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Abstract

Line-of-sight (LoS) multi-input multi-output (MIMO) systems exhibit attractive scaling properties

with increase in carrier frequency: for a fixed form factor and range, the spatial degrees of freedom

increase quadratically for 2D arrays, in addition to the typically linear increase in available bandwidth.

In this paper, we investigate whether modern all-digital baseband signal processing architectures can be

devised for such regimes, given the difficulty of analog-to-digital conversion for large bandwidths. We

propose low-precision quantizer designs and accompanying spatial demultiplexing algorithms, consid-

ering 2× 2 LoS MIMO with QPSK for analytical insight, and 4× 4 MIMO with QPSK and 16QAM

for performance evaluation. Unlike prior work, channel state information is utilized only at the receiver

(i.e., transmit precoding is not employed). We investigate quantizers with regular structure whose high-

SNR mutual information approaches that of an unquantized system. We prove that amplitude-phase

quantization is necessary to attain this benchmark; phase-only quantization falls short. We show that

quantizers based on maximizing per-antenna output entropy perform better than standard Minimum Mean

Squared Quantization Error (MMSQE) quantization. For spatial demultiplexing with severely quantized

observations, we introduce the novel concept of virtual quantization which, combined with linear

detection, provides reliable demodulation at significantly reduced complexity compared to maximum

likelihood detection.
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I. INTRODUCTION

Line of sight (LoS) multi-input multi-output (MIMO) communication is well-matched to higher

carrier frequencies in the millimeter (mm) wave and THz bands because of the attractive scaling

of spatial degrees of freedom (DoF) and bandwidth. For 1D apertures with a horizontal distance,

or range, R between transmit and receive arrays having lengths of LT and LR, the number of

spatial DoF based on information-theoretic considerations, given by [1]

DoF ≈ LTLR
Rλ

+ 1 (1)

scales inversely with the carrier wavelength λ, and therefore linearly with the carrier frequency

fc = c/λ, where c is the speed of light. The result in (1) can be extended for 2D apertures and

rewritten as [1]

DoF ≈ ATAR
R2λ2

+ 1 (2)

where AT and AR are the areas occupied by the 2D arrays at the transmitter and the receiver,

respectively, so that the scaling with fc becomes quadratic. Since transmission bandwidth typi-

cally scales linearly with carrier frequency, the overall data rates can potentially scale cubically

with carrier frequency.

Advances in mmWave radio frequency integrated circuits (RFIC) in low-cost silicon semi-

conductor processes open up the possibility of deploying LoS MIMO at scale, for example,

to boost link capacities in wireless backhaul mesh networks for urban picocells [2]. Consider

4× 4 LoS MIMO with a link distance of 100 m. At a carrier frequency of 140 GHz, the form

factor required for a well-conditioned spatial channel is small enough to permit opportunistic

deployment (e.g., on lampposts): the inter-antenna spacing for orthogonal eigenmodes is 33 cm.

With QPSK modulation and 10−20 GHz bandwidth, we can achieve 80−160 Gbps uncoded data

rates. Therefore, with lightweight channel coding, 100 Gbps becomes a feasible target. However,

can we leverage the economies of scale in digital computation to realize such transceivers at

reasonable cost and power consumption, using all-digital baseband signal processing? While this

is standard in modern communication receivers operating at lower bandwidths (typically below

1 GHz), as signaling bandwidths increase, realizing high-precision analog-to-digital converters

(ADCs) is a challenge [3], [4]. Motivated by these considerations, we investigate in this paper

whether it is possible to use all-digital processing in LoS MIMO receivers with severely quantized

samples.
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Contributions: We investigate design of low-precision quantizers and of spatial demultiplexing

with heavily quantized observations.

Quantizer Design: Rather than trying to design optimal quantizers, our first goal is to design

quantizers with regular structure which approach the same Shannon limit as an unquantized

system at high SNR.

• Our first result is negative. As bandwidth increases, a particularly attractive approach is phase-

only quantization: this can be implemented by passing linear combinations of the real and

imaginary parts of the sample through sign detectors (one-bit ADCs), and therefore does not

require automatic gain control (see [5]). However, we prove for the 2 × 2 QPSK system that

phase-only quantizers cannot meet the unquantized benchmark at high SNR.

• Our second result shows that amplitude-phase quantization with a relatively small number of

bins does attain the unquantized benchmark. Specifically, we prove for the 2× 2 QPSK system

that 2-level amplitude and 8-level phase quantization works.

• For the 4 × 4 system, we obtain practical guidelines and design prescriptions for quantizer

design. We show via mutual information computations that per-antenna quantization into equal

probability regions (which maximizes per-antenna output entropy) performs better than conven-

tional MMSQE quantization, and that I/Q quantization performs better than amplitude/phase

quantization. In particular, we show that equal probability I/Q quantization with 2 bits per real

dimension, designed using a Gaussian approximation for the received samples, achieves the

unquantized benchmark at high SNR for QPSK modulation, attaining a maximum data rate of

8 bits per channel use.

Spatial demultiplexing: For a 4 × 4 QPSK system, we investigate spatial demultiplexing with

observations quantized using the 2 bit I/Q quantizer that we have designed. We considered well-

conditioned LoS MIMO channels for which linear zero-forcing detection provides near-optimal

performance with unquantized observations. Our goal is to attain uncoded error probabilities of

10−3 or better, for which reliable communication can be obtained with lightweight, high-rate

error correcting codes.

• We show that linear detection with quantized observations leads to an error floor. Since mutual

information computations show that the maximum rate of 8 bits per channel use is attainable with

moderate SNR penalty for the quantizer design used, we expect maximum likelihood detection

not to exhibit an error floor. We show that this is indeed the case, but the prohibitive complexity

(exponential in the number of transmitted bits) motivates design of lower-complexity spatial
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demultiplexing schemes.

• We introduce the concept of virtual quantization, modeling the uncertainty created by quan-

tization as a nuisance parameter, so that the task of estimating the transmitted symbols can be

approached using the tools of composite hypothesis testing. We employ a Generalized Likelihood

Ratio Test (GLRT) approach which leverages the efficacy of linear detection for the well-

conditioned MIMO channels considered here. A key computational advantage of the proposed

approach is that, unlike maximum likelihood detection, its complexity does not scale with

constellation size. In addition, we show that our proposed virtual quantization concept is resistant

to the changes in channel condition due to suboptimal separation of the transmitter and the

receiver (up to ±20% variations of the nominal range).

• While the bulk of our numerical examples are for QPSK, we also present results for 16QAM,

demonstrating that our prescriptions for quantizer design and our proposed virtual quantization

approach extend to larger constellations.

Notation: Throughout the paper, random variables are denoted by capital letters and small

letters are used for the specific value that the random variables take. Bold letters are used to

denote vectors and matrices. EZ denotes the expectation operator over the random variable Z.

|Z| and ∠Z represent the amplitude and the phase of Z, respectively. <(Z) and =(Z) denote

real and imaginary part of complex number Z, respectively. Xᵀ and X† are the transpose and

Hermitian transpose of X, respectively. In is the identity matrix of size n.

II. RELATED WORK

The DoF for LoS MIMO as a function of transceiver form factor and antenna placement, range

and carrier frequency are by now well known [1], [6]. It is worth contrasting the motivation for

our work with a recently developed LoS MIMO system [7] which employs 2.5 GHz bandwidth

in E-band (70−80 GHz carrier frequency), and achieves 100+ Gbps at a distance of 1.5 km using

8-fold multiplexing (spatial degrees of freedom along with dual polarization) and alphabets as

large as 64QAM. The optimal antenna separation is 1.72 m, requiring bulky antenna structures

and careful installation. We envision higher frequencies and shorter ranges to reduce form factor

to enable opportunistic deployment. The goal of our investigation of severely quantized LoS

MIMO, therefore, is to examine how far we can push the paradigm of using larger available

bandwidths (which limits the precision of available ADCs) to reduce the required constellation

size (which potentially enables reduction in ADC precision). Our work also contrasts with recent
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efforts in the research literature based on analog-centric [8]–[11] or hybrid analog-digital [12]–

[15] processing in an attempt to sidestep the ADC bottleneck.

Since LoS MIMO is often envisioned for quasi-static links (e.g., wireless backhaul), it is

natural to consider precoding with channel state information at the transmitter, as in a number of

theoretical studies [15]–[17]. Transmit precoding can also significantly reduce the dynamic range

at the receiver, easing the task of analog-to-digital conversion. Indeed, prior studies of MIMO

capacity with low-precision ADC assume transmit precoding [13], [18], [19]. Channel capacity

with 1-bit ADC is studied in [18], which provides capacity bounds and a convex optimization

based algorithm to obtain capacity-achieving constellations. In [13], the capacity with transmit

precoding, together with hybrid analog-digital processing at the receiver, where analog linear

combinations of the signals received at different antennas are quantized, is studied. In [19], joint

transmit power and ADC allocation problem is studied for throughput maximization, which

results in that using few one-bit ADCs with the adaptive threshold receiver is enough to achieve

near optimal performance.

Transmit precoding leads to increased dynamic range at the transmitter, which aggravates

the already difficult problem of producing power at higher frequencies, such as the millimeter

wave or THz bands. In this paper, therefore, we explore LoS MIMO without transmit precoding,

in contrast to the cited prior work. We assume that the receiver has ideal channel estimates.

Channel estimation with low-precision ADC is not as challenging as demodulation: [20] is an

early example for a SISO dispersive channel, while [21] and [22] propose effective estimation

techniques for massive MIMO with 1-bit quantization at the receive antennas.

There have been prior studies of demodulation [23], [24] based on quantized samples for

MIMO systems without precoding, but these consider Rayleigh faded channel models associated

with rich scattering environments, unlike the LoS MIMO setting considered here. The computa-

tional intractability of maximum likelihood detection is pointed out in [23], while large system

analysis for suboptimal loopy belief propagation is considered in [24].

Shannon limits for an ideal SISO discrete-time additive white Gaussian noise (AWGN) channel

with low-precision ADC are studied in [25]. It is shown that the optimal input distribution is

discrete and can be computed numerically, but standard constellations are near-optimal. Further,

the use of ADCs with 2-3 bits precision results in only a small reduction in channel capacity

even at moderately high SNR. Our model is perhaps the simplest possible extension of this

framework to MIMO systems.
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(a) Mathematical model for LoS MIMO communication system

Transmitter Receiver
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(b) Geometric configuration for the 4 × 4 LoS MIMO system (with blue and

red colored antennas) and the 2 × 2 LoS MIMO system (with only red colored

antennas)

Fig. 1: LoS MIMO communication system model

This paper builds on our preliminary results on quantizer design in an earlier conference paper

[26]. We provide proofs and technical details, as well as more detailed insights and numerical

results, for quantizer design here. The results on spatial demultiplexing, including the proposed

virtual quantization concept, are entirely new.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a symmetric 4× 4 LoS MIMO communication system, with equal inter-antenna

spacings at transmitter and receiver, as shown in Fig. 1. Each transmit/receive antenna may be

a fixed beam antenna [7], or an electronically steerable “subarray” [1], with a directive beam

along the LoS, and multipath is ignored. The received signal vector Y , [Y1 · · · Y4]ᵀ ∈ C4×1 is

given by

Y = H X + N , (3)

where X , [X1 · · · X4]ᵀ ∈ C4×1 is the transmitted symbol vector, H ∈ C4×4 is the normalized

channel matrix (with each column normalized to unit norm), and N ∼ CN (0, σ2 I4) is AWGN.

Under this normalization, the SNR for the kth data stream is given by SNR = E{|Xk|2}/σ2.
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Input: We consider QPSK modulation unless otherwise stated (results for 16QAM are included in

Section VI). For QPSK modulation, {Xi}4
i=1 are independent and identically distributed symbols

taking values {ejπ/4, ej3π/4, ej5π/4, ej7π/4} with equal probability. Thus, SNR = E{|Xk|2}/σ2 =

1/σ2 where E{|Xk|2} = 1 for all k ∈ {1, . . . , 4}.
Channel: For the pure LoS channel we consider, the elements of H in (3) are calculated by

employing ray-tracing in consideration of the spherical nature of the wave propagation [27],

[28] and the columns of H are normalized to unit norm. Since the path loss differences among

different transmit-receive antenna pairs are negligible, the normalized channel matrix for the

symmetric 4× 4 LoS MIMO communication system is given by [9]

H =
1

2
e−jΦ




1 e−jθ e−j2θ e−jθ

e−jθ 1 e−jθ e−j2θ

e−j2θ e−jθ 1 e−jθ

e−jθ e−j2θ e−jθ 1



, (4)

where the random variable Φ denotes the common phase change along the path between the

transmitter and the receiver, and the “cross-over phase” depends on the inter-antenna spacing d

and link distance R as follows [1], [29]:

θ =
2π

λ
(
√
R2 + d2 −R) ≈ πd2

λR
for R� d (5)

where λ denotes the carrier wavelength. We would like our quantizer designs to be robust to

variations in the common phase Φ, which is assumed to be uniformly distributed over [0, 2π).

Quantizer: We consider identical quantizers at each receive antenna. The quantized output of

the ith receive antenna can be expressed as

Ȳi = Q(Yi) , (6)

for i ∈ {1, . . . , 4}. Q(·) in (6) represents the quantizer function at each receive antenna and for

a given input y, Q(y) can be characterized as

Q(y) = ỹj , if y ∈ Γj , (7)

for j ∈ {1, . . . , T}, where ỹj for j ∈ {1, . . . , T} is a design parameter and Γ1, . . ., ΓT denote

the decision regions for the quantizer, with T denoting the number of quantizer bins at each

receive antenna.
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Spatial demultiplexer: Based on the quantized observations; that is, YQ ,
[
Ȳ1 · · · Ȳ4

]ᵀ ∈ C4×1,

the receiver performs the spatial demultiplexing and provides the estimate of the transmitted

symbol as X̂ ,
[
X̂1 · · · X̂4

]ᵀ
∈ C4×1.

We begin with the 2 × 2 system depicted in Fig. 1b with red colored antennas in order to

make some fundamental theoretical observations regarding quantization. For this scheme, X and

Y in (3) are defined as X , [X1X2]ᵀ ∈ C2×1 and Y , [Y1 Y2]ᵀ ∈ C2×1, respectively. Also,

N ∼ CN (0, σ2 I2). The channel matrix for this scheme corresponds to the renormalized version

of the upper-left 2× 2 submatrix of (4) and is given by

H =
1√
2
e−jΦ


 1 e−jθ

e−jθ 1


 , (8)

where θ ≈ πd2

λR
for R� d as in (5).

One possible formulation of optimal quantization is to minimize

D(X,YQ, θ) , EΦ{I(X; Y | Φ, θ)− I(X; YQ | Φ, θ)} (9)

where YQ ,
[
Ȳ1 Ȳ2

]ᵀ and the function I(X̄; Ȳ | Φ, θ) represents the mutual information between

the random variables X̄ and Ȳ for given Φ and θ. Based on the data processing equality,

D(X,YQ, θ) ≥ 0 since X, Y, and YQ form a Markov chain; that is, X → Y → YQ. Also,

I(X; Y | Φ, θ) in (9) does not depend on any parameter related to quantizer. For that reason,

the problem of minimizing D(X,YQ, θ) in (9) is equivalent to

max
{Γj}Tj=1

EΦ{I(X; YQ | Φ, θ)} . (10)

In the optimization problem in (10), the mutual information between X and YQ must be

maximized over the set of all possible quantization regions of the quantizer at the receive

antennas. The number of quantization bins for the quantizer is not fixed in (10), and must

also be optimized. Thus, it is difficult to solve (10). Furthermore, the optimal quantizers may

correspond to irregular regions, leading to implementation difficulties. In this paper, therefore,

we opt for designing regular quantizers with the goal of ensuring that D(X,YQ, θ)→ 0 at high

SNR.

IV. ANALYTICAL INSIGHTS FROM 2× 2 MIMO

In this section, we provide detailed insight regarding quantization via the 2 × 2 system. By

analysis of a limiting noiseless regime, we prove that phase-only quantization cannot yield unique

decodability, while amplitude-phase quantization can.
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A. Phase-only Quantization

The following lemma establishes a negative result for phase-only quantization. Consider a

pair of possible transmitted symbol vectors X(1) = (X
(1)
1 , X

(1)
2 ) and X(2) = (X

(2)
1 , X

(2)
2 ). The

corresponding noise-free received samples are given by Y
(i)

1 , e−jφ(X
(i)
1 + e−jθX

(i)
2 )/
√

2 and

Y
(i)

2 , e−jφ(e−jθX
(i)
1 + X

(i)
2 )/
√

2 for i ∈ {1, 2}. The lemma specifies choices for X1 and X2

for which the noise-free received samples prior to quantization have the same phase. Thus, these

pairs cannot be distinguished based on phase-only quantization.

Lemma 1: For (X
(1)
1 , X

(1)
2 ) = (ejπ(2i−1)/4, ejπ(2i+1)/4) where i ∈ {1, . . . , 4}, the following

statements hold:

(i) For θ ∈ (−π/2, π/2) and (X
(2)
1 , X

(2)
2 ) = (X

(1)
2 , X

(1)
1 ),

∠Y (1)
1 = ∠Y (1)

2 , ∠Y (2)
1 = ∠Y (2)

2 , ∠Y (1)
1 = ∠Y (2)

1 (11)

(ii) For θ ∈ (π/2, 3π/2) and (X
(2)
1 , X

(2)
2 ) = (X

(1)
2 , X

(1)
1 ),

∠Y (1)
1 = ∠Y (1)

2 + π, ∠Y (2)
1 = ∠Y (2)

2 + π, ∠Y (1)
1 = ∠Y (2)

1 + π (12)

(iii) For θ ∈ (−π/2, π/2) and (X
(2)
1 , X

(2)
2 ) = (ejπX

(1)
2 , ejπX

(1)
1 ),

∠Y (1)
1 = ∠Y (1)

2 , ∠Y (2)
1 = ∠Y (2)

2 , ∠Y (1)
1 = ∠Y (2)

1 + π (13)

(iv) For θ ∈ (π/2, 3π/2) and (X
(2)
1 , X

(2)
2 ) = (ejπX

(1)
2 , ejπX

(1)
1 ),

∠Y (1)
1 = ∠Y (1)

2 + π, ∠Y (2)
1 = ∠Y (2)

2 + π, ∠Y (1)
1 = ∠Y (2)

1 (14)

Proof: The result in the lemma can simply be shown by using Euler’s formula and Pythagorean

trigonometric identity.

�

This results in the following proposition stating that phase-only quantization cannot achieve

the unquantized benchmark.

Proposition 1: For any phase-only quantization scheme with any number of bins, D(X,YQ, θ) >

0 for all θ ∈ [0, 2π) as σ → 0.

Proof: In order to show that D(X,YQ, θ) > 0 for all θ ∈ [0, 2π) as σ → 0, EΦ{I(X; YQ |
Φ, θ)} < 4 should be proved for θ ∈ [0, 2π) as σ → 0 since EΦ{I(X; Y | Φ, θ) → 4 as

σ → 0. Before proving that, first, it is shown that p(X = x | YQ = yQ,Φ = φ, θ) satisfies

for some YQ = yQ that 0 < p(X = x | YQ = yQ,Φ = φ, θ) < 1 as σ → 0. Based

on the statement in Lemma 1, it can be stated that the noise-free outputs corresponding to
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inputs (X
(1)
1 , X

(1)
2 ) = (ejπ(2i−1)/4, ejπ(2i+1)/4) for i ∈ {1, . . . , 4} and (X

(2)
1 , X

(2)
2 ) = (X

(1)
2 , X

(1)
1 )

have the same phase and fall in the same quantization bin for θ ∈ (−π/2, π/2). Similarly, for

(X
(1)
1 , X

(1)
2 ) = (ejπ(2i−1)/4, ejπ(2i+1)/4) for i ∈ {1, . . . , 4} and (X

(2)
1 , X

(2)
2 ) = (ejπX

(1)
2 , ejπX

(1)
1 ),

the outputs without additive noise stay in the same bin of any given phase-only quantization

mapping since they have the same phase for θ ∈ (π/2, 3π/2). In addition, for θ = π/2 and

θ = 3π/2, the amplitude of one of the noise-free outputs is zero and the same ambiguity occurs

for those cases as well. Without loss of generality, say that those noiseless outputs (i.e., the

outputs with additive Gaussian noise as σ → 0) after quantization is YQ = ȳQ for the inputs

X = x1 and X = x2. Then, the following statements hold for i ∈ {1, 2} based on Bayes’

theorem:

0 < p(xi | YQ = ȳQ, φ, θ) =
p(YQ = ȳQ | xi, φ, θ)∑
x̄ p(YQ = ȳQ | x̄, φ, θ)

< 1 (15)

since p(YQ = ȳQ | x1, φ, θ) → 1 and p(YQ = ȳQ | x2, φ, θ) → 1 as σ → 0. Then, as σ → 0,

H(X | YQ,Φ = φ, θ) > 0 for all θ ∈ [0, 2π) and consequently I(X; YQ | Φ = φ, θ) < 4 for

all φ ∈ [0, 2π) based on the definition of mutual information and EΦ{I(X; YQ | Φ, θ)} < 4 is

satisfied for all θ ∈ [0, 2π). �

While the unquantized benchmark cannot be achieved, it is still of interest to ask how many

phase quantization bins are enough to reach the high-SNR asymptote for phase-only quantization.

We now establish that, for our system, 8 phase quantization bins suffice. We begin with the

following lemma.

Lemma 2: For any possible (X
(1)
1 , X

(1)
2 ) and (X

(2)
1 , X

(2)
2 ) input pairs, ∠Y (1)

1 − ∠Y (2)
1 = 0

(mod π/4) and ∠Y (1)
2 −∠Y (2)

2 = 0 (mod π/4), where Y (i)
1 and Y (i)

2 are as defined in Lemma 1.

Also, ∠Y (1)
1 − ∠Y (2)

1 and ∠Y (1)
2 − ∠Y (2)

2 can take 8 different values.

Proof: By using arctan(x) − arctan(y) = arctan( x−y
1+xy

) and Euler’s formula, the proof is

straightforward. �

Based on Lemma 2, we can derive the following proposition stating that 8 phase quantization

bins suffice.

Proposition 2: As σ → 0, any phase-only quantization schemes with more than 8 regions

cannot achieve higher data rate than phase-only quantization scheme with 8 equally partitioned

sectors.

Proof: Consider a phase-only quantization scheme having more than 8 bins and let L > 8

denote the number of bins of that scheme. Lemma 2 implies that the noise-free outputs (i.e., the
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outputs as σ → 0) of the all possible inputs can take 8 different phase values for given φ and θ.

Then, based on the pigeonhole principle, at least L− 8 bins of the phase-only quantizer do not

contain any outputs for given φ and θ as σ → 0. In other words, none of the outputs corresponding

to all possible inputs fall into those bins as σ → 0. Let S̄ denote the index set of those empty

bins. Then, define a new set, SE as SE = {y = [i, j] | (i ∈ S̄ ∧ j ∈ {1, . . . , L}) ∨ (j ∈ S̄ ∧ i ∈
{1, . . . , L})}. It can be stated that p(YQ = yQ) = 0 for all yQ ∈ SE as σ → 0. Now, two

cases should be analyzed separately. First, if exactly L− 8 bins of the phase-only quantizer are

empty as σ → 0; then, any two different noise-free outputs having different phases cannot be

in the same bin due to the result in Lemma 2, which also holds for the phase-only quantization

scheme with equally divided 8 regions. Let SLQ and SQ denote the sets of all possible quantized

outputs for the quantization scheme having L > 8 bins and 8 bins, respectively. There exists

a one-to-one correspondence between SLQ\SE and SQ and if m ∈ SLQ\SE and n ∈ SQ are the

paired elements, it is stated that the input producing quantized output m in the quantization

scheme with more than 8 bins produces n in the quantization scheme with equally partitioned

8 regions as σ → 0. Thus,
∑

yQ∈SLQ

H(X | yQ)p(yQ) =
∑

yQ∈SLQ\SE

H(X | yQ)p(yQ) (16)

=
∑

yQ∈SQ

H(X | yQ)p(yQ) , (17)

where (16) is due to p(YQ = yQ) = 0 for all yQ ∈ SE . Therefore, both of the schemes achieve

the same data rate if L− 8 bins of the phase-only quantizer are empty as σ → 0. Next, consider

the case that more than L− 8 bins are empty. Since the noise-free outputs can have 8 different

phase values for given φ and θ, some of those outputs having different phases are in the same bin,

which is not a possible case for the phase-only quantization scheme with equally sized regions.

For that reason, it can be calculated that H(X | Y(1)
Q ,Φ = φ, θ) − H(X | Y(2)

Q ,Φ = φ, θ) ≥ 0

as σ → 0, where Y
(1)
Q and Y

(2)
Q denote the quantized outputs under the quantization schemes

with more than 8 regions and equally partitioned exactly 8 regions, respectively. Therefore,

I(X; Y
(1)
Q | Φ = φ, θ) ≤ I(X; Y

(2)
Q | Φ = φ, θ). �

B. Amplitude-Phase Quantization

For K-ary amplitude and M -ary phase quantization, the quantization set of (m+M(k−1))th-

bin of a quantizer can be written as
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Γ̄m+M(k−1) = {Ȳ | Ak−1 ≤ |Ȳ | < Ak ,
2π

M
(m − 1) ≤ ∠Ȳ <

2π

M
m} , (18)

for m ∈ {1, . . . ,M} and k ∈ {1, . . . , K}, where A1, . . . , AK−1 are the amplitude thresholds (we

set A0 = 0 and AK =∞ to maintain a unified notation across quantization bins).

The following proposition states that K = 2 and M = 8 suffices to attain the unquantized

benchmark.

Proposition 3: As σ → 0, circularly symmetric quantization with 2-level amplitude and 8-level

phase quantization attains D(X,YQ, θ)→ 0 for θ ∈ [0, 2π).

Proof: Proposition 1 is based on the observation that the outputs of some input pairs have

the same phase at both of the antennas as σ → 0, so that those outputs cannot be differentiated

by employing any phase-only quantization scheme. On the other hand, the proof of Proposition 2

shows that a phase-only scheme with equally partitioned 8 regions can distinguish noise-free

outputs having two different phases, due to the result in Lemma 2. In this proof, the aim is to

show that considering a 2-level amplitude quantization together with phase quantization resolves

the ambiguities leading to the result in Proposition 1. First, it can be shown that only the

outputs corresponding to the input pairs discussed in Lemma 1 cannot be distinguished via

phase-only scheme having equally partitioned 8 regions. For that reason, consider the input pairs

in Lemma 1. For (X
(1)
1 , X

(1)
2 ) = (ejπ(2i−1)/4, ejπ(2i+1)/4) and (X

(2)
1 , X

(2)
2 ) = (X

(1)
2 , X

(1)
1 ), where

i ∈ {1, . . . , 4}, |Y (2)
1 | < 1 < |Y (1)

1 | and |Y (1)
2 | < 1 < |Y (2)

2 | for θ ∈ (0, π/2], |Y (1)
1 | = |Y (2)

1 | = 1

and |Y (1)
2 | = |Y (2)

2 | = 1 for θ = 0, and |Y (1)
1 | < 1 < |Y (2)

1 | and |Y (2)
2 | < 1 < |Y (1)

2 | for

θ ∈ [−π/2, 0). Due to the symmetry, the same approach can be applied for other input pairs (i.e.,

(X
(1)
1 , X

(1)
2 ) = (ejπ(2i−1)/4, ejπ(2i+1)/4) and (X

(2)
1 , X

(2)
2 ) = (ejπX

(1)
2 , ejπX

(1)
1 ) for i ∈ {1, . . . , 4})

when θ ∈ (π/2, 3π/2). Since the amplitude of the outputs does not depend on Φ = φ and a

circularly symmetric quantization scheme is employed, a phase quantization scheme including

a 2-level amplitude quantization with A0 = 0, A1 = 1, and A2 = ∞ resolves the ambiguity

between those outputs. It is easy to now conclude that D(X,YQ, θ) → 0 for θ ∈ [0, 2π) as

σ → 0. �

C. Numerical Results

In this section, numerical examples are provided to illustrate the theoretical results. We first

illustrate the statements in the lemmas and the propositions via example noise-free outputs prior

to quantization. We then compute and compare Shannon limits for different quantization schemes.
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Fig. 2: All possible noise-free outputs before the quantization, e−jφ(X1 + e−jθX2)/
√

2 (Left)

and e−jφ(e−jθX1 +X2)/
√

2 (Right), for θ = 5π/12 and φ = π/4.
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Fig. 3: All possible noise-free outputs before the quantization, e−jφ(X1 + e−jθX2)/
√

2 (Left)

and e−jφ(e−jθX1 +X2)/
√

2 (Right), for θ = 17π/18 and φ = π/18.

We illustrate the geometry behind the proofs by presenting noiseless outputs prior to quanti-

zation for a well-conditioned and a poorly conditioned channel in Fig. 2 and Fig. 3, respectively.

We see that some output pairs (e.g., (b, e), (d,m), (g, j) and (l, o) in Fig. 2 and (b, o), (d, g),

(e, l) and (j,m) in Fig. 3) have the same phase at both receive antennas, and hence cannot

be distinguished based on phase-only quantization, as stated in Lemma 1. On the other hand,

the other outputs can indeed be distinguished based on phase-only quantization. In addition, for

given θ and φ, the phase of noise-free outputs can have 8 different values, and two different

outputs having two different phase values cannot be in the same bin for phase-only quantization

with 8 equal sectors. This is the intuitive basis for Proposition 2. Lastly, noise-free output pairs

having the same phase at both receive antennas, such as (b, e) in Fig. 2 can be separated by
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Fig. 4: Data rate versus θ for various scenarios including (a) the phase-only quantization schemes

and (b) the amplitude and phase quantization schemes with different number of regions, where

SNR is 15 dB.
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Fig. 5: Data rate versus SNR for various scenarios including (a) the phase-only quantization

schemes and (b) the amplitude and phase quantization schemes with different number of regions,

where θ = π/2.

employing an amplitude quantization scheme with 2 regions as illustrated in Fig. 2 and Fig. 3.

This is the intuition behind Proposition 3.

Next, we plot the data rate (mutual information) attained by different quantization schemes.

Two benchmarks are considered: an unquantized system, and a quantizer based on Voronoi
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regions separating the outputs at each antenna. We may view the latter as an ML decision rule

at each antenna, where input-pairs that fall on top of each other are interpreted as a single point,

and it is easy to see that it attains the unquantized benchmark at high SNR. However, it depends

on θ and Φ, and is an irregular quantizer, which is unattractive in practice.

For a 2×2 MIMO system, Fig. 4a and Fig. 4b plot data rate versus θ ∈ [0, 2π) at 15 dB SNR

for phase-only and amplitude-phase quantization, respectively. Similarly, Fig. 5a and Fig. 5b

plot data rates versus SNR, fixing θ = π/2 (the best conditioned channel). For 2-level amplitude

and 8-level phase quantization, the amplitude threshold is set to A1 = 1, whereas the thresholds

are A1 = 0.75 and A2 = 1.25 for 3-level amplitude and 8-level phase quantization. The plots

illustrate the trends predicted by our theoretical results: phase-only quantization does not attain

the unquantized or ML benchmarks, while amplitude-phase quantization does attain these at high

enough SNR. However, the performance at moderate SNR can benefit from a larger number of

quantization bins than those indicated by high-SNR asymptotics. For example, while 8 phase

quantization bins are as good as any other phase-only quantization scheme asymptotically, using

16 quantization bins does provide better performance at moderate SNRs (Fig. 4a and Fig. 5a).

Similarly, while 2-level amplitude quantization suffices, there is a gain at moderate SNRs with

3-level quantization (Fig. 4b and Fig. 5b). In particular, Fig. 5b shows that for a well-conditioned

channel, while 2-level amplitude quantization attains the unquantized benchmark at high enough

SNR, 3-level amplitude quantization has a significant advantage at moderate SNRs, reaching

unquantized performance at around 12.5 dB.

Armed with these insights, we consider quantizer design for a 4×4 system in the next section.

V. QUANTIZATION FOR 4× 4 LOS MIMO

In this section, we investigate design of regular quantizers for a 4× 4 LoS MIMO system in

which the transmit and receive antennas are configured in a two-dimensional (2D) planar array

as in Fig. 1b.

A. Quantizer Design

We seek to design regular quantizers which are identical for each receive antenna. For per-

stream QPSK modulation, there are 44 possible noise-free values for the received sample at each

antenna, and detailed analysis as in the 2 × 2 MIMO system is no longer feasible. However,
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as we shall see, a relatively simple approximation for the distribution of the received samples

provides an effective approach for quantizer design.

The distribution functions of {Yi}4
i=1 can be expressed as

fYi(yi) =

∫ 2π

0

1

|S|4
∑

{xi}4i=1

xi∈S

f(yi | φ, {Xi = xi}4
i=1) p(φ) dφ (19)

for all i ∈ {1, . . . , 4} with

f(yi | φ, {Xi = xi}4
i=1) =

1

πσ2
e−
‖yi−(Hx)i‖

2

σ2 (20)

where S = {ejπ/4, ej3π/4, ej5π/4, ej7π/4}, p(φ) = 1/(2π) by the assumption, x , [x1 x2 x3 x4]ᵀ,

H is as in (4) with Φ = φ and θ, and (Hx)i selects the ith element of Hx.

Due to the symmetry, it is clear that the outputs before quantization (i.e., {Yi}4
i=1) have the

same probability density function. Hence, without loss of generality, we focus on one of the

outputs before quantization (e.g., say Y1) to design the corresponding quantizer and employ the

same quantizer for all outputs. As seen in (19), Y1 has a complex and intractable distribution:

conditioned on the common phase φ, it is a mixture of 44 Gaussians, and this conditional

density then needs to be averaged over the continuum [0, 2π) of values taken by φ. We therefore

approximate this distribution by a circularly-symmetric complex Gaussian distribution, Ỹ ∼
CN (µ̃, σ̃2), with parameters chosen to minimize the Kullback-Leibler (KL) divergence between

the distributions of Y1 and Ỹ , which is given by

DKL

(
Y1

∥∥∥ Ỹ
)

=

∫

y∈C
fY1(y) log

(
fY1(y)

fỸ (y)

)
dy . (21)

The optimal Ỹ that minimizes the KL divergence in (21) can be found by moment matching

[30]: the first and second moments of Ỹ and Y1 are matched to obtain the optimal Gaussian

approximation. Therefore, µ̃ and σ̃2 can be calculated, respectively, as

µ̃ = E{Y1} = 0 (22)

and

σ̃2 = E{Y1 Y
†

1 } (23)

=
4∑

i=1

1

4
E{XiX

†
i }+ E{N1N

†
1} (24)

= 1 + σ2 (25)



17

-2 -1 0 1 2
I

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Q

I/Q Quant., Equal Prob.
Amp./Phase Quant., Equal Prob.

-2 -1 0 1 2
I

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Q

I/Q Quant., MMSQE
Amp./Phase Quant., MMSQE

Fig. 6: Quantization schemes for 4× 4 LoS MIMO at 10 dB SNR

where E{XiX
†
i } = 1 for all i ∈ {1, . . . , 4} by definition. As a result, we consider the complex

Gaussian approximation with µ̃ = 0 and σ̃2 = 1 +σ2 to design quantizers for 4× 4 LoS MIMO.

We consider two regular quantization schemes: I/Q quantization and amplitude/phase quanti-

zation.

• I/Q quantization: For I/Q quantization scheme with S2 regions, the quantization set of

(j + S(i− 1))th-bin of a quantizer can be written as

Γ̄j+S(i−1) = {Ȳ | Ii−1 ≤ <(Ȳ ) < Ii , Qj−1 ≤ =(Ȳ ) < Qj} , (26)

for i, j ∈ {1, . . . , S}, where I1, . . . , IS−1 and Q1, . . . , QS−1 are the thresholds for in-phase

and quadrature, respectively. We set I0 = −∞, IS =∞, Q0 = −∞, and QS =∞ in order

to go along with the unified notation.

• Amplitude/phase quantization: As for 2 × 2 LoS MIMO, the quantization set for this

scheme is specified as in (18).

We determine the quantizer regions (i.e., the thresholds in (18) and (26)) based on the following

two different metrics:

• Minimum mean squared quantization error (MMSQE)-based regions: This is the

conventional approach to quantizer design based on minimization of the mean squared

error given by

E{(Ỹ −Q(Ỹ ))2} (27)

where Q(·) is the quantizer function, whose set is defined as either (18) or (26). The optimal

decision boundaries in (18) and (26) are obtained as usual, by applying the Lloyd-Max

algorithm [31], [32].
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• Equal probability-based regions: The quantizer regions here are obtained by partitioning

the fitted complex Gaussian distribution into equal probability regions. In other words, the

quantizer boundaries maximize the entropy of Ỹ ; that is, H(Ỹ ). For the circular Gaussian

distribution, the boundaries can be specified analytically. For I/Q quantization, the entropy-

maximizer thresholds can be calculated as

Ii = Qi = µ̃+
σ̃√
2

Φ
−1

(
i

S

)
=

√
1 + σ2

2
Φ
−1

(
i

S

)
(28)

for i ∈ {1, . . . , S − 1}, where Φ
−1 is the inverse distribution function (i.e., the quantile

function) for the standard Gaussian distribution with a mean of 0 and a standard deviation

of 1. For amplitude/phase quantization, the phase quantization is uniform, and the amplitude

thresholds that maximize the entropy can be found as

Ai =

√
(1 + σ2) log

(
K

K − i

)
(29)

for i ∈ {1, . . . , K − 1}.
For those two different metrics, Fig. 6 shows the I/Q and amplitude/phase quantizers at 10

dB SNR, each having a total of 16 regions (i.e., K = 2, M = 8, and S = 4).

B. Numerical Results
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Fig. 7: Data rate versus SNR for (a) MMSQE-based quantization and (b) equal probability-based

quantization for a 4× 4 system.

We now investigate Shannon limits for different quantizer designs; in each case, there are 16

quantization regions in the complex plane. Fig. 7a shows that, for conventional MMSQE-based



19

quantization, amplitude-phase and I/Q quantization are both unable to reach the maximum data

rate (8 bits per channel use) even at SNR as high as 20 dB, compared to the unquantized system,

which saturates at 10 dB SNR. On the other hand, Fig. 7b shows that, for equal probability

regions, I/Q quantization attains the maximum data rate of 8 bits per channel use at around 15

dB, while amplitude/phase quantization continues to exhibit a gap to the unquantized limit even

at SNR of 20 dB. We conclude that 2 bit quantization on I and Q based on equal probability

regions should suffice to attain acceptable performance at moderate SNR, and focus on this

setting for investigation of spatial demultiplexing algorithms in the next section.

VI. SPATIAL DEMULTIPLEXING UNDER SEVERE QUANTIZATION

We begin with spatial demultiplexing for 4 × 4 LoS MIMO system with QPSK modulation

with 2 bit I/Q quantization as designed in the previous section. In order to highlight the impact

of quantization, consider an ideally conditioned channel with θ = π
2

in (4), for which the

received antenna responses for different transmitted streams are orthogonal, so that matched filter,

linear ZF and maximum likelihood detection all yield the same performance with unquantized

observations. We shall see, however, that drastic quantization can have a severe impact on the

performance of linear detection even in such an ideal setting because of the common channel

phase Φ in (4), which can move the observations close to quantization boundaries. On the

other hand, the mutual information plot in Figure 7b shows that reliable communication at the

maximum data rate of 8 bits per channel use should be possible at an SNR of about 15 dB in

this setting. Our goal, therefore, is to devise spatial demultiplexing with reasonable complexity

that can approach this performance. We consider an uncoded BER target of about 10−3, which

yields reliable communication with high-rate bit interleaved coded modulation, since a binary

symmetric channel with this cross-over probability has capacity close to 0.99 bits per channel

use.

From the point of view of minimizing the probability of error, the optimal detector based on

the quantized output is the maximum likelihood (ML) detector [33], given by

X̂(YQ) = argmax
X∈SNR

p(YQ | X) . (30)

Since the minimization in (30) is over all possible transmitted vectors and it is difficult to calculate

p(YQ | X) for a given X, the problem in (30) has prohibitive complexity. As a low-complexity

alternative, we consider linear ZF detection. We have verified by simulations that other standard
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multiuser detection techniques such as linear minimum mean squared error (MMSE) detector

[34] and sphere decoding [35] achieve the same performance as linear ZF for our system.

Recall that the ZF solution minimizes

X̃(YQ) = argmin
X
‖YQ −HX‖ (31)

and can be obtained by computing

X̃(YQ) = (H†H)
−1

H†YQ (32)

first, and then finding ith element of X̂(YQ) as

X̂i(YQ) = argmin
Xi∈S

|X̃i(YQ)−Xi| (33)

for all i ∈ {1, . . . , 4}, where X̃i(·) is the ith element of X̃(·). Note that YQ in (32) represents the

quantized output at the receiver and the quantizer outputs are set to the centroids of the quantizer

regions, which are obtained based on the complex Gaussian approximation. Mathematically, the

quantized output of ith antenna for the received signal Yi is equal to

Ȳi =

∫
Γ̃i
yfỸ (y) dy∫

Γ̃i
fỸ (y) dy

, (34)

where Γ̃i denotes the quantizer region that Yi falls into; that is, Yi ∈ Γ̃i.

A. Virtual Quantization

Linear ZF detection based on the centroids codebook performs poorly when the unquantized

outputs are far from the centroids of the regions that they belong to. On the other hand, we

know that linear ZF detection with unquantized outputs yields excellent performance for a well-

conditioned MIMO channel. This motivates viewing the unquantized output vector as a hidden

variable, or nuisance parameter, for our hypothesis testing problem of estimating the transmitted

symbols. We can now apply any of the standard tools of composite hypothesis testing to this

problem. We choose here a Generalized Likelihood Ratio Test (GLRT) approach, in which

we jointly estimate the unquantized output and the transmitted symbols given the quantized

outputs. That is, the transmitted symbols are estimated by jointly maximizing the probability of

unquantized output and transmitted symbols given the quantized output:

(X̂(YQ),Y(YQ)) = argmax
X∈SNR ,Y

p(X,Y | YQ) . (35)
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A key difficulty in this optimization problem is that we need to search over a continuum of

values for the hidden unquantized output Y. We therefore consider a grid-based approximation

of Y, where the grid is finer than that provided by the quantizer. We term this approach virtual

quantization.
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Fig. 8: Physical and virtual quantizers with the outputs corresponding to the centroids of the

regions for 10 dB SNR.

Let Qv(·) denote the element-wise virtual quantizer function. The virtual quantized hidden

variable can be obtained as YV = Qv(Y). Then, the quantized output YQ can be written as

YQ = Qc(YV ) as a coarsening of virtual quantized hidden variable, where Qc(·) is the coarsening

function. Thus, YQ = Qc(Qv(Y)) = Q(Y), where Q(·) is the element-wise actual quantizer

function defined in (7) for the ith receive antenna and Qc(·) can be considered as Qc(·) = Q(·).

Thus, X → Y → YV → YQ is a Markov chain. Figure 8 shows an example of physical and

X H + Y
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2
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Fig. 9: Flow diagram of virtual quantization based spatial demultiplexing.
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virtual quantizers used in our numerical results (detailed description is provided later in this

section).

Quantizing the nuisance parameter Y in the joint estimation problem in (35) using the virtual

quantizer, we seek to jointly estimate the transmitted symbols and the virtual quantizer outputs:

(X̂(YQ),Y(YQ)) = argmax
X∈SNR ,Y

p(X, Qv(Y) | YQ) (36)

= argmax
X∈SNR ,YV ∈T

p(X,YV | YQ) (37)

where (37) follows from YV = Qv(Y ) and T = T (YQ) is a discrete set including all possible

combinations of virtual quantized output for observed YQ:

T = {YV = Qv(Y) | Q(YV ) = YQ}

In order to solve the problem in (37) and estimate the transmitted symbols, we maximize

the objective function in (37) with respect to X for a given YV ∈ T first, then substitute the

obtained X to the objective function to solve for YV . To begin with, for a given YV ∈ T , the

maximization of the optimization problem in (37) over X can be expressed as follows:

X̂(YV ,YQ) = argmax
X∈SNR

p(X,YV | YQ) (38)

= argmax
X∈SNR

p(X | YV ,YQ) p(YV | YQ) (39)

= argmax
X∈SNR

p(X | YV ) p(YV | YQ) (40)

= argmax
X∈SNR

p(X | YV ) (41)

= argmax
X∈SNR

p(YV | X) (42)

where (39) is a standard conditional probability computation, (40) is based on the Markov

property X→ YV → YQ, (41) is obtained since p(YV | YQ) does not depend on X for given

YV and YQ, and (42) follows from Bayes’ theorem and equally likely transmitted symbols.

The optimization problem in (42) is in the form of (30), except that it considers virtual

quantized hidden variable instead of actual quantized output. As described in (32) and (33), (42)

can be approximated by linear ZF detection. Therefore, for given YV and observed quantized

output YQ, X̂(YV ,YQ) can be obtained as in (32) and (33).



23

Next, we substitute X̂(YV ,YQ) to the optimization problem in (37) and maximize it over

YV . Substituting X̂(YV ,YQ) to (37),

Ŷv(X̂,YQ) = argmax
YV ∈T

p(X̂,YV | YQ) (43)

= argmax
YV ∈T

p(YV | X̂,YQ) p(X̂ | YQ) (44)

≈ argmin
YV ∈T

∥∥YV − ȲV

∥∥2 (45)

where (44) follows from Bayes’ theorem and (45) is obtained by approximating the impact of

quantization and noise as Gaussian and modeling p(YV | X̂,YQ) as Gaussian with mean ȲV ,

where ȲV denotes the noiseless reconstruction and is equal to ȲV = Qv(HX̂). Note that we

ignore p(X̂ | YQ) term in (45) even though X̂ depends on YV , which means that we are not

necessarily attaining the true maximum for (43). We expect the impact of this approximation on

(45) to be small compared to the term p(YV | X̂,YQ), which decays exponentially according

to our Gaussian approximation for the sum of the virtual quantization noise and thermal noise.

The proposed virtual quantization method can now be summarized as follows:

1) Generate set T based on the physical quantized observation and the virtual quantizer

function such that T = {YV = Qv(Y) | Q(YV ) = YQ}.
2) For each YV ∈ T , calculate the ZF solution to obtain X̂(YV ,YQ) by treating YV as if it

is the observed output at the receiver.

3) Find YV ∈ T that minimizes the Euclidean distance between YV and Qv(HX̂); that is,

‖YV −Qv(HX̂)‖2.

4) Declare the corresponding X̂(YV ,YQ) as the estimated symbol vector.

Fig. 9 illustrates this procedure via a flow diagram.

The result of the estimation depends on the virtual quantization function (i.e., Qv(·)) and the

virtual quantization output (i.e., YV ), both of which determine the elements in T and contribute

to the cost function used to specify the estimated symbols. Different virtual quantization functions

can be designed for our proposed method. However, in this paper, we consider the same

method that we use for the design of the actual physical quantizer. Considering the Gaussian

approximation discussed in the design of the actual quantizer, we design an I/Q quantization-

based virtual quantizer having equal-probability regions. For the 2-bit per I/Q physical quantizer

having 16 regions, we consider a virtual quantizer with 64 regions (i.e., S = 8) whose outputs

are decided based on the centroids of the corresponding regions similar to those of the physical
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quantizer, as shown in Fig. 8. In this case, the virtual quantizer divides each physical quantizer

bin into 4 regions, which can be considered as a virtually created 1-bit quantizer per each I/Q

for each physical quantization bin.

B. Numerical Results
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Fig. 10: Bit error rate versus SNR for different detection methods when the common phase is

(a) fixed to Φ = 0; (b) uniformly distributed over [0, 2π), for a 4×4 MIMO system with QPSK.

We consider two benchmarks: ML with no quantization and ML with quantization. The former

assumes there is no quantization in the system; that is YQ = Y and provides an unquantized

benchmark as if ADCs at the receiver have infinite precision. The latter considers the quantized

outputs at the receiver and is obtained based on (30).

For a 4×4 MIMO system, Fig. 10a plots bit error rate (BER) versus SNR, setting θ = π/2, for

different detection methods when the common phase is fixed to Φ = 0. We may also view this as

equivalent to a hybrid analog-digital processing scheme in which the common channel phase Φ

is removed by analog derotation prior to quantization. The plot indicates that linear ZF detection

with equal probability quantization and the centroids codebook remains near-optimal, achieving

the same performance as ML reception, as long as the common channel phase is removed

prior to quantization. On the other hand, as expected from our mutual information computa-

tions, MMSQE-based quantization performs significantly worse than the equal probability-based

quantizer. Note that we have simulated other detection methods such as the linear MMSE detector
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and the sphere decoder based on the quantized outputs at the receiver, and have verified that

they achieve the same performance as linear ZF detection.

We now turn to the scenario of interest for us: fully digital processing without derotation of

the common phase Φ prior to quantization. The receiver processing with quantized observations

does employ knowledge of Φ, but performance is adversely affected by points being rotated close

to quantization boundaries. Fig. 10b plots BER averaged over the common phase Φ versus SNR,

setting θ = π/2, for different detection methods, where Φ is uniformly distributed over [0, 2π).

We now see that linear ZF detection with the centroids codebook performs significantly worse,

with an error floor that stays higher than our target 10−3 BER. The proposed virtual quantization

approach performs significantly better: its performance is close to that of ML detection at BER of

10−2, while being 5 dB worse at the target BER of 10−3. It still exhibits an error floor at 10−4,

motivating additional effort in devising low-complexity strategies for approaching maximum

likelihood performance.

Beyond the ideal model: Since severe quantization destroys the orthogonality of the received

signals for different data streams, we expect that our all-digital receiver should be robust to

changes in link distance R around the nominal range RN . Fig. 11 plots BER vs R/RN at 40 dB

SNR for our proposed virtual quantization approach and linear ZF detection with the centroids

codebook, where R ∈ [0.8RN , 1.2RN ]. The poor performance of linear ZF detection also persists

as we vary R.

Scaling to larger constellations: A key advantage of virtual quantization is that its complexity

does not scale with constellation size. We verify this by evaluating performance for 16QAM

modulation. Given the higher dynamic range of 16QAM, we consider 3 bit and 4 bit I/Q physical

quantization, and then add 1 bit virtual quantization as before. Fig. 12 plots BER averaged over

the common phase Φ versus SNR, setting θ = π/2, for different detection methods. We see that

neither 4 bit physical quantization (without virtual quantization) nor 3 bit physical quantization

with 1 bit virtual quantization achieve our target 10−3 BER even at very high SNR. However, 4 bit

physical quantization with 1 bit virtual quantization does achieve our BER target at approximately

20 dB SNR.

VII. CONCLUSION

Our study of ideal 4× 4 LoS MIMO system at high SNR yields fundamental insight into the

impact of severe quantization. We show that equal probability quantization, which maximizes
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Fig. 11: Bit error rate averaged over Φ versus R/RN for different detection methods for a 4× 4

MIMO system with QPSK, where SNR is 40 dB.
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per-antenna output entropy, outperforms standard MMSQE quantization in such regimes. For

spatial demultiplexing, we introduce the novel concept of virtual quantization, which may be

viewed as approximate joint estimation of the transmitted symbols and the unquantized received

signal, and show that linear detection with virtual quantization is an effective low-complexity

alternative to maximum likelihood detection, which requires complexity exponential in the

number of transmitted bits. It remains an open issue as to whether the gap to maximum likelihood

detection at higher SNR can be further reduced, and the error floor eliminated, while maintaining

reasonable complexity.

An important direction for future research is to investigate quantization-constrained LoS

MIMO is more complex settings, including understanding the impact of dispersion due to

geometric misalignments and potential performance advantages of spatial oversampling [8], [14].

While we do not consider transmit precoding here, joint transmit-receive optimization subject to

dynamic range constraints and nonlinearities at both ends is of great interest. At a fundamental

level, the concept of virtual quantization, which treats the unquantized output as a hidden variable,

may be worth exploring for other system models.
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