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Topological Pilot Assignment in Large-Scale

Distributed MIMO Networks

Han Yu, Xinping Yi, and Giuseppe Caire

Abstract

We consider the pilot assignment problem in large-scale distributed multi-input multi-output (MIMO)

networks, where a large number of remote radio head (RRH) antennas are randomly distributed in a wide

area, and jointly serve a relatively smaller number of users (UE) coherently. By artificially imposing

topological structures on the UE-RRH connectivity, we model the network by a partially-connected

interference network, so that the pilot assignment problem can be cast as a topological interference

management problem with multiple groupcast messages. Building upon such connection, we formulate

the topological pilot assignment (TPA) problem in two different ways with respect to whether or not

the to-be-estimated channel connectivity pattern is known a priori. When it is known, we formulate

the TPA problem as a low-rank matrix completion problem that can be solved by a simple alternating

projection algorithm. Otherwise, we formulate it as a sequential maximum weight induced matching

problem that can be solved by either a mixed integer linear program or a simple yet efficient greedy

algorithm. With respect to two different formulations of the TPA problem, we evaluate the efficiency of

the proposed algorithms under the cell-free massive MIMO setting.

I. INTRODUCTION

The last decades have witnessed the advances of multiple-user multiple-input multiple-output

(MIMO) technologies towards the next generation wireless communications systems (e.g., 5G

and beyond), particularly in terms of antenna array from small size to massive MIMO, in terms

of duplex operations from frequency-division duplex (FDD) to time-division duplex (TDD), and

in terms of network architectures from centralized (e.g., cloud) to distributed (e.g., fog) radio
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access networks. As one of the key wireless access techniques in 5G and beyond, massive MIMO

promises high-throughput and low-latency services with low-complexity transceivers.

Conventional massive MIMO makes use of a collocated antenna array with a large number

(e.g., hundreds) of elements at the base station (BS), which coherently serve a relatively smaller

number (e.g., tens) of users (UEs) in the same time-frequency resource [1], [2]. In doing so,

users’ channels exhibit some interesting properties: channel hardening and favorable propagation.

Because of the large antenna array, the average channel gains across time between the BS and the

UEs are almost deterministic, ruling out the small-scale fading effects that are disadvantageous to

high-throughput wireless services. The large antenna array also provokes the favorable propagation

channels in the sense that the users with distinct angle-of-arrival have almost orthogonal channel

vectors. This lends itself to the use of conjugate beamforming instead of the more sophisticated

zero-forcing beamformers, and thus the transceivers design can be significantly simplified.

Recently, a distributed deployment spreading out the massive number of antennas over a

large area demonstrates the superior network performance over the collocated counterpart. The

motivation of such distributed massive MIMO is two-fold. On one hand, distributed wireless

access networks promises potentially higher coverage thanks to the exploitation of the diversity

against shadow fading. On the other hand, the emerging applications such as Internet of Things

encourage smart devices with distributed locations to be potential RRHs, so that a distributed

antenna deployment sounds more promising for ubiquitous communications in the future.

Most recently, various distributed network architectures for massive MIMO have been proposed

with different focuses. For instance, cell-free massive MIMO [3], [4] promotes the “cell-free”

concept in which every UE will be jointly served by all RRHs so that no handover will incur

when the UE moves because it is always within the single huge cell. A central processing unit is

enabled to coordinate information exchange and jointly compute system parameters (e.g., channel

estimation and power control). Such a “cell-free” concept has attracted a lot of attention recently,

including the considerations of spectral and energy efficiency [5], [6], precoding and power

optimization [7], [8], limited-capacity fronthaul [9], user-centric approaches [10], the mmWave

scenario [11], among many others (see a comprehensive survey [12] and references therein). On

the other hand, the “fog” massive MIMO proposed in [13] is dedicated to a seamless and implicit

user association architecture in which the UEs are assigned to certain RRHs with large-scale

antenna array in an autonomous manner by a novel coded “on-the-fly” pilot contamination control

mechanism, leading to autonomous handover as UE moves and thus establishing a cell-transparent
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network. A problem with both cell-free and fog architectures is that, since there is no clear

cell boundary any longer, the uplink pilot assignment to the UEs is done once for all and not

re-assigned at every handover as simplicity assumed in cellular-based massive MIMO systems

in order to guarantee that intra-cell users have mutually orthogonal uplink pilots [1]. Hence,

the inherent pilot contamination due to non-orthogonal pilots represents an important limiting

factor that is handled by global pilot optimization in the cell-free scheme [3] or with coding and

“on-the-fly” contamination control in the fog scheme [13].

To address the pilot contamination issue, a number of works have concentrated on low-

complexity pilot assignment algorithms in the cell-free massive MIMO setting. In particular, a

greedy pilot assignment method was proposed in [3] to gradually refine the random assignment

in order to gain improved throughput performance. A dynamic pilot reuse scheme was proposed

in [14] by using user-centric clustering methods. By modeling the conflict of pilot assignment

between UEs as an interference graph, graph coloring based methods (e.g., [15]–[17]) were

proposed for pilot assignment. The joint RRH selection and pilot assignment was considered

in [18] to make the network more scalable, and structured policies were proposed in [19], [20]

together with clustering techniques (e.g., K-means and user grouping). The pilot assignment can be

also formulated as a graph matching problem [21], which can be solved efficiently by Hungarian

algorithm. A heap-based algorithm has been adopted in [22] to reduce pilot contamination and

enhance spectral efficiency, and a tabu search method in [23] to exploit local neighborhood

search. Although promising, these approaches either rely on sum rate evaluation during the pilot

assignment process, or on heuristics without theoretical guarantees. In the former, rate calculation

also involves power allocation and channel estimation, which is related to pilot assignment. This

is a “chicken-and-egg” problem. In the latter, although some heuristics work well in small-scale

networks, they are not provably scalable for large-scale ones. As the pilot assignment problem

has a combinatorial nature, it is in general NP-hard and challenging to find a provably scalable

solution. In this regard, a natural question then arises as to how we can come up with a principled

way for pilot assignment by making use of only the long-term channel information.

As a matter of fact, inspecting such distributed massive MIMO networks, one may notice that

some previously ignored UE-RRH connectivity patterns may be exploitable and of great benefit.

Owing to the random locations of RRH antennas, the fact that power decays rapidly with distance,

the existence of obstacles, and local shadowing effects, we may argue that certain UE-RRH links

are unavoidably much weaker than others, which by intuition makes these concerned RRHs not
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suitable to serve some UEs. This is also confirmed by the simulations in e.g., [3], [7], where only

a small fraction of RRHs contribute most to a UE while the contribution of the rest is negligible.

Thus, the channels with negligible contributions are not necessarily estimated, and one pilot

sequence can be allocated to more UEs as long as it does not cause severe pilot contamination. As

such, it suggests the use of a partially-connected bipartite graph to model, at least approximately,

the network connectivity, i.e., which RRH antenna serves which UE, to artificially sparsify the

network topology and channel estimation pattern, so that the pilot assignment can be done based

on the sparsified UE-RRH connectivity.

In this paper, we focus on the pilot assignment problem in the distributed (e.g., cell-free

or fog) massive MIMO systems, and aim to provide another perspective to investigate such a

challenging problem. We impose a topological structure on the network connectivity based on the

large-scale fading coefficients, so that only channels with larger path-loss than a certain threshold

are captured and the network connectivity is artificially sparsified. Based on such a sparsified

network topology, we connect the pilot assignment problem to the topological interference

management (TIM) problem with multiple groupcast message setting, so that the developed

coding schemes for TIM using e.g., graph coloring and coded multicasting, can be applied here

for pilot assignment. Instead of analyzing the optimality with respect to specific topologies in

TIM, we propose two systematic pilot assignment methods to deal with arbitrary topologies by

formulating two non-convex optimization problems. The first one is a low-rank matrix completion

formulation to minimize the pilot dimension with a given channel estimation pattern. In particular,

it minimizes the rank of a partially determined matrix whose entries are determined by the

channel estimation pattern and a binary pilot assignment matrix. Once the matrix is completed,

we employ matrix factorization to obtain the binary pilot assignment matrix. The second one is

a formulation of binary quadratically constrained quadratic program to find the optimal channel

estimation pattern with a given training budget (i.e., pilot dimension). Instead of solving the

problem directly, we apply the sequential optimization method to solve it iteratively, and at

each iteration we solve a combinatorial optimization problem to maximize the usage of each

pilot dimension, in the hope to estimate as many channels as possible. By such formulation, we

propose a mixed integer program formulation via sequential maximum weight induced matching

and a simple yet efficient greedy algorithm. The superiority of two proposed methods are verified

by Monte-Carlo simulation under the cell-free massive MIMO settings, which show that our

approaches have a better ergodic rate performance compared to the state-of-the-art methods.
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Notation: Throughout this paper, we abbreviate [n] , {1, 2, . . . , n} for an integer n. [A]ij

presents the ij-th entry of the matrix A, and AI,J denotes the submatrix of A where I and J

indicate the indices of selected rows and columns respectively. |A| is the cardinality of the set

A. We denote by 1M×1 the all one M × 1 vector, by IM the M ×M identity matrix, and by em

the m-th column of the identity matrix. We abbreviate {at}t , {at, ∀t} and for the multiple

indices, it applies similarly.

II. SYSTEM MODELING

A. Distributed Massive MIMO

Consider a distributed massive MIMO network with M remote radio heads (RRHs) each

with single antenna1 coherently and simultaneously serving K single-antenna user equipment

(UEs), all of which are uniformly located in a large area at random. The RRHs operate in TDD

mode, so that the downlink channel coefficients can be estimated through uplink training due

to the uplink/downlink channel reciprocity in TDD mode. All RRHs are connected to a central

processing unit (CPU) via error-free backhaul links for the purpose of coordination. The backhaul

links are not allowed to exchange instantaneous channel state information (CSI), while payload

data, pilot assignment strategy, and power control coefficients can be routed and exchanged. It

is assumed M � K, and each UE should be served by a sufficiently large number of RRHs

in order to harvest the benefits of channel hardening and favorable propagation. Through the

limited coordination among RRHs, a distributed massive MIMO is formed.

The channel coefficient gmk between RRH-m and UE-k is modeled as follows:

gmk =
√
βmkhmk, (1)

where βmk is the large-scale fading (i.e., path-loss) coefficient, and hmk is small-scale fading and

is assumed to be a complex i.i.d. Gaussian random variable with mean 0 and variance 1 (i.e.,

CN (0, 1)). The channel coefficients are assumed to be constant during a TDD frame. A TDD

frame consists of UL training and DL payload transmission. In this work, we place our focus

mainly on pilot assignment and channel estimation.

1For ease of presentation, we focus on the single-antenna RRHs for the derivation, whereas the extension to multiple-antenna

RRHs is straightforward.
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B. Uplink Training

Let τp be the maximal duration (in samples) reserved for UL training phase, during which

each UE is assigned with a combination of orthogonal pilot sequences {ψt ∈ CT×1, t ∈ [T ]}

with T ≤ τp being the pilot dimension actually used for UL training. We impose ψH

tψs = δ(t, s)

to ensure the pilot orthogonality. Note that T can be much less than the number of users T < K,

where a pilot sequence can be reused by multiple users with proper pilot contamination control.

For a specific ψt, we introduce a set of binary variables

xkt =

 1, if UE-k is assigned ψt with success

0, otherwise.
, (2)

so that the pilot signal sent from UE-k can be specified by

sp,k =
√
τpηp

T∑
t=1

xktψt, (3)

where ηp is the normalized power coefficient such that

1

K

K∑
k=1

E[‖sp,k‖2] ≤ τpρp (4)

with τpρp being the average power reserved for each UE over UL training. For equal pilot power

allocation, we have ηp = Kρp∑K
k=1

∑T
t=1 xkt

.

At the m-th RRH, the received pilot signal over T pilot dimensions can be given by

rp,m =
K∑
k=1

gmksp,k +wp,m (5)

=
√
τpηp

K∑
k=1

T∑
t=1

gmkxktψt +wp,m (6)

where wp,m ∈ CT×1 is the additive white Gaussian noise (AWGN) at RRH-m, and is i.i.d. over

T with CN (0, IT ).

Given the above pilot signal, the RRHs check every pilot dimension and try to estimate certain

channels. At the m-th RRH, the received pilot signal is multiplied by every pilot sequence ψt to

estimate the channels from some UE-k to RRH-m. Thus, the resulting pilot signal observed at

the output of the t-th pilot correlator r̂p,mt = ψH

t rp,m can be written as

r̂p,mt =
√
τpηp

K∑
k=1

gmkxkt +ψH

twp,m (7)

=
√
τpηpgmkxkt +

√
τpηp

∑
k′ 6=k

gmk′xk′t +ψH

twp,m
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The next step consists of recovering {gmk}m,k from the received pilot signals and obtain the

corresponding estimates {ĝmk}m,k. A channel estimate is stable in the sense that mean square

error (MSE) satisfies E[|gmk − ĝmk|2]→ 0 when ρp →∞. The channel coefficient gmk can be

estimated using different estimators, such as least square (LS), minimum mean square error

(MMSE). For instance, the MMSE estimate of gmk can be produced by

ĝmk =
E
[
r̂Hp,mtgmk

]
E
[
|r̂p,mt|2

] r̂p,mt =

√
τpηpβmkxkt

1 + τpηp

∑
k′ βmk′xk′t

r̂p,mt (8)

for some t. The MSE, for which RRH-m estimates the channel coefficient gmk through pilot ψt

when UE-k is sending pilot ψt as well, can be written as

MSEmkt = E{|gmk|2} −
|E{r̂Hp,mtgmk}|2

E{|r̂p,mt|2}
(9)

= βmk −
τpηpβ

2
mkxkt

1 + τpηp

∑
k′ βmk′xk′t

. (10)

Apparently, obtaining a meaningful estimate of gmk requires xkt = 1 and xk′t = 0 for all k′ 6= k.

That is, UE-k is assigned pilot ψt exclusively, so that gmk can be stably estimated at RRH-m by

using ψt with diminishing estimation error as ρp tends to infinity. If the UE-RRH connectivity is

equally strong for any pair of UE and RRH, the stable estimate of all channels requires that each

UE is assigned a unique orthogonal pilot sequence, so that the total pilot dimension is at least K.

Nevertheless, we argue that under the distributed MIMO setting, it is unnecessary to estimate all

channel coefficients between every RRH and every UE; rather, the UE-RRH links with negligible

contributions can be ignored. As such, over T pilot dimension, let TE,m represent the indices of

UEs whose channels are stably estimated at RRH-m, and RE,k represent the indices of RRHs

that are supposed to serve UE-k. While TE,m is a consequence of pilot assignment, RE,k is a

system choice that determines the distribution of UEs’ data across RRHs. In general, they are

not necessarily related.

We hereafter refer to the channel estimation pattern specified by {TE,m}m as a bipartite graph

GE = ([K], [M ], EE) with the edge set

EE = {(k,m) : k ∈ TE,m,∀m}. (11)

As a first attempt, in this work we assume those RRHs who are supposed to serve UE-k should

possess stable estimates of the corresponding channel coefficients associated to UE-k, and those

UEs whose channels are stably estimated by RRH-m should be served by RRH-m. That is,

m ∈ RE,k if and only if k ∈ TE,m. It follows that the edge set of GE can be alternatively

represented by the UE association pattern EE = {(k,m) : m ∈ RE,k,∀k}.
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C. Downlink Data Transmission

Given the channel estimates {ĝmk}k∈TE,m
at RRH-m, conjugate beamforming is employed

to transmit the symbols {qk}k∈TE,m
to the UE-k. The transmitted signal from RRH-m can be

written by

sd,m =
√
ρd

∑
k∈TE,m

η
1/2
mk ĝ

∗
mkqk (12)

where qk is the desired symbol by UE-k satisfying E[|qk|2] = 1, and ηmk is the power allocation

efficient associated to the transmitted symbol qk from RRH-m, subject to the average power

constraint at each RRH
1

M

M∑
m=1

E[|sd,m|2] ≤ ρd.

According to the transmitted signal, the power constraint can be rewritten as

1

M

M∑
m=1

∑
k∈TE,m

ηmkγmk ≤ 1 (13)

where γmk , E[|ĝmk|2]. Thus, the received signal at UE-k is given by

rd,k =
M∑
m=1

gmksd,m + wd,k (14)

=
√
ρd

∑
m∈RE,k

η
1/2
mk gmkĝ

∗
mkqk +

√
ρd

M∑
m=1

∑
k′ 6=k,k′∈TE,m

η
1/2
mk′gmkĝ

∗
mk′qk′ + wd,k

= fk,kqk +
K∑

k′:k′ 6=k

fk,k′qk′ + wd,k (15)

where

fk,k′ ,
√
ρd

∑
m∈RE,k′

η
1/2
mk′gmkĝ

∗
mk′ . (16)

Thus, the downlink received signal can be seen as an interference channel with channel coefficients

{fk,k′}k,k′ . For simplicity, we assume that all channel coefficients in (16) are known to the receivers.

Taking into account the uplink training overhead, we have the downlink ergodic rate [24]

Rk = (1− T

Nc

)E

[
log

(
1 +

|fk,k|2

N0 +
∑

k′ 6=k|fk,k′|2

)]
(17)

where Nc is length of the TDD frame in samples, and N0 is the normalized noise power.
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UE

RRH

Fig. 1: Left: Topological modeling for a distributed massive MIMO network as a partially-connected bipartite

graph, where all edges (including all solid and dotted ones) represent the UE-RRH connectivity, i.e., E(G), and

the solid edges represent the channel estimation pattern, i.e., EE(GE). Right: A possible pilot assignment strategy,

where different colors indicate distinct orthogonal pilot sequences. The colored edges cover the channel estimation

pattern EE(GE). By this pilot assignment, all users’ channels of interest can be estimated stably because no pilot

contamination is incurred at the RRHs.

III. TOPOLOGICAL PILOT ASSIGNMENT

A. Topological Modeling

Due to the fact that signal power decays fast as the distance increases and the shadowing

effects, some UE-RRH links are unavoidably weak than others and thus both their contributions

to joint transmission or influence as interference are negligible. It suggests the use of a UE-RRH

connectivity pattern to model this at least approximately. Thus, we introduce another weighted

bipartite graph G = ([K], [M ], E) in Fig. 1 (Left) to represent the UE-RRH connectivity (i.e.,

network topology), where [K] is the index set of UEs, [M ] is the index set of RRHs, and E is

the collection of the edges with weights {βmk}m,k. The UE-k is said to be connected to RRH-m,

i.e., (k,m) ∈ E , if and only if βmk ≥ δβ , where the threshold δβ is a crucial designing parameter.

Let us denote by Tm , {k : (k,m) ∈ E} the indices of UEs connected to RRH-m and by

Rk , {m : (k,m) ∈ E} the indices of RRHs connected to UE-k.

The network topology G captures both channel estimation pattern GE that specifies the to-be-

estimated channel pattern with significant contributions, and the non-negligible interference pattern

that has negligible contributions to joint transmission yet non-negligible influence as interference.

Given G and GE , one may consider to impose such structures on pilot assignment problem in

distributed massive MIMO systems. Hence, we formulate a topological pilot assignment (TPA)

problem, dedicated to pilot assignment with artificially imposed network structures. Without loss

of generality, we assume EE ⊆ E that only strong channels should be estimated.
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Definition 1. Given a UE-RRH connectivity pattern G = ([K], [M ], E), the TPA problem consists

of two subproblems:

• Pilot Dimension Minimization, which focuses on allocating pilot sequences to minimize

pilot dimension T for a predetermined channel estimation pattern GE;

• Channel Pattern Optimization, which is dedicated to determining the optimal channel

estimation patterns GE for a given pilot dimension T .

It is worth noting that both subproblems rely highly on the choice of δβ that determines

the network topology G. A larger δβ makes the resulting topology sparser, so that a smaller T

is able to estimate all channels of the sparse network, while the uncaptured channels that are

consequently not estimated may cause severe interference. On the contrary, a smaller δβ leads to

a denser network topology, so a specified pilot dimension may not able to estimate all channels

of interest, while the non-estimated yet captured channels may cause severe degradation as well.

B. Pilot Dimension Minimization

The pilot dimension minimization subproblem aims to assign each UE a combination of

orthogonal pilot sequences with minimal pilot dimension T for a specified channel estimation

pattern GE , so that all channels of interest can be properly and stably estimated. For instance,

when UE-k is using the pilot ψt, any RRH-m is supposed to be able to estimate the channel

gmk if (k,m) ∈ EE and the pilot signal at RRH-m is not contaminated by other UEs using the

same pilot ψt. Meanwhile, for a specific RRH-m, any other UE-j who has a strong channel

connection to RRH-m, i.e., (j,m) ∈ E due to βmj ≥ δβ, is not supposed to use the same pilot

ψt simultaneously. Otherwise the use of pilot ψt at both UE-k and UE-j will result in pilot

contamination at RRH-m so that the channels gmk cannot be stably estimated at RRH-m.

Example 1. A feasible pilot assignment is shown in Fig. 1 (Right), in which we assign two

orthogonal pilots to estimate the channels of interest. In Fig. 1 (Right), the edges in EE are

colored using two distinct colors, each of which represents an orthogonal pilot. Thus, given

two orthogonal pilot sequences ψ1,2 ∈ R2×1, UE-1 and UE-3 send ψ1, UE-2 sends the pilot

ψ2, and UE-4 sends the combination of two pilots ψ1 +ψ2. Then, RRH-{1, 4, 6, 7, 8} see the

uncontaminated pilot signal and can estimate the corresponding channels, whereas RRH-{2, 3, 5}

see the combination of two orthogonal pilot signals, and can estimate both channels stably over

two timeslots by e.g., zero-forcing.
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C. Channel Pattern Optimization

The channel pattern optimization subproblem is to decide which channel to be estimated given

a total budget (e.g., pilot dimension) during the training phase.

Let us denote by Tm , {k : (k,m) ∈ E} the indices of UEs connected to RRH-m and by

Rk , {m : (k,m) ∈ E} the indices of RRHs connected to UE-k. Given two UE-j, k such

that j, k ∈ Tm, the channels gmk and gmj cannot be estimated at RRH-m using the same pilot

sequence. That is, with a single pilot sequence, each RRH can only estimate at most one channel.

On the other hand, given two RRH-m,n such that m,n ∈ Rk, the channels gmk and gnk can be

estimated at RRH-m and RRH-n using the same pilot sequence. That is a single pilot could be

used to estimate multiple channels originated from the same UE. As shown in Fig. 1 (Right), for

the pilot sequence denoted by red edges, each RRH estimates at most one channel and multiple

channels may from the same UE.

The above rule yields the channel pattern that can be estimated by a single pilot sequence.

Given a fixed pilot dimension (i.e., the number of orthogonal pilot sequences), the objective of

this subproblem is to maximize the total number of channels to be estimated.

D. Connection to Topological Interference Management

A closer look at the TPA problem reveals the similarity to topological interference management

(TIM) with message groupcasting [25]. Both TPA and TIM problems aim to exploit topological

information for transmission in partially-connected interference networks without knowing channel

coefficients at the transmitters.

The TIM problem aims to deliver messages and the goal is to maximize the minimal (symmetric)

degrees of freedom dsym achieved by all desired messages across all receivers. The groupcast

message setting specifies that a message originated from a transmitter may be desired by multiple

receivers, such that a message multicasting will benefit multiple receivers. In the TIM setting, G

and GE represent the network topology and desired message pattern respectively.

The TPA problem aims to estimate the channel coefficients given the known pilot symbols,

and the goal is to figure out how orthogonal pilot sequences are allocated to minimize the pilot

dimensions T . It is feasible that all channels associated to one UE can be trained by one pilot

sequence sent from this UE. In the TPA setting, G and GE represent the network topology and

channel estimation pattern respectively.
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Intuitively, if we treat the channel coefficients in TPA as the symbols of the unknown messages

in TIM, the pilot assignment in TPA can be obtained from the beamforming vectors of the

encoding schemes for TIM with that additional constraint that they should be binary-valued.

Given a linear coding scheme for TIM groupcasting, we have translate it to a pilot assignment

scheme for TPA, which yields T = 1
dsym

, where dsym is the symmetric degrees of freedom under

the TIM setting. In light of such a connection, we can borrow the well-designed coding schemes

from TIM to TPA. In what follows, we present two simple methods for the purpose of illustration:

one is based on vertex coloring, and the other one is coded multicast.

1) Vertex Coloring: Given the network topology G and the desired message pattern GE , we

first construct the conflict graph Gc = (Vc, Ec). Every edge (k,m) ∈ EE(GE) corresponds to a

vertex vkm ∈ Vc(Gc). That is Vc = {vkm : (m, k) ∈ EE(GE)}. Two vertices vkm and vk′,m′ are

connected, i.e., (vkm, vk′,m′) ∈ Ec(Gc), if and only if

• k 6= k′, indicating that two channels are not originated from the same UE, and

• either (k,m′) ∈ E(G) or (k′,m) ∈ E(G), indicating that (1) two channels are joint at one

RRH, i.e. m = m′, (2) UE-k interferes RRH-m′, or (3) UE-k′ interferes RRH-m.

Note here that, for the conflict graph, the vertex set Vc(Gc) is determined by the edge set EE(GE),

while the edge set Ec(Gc) is determined by the edge set E(G).

Coloring the vertices of the conflict graph ensures that the adjacent vertices (corresponding to

conflicting channels) receive distinct colors (corresponding to distinct orthogonal pilots sequences).

The vertices with the same color can be assigned the same pilot sequence without causing

contamination in the training phase, so that the corresponding channels can be stably estimated.

Example 2. In Fig. 1 (Right), the channels (1, 1), (1, 2) and (1, 3) are originated from the

same UE-1, so they are not conflicting and thus can be assigned the same pilot; the chan-

nel (1, 1) is conflicting with all (2, 2), (2, 3), (2, 5), (2, 7) and (3, 4), (4, 4), because UE-2 in-

terferes RRH-1 and UE-1 interferes RRH-4, respectively, if they use the same pilot. The

channels {(1, 1), (1, 2), (3, 3), (3, 5), (4, 7), (4, 8)} receive the same color, so that these chan-

nels can be estimated by using the same pilot sequence. The same applies to the channels

{(2, 2), (2, 3), (2, 5), (4, 4), (4, 6)}. Thus, it can be figured out that UE-{1, 3, 4} use one pilot

sequence, and UE-{2, 4} use another one, and UE-4 uses the combination of those two.

2) Coded Multicast: When the network topology coincides with the desired message pattern,

i.e., G = GE , meaning that all channels captured in the network topology should be estimated,
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we can use coded multicasting method proposed in TIM to assign pilot sequences. Letting

T = maxm|Tm|, we can design a (K,T ) maximum distance separable (MDS) code with a T ×K

generator matrix in which any T columns are linearly independent. The columns of this generator

matrix can be used as pilot sequences, and each UE select one of them to use. At the RRHs, each

of them obverses a combination of at most T pilot signals and is able to estimate all channels.

Example 3. In Fig. 1 (Left), suppose all channels should be estimated. We have maxm|Tm| = 3,

and hence a (4, 3) MDS code generator matrix can be constructed. Roughly speaking, four pilot

sequences ψ1,2,3,4 ∈ R3×1 are selected from the generator matrix, and any three of them are

linearly independent. UE-k chooses pilot sequence ψk, and at RRH-4, the following combined

pilot signal is received (with noise term omitted)

r̂4 = g41ψ1 + g43ψ3 + g44ψ4

and since {ψt}t=1,3,4 are linearly independent, the inverse [ψ1,ψ3,ψ4]−1r̂4 yields the estimates

of channel coefficients {g41, g43, g44}.

The optimality of TIM under the groupcast setting is in general an open problem. The state-

of-the-art coding schemes focuses on the information-theoretic optimality with respect to some

classes of network topologies and are therefore topology-dependent. In this paper, as we are

interested in the pilot assignment strategies, we aim to design achievable schemes in a systematic

way although their information-theoretic optimality may be challenging to analyze.

In what follows, we first formulate a pilot assignment problem given GE is known, followed

by the channel pattern optimization problem with a given pilot dimension budget.

IV. PILOT DIMENSION MINIMIZATION

In this section, we consider the pilot dimension minimization problem given the network

topology G and a specified channel estimation pattern GE for the uplink training.

Denoting by xk = [xk1, xk2, . . . , xkT ]T, and Ψ = [ψ1,ψ2, . . . ,ψT ], we have sk = Ψxk. Each

RRH-m performs “local” interference mitigation/cancellation by combining the projections on

the individual pilots ψt and multiplying by a constant full-rank matrix Cm ∈ RT×T . The resulting

pilot signal r̃m = Cmr̂p,m can be rewritten as

r̃m =
√
τpηpCmΨH

K∑
k=1

gmkΨxk +CmΨHwp,m (18)
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=
√
τpηp

∑
k:(k,m)∈EE

Cmxkgmk︸ ︷︷ ︸
desired pilot signal

+
√
τpηp

∑
k:(k,m)∈E\EE

Cmxkgmk︸ ︷︷ ︸
significant interference

+
√
τpηp

∑
k:(k,m)/∈E

Cmxkgmk︸ ︷︷ ︸
negligible interference

+CmΨHwp,m (19)

where Cm is used to simplify problem formulation by avoiding an incomplete matrix with binary

entries and will be determined later. It can be verified that as long as the channels are estimated

from r̂p,m, they can be stably estimated from r̃m as well with high probability.

For a given m, to recover {gmk : (k,m) ∈ EE,∀k} stably, we need to guarantee that the

vectors of coefficients in {Cmxk : (k,m) ∈ EE,∀k} are linearly independent. To guarantee stable

estimation, we need to let the significant interference go to zero, i.e., Cmxk = 0 if (k,m) ∈ E\EE .

The negligible interference does not contribute too much because the path loss βmk is small

according to topological modeling, and therefore {Cmxk : ∀(k,m) /∈ E} do not really matter.

In what follows, we propose a low-rank matrix completion and factorization method to calculate

the minimum pilot dimension T and the pilot assignment vectors {xk}k.

A. Low-rank Matrix Completion and Factorization

For the sake of problem formulation, we first construct matrix with a specific T which is in

fact unknown a priori, and then remove the dependence of T . Collecting all vectors to form a

big matrix, we have C = [CT
1 , . . . ,C

T
M ]T ∈ RMT×T and X = [x1, . . . ,xK ]T ∈ {0, 1}K×T . Let

Ã = CXT ∈ RMT×K , and [Ã]Ĩm,k = Cmxk ∈ RT×1 where Ĩm = {(m − 1)T + 1, . . . ,mT}.

Thus, the matrix form of the received pilot signal can be given by

r̃m =
√
τpηpÃmgm + ñm (20)

where Ãm = [Ã]Ĩm,: is the submatrix of Ã indexed by the rows Ĩm, and ñm = CmΨHwp,m.

Note here that, only the channels {gmk : (k,m) ∈ EE} are of interest to be estimated, and our

goal is to figure out the matrix Ã with rank T which depends only on two patterns G and GE .

To minimize the pilot dimension, we have

T = min rank(Ã) (21)
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where Ã is a partially filled matrix and is supposed to possess the following property:

[Ã]Ĩm,k =


c̃mk, if (k,m) ∈ EE
0, if (k,m) ∈ E\EE
∗, otherwise

(22)

where c̃mk is any nonzero vector, and ∗ is any indefinite T ×1 vector. To ensure that the channels

of interest {gmk, (k,m) ∈ EE} can be stably estimated over T pilot dimensions, the following

should be satisfied:

rank([Ã]Ĩm,TE,m
) = |TE,m|. (23)

For simplicity, [Ã]Ĩm,TE,m
can be chosen from the columns of the identity matrix IT .

Observing that each RRH is not connected to all UEs, we note that some rows in Ã may only

have zero or indefinite elements. The rank minimization is prone to turning these rows to be

all zero, i.e., by setting indefinite elements to be 0. As such, we can safely remove these rows

from Ã without reducing the rank. Because RRH-m has |Tm| connected UEs, so there are |Tm|

nonzero vectors with a single nonzero element in {[Ã]m,1, . . . , [Ã]m,K} and the rest is indefinite.

By this, we only need to keep the |Tm| rows with nonzero elements in [[Ã]m,1, . . . , [Ã]m,K ]. In

doing so, a modified matrix A has in total
∑M

m=1|Tm| rows and possesses the following property:

[A]Im,k =


cmk, if (k,m) ∈ EE
0, if (k,m) ∈ E\EE
∗, otherwise

(24)

where cmk can be any |Tm| × 1 vector, Im = {
∑m−1

m′=1|Tm′|+ 1, . . . ,
∑m

m′=1|Tm′|}, and the full

column rank property of [A]Im,TE,m
should be maintained. Thus, we have the low-rank matrix

completion problem formulation

T = min
A

rank(A) (25a)

s.t. rank([A]Im,TE,m
) = |TE,m|, ∀m. (25b)

where A follows the structure in (24). This matrix completion problem is known to be difficult

to solve. Instead of pursuing the unique completion as in the literature, we are only interested in

finding one feasible solution with any properly filled indefinite entries. Thus, for a given rank r,

we reformulate this problem as a feasibility problem as follows

find A, s.t. rank(A) ≤ r, rank([A]Im,TE,m
) = |TE,m|, ∀m. (26)
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Thus, denoting by M̄ =
∑M

m=1|Tm|, rm = |TE,m|, and I ′m = {
∑m

m′=1|Tm′ |+ 1 :
∑m

m′=1|Tm′|+

rm}, we define three constraint sets:

SΩ = {A ∈ RM̄×K : [A]Ω = 0} (27a)

Sr = {A ∈ RM̄×K : rank(A) ≤ r} (27b)

SΩE
= {A ∈ RM̄×K : [A]I′m,TE,m

= Irm ,∀m} (27c)

where Ω = {(Im, k) : (k,m) ∈ E\EE}, ΩE = {(Im, k) : (k,m) ∈ EE}, and emk is k-th column

of the identity matrix I|Tm|.

Such a low-rank matrix completion formulation is a generalized version of that for the multiple-

unicast TIM problem [26], [27]. In a similar way, we can adopt a low-complexity alternating

projection method [26] to obtain a feasible solution (see Alg. 1) by projecting iteratively on the

above constraint sets, e.g., PS(A) is to project A onto the set S.

Algorithm 1 Matrix Completion via Alternating Projection
Input: G, GE .

1: for r = K,K − 1, . . . , 1 do

2: Set k = 0, and randomly generate A0
r,B

0
r ∈ RM̄×K

3: while ‖Ak
r −Bk

r ‖2 > ε & k ≤ Itmax do

4: Bk
r ← PSr(Ak

r)

5: Ak
r ← PSΩ

(Bk
r ) + PSΩE

(Bk
r )

6: k ← k + 1

7: end while

8: If k < Itmax then Update A← Ak
r and break end if

9: end for

Output: T = r, A.

Once A is completed, inserting zero rows gives us the original matrix Ã. Then the matrix Ã

will be factorized into a real matrix C and a binary matrix X , i.e., Ã = CXT where C ∈ RMT×T

and X ∈ {0, 1}K×T . This is a matrix factorization problem with binary component that arises

in various problems, such as blind binary source signal separation and network component

analysis. Although no existing algorithms guarantee the exact unique factorization due to the

non-convexity, some efficient algorithms were proposed to yield a feasible solution. The problem
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can be efficiently done by adopting the low-complexity algorithm in [28], by which we obtain a

feasible pilot assignment xk = Xk for all k. Once the pilot assignment {xk}k is determined, the

MMSE channel estimator as in (8) can be applied to produce channel estimates {ĝmk}m,k.

V. CHANNEL PATTERN OPTIMIZATION

When the channel estimation pattern is unknown a priori, the pilot assignment needs to be

done together with the optimization of such a pattern. In what follows, we consider the pilot

assignment problem given a budget of pilot dimension T when GE is unknown.

We take a closer look at each pilot assignment indicators {xkt}, enforcing that each pilot

should be used to estimate at most one channel at each RRH. To this end, we introduce another

set of binary variables {ymt} such that

ymt =

 1, if RRH-m estimates using ψt with success,

0, otherwise,
(28)

where ymt indicates whether or not the pilot ψt is useful for channel estimation. In terms of

success, we meant the channel between RRH-m and UE-k can be stably estimated when UE-k

is assigned with the pilot ψt and RRH-m is using the same pilot ψt.

We further assume that each pilot ψt at RRH-m can at most estimate channels from κ UEs

connected to RRH-m by e.g., zero-forcing. Thus, we have the following constraint∑
k∈Tm

xktymt ≤ κ, ∀m, t (29)

where κ = 1 means RRH-m is dedicated to one single UE for pilot ψt.

For ease of presentation, we define a topology matrix T ∈ {0, 1}K×M as follows:

[T ]km =

 1, if (k,m) ∈ E(G)

0, otherwise.
(30)

Given the budget of pilot dimension T , the objective of pilot assignment is to make sure that as

many strong channels as possible can be stably estimated by pilot {ψt}Tt=1. That is,

max
{xkt,ymt}

T∑
t=1

M∑
m=1

K∑
k=1

[BT ]kmxktymt (31a)

s.t.
K∑
k=1

[T ]kmxktymt ≤ κ, ∀m, t (31b)

xkt, ymt ∈ {0, 1}, ∀k,m, t (31c)
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where [BT ]km = βkm, and the objective is to find a set of triples (m, k, t) with maximum sum

weights {βmk}. For any given (m, t), the selected triples are subject to the constraint (29).

A. Binary Quadratically Constrained Quadratic Programming

The above optimization problem can be rewritten in a matrix form as

max
X,Y

vT

XQ0vY (32a)

s.t. vT

XQm,tvY ≤ κ, ∀m, t (32b)

vX ∈ {0, 1}KT ,vY ∈ {0, 1}MT (32c)

where vX = vec(X) and vY = vec(Y ) are vectorization of the corresponding matrices, and

Q0 = (BT � T )⊗ IT (33)

Qm,t = (T � (1K ⊗ eT

m))⊗ diag(et) (34)

in which 1K is the K× 1 all-one vector, em is the m-th column of IM , and et is the t-th column

of IT . This is a binary quadratically constrained quadratic program (BQCQP), in which two set

of binary parameters {xkt} and {ymt} are interacting each other. This type of problems is known

to be difficult to solve. A possible approach is to relax the BQCQP problem by SDP relaxation

as in [29].

B. Sequential Maximum Weight Induced Matching (sMWIM)

A more tractable solution is to consider each pilot sequentially, so that for each pilot, we

assign it to as many UE-RRH links as possible, and after T sequential assignment, the resulting

assignments are expected to achieve a good approximation of the original problem.

First, let us focus on the pilot assignment for a given pilot sequence ψt and a given network

topology G. The goal is to assign the same pilot to as many UE-RRH links as possible. The

optimization subproblem can be formulated as follows:

max
M∑
m=1

K∑
k=1

[BT ]kmxktymt (35a)

s.t. xkt ≤
M∑
m=1

[T ]kmymt, ∀k (35b)

ymt ≤
K∑
k=1

[T ]kmxkt, ∀m (35c)
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K∑
k=1

[T ]kmxkt ≤ κymt +K(1− ymt), ∀m (35d)

xkt, ymt ∈ {0, 1}, ∀k,m (35e)

where (35b) indicates that if UE-k is assigned the pilot ψt, then there is at least one RRH with

strong connections to UE-k is able to estimate the channel coefficient by using the pilot ψt;

(35c) indicates that if an RRH can estimate the channel coefficient using pilot ψt, then there is

at least one UE sending such a pilot; and (35d) guarantees that if the RRH-m can estimate the

channel coefficient using the pilot ψt, there exist at most κ UEs with strong connectivity to this

RRH that can be assigned with this pilot. These constraints are to ensure that of (29). Note that

there is not a similar constraint of (35d) for UEs, meaning that one UE can use the same pilot

to train multiple channels as long as the RRHs are capable to do so.

This can be recognized as a modified version of the classic maximum weight induced matching

problem in a quadratic programming form. Here the difference from the conventional induced

matching is that, (1) there may exist multiple edges originated from the same k, corresponding

to the scenario that the channel coefficients from a UE to multiple RRHs can be estimated at

these RRHs using the same pilot; (2) there exist multiple edges from the same m, meaning that

channels from multiple UEs can be estimated at the same RRH.

Let us linearize it into the following form by introducing an auxiliary variable zmkt = xktymt:

max
M∑
m=1

K∑
k=1

βmkzmkt (36a)

s.t. (35b)− (35e) (36b)

zmkt ≤ xkt, ∀(k,m) ∈ E (36c)

zmkt ≤ ymt, ∀(k,m) ∈ E (36d)

zmkt ≥ xkt + ymt − 1, ∀(k,m) ∈ E (36e)

zmkt ∈ {0, 1}, ∀m, k (36f)

where these additional constraint is to ensure that zmkt = 1 if and only if xkt = ymt = 1. In

general, this optimization is a linear integer program, and can be solved by applying off-the-shelf

solvers. Taking a closer look at the additional constraints for {zmkt}, we observe that (36f)

can be relaxed without loss of optimality, that is, zmkt ∈ {0, 1} can be relaxed to zmkt ∈ [0, 1],

owing to the integer-valued {xkt}k and {ymt}m. For a large-scale network with large M and
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K, as the computational complexity of (36) is still prohibitively high, we can follow Benders’

decomposition in [30] to separate the variables {xkt, ymt} from {zmkt} to reduce complexity.

Then, we can sequentially solve (36) with reweighed βkm, so that the assigned UE-RRH link

(k,m) will not be reconsidered later. Benders’ Decomposition is to first search for a feasible

induced matching by optimizing a master problem with variables {xkt, ymt}k,m and the constraints

(35b) - (35e), followed by a slave subproblem to maximize the objective function (36a) with

variables {zmkt}k,m and the constraints (36c)-(36f). The master and slaver problems will be

connected with a refined cut as defined below. Specifically, in order not to select the same set

of edges as induced matching for different pilot dimension, we introduce T (t) to denote the

remaining network topology with the selected edges in the previous pilot dimensions removed,

where T (0) represent the initial network topology G. Thus, the master problem turns out to be

max
M∑
m=1

ymt + L (37a)

s.t. xkt ≤
M∑
m=1

[T (t)]kmymt, ∀k (37b)

ymt ≤
K∑
k=1

[T (t)]kmxkt, ∀m (37c)

K∑
k=1

[T (0)]kmxkt ≤ κymt +K(1− ymt), ∀m (37d)

L ≤
M∑
m=1

K∑
k=1

L̂∗(xkt, ymt) (37e)

xkt, ymt ∈ {0, 1}, ∀k,m, (37f)

where (37e) is the Benders’ cut that will be determined later. Denote by ({x̂kt}k, {ŷmt}m, L̂) the

optimal solution to the master problem. The slave problem can be given by

max
M∑
m=1

K∑
k=1

[B
(t)
T ]kmzmkt (38a)

s.t. zmkt ≤ x̂kt, ∀(k,m) ∈ E (38b)

zmkt ≤ ŷmt, ∀(k,m) ∈ E (38c)

zmkt ≥ x̂kt + ŷmt − 1, ∀(k,m) ∈ E (38d)

zmkt ≥ 0, ∀m, k (38e)
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whose dual problem can be given by

min
{akm,bkm,ckm}

M∑
m=1

K∑
k=1

(
akmx̂kt + bkmŷmt + ckm(x̂kt + ŷmt − 1)

)
(39a)

s.t. akm + bkm + ckm ≥ [B
(t)
T ]km, ∀k,m (39b)

akm ≥ 0, bkm ≥ 0, ckm ≤ 0, ∀(k,m) ∈ E . (39c)

Let the optimal solution to (39) be {âkm, b̂km, ĉkm}. The updated Benders’ cut can be refined by

L̂∗(xkt, ymt) = âkmxkt + b̂kmymt + ĉkm(xkt + ymt − 1). (40)

The sMWIM algorithm is summarized in Alg. 2. It has a multi-round procedure. In each

round t, we find the maximum weight induced matching over the remaining network topology

T (t), by solving both the master and slave problems (37)-(38) iteratively, until the update of

Benders’ cut stabilizes. The algorithm continues until t exceeds the maximum pilot dimension

Tmax or all edges in G are assigned with a pilot. It is worth noting that the approach assigns

orthogonal pilots to each UE-RRH link individually, such that one UE may be assigned with the

combination of multiple pilots finally, each of which is dedicated to some UE-RRH links.

C. Greedy Algorithm

While the sMWIM algorithm gives us a tractable solution, the computational complexity of

the mixed integer program formulation usually scales with the number of parameters, even if

Benders’ decomposition is applied. By revisiting the formulation in (35), we take a step back

to formulate the TPA problem as a many-to-many matching problem instead of the induced

matching, for which we develop a greedy algorithm to find a feasible solution.

By letting zmkt = xktymt, for the t-th round, the optimization (35) can be replaced by a

many-to-may matching problem with the following linear integer program formulation

max
M∑
m=1

K∑
k=1

[
B̃

(t)
T

]
km
zmkt (41a)

s.t.
K∑
k=1

zmkt ≤ κ, ∀m (41b)

M∑
m=1

zmkt ≤ κu, ∀k (41c)

zmkt ∈ {0, 1}, ∀m, k (41d)
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Algorithm 2 Sequential Maximum Weight Induced Matching (sMWIM)
Input: T , BT , Tmax, κ.

1: Initialization: T (1) = T , B(1)
T = BT , t = 1

2: while t ≤ Tmax & T (t) > 0 do

3: Set j = 1, L∗1(t) = ‖B(t)
T ‖1, L∗0(t) = 0

4: while |L∗j(t)− L∗j−1(t)| > ε do

5: Solve (37) and obtain {xkt}k and {ymt}m
6: Solve (38) and obtain {zmkt}k,m
7: Update L∗j+1(t)← L̂∗(xkt, ymt) according to (40)

8: Update j ← j + 1

9: end while

10: Update [T (t+1)]km ← [T (t)]km − zmkt, for all k,m

11: Update B(t+1)
T ← B

(t)
T � T (t+1)

12: Update t← t+ 1;

13: end while

Output: {xkt}k,t, {ymt}m,t, T = t− 1.

where κ and κu denote the maximum number of UEs that each RRH could serve and the

number of connected RRHs per user, respectively. For simplicity, we set κ and κu as constant

integers throughout the iteration. The above many-to-many matching problem is also known as

the generalized multi-assignment problem (GMAP) [31].

To solve the GMAP in an efficient way, we develop a greedy algorithm as shown in Alg. 3.

Given the initial network topology G, which can be constructed with or without RRH selection,

we take at most Tmax rounds to assign pilot sequences to different UEs. At the t-th round, we

introduce an auxiliary adjacency matrices T̃ (t) (and the corresponding path loss matrices B̃(t)
T ) to

indicate the remaining network topology to be considered for pilot assignment. Once the UEs are

assigned with pilots, they will be removed from consideration, which yields an updated T̃ (t+1)

(see Line 27 in Alg. 3). It is worth pointing out that T̃ (t) is usually not equal to T (t) in the

previous section, because of the use of different matching algorithms.

At the t-th round, we have a pre-selection procedure to identify the network topology T̃ (t) for

the many-to-many matching. First, we introduce a binary matrix T̃ (t)
max to indicate the position of
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Algorithm 3 TPA via Greedy Algorithm
Input: T , BT , Tmax, κ, κu

1: Initialization: T (1) = T , B(1)
T = BT , t = 1

2: while t ≤ Tmax & T (t) > 0 do

3: Set FLAG = 1, T̃ (t) = T (t), B̃(t)
T = B

(t)
T , xkt = ymt = 1 for all k ∈ [K],m ∈ [M ]

4: Update T̃ (t)
max and B̃(t)

T,max according to (42)

5: for m ∈ {m′ :
∑K

k=1[T̃
(t)
max]km′ > 1,∀m′ ∈ [M ]} do

6: Update T̃ (t) such that [T̃ (t)]k,: = 0, ∀k /∈ arg maxi{[B̃(t)
T ]im}

7: Update B̃(t)
T ← B̃

(t)
T � T̃ (t)

8: end for

9: for k ∈ {k′ :
∑M

m=1 ymt[T̃
(t)]k′m > κu,∀k′ ∈ [K]} do

10: Update T̃ (t) such that [T̃ (t)]km = 0, ∀m /∈ arg maxκu{[B̃(t)
T ]km′}

11: end for

12: Define profit and cost matrices P (t) and C(t) as (44) and (45)

13: while FLAG do

14: Select the RRH m such that
∑K

k=1 xkt[T̃
(t)]mk > κ

15: Compute (43) as Φb if the RRH-m is not selected, i.e., xkt = 0

16: Compute (43) as Φu if only κ UEs with largest elements in B̃(t)
T are selected

17: if Φb > Φu then

18: ymt = 0, and [T̃ (t)]km = 0, ∀k ∈ [K]

19: else

20: xkt = 0, and [T̃ (t)]km = 0,∀m ∈ [M ], k /∈ maxκ{i : [B̃
(t)
T ]im, i ∈ [K]}

21: end if

22: Update B̃(t)
T ← B̃

(t)
T � T̃ (t)

23: if
∑K

k=1 xkt[T̃
(t)]km ≤ κ,∀m ∈ [M ] then

24: FLAG = 0

25: end if

26: end while

27: Update [T (t+1)]km ← [T (t)]km − xkt, ∀k,m

28: Update B(t+1)
T ← B

(t)
T � T (t+1)

29: end while

Output: {xkt}k,t, {ymt}m,t
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the maximum coefficients, defined as

[T̃ (t)
max]km =

 1, if [B̃
(t)
T ]km = maxm{[B̃(t)

T ]km},

0, otherwise,
(42)

and the corresponding path loss matrix B̃(t)
T,max = B̃

(t)
T � T̃

(t)
max to pre-select the maximum

coefficients. In each round, if there are multiple UEs that compete for the same RRH, then only

the one with the largest path loss coefficient will be considered in this round, and the rows

corresponding to other competing UEs in B̃(t)
T will be set to zero (see Lines 5-8 in Alg. 3). In

doing so, we try to ensure each UE can be served by the dominant RRH with the largest path

loss coefficient and avoid the competition for the dominant RRH between UEs in the same round.

Second, for the selected UEs, if the number of connected active RRHs is larger than κu, then

only the RRHs with the largest κu path loss coefficients will be considered, and others will be

removed from the topology (see Lines 9-11 in Alg. 3, where maxpA is to choose the largest p

elements from A). By doing so, the constraint (41c) is automatically satisfied. Third, we select

RRHs that do not satisfy the constraint (41b) and make the decision to either switch off these

RRHs (i.e., ymt = 0) or some UEs (i.e., xkt = 0) to make (41b) satisfied (see Lines 14-21 in

Alg. 3). To make the decision, we introduce the following evaluation function for the t-th round

Φ(t) =
M∑
m=1

K∑
k=1

xktymt
(
[P (t)]km − δ[C(t)]km

)
(43)

where δ is a predefined parameter to compromise between profit and cost, defined as

[P (t)]km =
K∑
j=1

[B̃
(t)
T ]km[B̃

(t)
T ]jm, (44)

[C(t)]km =
K∑

j=1,j 6=k

[B̃
(t)
T ]km[B̃

(t)
T ]jm, (45)

for all k,m. It is worth noting that both profit and cost matrices rely only on the path loss

information {βmk}m,k for assignment, which is different from the existing approaches in the

literature. A similar approach was also demonstrated to be effective and efficient in active channel

sparsification in FDD massive MIMO systems [32].

VI. NUMERICAL RESULTS

In this section, we evaluate our proposed TPA algorithms via simulations under the cell-free

massive MIMO settings [3]. We consider a square area of 1 km × 1 km in the dense urban
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scenario where M RRHs and K UEs with single antenna are uniformly located at random. To

avoid the boundary effects, we also let the area be wrapped around for the random placement of

RRHs. The large-scale fading coefficient βmk is modeled as follows:

10 log10(βmk) = PLmk + σshnmk (46)

where PLmk represents the path loss (in dB) between RRH-m and UE-k, and σsh denotes the

standard deviation (in dB) of shadow fading with nmk ∼ NC(0, 1). We mainly focus on the

uncorrelated shadowing model for simplicity. In our simulation, a three-slope path loss model

[3] is considered. Specifically,

PLmk =


−L− 15 log10(d1)− 20 log10(d0), if dmk ≤ d0

−L− 15 log10(d1)− 20 log10(dmk), if d0 < dmk ≤ d1

−L− 35 log10(dmk), if dmk > d1

(47)

where dmk is the distance (m) between RRH-m and UE-k, and we use Hata-COST231 propagation

model when dmk > d1 with d0 = 10 m and d1 = 50 m. Here, we have

L , 46.3 + 333.9 log10(f)− 13.82 log10(ha)− (1.1 log10(f)− 0.7)hu + (1.56 log10(f)− 0.8)

where f is the carrier frequency (MHz), and ha and hu are the heights (m) of RRHs and UEs,

respectively. The values of these system parameters are summarized in Table I. The following

baseline pilot assignment algorithms are chosen for comparison.

• Semi-random [3]: Each user randomly chooses one orthongonal pilot, so that for each pilot

dimension, dK
T
e users are randomly selected.

• Cell-free greedy [3]: K users are assigned with K pilots randomly, and the users with low

downlink rate will be iteratively reassigned with new pilots to minimize pilot contamination.

• Structured policies [20]: The user group scheme with RRH selection is adopted. This is a

state-of-the-art pilot assignment method for cell-free massive MIMO.

• TPA LRMC+Semi-random: Alg. 1 is applied to obtain the minimal dimension of the

required pilots, and the semi-random method is adopted for pilot assignment.

• TPA sMWIM: Alg. 2 is applied to find the set of binary values {xkt}k,t such that the pilot

ψt will be assigned to the user k when xkt = 1.

• TPA greedy: Alg. 3 is applied to find {xkt}k,t such that the pilot ψt will be assigned to

the user k when xkt = 1.
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TABLE I: System Parameters

Parameters Values

Cell range 1km × 1km

Carrier Frequency 1900 MHz

Bandwidth 20 MHz

Power ρp / ρd 100mW/200mW

Noise power spectral density -174 dBm/Hz

Antenna Height RRH/UE 15m/1.65m

Shadow Fading σsh 8 dB

Noise Figure 9 dB
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Fig. 2: The CDF of the downlink achievable rate per

user with G = 75% and κ = 2.
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Fig. 3: The downlink achievable sum rate versus pilot

dimension T .

Unless otherwise explicitly specified, we consider M = 100, K = 40, and κu = 20 in our

simulations. Table I lists all system parameters. We use G = 30% to indicate that 30% of UE-RRH

links with largest {βmk} will be considered for channel estimation.

In Figure 2, we compare the cumulative distribution function (CDF) of the downlink achievable

rate per user of our proposed algorithms with that of the existing methods [3], [20]. For our

proposed TPA algorithms, we adopt κ = 2 and G = 75%. For the user group method of [20],

T = 16 pilot dimension is chosen, and for the semi-random and the greedy algorithms in [3],

the pilot dimension is T = 15 to best exploit the potential of their methods. It can be observed

that our proposed sMWIM and greedy algorithms outperform all others in 90%-likely spectral

efficiency, while the structured user group method has the best 10%-likely rate performance.

May 27, 2021 DRAFT



27

In Figure 3, the sum rate performance versus the pilot dimension T is considered for all pilot

assignment algorithms. For our proposed algorithms, we also consider the different connectivity

when G = 30%, 50%, and 75% with κ = 2. For comparison, our proposed LRMC algorithm to

find the pilot dimension is also considered to improve the semi-random scheme. We observe that

the sMWIM algorithm with G = 75% has the highest sum rate when T = 20, but when T is small

or large, it is outperformed by the structured policy [20]. The sMWIM algorithm with G = 30%

performs well when T is small, because the sparsity lends itself to a relatively more efficient pilot

assignment given the limited number of training resource, but the performance is significantly

degraded when T becomes larger, due to the remaining interference that is not captured by G.

Remarkably, when T is extremely small, the semi-random algorithm turns out to be the best

choice. The structured policy with user group scheme has the superior sum rate performance

if budget of pilot dimension is larger than 24, which is more than needed for our methods. In

addition, for our proposed sMWIM algorithm, when T is small, then a sparser connectivity G

yields a better sum rate performance; when T exceeds certain threshold (e.g., T = 12), then the

denser the connectivity G is, the better the sum rate is. It suggests that if training resource is

limited, a sparser G is preferable, and vice versa. Our proposed greedy algorithm could also

have a better sum rate performance if the pilot dimension is properly chosen, i.e., T = 20. As a

side remark, our proposed methods do not require the prior knowledge of pilot dimension as

the user group scheme does [20]. The pilot dimension corresponding to the peak sum rate value

indicates the minimum number of training dimensions for pilot assignment. We can observe that

the training dimension of sMWIM increases with the density of network connectivity G – it

requires T = 20, T = 16, and T = 12 for G = 75%, G = 50%, and G = 30%, respectively.

To evaluate the impact of κ and G, we plot the CDF of the downlink achievable rate with

different κ in Figure 4 and with different G in Figure 5. Figure 4 illustrates the CDF of per-user

rate performance of both sMWIM and greedy algorithm with κ = 1, 2, 3 when G = 75% is

fixed. We can observe that when κ = 1, both sMWIM and greedy algorithms have the same

performance. Note that κ = 1 means each RRH is allowed to estimate the channel from one UE

in each pilot dimension, so that the pilot dimension is minimized. As the pilot scheduling is on

the artificially imposed structure G, pilot contamination is inevitable and may not be necessarily

eliminated perfectly in the physical scenarios. As such, by setting κ = 2, 3, certain level of

pilot contamination is allowed in G. In doing so, the majority of UEs witness certain increase

in per-user rate performance, although there is some degradation of the UE with low rate. To
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Fig. 4: The CDF of the downlink achievable rate per

user with G = 75%.
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Fig. 5: The CDF of the downlink achievable rate per

user with κ = 2.

summarize, κ = 2 is preferred with respect to per-user rate performance, where a limited level of

pilot contamination is allowed in pilot assignment. Figure 5 illustrates the CDF of the downlink

per-user rate when different connectivity G is considered under a fixed κ = 2. It can be observed

that, for the sMWIM algorithm, when the connectivity is denser (e.g., G = 75%), the 90%-likely

per-user rate is higher, as potential pilot contamination and multiuser interference is taken into

account although there might be less freedom for pilot assignment. On the other hand, when the

connectivity is sparser (e.g., G = 30%) the 10%-likely per-user rate is higher, meaning that there

would be more UEs have per-user rate above 2.5 bits/sec/Hz. There observations agree on the

intuition that a proper UE-RRH association is crucial for the sMWIM algorithm. For the greedy

algorithm, the per-user rate performance is less sensitive to the connectivity G. It is because in

the greedy algorithm the network connectivity G will be refined before pilot assignment (see T̃ (t)

in Alg. 3). We observe that the performance is slightly outperformed by the sMWIM algorithm.

One reason is that, each UE is assigned with one unique orthogonal pilot in the greedy algorithm,

while in the sMWIM algorithm the pilot of one UE could be the linear combination of multiple

orthogonal pilots - this suggests the potential benefit of coded pilot design. Nevertheless, the

computational complexity of the greedy algorithm is substantially reduced.

VII. CONCLUSION

We have proposed a framework for pilot assignment in large-scale distributed MIMO networks

by artificially imposing topological structures on UE-RRH connectivity. By such a topological
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modeling, we cast the pilot assignment problem to a topological interference management (TIM)

problem with groupcast messages. With respect to the known or unknown channel estimation

patterns, we proposed two topological pilot assignment (TPA) problem formulations by a low-rank

matrix completion and factorization method and a binary quadratically constrained quadratic

program, for which we apply low-complexity algorithms to solve the pilot assignment problem

efficiently. The effectiveness of our proposed frameworks and algorithms are verified under

the cell-free massive MIMO settings. The proposed TPA approach yields superior ergodic rate

performance compared to the state-of-the-art pilot assignment methods. The bridge between TPA

and TIM problems is expected to trigger a new line of research dedicated to channel estimation

methods in distributed networks. The rich coding tools from TIM will be hopefully tailored for

pilot assignment applications in distributed MIMO systems.
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