS antenna M under RZF.

the network is interference-limited. Fig. 8 also shows the gap
between Algorithm 5 and RZFB under random θ, which is
quite narrow for P ≥ 34 dBm because the beneficial impact
of the RIS is reduced, when the power budget is increased.

Fig. 9 plots the achievable minimum IU throughput for M =
10 under RZF versus the number N of RIS reflecting elements,
showing that the performance is improved upon increasing N .

Fig. 10 and Fig. 11 allow us to compare the performance
achieved by the RZFB (76) and the new RZFB (82). Fig.
10 plots the achievable minimum IU throughput versus the
number M of BS antennas, clearly showing that Alg 3-
IGS outperforms its counterpart Alg 3-PGS. Similarly, Alg
4-IGS and Alg 5-IGS outperform their counterparts Alg 4-
PGS and Alg 5-PGS. Fig. 11, which plots the achievable
minimum IU throughput for K = M + 1, follow the same
trend as Fig. 10: Alg 3-IGS , Alg 4-IGS and Alg 5-IGS
outperform their counterparts Alg 3-PGS, Alg 4-PGS and
Alg 5-PGS, respectively. The advantage of the new RZFB
over the conventional RZFB is also confirmed. Furthermore,
Algorithm 4 benefits to a lesser extent from the new RZFB
than Algorithm 3 and Algorithm 5.
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Fig. 6: Achievable minimum throughput vs the number of
BS antennas M under ZF.
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Fig. 7: Achievable minimum throughput vs the number of
BS antennas M under RZF.

TABLE I: The average number of iterations required for the
algorithm’s convergence

M = 5 M = 6 M = 7 M = 8 M = 9
Alg 3-PGS 15 14 14 10 9
Alg 4-PGS 10 9 8 8 8
Alg 5-PGS 17 16 17 14 11
Alg 3-IGS 17 16 17 14 13
Alg 4-IGS 17 15 15 15 11
Alg 5-IGS 23 21 23 17 12

Finally, Table I provides the average number of required
iterations for the convex optimization part of the algorithms’
convergence in simulating Fig. 9. The average single iteration
time is 3.02s and 4.83s for the PGS based and IGS based
algorithms, respectively. All the algorithms only need 30%
of the maximum number of iterations to reach 80% of their
optimal values.

VII. CONCLUSIONS

We have considered a network in which a multi-antenna
aided BS and an RIS support multiple IUs and EUs. To
facilitate computational tractability while aiming for the max-
imum possible information and energy throughput, conjugate
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Fig. 8: Achievable minimum throughput for M = 10 under
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Fig. 9: Achievable minimum throughput for M = 10 with
energy harvesting under RZF vs RIS for N reflecting

elements.

beamforming has been used for delivering energy, while zero-
forcing or regularized zero-forcing beamforming has been used
for delivering information under the transmit-TS framework,
where energy and information are separately delivered during
different time-slot fractions. The problem of jointly designing
the RIS PRCs and the power allocation of the beamformers
for maximizing the minimum IU throughput subject to QoES
in terms of the harvested energy thresholds at the EUs end
has been addressed. It has been shown that this joint design
can be decomposed into separate designs of the RIS PRCs
and of the power allocation of the IUs’ beamforming. We
have developed several efficient algorithms for these designs.
A new regularized zero-forcing beamforming method has also
been conceived for improving the IUs’ throughput, which can
improve the IUs’ throughput significantly, especially in the
regime of low numbers of BS antennas.

APPENDIX: RATE FUNCTION APPROXIMATION

The following inequality follows from the fact that the
function 〈[V]2Y−1〉 is convex for the the matrix variable V
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Fig. 10: Achievable minimum throughput under RZF vs the
number of BS antennas M .
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Fig. 11: Achievable minimum throughput under RZF for
K = M + 1 BS antennas.

and positive matrix variable Y [35]:

〈[V]2Y−1〉 ≥ 2<{〈V̄ H Ȳ −1V} − 〈[V̄ ]2Ȳ −1YȲ −1〉, (86)

for all V, V̄ , and positive definite Y and Ȳ of an appropriate
dimension.

The following inequalities were obtained in [36]:

ln

(
1 +

v2

y

)
≥ ln

(
1 +

v̄2

ȳ

)
− v̄2

ȳ
+ 2

v̄v

ȳ

−
v̄2
(
y + v2

)
ȳ(ȳ + v̄2)

, (87)

for all v ∈ R,y > 0 and v̄ ∈ R, ȳ > 0, and

ln |I2 + [V]2Y−1| ≥ ln |I2 + [V̄ ]2Ȳ −1| − 〈[V̄ ]2Ȳ −1〉
−〈Ȳ −1 −

(
[V̄ ]2 + Ȳ

)−1
, [V]2 + Y〉

+2<{〈V̄ H Ȳ −1V〉}, (88)

for all matrices V and V̄ , and positive definite matrices Y
and Ȳ of size 2× 2.

Particularly,

ln

(
1 +

v2

σ

)
≥ ln

(
1 +

v̄2

σ

)
− v̄2

σ
+ 2

v̄v

σ
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−
v̄2
(
σ + v2

)
σ(σ + v̄2)

(89)

for σ > 0 and v ∈ R, v̄ ∈ R.
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