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Practical Channel Estimation and Phase Shift

Design for Intelligent Reflecting Surface

Empowered MIMO Systems
Sucheol Kim, Hyeongtaek Lee, Jihoon Cha, Sung-Jin Kim, Jaeyong Park, and Junil Choi

Abstract—In this paper, channel estimation techniques and
phase shift design for intelligent reflecting surface (IRS)-
empowered single-user multiple-input multiple-output (SU-
MIMO) systems are proposed. Among four channel estimation
techniques developed in the paper, the two novel ones, single-
path approximated channel (SPAC) and selective emphasis on
rank-one matrices (SEROM), have low training overhead to
enable practical IRS-empowered SU-MIMO systems. SPAC is
mainly based on parameter estimation by approximating IRS-
related channels as dominant single-path channels. SEROM
exploits IRS phase shifts as well as training signals for channel
estimation and easily adjusts its training overhead. A closed-
form solution for IRS phase shift design is also developed to
maximize spectral efficiency where the solution only requires
basic linear operations. Numerical results show that SPAC and
SEROM combined with the proposed IRS phase shift design
achieve high spectral efficiency even with low training overhead
compared to existing methods.

Index Terms—Intelligent reflecting surface (IRS), channel esti-
mation, training overhead, phase shift design, spectral efficiency,
single-user multiple-input multiple-output (SU-MIMO).

I. INTRODUCTION

INTELLIGENT reflecting surface (IRS) is drawing great

interest in recent years as a way to tackle the energy con-

sumption problem of future wireless communication systems

[1]–[5]. The IRS is a 2D surface consisting of low-cost passive

scattering elements that can be deployed in an energy-efficient

way and can present the benefit of array and beamforming

gain as multiple antennas do in the multiple-input multiple-

output (MIMO) systems. While there are no active elements in

general, the IRS can manage magnitude (by turning on/off the

passive elements) and phase shift of the incoming signals in

order to strengthen the reflected signals achieving high spectral

efficiency and overcoming large path-loss due to blockage

[1], [2].

To fully exploit the advantages of the IRS-empowered

communication systems, acquiring proper channel information

on the IRS-related channels is essential at the base station

(BS) or user equipment (UE). This is difficult in general since

the IRS is not capable of transmitting or receiving training
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signals [6], [7]. Several works were conducted to estimate

the IRS-related channels. In [8], an estimation technique was

developed to minimize the Cramér-Rao lower bound of IRS-

related channel estimation. A least squares approach was

adopted in [9], and the estimation error was analyzed with

regard to the error offset on the IRS setting caused by the

imperfect implementation. In [10], channel estimation under

finite bit phase quantization of IRS elements was examined

to afford a large number of IRS elements. These estimation

techniques, though, are limited to multiple-input single-output

or single-input single-output systems.

To realize high spectral efficiency that comes from spa-

tial multiplexing, channel estimation for the IRS-empowered

MIMO systems is necessary. In [11], the sparsity of MIMO

channels was assumed, and the sparse matrix factorization

and matrix completion were alternately repeated to construct

estimated channels. The channel estimation in [12] utilized

parallel factorization by reformulating the concatenation of re-

ceived signals. In [13], minimum mean squared error (MMSE)

estimation was developed based on the Rayleigh channel

structure. The above techniques, however, did not consider

channel training overhead. The required training sequence

length of the IRS-empowered communication systems could

be much larger than the systems without the IRS due to a huge

number of IRS elements [14], [15].

Another important issue of using the IRS is to properly

set the phases of IRS elements. A min-rate maximization

problem was formulated in [13], and an iterative technique was

proposed to obtain a sub-optimal solution. The IRS element

design algorithm in [4] was developed to solve the proposed

capacity characterization problem. Though, the IRS element

design in [13] is hard to be applied for data rate maximization,

and the design in [4] does not guarantee its performance for

imperfect channel information that is obtained by practical

channel estimators.

In this paper, we configure a realistic IRS-empowered

single-user MIMO (SU-MIMO) system. Considering the pas-

sive operation of IRS, we first express the cascaded channel

through the IRS not in terms of two separate IRS-related chan-

nels, i.e., the UE-IRS link and IRS-BS link, but as a weighted

sum of rank-one matrices. Based on the representation, we

handle the two practical issues of this system: cascaded UE-

IRS-BS channel estimation and IRS phase shift design.

We develop four estimation techniques for the cascaded

channel through the IRS. The first two techniques work as

baselines while the last two techniques, single-path approxi-
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mated channel (SPAC) and selective emphasis on rank-one ma-

trices (SEROM), are novel with low training overhead. SPAC

is developed by approximating the UE-IRS and IRS-BS links

into dominant single-path channels. The BS estimates effective

channel parameters to reconstruct the cascaded UE-IRS-BS

channel, which largely reduces the training overhead compared

to full channel matrix estimation. SEROM efficiently estimates

the cascaded UE-IRS-BS channel by designing IRS reflection-

coefficient matrices for training, which enables SEROM to

easily adjusts its training overhead. Low-complexity IRS phase

shift design with a closed-form solution is also proposed to

maximize spectral efficiency.

We verify through simulations that SPAC and SEROM

combined with the proposed IRS phase shift design achieve

high spectral efficiency even with low training overhead. SPAC

is specialized for the situation where the channel consists of

a few dominant paths and is not affected from quantization of

IRS phase shifts. SEROM achieves high spectral efficiency

when the number of IRS elements is large because it can

benefit from designing IRS reflection-coefficient matrices for

training. The performance of proposed IRS phase shift design

is comparable to that of exhaustive search with low computa-

tion complexity in the IRS-empowered SU-MIMO system. In

terms of effective data transmissions, it is shown that the BS

does not have to know the information of IRS-related channels

separately to achieve high spectral efficiency.

The paper is organized as follows. In Section II, we explain

the system model of SU-MIMO with the IRS. The estimation

techniques for cascaded UE-IRS-BS channel are developed in

Section III, and the low-complexity IRS phase shift design is

proposed in Section IV. After presenting numerical results for

channel estimation and IRS phase shift design in Section V,

we conclude the paper in Section VI.

Notations: We use lower and upper boldface letters to

represent column vectors and matrices. The element-wise

conjugate, transpose, and conjugate transpose of a matrix A

are denoted by A∗, AT, and AH, respectively. For a square

matrix A, det(A), Tr(A), and A−1 are the determinant,

trace, and inverse of A. A(:,m : n) implies the submatrix

that consists of the m-th column to the n-th column of the

matrix A, and the m-th element of a vector a is denoted by

[a]m. ∠(a) stands for the vector whose elements are phases

of each element of a vector a. The diagonal matrix with

the entries of a vector a on its main diagonal is expressed

as diag(a). The Kronecker product is denoted by ⊗, and

⊙ implies the Hadamard product. 0m and 1m represent the

m×1 all-zero vector and all-one vector, and Im represents the

m ×m identity matrix. CN (µ,Q) is used for the circularly

symmetric complex Gaussian distribution with mean vector

µ and covariance matrix Q. Notations |a| and Re(a) stand

for the magnitude and real part of a complex number a. ⌈a⌉
represents the minimum integer that is not smaller than a real

number a. ‖a‖ is the ℓ2-norm of a vector a, and ‖A‖F is the

Frobenius-norm of a matrix A.

II. SYSTEM MODEL

We consider an IRS-empowered time division duplexing

(TDD) SU-MIMO system as shown in Fig. 1. The BS

Fig. 1: An IRS-empowered SU-MIMO communication system

with N BS antennas, M UE antennas, and L IRS elements.

deploys N antennas and serves the UE equipped with M
antennas. The IRS, which consists of L low-cost passive

elements, is assumed to be connected to the BS via a controller

where the BS is able to control the IRS elements for favorable

signal reflection. For a practical setup, we consider a uniform

planar array (UPA) for the BS and UE antennas and IRS

elements.

During a channel coherence time block, the uplink received

signal at the t-th time slot is [16]

yUL[t] = (HUB +HIBΦ[t]HUI) f [t]sUL[t] + nUL[t], (1)

where sUL[t] ∈ C is the transmit signal from the UE satisfying

E{|sUL[t]|2} ≤ PUL with the uplink transmit power PUL.

The transmit beamformer f [t] ∈ CM×1 satisfies ‖f [t]‖2 = 1,

and nUL[t] ∼ CN (0N , N0IN ) is the thermal noise at the BS

with the noise variance N0. The uplink channels of the UE-

BS direct link, IRS-BS link, and UE-IRS link are denoted

by HUB ∈ CN×M , HIB ∈ CN×L, and HUI ∈ CL×M ,

respectively. The L×L IRS reflection-coefficient matrix Φ[t]

is defined by diag
([
β1[t]e

jφ1[t], · · · , βL[t]ejφL[t]
]T)

where

βℓ[t] and φℓ[t] are the magnitude and phase shift of the ℓ-th
IRS element. Considering practical passive operation of the

IRS elements, we assume on/off magnitude βℓ[t] ∈ {0, 1}
and B-bit uniform quantization for each phase shift such that

φℓ[t] ∈
{
0, 2π

2B
, · · · , (2

B−1)2π
2B

}
. Since it is already shown

in [17] that B ≥ 4 is enough to achieve almost the same

performance of B = ∞, we first assume B = ∞ for

conceptual explanation in Section III and Section IV. Then,

the numerical results in Section V are based on B = 4 and

B = 2 for practically.

We adopt the Rician fading with one line-of-sight (LoS) path

and multiple non-line-of-sight (NLoS) paths for all channels

[18], [19]. As an example, the uplink channel of the UE-BS

direct link HUB is given by

HUB =

√
µ0 (dUB/d0)

−ηUB

√
NM

1 +KUB

×
(√

KUBαUB,0aBS

(
νrxUB,0, ξ

rx
UB,0

)
aHUE

(
νtxUB,0, ξ

tx
UB,0

)
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+
1√
GUB

GUB∑

g=1

αUB,gaBS

(
νrxUB,g, ξ

rx
UB,g

)

× aHUE

(
νtxUB,g, ξ

tx
UB,g

))
, (2)

where µ0 is the path-loss at the distance d0, and the distance

and path-loss exponent between the UE and BS are denoted by

dUB and ηUB [15], [20], [21]. The Rician K-factor is denoted

by KUB, and GUB is the total number of NLoS paths. For

the g-th path, αUB,g ∼ CN (0, 1) is the complex path gain,

and the vertical and horizontal arrival spatial frequencies at

the BS are defined by νrxUB,g , π sin(θrxUB,g) and ξrxUB,g ,

π sin(ψrx
UB,g) cos(θ

rx
UB,g) with the vertical and horizontal ar-

rival angles θrxUB,g and ψrx
UB,g. Similarly, the vertical and hor-

izontal departure spatial frequencies at the UE are defined by

νtxUB,g , π sin(θtxUB,g) and ξtxUB,g , π sin(ψtx
UB,g) cos(θ

tx
UB,g)

with the vertical and horizontal departure angles θtxUB,g and

ψtx
UB,g. Assuming half wavelength spacing, the array response

vectors at the BS and UE, i.e., aBS(·) and aUE(·), are given as

aBS

(
νrxUB,g, ξ

rx
UB,g

)

=
1√
N

[
1, · · · , ej(Nv−1)νrx

UB,g

]T
⊗
[
1, · · · , ej(Nh−1)ξrxUB,g

]T
,

(3)

aUE

(
νtxUB,g, ξ

tx
UB,g

)

=
1√
M

[
1, · · · , ej(Mv−1)νtx

UB,g

]T
⊗
[
1, · · · , ej(Mh−1)ξtxUB,g

]T
,

(4)

where N = NvNh with Nv vertical and Nh horizontal

antennas at the BS, and M = MvMh with Mv vertical and

Mh horizontal antennas at the UE. Note that HIB and HUI are

modeled in the same way as in (2) with proper adjustments

on the distance, path-loss exponent, Rician K-factor, number

of NLoS paths, number of antennas, array response vectors,

and spatial frequencies.

Considering the reflection of incident signals at each IRS

element, we can express the cascaded channel through the IRS

as a weighted sum of rank-one matrices, which is given as

HIBΦ[t]HUI =
L∑

ℓ=1

βℓ[t]e
jφℓ[t]hIB,ℓh

H
UI,ℓ, (5)

where HIB = [hIB,1, · · · ,hIB,L] and HUI =
[hUI,1, · · · ,hUI,L]

H. In (5), the ℓ-th rank-one matrix

hIB,ℓh
H
UI,ℓ is weighted by βℓ[t]e

jφℓ[t]. For simplicity, we

denote the ℓ-th rank-one matrix as Rℓ = hIB,ℓh
H
UI,ℓ, which

gives

HIBΦ[t]HUI =
L∑

ℓ=1

βℓ[t]e
jφℓ[t]Rℓ. (6)

The equality (6) implies that it is sufficient to estimate the

rank-one matrices Rℓ instead of separately estimating HIB

and HUI. Hence, we will consider uplink channel estimation

techniques for the direct channel HUB and the rank-one

matrices Rℓ in Section III.

III. IRS-EMPOWERED MIMO CHANNEL ESTIMATION

In this section, we first explain the estimation of the

direct link channel HUB and then elaborate on four channel

estimation techniques to estimate the L rank-one matrices Rℓ

in detail. Two rudimentary and straightforward techniques are

described first as baselines, followed by two novel ones, SPAC

and SEROM, which have low training overhead.

A. UE-BS direct link channel estimation

To estimate the direct link channel HUB, the BS turns off

all the IRS elements as Φ[t] = diag(000L). The UE transmits

the length τd training sequence using the training beamformer

f [t] for 1 ≤ t ≤ τd with the training signal sUL[t] =
√
PUL.

By stacking the τd received signals, we have

YUB = [yUL[1], · · · ,yUL[τd]]

=
√
PULHUBFUB +NUB, (7)

where FUB = [f [1], · · · , f [τd]] is the training beamformer,

and NUB = [nUL[1], · · · , nUL[τd]] is the noise. The training

beamformer FUB can be composed of M rows of τd × τd
discrete Fourier transform (DFT) matrix with proper normal-

ization, and we set τd = M to take the minimum sequence

length such that FUBF
H
UB = IM . Then, the channel estimate

for the direct link between the UE and BS is computed as

ĤUB =
1√
PUL

YUBF
H
UB

= HUB +
1√
PUL

NUBF
H
UB. (8)

We define the additional training sequence length as τc,

which varies with estimation techniques, to estimate the cas-

caded UE-IRS-BS channel represented with Rℓ. For τd+1 ≤
t ≤ τd + τc, the BS eliminates the effect of direct link

channel as

ỹUL[t] =yUL[t]−
√
PULĤUBf [t]

=
√
PUL

((
HUB − ĤUB

)

+HIBΦ[t]HUI

)
f [t] + nUL[t]

=
√
PUL

L∑

ℓ=1

βℓ[t]e
jφℓ[t]Rℓf [t]

+
√
PUL

(
−NUBF

H
UB

)
f [t] + nUL[t]︸ ︷︷ ︸

,ñUL[t]

, (9)

where ñUL[t] is the effective uplink noise. We adopt the re-

ceived signal ỹUL[t] to explain the rank-one matrix estimation

in the following subsections.

B. One-by-one (OBO) channel estimation

The OBO estimation is to simply estimate L rank-one

matrices one by one. The BS can estimate the ℓ-th rank-one

matrix Rℓ by turning on only the ℓ-th IRS element while

keeping the others off and conduct this process in turn for
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each ℓ. Specifically, the IRS reflection-coefficient matrix Φ(ℓ)

to estimate Rℓ is defined as

Φ(ℓ) = diag
([

0T
ℓ−1, e

jφℓ ,0T
L−ℓ

]T)
, (10)

and Φ[t] is fixed as Φ(ℓ) during the ℓ-th training period

τd + (ℓ− 1)M + 1 ≤ t ≤ τd + ℓM . The UE transmits the

length M training sequence with sUL[t] =
√
PUL using

f [t] during the ℓ-th training period. The BS stacks the M
received signals in (9) to estimate the ℓ-th rank-one matrix

Rℓ, written as

ỸUIB,ℓ = [ỹUL[τd + (ℓ − 1)M + 1], · · · , ỹUL[τd + ℓM ]]

=
√
PULe

jφℓRℓFUIB,ℓ + ÑUIB,ℓ, (11)

where FUIB,ℓ , [f [τd + (ℓ − 1)M + 1] , · · · , f [τd + ℓM ]]

and ÑUIB,ℓ , [ñUL[τd + (ℓ− 1)M + 1], · · · , ñUL [τd + ℓM ]]
are respectively the training beamformer and noise. As in

Section III-A, the normalized M × M DFT matrix can be

used as the training beamformer FUIB,ℓ.

With the M received signals in (11), the BS estimates the

rank-one matrix for the ℓ-th IRS element as

R̂ℓ =
e−jφℓ

√
PUL

ỸUIB,ℓF
H
UIB,ℓ

= Rℓ +
e−jφℓ

√
PUL

ÑUIB,ℓF
H
UIB,ℓ. (12)

Conducting this process for all L rank-one matrices, the

additional training sequence length for the OBO estimation

becomes τc = τOBO = LM . It is obvious that the OBO es-

timation is inefficient since only one IRS element is turned

on during each training period, resulting in significantly high

training overhead.

C. Cooperative One-by-one (Co-OBO) channel estimation

With cooperative uplink and downlink signalings, the train-

ing sequence length can be made significantly small, compared

to that of the OBO estimation in Section III-B. The IRS

reflection-coefficient matrix in the Co-OBO estimation is the

same as in (10) but is employed only for two time slots for

each ℓ. In other words, in order to estimate Rℓ, Φ[t] is fixed

as Φ(ℓ) during the ℓ-th training period τd+2(ℓ−1)+1 ≤ t ≤
τd + 2ℓ. The uplink and downlink signalings are sequentially

conducted for the first and second time slots of each training

period, i.e., the UE transmits sUL[τd+2(ℓ− 1)+1] =
√
PUL,

and the BS transmits sDL[τd+2ℓ] =
√
PDL with the downlink

transmit power PDL. For the first time slot, the ℓ-th uplink

signal ỹUL,ℓ , ỹUL[τd + 2(ℓ− 1) + 1] is expressed as

ỹUL,ℓ = ejφℓhIB,ℓ

(√
PULh

H
UI,ℓfUL,ℓ

)

︸ ︷︷ ︸
,s̃UL,ℓ

+ñUL,ℓ, (13)

where we define fUL,ℓ = f [τd + 2(ℓ − 1) + 1] and

ñUL,ℓ = ñ [τd + 2(ℓ− 1) + 1] for simplicity. The product√
PULh

H
UI,ℓfUL,ℓ in (13) can be regarded as the effective

scalar-valued signal s̃UL,ℓ.

Applying the channel reciprocity from TDD [22], the down-

link received signal is

yDL[t] =
(
HH

UB +HH
IBΦ

H[t]HH
UI

)
w[t]sDL[t] + nDL[t],

(14)

where w[t] is the training beamformer at the BS satisfying

‖w[t]‖2 = 1, and nDL[t] ∼ CN (0M , N0IM ) is the thermal

noise at the UE. Assuming perfect analog feedback, the UE

feeds the received downlink signal yDL[τd + 2ℓ] back to the

BS. Then, similar to (9), the BS can compute ỹDL,ℓ as

ỹDL,ℓ

=yDL[τd + 2ℓ]−
√
PDLĤ

H
UBwDL,ℓ

=
√
PDL

((
HH

UB − ĤH
UB

)
+ e−φℓhUI,ℓh

H
IB,ℓ

)
wDL,ℓ + nDL,ℓ

=e−jφℓhUI,ℓ

(√
PDLh

H
IB,ℓwDL,ℓ

)

︸ ︷︷ ︸
,s̃DL,ℓ

+
√
PDL

(
−NUBF

H
UB

)H
wDL,ℓ + nDL,ℓ︸ ︷︷ ︸

,ñDL,ℓ

, (15)

where we define wDL,ℓ = w[τd + 2ℓ] and nDL,ℓ = nDL[τd +
2ℓ], and ñDL,ℓ is the effective downlink noise. Again, the

product
√
PDLh

H
IB,ℓwDL,ℓ in (15) can be regarded as the

effective scalar-valued signal s̃DL,ℓ.

Using ỹUL,ℓ and ỹDL,ℓ in (13) and (15), the BS finally

estimates the rank-one matrix as

R̂ℓ =
ỹUL,ℓỹ

H
DL,ℓ

(
√
PDLe−jφℓwDL,ℓ)HỹUL,ℓ

=
hIB,ℓs̃UL,ℓs̃

∗
DL,ℓh

H
UI,ℓ

s̃∗DL,ℓs̃UL,ℓ +
√
PDLe−jφℓwH

DL,ℓñUL,ℓ

+ Ñℓ

=
Rℓ

1 + ñℓ

+ Ñℓ, (16)

where ñℓ and Ñℓ are the noise terms, expressed as

ñℓ =

√
PDLe

−jφℓwH
DL,ℓñUL,ℓ

s̃UL,ℓs̃∗DL,ℓ

, (17)

Ñℓ =
1

1 + ñℓ

(
e−jφℓhIB,ℓñ

H
DL,ℓ

s̃∗DL,ℓ

+
e−jφℓ ñUL,ℓh

H
UI,ℓ

s̃UL,ℓ
+
e−j2φℓ ñUL,ℓñ

H
DL,ℓ

s̃UL,ℓs̃∗DL,ℓ

)
, (18)

respectively. The Co-OBO estimation requires only two time

slots to estimate Rℓ for each ℓ, which implies that the

additional training sequence length for the Co-OBO estimation

is τc = τCo−OBO = 2L. For M ≫ 2, which is valid for typical

MIMO systems, it is obvious that τCo−OBO ≪ τOBO = LM .

However, employing only two training signals to estimate each

rank-one matrix makes the Co-OBO estimation vulnerable to

burst noise, and perfect analog feedback is difficult to achieve

in practice as well.
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D. Single-path approximated channel (SPAC)

We propose SPAC to overcome the high training overhead

of OBO estimation and the burst noise issue of Co-OBO esti-

mation. SPAC is developed to consider the structural property

of IRS-empowered system and to extract the necessary channel

parameters. SPAC estimates the rank-one matrices by approx-

imating HIB and HUI as dominant single-path channels.

The single-path approximations for HIB and HUI are ex-

pressed as

HIB ≈ H̃IB = γIBaBS (ν
rx
IB, ξ

rx
IB)a

H
IRS

(
νtxIB, ξ

tx
IB

)
, (19)

HUI ≈ H̃UI = γUIaIRS (ν
rx
UI, ξ

rx
UI)a

H
UE

(
νtxUI, ξ

tx
UI

)
. (20)

Focusing on (19), γIB is the effective complex-valued gain

between the IRS and BS. Similar to (3) and (4), the array

response vector at the IRS is given as

aIRS(ν
tx
IB, ξ

tx
IB)

=
1√
L

[
1, · · · , ej(Lv−1)νtx

IB

]T
⊗
[
1, · · · , ej(Lh−1)ξtxIB

]T
,

(21)

with the vertical and horizontal spatial frequencies νtxIB and

ξtxIB. The numbers of vertical and horizontal IRS elements are

denoted by Lv and Lh satisfying L = LvLh. The parameters

in (20) are similarly defined.

We can estimate the two gains and eight spatial frequencies

embedded on the rank-one matrix

R̃ℓ =H̃IB(:, ℓ)H̃UI(ℓ, :)

=γIBaBS (ν
rx
IB, ξ

rx
IB) [a

H
IRS

(
νtxIB, ξ

tx
IB

)
]ℓ

× γUI[aIRS (ν
rx
UI, ξ

rx
UI)]ℓa

H
UE

(
νtxUI, ξ

tx
UI

)
, (22)

for each ℓ. The novel part of SPAC is that the BS does not

estimate all the parameters in (22) separately but acquire the

effective parameters concerned with them. The overall process

of SPAC is summarized as follows:

Step 1: By sequentially turning on only a small number of

IRS elements one by one, a few rank-one matrices

Rℓ are estimated by the OBO estimation.

Step 2: The spatial frequencies (νrxIB, ξ
rx
IB) and (νtxUI, ξ

tx
UI) are

estimated to reconstruct the array response vectors

aBS (ν
rx
IB, ξ

rx
IB) and aUE (νtxUI, ξ

tx
UI) at the BS and

UE sides.

Step 3: The two effective IRS-side spatial frequen-

cies are estimated to obtain [aHIRS (ν
tx
IB, ξ

tx
IB)]ℓ

×[aIRS (ν
rx
UI, ξ

rx
UI)]ℓ for all ℓ.

Step 4: The overall gain γIBγUI common for the rank-one

matrices is obtained.

Step 5: The remaining rank-one matrices not estimated in

Step 1 are constructed by (22) using the parameters

obtained from Step 2-4.

For clear understanding of the estimation process, we first

specify the IRS element index sets for the x-th column and

the y-th row as SvIRS,x and ShIRS,y , respectively. The common

sequential numbering is considered to index the IRS elements

Fig. 2: An example to define the index sets for IRS elements

SvIRS,x and ShIRS,y with L = Lv × Lh = 4× 6.

as in Fig. 2. With such indexing, the two index sets SvIRS,x

and ShIRS,y are defined as

S
v
IRS,x = {x, Lh + x, · · · , (Lv − 1)Lh + x} , (23)

S
h
IRS,y = {(y − 1)Lh + 1, (y − 1)Lh + 2, · · · , yLh} . (24)

In terms of the BS and UE, the UPA antenna index sets are

similarly defined.

In Step 1, the index set SIRS ⊂ {1, · · · , L} is defined, and

the BS estimates the rank-one matrices Rℓ only for ℓ ∈ SIRS

using the OBO estimation in Section III-B. Considering the

UPA structure of IRS, we employ SIRS , SvIRS,1 ∪ ShIRS,1 in

order that the set SIRS contains the information of both the

vertical and horizontal spatial frequencies at the IRS side. To

reduce the training overhead, we let SIRS be a small set with

Lv +Lh− 1 IRS elements, while the set can include multiple

columns and rows of the IRS elements. Once the rank-one

matrices for SIRS are estimated by the OBO estimation, the

BS extracts the effective parameters based on the estimates

R̂ℓ for ℓ ∈ SIRS to construct the remaining rank-one matrices

for ℓ /∈ SIRS.

The spatial frequencies related to the BS and UE sides

are estimated in Step 2 to reconstruct aBS (ν
rx
IB, ξ

rx
IB) and

aUE (νtxUI, ξ
tx
UI). In (22), it can be seen that the column and

row spaces of R̃ℓ are the same as those of aBS (ν
rx
IB, ξ

rx
IB)

and aHUE (νtxUI, ξ
tx
UI), respectively. Therefore, we treat the left

and right singular vectors corresponding to the largest singular

value of the rank-one matrix R̂ℓ as its representative column

and row. Based on the left and right singular vectors for

ℓ ∈ SIRS, we extract the spatial frequencies (νrxIB, ξ
rx
IB) and

(νtxUI, ξ
tx
UI). Focusing on the BS side and a specific ℓ ∈ SIRS,

the left singular vector uℓ ∈ CNvNh×1 can be rearranged

into a matrix by arranging the elements of uℓ to follow the

BS antenna numbering, which is similarly defined to that

of the IRS in Fig. 2. In other words, the rearranged matrix

UBS,ℓ ∈ CNv×Nh can be defined as

UBS,ℓ =




[uℓ]1 · · · [uℓ]Nh

[uℓ]Nh+1 · · · [uℓ]2Nh

...
. . .

...

[uℓ](Nv−1)Nh+1 · · · [uℓ]NvNh


 . (25)
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We denote the x-th column and y-th row vectors of UBS,ℓ by

uv
ℓ,x , UBS,ℓ(:, x) and (uh

ℓ,y)
T , UBS,ℓ(y, :).

As in (3), aBS (ν
rx
IB, ξ

rx
IB) is composed of the vertical and

horizontal array response vectors. Based on the structure, the

vertical spatial frequency νrxIB is estimated as

ν̂rxIB =

∑
ℓ∈SIRS

Nv∑
y=2

1T
Nh

(
∠

(
uh
ℓ,y

)
− ∠

(
uh
ℓ,y−1

))

(Lv + Lh − 1)(Nv − 1)Nh
. (26)

Similarly, we estimate the horizontal spatial frequency ξrxIB as

ξ̂rxIB =

∑
ℓ∈SIRS

Nh∑
x=2

1T
Nv

(
∠

(
uv
ℓ,x

)
− ∠

(
uv
ℓ,x−1

))

(Lv + Lh − 1)(Nh − 1)Nv
. (27)

In words, the estimates in (26) and (27) are the sample aver-

ages of spatial frequencies based on (25). Now, the estimate of

BS-side array response vector aBS (ν
rx
IB, ξ

rx
IB) is reconstructed

as in (3) with the two estimated spatial frequencies ν̂rxIB
and ξ̂rxIB. Using the right singular vectors vℓ for ℓ ∈ SIRS,

the UE-side array response vector is similarly estimated as

aUE

(
ν̂txUI, ξ̂

tx
UI

)
by deriving ν̂txUI and ξ̂txUI as in (26) and (27).

In Step 3, we define the effective two IRS-side spatial

frequencies νIRS and ξIRS as

νIRS = νrxUI − νtxIB, ξIRS = ξrxUI − ξtxIB, (28)

which are estimated instead of each of four spatial frequencies.

To explain why this is possible, based on the single-path

approximations in (19) and (20), we have

cℓ = aHBS (ν
rx
IB, ξ

rx
IB) R̃ℓaUE

(
νtxUI, ξ

tx
UI

)

= γIBγUI[a
H
IRS

(
νtxIB, ξ

tx
IB

)
]ℓ[aIRS (ν

rx
UI, ξ

rx
UI)]ℓ

= γIBγUI[a
∗
IRS

(
νtxIB, ξ

tx
IB

)
⊙ aIRS (ν

rx
UI, ξ

rx
UI)]ℓ, (29)

for each ℓ. This clearly shows that we only need to estimate

a∗IRS (ν
tx
IB, ξ

tx
IB)⊙aIRS (ν

rx
UI, ξ

rx
UI) to construct R̃ℓ for ℓ /∈ SIRS

since R̃ℓ = aBS (ν
rx
IB, ξ

rx
IB) cℓa

H
UE (νtxUI, ξ

tx
UI) where the two

array response vectors in the left and right are estimated in

Step 2. The two gains γIB and γUI in (29) also need to be

estimated, which will be handled in Step 4. Considering the

structure of array response vector at the IRS side in (21), the

Hadamard product of the two vectors in (29) is expressed as

a∗IRS

(
νtxIB, ξ

tx
IB

)
⊙ aIRS (ν

rx
UI, ξ

rx
UI)

=
1√
L







1
...

e−j(Lv−1)νtx
IB


⊗




1
...

e−j(Lh−1)ξtxIB







⊙ 1√
L







1
...

ej(Lv−1)νrx
UI


⊗




1
...

ej(Lh−1)ξrxUI







(a)
=

1√
L







1
...

e−j(Lv−1)νtx
IB


⊙




1
...

ej(Lv−1)νrx
UI







⊗ 1√
L







1
...

e−j(Lh−1)ξtxIB


⊙




1
...

ej(Lh−1)ξrxUI







=
1√
L

[
1, · · · , ej(Lv−1)(νrx

UI−νtx
IB)
]T

⊗ 1√
L

[
1, · · · , ej(Lh−1)(ξrxUI−ξtxIB)

]T

=
1√
L
aIRS

(
νrxUI − νtxIB, ξ

rx
UI − ξtxIB

)

=
1√
L
aIRS (νIRS, ξIRS) , (30)

where (a) is based on the property that (A⊗B)⊙(C⊗D) =
(A⊙C)⊗ (B⊙D). This implies that only the two effective

spatial frequencies νIRS and ξIRS are needed to construct

a∗IRS (ν
tx
IB, ξ

tx
IB)⊙ aIRS (ν

rx
UI, ξ

rx
UI).

To estimate the two spatial frequencies νIRS and ξIRS,

we can exploit the actual observation of cℓ in the form of

ĉℓ , aHBS

(
ν̂rxIB, ξ̂

rx
IB

)
R̂ℓaUE

(
ν̂txUI, ξ̂

tx
UI

)
for ℓ ∈ SIRS with the

parameters obtained in Steps 1 and 2. For Lv observations

of ĉℓ for ℓ ∈ SvIRS,1, the estimated vertical spatial frequency

ν̂IRS is

ν̂IRS =
1

Lv − 1

∑

ℓ 6=1
ℓ∈S

v
IRS,1

∠

(
ĉℓ
ĉℓ−1

)
. (31)

For Lh observations for ℓ ∈ ShIRS,1, the horizontal spatial

frequency is estimated as

ξ̂IRS =
1

Lh − 1

∑

ℓ 6=1

ℓ∈S
h
IRS,1

∠

(
ĉℓ
ĉℓ−1

)
. (32)

With the estimated spatial frequencies, the BS constructs the

IRS-side array response vector in (30).

The overall gain γIRS , γIBγUI is estimated in Step 4

instead of each gain separately. Using (29) and (30) in Step 3,

the overall gain can be directly given as

γIRS =
cℓ

1√
L
[aIRS (νIRS, ξIRS)]ℓ

=
γIBγUI[a

∗
IRS (ν

tx
IB, ξ

tx
IB)⊙ aIRS (ν

rx
UI, ξ

rx
UI)]ℓ

1√
L
[aIRS (νIRS, ξIRS)]ℓ

= γIBγUI, (33)

which can be obtained for any ℓ ∈ SIRS. By utilizing ĉℓ,
ν̂IRS, and ξ̂IRS for ℓ ∈ SIRS obtained in Step 3, Lv + Lh − 1
observations of γIRS can be computed as in (33). Based on

the observations, the effective gain is estimated as

γ̂IRS =
1

Lv + Lh − 1

∑

ℓ∈SIRS

ĉℓ
1√
L

[
aIRS

(
ν̂IRS, ξ̂IRS

)]
ℓ

. (34)

Now we can reconstruct the remaining rank-one matrices R̂ℓ

for ℓ /∈ SIRS by using all estimated parameters as

R̂ℓ

=
γ̂IRS√
L
aBS

(
ν̂rxIB, ξ̂

rx
IB

) [
aIRS

(
ν̂IRS, ξ̂IRS

)]
ℓ
aHUE

(
ν̂txUI, ξ̂

tx
UI

)
.

(35)

As the rank-one matrix estimation utilizing uplink signaling

is conducted only for ℓ ∈ SIRS, the training overhead for SPAC
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is τc = τSPAC = (Lv+Lh−1)M . Compared with the training

overhead of the OBO estimation τOBO = LM = LvLhM , the

overhead of SPAC is remarkably low especially with large L.

With the single-path channel approximation, SPAC substitutes

the problem of large dimensional channel estimation into that

of the small number of parameter estimations, contributing to

low training overhead.

E. Selective emphasis on rank-one matrices (SEROM)

SEROM is proposed to conduct efficient channel estimation

with the design of IRS reflection-coefficient matrices. Different

from the previous techniques, SEROM always turns on the

entire IRS elements and utilizes both the IRS phase shifts and

uplink signaling for channel estimation. We first denote the

IRS reflection-coefficient matrix for the q-th training period

by Φ(q), which is defined as

Φ(q) = diag

([
ejφ

(q)
1 , · · · , ejφ(q)

L

]T)
, (36)

with q ∈ {1, · · · , Q} where Q is the total number of training

periods. The IRS reflection-coefficient matrix Φ[t] is fixed as

Φ(q) during the q-th training period τd + (q − 1)M + 1 ≤
t ≤ τd + qM . The length of each training period for SEROM

is M , which is equal for the OBO estimation and SPAC.

However, the number of training periods for the two previous

techniques is L and Lv + Lh − 1, and it implies that their

training overhead depends on the number of IRS elements.

SEROM can adapt the training overhead flexibly since Q is

the adjustable parameter independent of a system structure.

As in Section III-B, the UE transmits the length M training

sequence with sUL[t] =
√
PUL and exploits the normalized

M ×M DFT matrix as the training beamformer FUIB,q =
[f [τd + (q − 1)M + 1], · · · , f [τd + qM ]] for each q. The BS

processes the M received signals as

1√
PUL

ỸUIB,qF
H
UIB,q

=HIBΦ
(q)HUI +

1√
PUL

ÑUIB,qF
H
UIB,q, (37)

for the q-th training period. Recalling that HIBΦ
(q)HUI =∑L

ℓ=1 e
jφ

(q)
ℓ Rℓ as in (6), the cascaded UE-IRS-BS channel

can be expressed as

HIBΦ
(q)HUI =

[
ejφ

(q)
1 IN · · · ejφ

(q)
L IN

]


R1

...

RL




=
([
ejφ

(q)
1 · · · ejφ

(q)
L

]
⊗ IN

)


R1

...

RL


 .

(38)

Then, we can stack the cascaded channel through the IRS

HIBΦ
(q)HUI as



HIBΦ

(1)HUI

...

HIBΦ
(Q)HUI




=







ejφ
(1)
1 · · · ejφ

(1)
L

...
. . .

...

ejφ
(Q)
1 · · · ejφ

(Q)
L




︸ ︷︷ ︸
,Ω

⊗ IN






R1

...

RL


 , (39)

where Ω ∈ CQ×L is the IRS training matrix, whose elements

are unit modulus.

The IRS training matrix Ω in (39) can be designed to have

mutually orthogonal columns for the product
(
ΩH⊗IN

)(
Ω⊗

IN
)
=
(
ΩHΩ ⊗ IN

)
to be a non-zero diagonal matrix. This

condition facilitates perfect extraction of the rank-one matrices

from the stacked cascaded channel in (39). However, it is

feasible only when the number of training periods Q is larger

than or equal to the number of the IRS elements L. For large

L, which is typical for IRS-empowered systems, a number of

training periods are required to satisfy such orthogonality, and

this motivates us to design the IRS training matrix under the

condition Q < L.

Since it is impossible to make the columns of Ω mutually

orthogonal for Q < L, we design the IRS training matrix to

have pseudo-orthogonal columns as

(Ω(:, ℓ))HΩ(:, k) =

{
aℓ, for ℓ = k,

bℓ,k, otherwise,
(40)

satisfying |aℓ| ≫ |bℓ,k| for all ℓ and k. To design such Ω,

we can employ a submatrix by choosing Q rows for Q < L
or L columns for Q ≥ L from the M × M DFT matrix

where M = max{Q,L}. The BS finally conducts the rank-

one matrix estimation as


R̂1

...

R̂L


 =

A√
PUL

(
ΩH ⊗ IN

)


ỸUIB,1F

H
UIB,1

...

ỸUIB,QF
H
UIB,Q




=A






a1 · · · b1,L
...

. . .
...

bL,1 · · · aL


⊗ IN






R1

...

RL




+
A√
PUL

(
ΩH ⊗ IN

)


ÑUIB,1F

H
UIB,1

...

ÑUIB,QF
H
UIB,Q


 . (41)

The normalization factor A to cancel the amplification effect

of ΩHΩ is defined as

A =

∑L

l=1(Ω(:, ℓ))HΩ(:, ℓ)

Q
∑L

l=1|
∑L

k=1(Ω(:, ℓ))HΩ(:, k)|

=

∑L

l=1 aℓ

Q
∑L

l=1|aℓ +
∑

k 6=l bℓ,k|
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=
L

∑L
l=1|Q+

∑
k 6=l bℓ,k|

, (42)

where aℓ = Q holds for all ℓ since the entire IRS elements

are turned on with the unit modulus constraint. For Q ≥ L,

the L columns of Q×Q DFT matrix can be chosen to give

bℓ,k = 0 and A = 1/Q. For Q < L, the Q-row submatrix from

the M×M DFT matrix can be chosen to satisfy |aℓ| ≫ |bℓ,k|
and A ≈ 1/Q.

The overall training overhead of SEROM is τc = τSEROM =
QM . Note that τSEROM is independent from the number of

IRS elements L. For the small number of the IRS elements,

we can take Q ≥ L with moderate training overhead, and the

IRS training matrix with A = 1/Q ensures perfect rank-one

matrix estimation in (41) at noiseless circumstance. However,

keeping the condition Q ≥ L makes the minimum length of

training sequences proportional to L, which is undesirable for

typical IRS-empowered systems adopting large L. In this case,

we can set Q < L or even Q ≪ L to suppress the training

overhead in a moderate range.

IV. IRS PHASE SHIFT DESIGN

The considered IRS-empowered SU-MIMO system is in-

tended to serve the UE with high spectral efficiency through

the support of the IRS. In this section, we propose a novel

phase shift design at the IRS to achieve high spectral effi-

ciency. It can be shown that the proposed design gives an

optimal phase shift that maximizes the spectral efficiency for

each IRS element while the phase shifts of other IRS elements

are fixed. In addition, all the processes require only basic

linear matrix operations making the proposed design practical.

We first assume perfect channel information at the BS for

conceptual explanation. Then, for the numerical results in

Section V, we examine the proposed phase shift design with

the perfect channel information and also with the estimated

channels by the proposed techniques in Section III.

A. Optimal phase shift for each IRS element

Relying on the downlink and uplink channel reciprocity in

TDD [22], we take the conjugate transpose to represent the

total downlink channel HH
tot where the total channel Htot is

represented by

Htot = HUB +HIBΦ[t]HUI = HUB +

L∑

ℓ=1

ejφℓ[t]Rℓ. (43)

Then, the downlink spectral efficiency RDL is given as [23]

RDL = log2

(
det

(
Ir +

PDL

rN0
WHHtotH

H
totW

))
, (44)

where r is the rank of total downlink channel HH
tot, and W ∈

CN×r is the downlink transmit beamformer at the BS. Since

Φ[t] is designed based on given channels, Φ[t] is fixed during

the data transmissions, omitting the time index t as Φ. We turn

on all the IRS elements, i.e., Φ = diag
([
ejφ1 , · · · , ejφL

]T)
,

to maximize the reflected signal strengths.

With the given Φ and HH
tot, the beamformer W is given as

the dominant r right singular vectors of HH
tot as [24], [25]

W = Vtot(:, 1 : r), (45)

HH
tot = UtotΣtotV

H
tot, (46)

where (46) is the singular value decomposition (SVD) of HH
tot.

On one hand, HH
tot contains Φ as in (43), which let W depend

on Φ. On the other hand, the design of Φ that is to maximize

RDL in (44) also depends on W. This entangled correlation

of Φ and W makes it difficult to jointly design the optimal Φ

and W. Hence, we first reformulateRDL in (44) to decompose

the design of Φ and W by exploiting the property between

HH
tot and W in (45) as

RDL = log2

(
det

(
Ir +

PDL

rN0
VH

tot(:, 1 : r)Htot

×HH
totVtot(:, 1 : r)

))

(a)
= log2

(
det

(
IN +

PDL

rN0
VH

totHtotH
H
totVtot

))

= log2

(
det

(
VH

tot

(
IN +

PDL

rN0
HtotH

H
tot

)
Vtot

))

(b)
= log2

(
det

(
IN +

PDL

rN0
HtotH

H
tot

))
, (47)

where (a) holds since the rank of HH
tot is given by r, and (b)

holds with the fact that det(AB) = det(A) det(B) for any

square matrices A and B with the same dimension and that

Vtot is a unitary matrix. The reformulated spectral efficiency

RDL in (47) is independent from the specific value of W.

This allows to design Φ first to maximize RDL. Then, W

can be designed as in (45) with the designed Φ and downlink

channel HH
tot.

To get the optimal value of the ℓ-th phase shift φℓ that

maximizes RDL in (47) for given {φk}Lk=1,k 6=ℓ, we set the

optimization problem as

max
φℓ

det
(
IN + λ

(
H−ℓ + ejφℓRℓ

) (
H−ℓ + ejφℓRℓ

)H)
,

(48)

where λ = PDL/(rN0), and H−ℓ= HUB+
∑L

k=1,k 6=ℓ e
jφkRk,

which gives Htot = H−ℓ + ejφℓRℓ. By substituting Rℓ=
hIB,ℓh

H
UI,ℓ, the objective function in (48) can be reformu-

lated as

det
(
IN + λ

(
H−ℓ + ejφℓRℓ

) (
H−ℓ + ejφℓRℓ

)H)

=det

(
IN + λ

(
H−ℓH

H
−ℓ + ejφℓhIB,ℓ

(
H−ℓhUI,ℓ

)H

+ e−jφℓ

(
H−ℓhUI,ℓ

)
hH
IB,ℓ + hIB,ℓh

H
UI,ℓ

(
hIB,ℓh

H
UI,ℓ

)H))
.

(49)

For simplicity, let us define the following variables:

κℓ =e
jφℓλ, (50)

pℓ =hIB,ℓ, (51)

qℓ =H−ℓhUI,ℓ, (52)
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Aℓ =IN + λ

(
H−ℓH

H
−ℓ + hIB,ℓh

H
UI,ℓ

(
hIB,ℓh

H
UI,ℓ

)H)
. (53)

By using these variables, (49) can be represented as

det
(
Aℓ + κℓpℓq

H
ℓ + κ∗ℓqℓp

H
ℓ

)

=det
(
Aℓ + [pℓ,qℓ] diag

(
[κℓ, κ

∗
ℓ ]

T
)
[qℓ,pℓ]

H
)

(a)
= det

(
diag

([
1

κℓ
,
1

κ∗ℓ

]T)
+ [qℓ,pℓ]

H
A−1

ℓ [pℓ,qℓ]

)

× det
(
diag

(
[κℓ, κ

∗
ℓ ]

T
))

det(Aℓ), (54)

where (a) can be derived using the Sylvester’s determinant

theorem [26]. The existence of A−1
ℓ in (54) can be proven by

the following lemma using the structure of Aℓ in (53).

Lemma 1. For any positive definite matrix A and a matrix B

with a proper dimension, A+BBH is an invertible matrix.

Proof. Suppose that x is any non-zero vector. Then, we have

xH
(
A+BBH

)
x = xHAx+ xHBBHx

= xHAx+
∥∥BHx

∥∥2

> 0, (55)

where the inequality in (55) implies A+BBH is also a positive

definite matrix. Since a positive definite matrix is invertible,

A+BBH is an invertible matrix, which finishes the proof. �

In (54), since det
(
diag

(
[κℓ, κ

∗
ℓ ]

T
))
= |ejφℓλ|2 and det(Aℓ)

are constants and independent of φℓ, the optimization problem

in (48) can be represented as

max
φℓ

det

([
e−jφℓ

λ
0

0 ejφℓ

λ

]
+ [qℓ,pℓ]

H
A−1

ℓ [pℓ,qℓ]

)
, (56)

and the optimal phase shift φ⋆ℓ can be obtained as

φ⋆ℓ

=argmax
φℓ

det

([
e−jφℓ

λ
+ qH

ℓ A
−1
ℓ pℓ qH

ℓ A
−1
ℓ qℓ

pH
ℓ A

−1
ℓ pℓ

ejφℓ

λ
+ pH

ℓ A
−1
ℓ qℓ

])

(a)
= argmax

φℓ

Re

(
e−jφℓ

λ
pH
ℓ A

−1
ℓ qℓ

)

=∠
(
pH
ℓ A

−1
ℓ qℓ

)

=∠

(
hH
IB,ℓ

{
IN + λ

(
H−ℓH

H
−ℓ + hIB,ℓh

H
UI,ℓ

×
(
hIB,ℓh

H
UI,ℓ

)H)}−1

H−ℓhUI,ℓ

)
, (57)

where (a) can be derived by straightforward linear operations.

Although the optimal value φ⋆ℓ can be derived by (57), the so-

lution requires the BS to know hIB,ℓ and hUI,ℓ to compute φ⋆ℓ .

When the BS has the channel information in the form of the

Algorithm 1 Proposed phase shift design at the IRS

Initialize

1: Set ǫ > 0
2: for ℓ = 1, · · · , L do

3: H−ℓ =

{
HUB, ℓ = 1

HUB +
∑ℓ−1

k=1 e
jφ⋆

kRk, else

4: Update φ⋆ℓ by (58)

5: Set φtmp,ℓ = φ⋆ℓ
6: end for

Iterative update

7: for i = 1, · · · , I do

8: for ℓ = 1, · · · , L do

9: H−ℓ = HUB +
∑L

k=1,k 6=ℓ e
jφ⋆

kRk

10: Update φ⋆ℓ by (58)

11: end for

12: if
∑L

ℓ=1 |φ⋆ℓ − φtmp,ℓ| < ǫ then

13: Break

14: else

15: Set φtmp,ℓ = φ⋆ℓ
16: end if

17: end for

18: Return φ⋆ℓ ∀ℓ ∈ {1, · · · , L}

rank-one matrices Rℓ instead of HIB and HUI, the BS is able

to get the optimal φ⋆ℓ as

φ⋆ℓ =∠

(
Tr

(
hH
IB,ℓ

{
IN + λ

(
H−ℓH

H
−ℓ + hIB,ℓh

H
UI,ℓ

×
(
hIB,ℓh

H
UI,ℓ

)H)}−1

H−ℓhUI,ℓ

))

(a)
=∠

(
Tr

(
hUI,ℓh

H
IB,ℓ

{
IN + λ

(
H−ℓH

H
−ℓ + hIB,ℓh

H
UI,ℓ

×
(
hIB,ℓh

H
UI,ℓ

)H)}−1

H−ℓ

))

=∠

(
Tr

(
RH

ℓ

(
IN + λH−ℓH

H
−ℓ + λRℓR

H
ℓ

)−1
))

,

(58)

where the property Tr(AB) = Tr(BA) for any matrix A

and B whose multiplication produces a square matrix is used

in (a).

For given {φk}Lk=1,k 6=ℓ, the optimal phase shift of the ℓ-th
IRS element φ⋆ℓ is given by (58). Then, we can derive the

optimal values of all L phase shifts in an iterative way. The

proposed IRS phase shift design algorithm is summarized in

Algorithm 1. Note that the optimality in (58) ensures that

every update of φ⋆ℓ in Algorithm 1 improves the spectral

efficiency until the algorithm stops. The algorithm can stop

when the outer iteration index i reaches its maximum value

I or when the sum of differences between the previous and

updated phase shifts becomes less than a positive number ǫ.
With the designed phase shifts φ⋆ℓ , the transmit beamformer

is obtained as W in (45).
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With regard to the uplink data transmission, the phase

shifts φℓ and uplink transmit beamformer F can be similarly

designed. The uplink spectral efficiency RUL is given by

RUL = log2

(
det

(
Ir +

PUL

rN0
FHHH

totHtotF

))
, (59)

where F ∈ CM×r is given by F = Utot(:, 1 : r), and Utot is

given in (46). Exploiting the same property used in (47), we

can represent RUL as

RUL = log2

(
det

(
IM +

PUL

rN0
UH

totH
H
totHtotUtot

))

= log2

(
det

(
IM +

PUL

rN0
HH

totHtot

))

(a)
= log2

(
det

(
IN +

PUL

rN0
HtotH

H
tot

))

= log2

(
det

(
IN +

PUL

rN0
VH

totHtotH
H
totVtot

))
, (60)

where (a) can be derived using the Sylvester’s determinant

theorem [26]. For the same transmit power PUL = PDL,

the uplink spectral efficiency in (60) becomes the same as

the downlink spectral efficiency in (47). This implies that the

optimal phase shift in (58) also maximizes RUL, and the BS

can use the same IRS phase shifts for both the uplink and

downlink data transmissions.

V. NUMERICAL RESULTS

In this section, we investigate the proposed IRS phase shift

design and compare the channel estimation performance of

proposed SPAC and SEROM with those of existing estima-

tion techniques. Regarding the UPA structure, we consider

N = Nv × Nh antennas for the BS, M = Mv × Mh

antennas for the UE, and L = Lv × Lh elements for the

IRS. For the uplink and downlink training sequences, we

exploit DFT matrices with proper sizes depending on channel

estimation techniques. The B-bit quantization of each IRS

phase shift is realized by rounding off to the nearest quantized

value in
{
0, 2π

2B , · · · ,
(2B−1)2π

2B

}
. The Rician fading channel is

established with KUI = 5 dB, KIB = 5 dB, and KUB = 3 dB

where dUI, dIB, and dUB are uniformly distributed in [5, 10],
[90, 100], and [dIB − dUI, dIB + dUI] in the meter scale. For

each channel, the number of NLoS paths is set as GUI = 4,

GIB = 4, and GUB = 7. The path-loss exponents for the large

scale fading are set as ηUI = 2.2, ηIB = 2.5, and ηUB = 4.5,

and the path-loss is µ0 = −30 dB at the unit distance d0 = 1
m. The noise variance is N0 = −89 dBm.

The training sequence length of direct channel estimation

is set as τd = M , and those of the rank-one channel

estimations are set as τOBO = LM , τCo-OBO = 2L, τSPAC =
(Lv + Lh − 1)M , and τSEROM = QM . With a configurable

training sequence length, that of SEROM is simply set as

τSEROM = τSPAC by setting the parameter Q = Lv +Lh − 1.

A. Investigation of the proposed IRS phase shift design

We evaluate the spectral efficiency of proposed IRS phase

shift design in Section IV and compare the result with that of
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1

2

3

4

5

6

7

8

Fig. 3: Spectral efficiency with full channel information with

Nv ×Nh = 2× 2, Mv ×Mh = 1× 2, Lv × Lh = 3× 3, and

B = 2.

TABLE I: Computation complexity of IRS phase shift tech-

niques with M < N < L.

IRS phase

shift techniques
Number of scalar multiplications

Algorithm in [4] P
(

IinitLMN + IouterL(4M2N + 3M3)
)

Proposed phase

shift design
P

(

IL(3M2N + 2M3)
)

Exhaustive search P
(

2LB(LMN)
)

the algorithm in [4]. The design purpose of algorithm in [4]

is the maximization of spectral efficiency where the transmit

beamformer and the IRS phase shifts are alternately updated

until convergence. To solely compare the IRS element design

performance, we operate the proposed IRS phase shift design

and the algorithm in [4] with the perfect channel information,

i.e., ĤUB = HUB and R̂ℓ = Rℓ. Without channel estimation,

the spectral efficiency is computed as (44) in Section IV. In

Fig. 3, two-bit phase quantization B = 2 is considered, and

the maximum spectral efficiency, which is found by exhaustive

search of all the possible quantized IRS phase shifts, is

demonstrated for the reference. The spectral efficiencies of

proposed phase shift design and algorithm in [4] are very close

to the result of exhaustive search. This means that the two

techniques provide proper IRS phase shifts to maximize the

spectral efficiency.

Note that Fig. 3 only considers a small number of IRS

elements due to the complexity of exhaustive search. While

the proposed design and the algorithm in [4] both can

serve a large number of IRS elements, there is difference

on the computation complexity. In Table I, the computation

complexity of three IRS phase shift techniques is listed by

counting the number of scalar multiplications, i.e., the notation

P(x) means that the number of scalar multiplications is

proportional to x. The complexity of exhaustive search is
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remarkably higher than the other two techniques; it increases

exponentially with the phase quantization bits and the number

of IRS elements. The computation complexity of algorithm

in [4] contains the parameters Iinit and Iouter that are the

numbers of initial random generations and outer algorithm

iterations. The random initialization of algorithm in [4] is to

find good initial values that can reduce the number of outer

algorithm iterations. On account of the interdependency of

IRS phase shifts and transmit beamformer in the algorithm

in [4], searching good initial values is not easy and results in

additional complexity. The proposed IRS phase shift design

can be designed independently from the specific value of

transmit beamformer, and its simple initialization contributes

to the low complexity. Consequently, for the same algorithm

iteration I = Iouter, the complexity of proposed phase shift

design is lower than that of the algorithm in [4] where the

difference is P(IinitLMN + IouterL(M
2N + M3)). The

difference grows with the number of antennas, IRS elements,

and algorithm iterations, and it becomes significant when a

large number of antennas and IRS elements are deployed.

Therefore, we use the proposed phase shift design, which gives

the similar result to the exhaustive search but operates with the

lowest complexity among the three, to compare the channel

estimation techniques.

B. Comparison of channel estimation techniques

In this subsection, we compare the channel estimation per-

formance of proposed SPAC and SEROM with those of exist-

ing estimation techniques in [12]–[14]. The results of elemen-

tary techniques in Sections III-B and III-C are also depicted as

references. In [12], the least squares Khatri-Rao factorization

(LSKRF) is proposed to estimate HIB and HUI. In [13], HIB

is assumed as a known LoS channel, and HUB and HUI are

assumed as Rayleigh fading channels. Based on these assump-

tions, the MMSE-DFT is proposed to estimate HUB and HUI.

Without considering any training overhead, the two estimation

techniques in [12] and [13] require the training sequence

lengths τc = τLSKRF = τMMSE-DFT = LM that are clearly

longer than those of SPAC τSPAC = (Lv + Lh − 1)M and

SEROM τSEROM = QM . In [14], the three-phase channel es-

timation is designed with the relatively short training sequence

length τthree-phase = M + L + max
{
M − 1,

⌈
(M−1)L

N

⌉}
,

which is comparable to those of SPAC and SEROM depending

on the number of antennas and IRS elements. As a baseline,

the result of all-zero IRS phase setting φℓ = 0 for all ℓ is

provided where the channel estimation is conducted only for

the resulting total channel HUB+HIBILHUI with the training

sequence length τall-zero =M .

To analyze the performance of channel estimation tech-

niques, we adopt three performance metric: spectral efficiency

per channel use, training sequence length, and effective spec-

tral efficiency. The first metric measures the effectiveness of

estimated channels to design IRS phase shifts, and the second

metric assesses the training overhead of estimation technique.

The third metric jointly evaluates the estimated channels and

the training overhead of estimation techniques.
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(a) Nv × Nh = 2 × 4, Mv × Mh = 2 × 2, Lv × Lh = 2 × 4, and
B = 2
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(b) Nv × Nh = 4 × 8, Mv × Mh = 4 × 4, Lv × Lh = 8 × 16, and
B = 4

Fig. 4: Comparison of spectral efficiencies per channel use.

1) Spectral efficiency per channel use: Based on estimated

channels ĤUB and R̂ℓ for ℓ ∈ {1, · · · , L}, the spectral effi-

ciency per channel use can be computed as (44) by replacing

r and W with r̂ and Ŵ where r̂ is the rank of estimated

channel (ĤUB +
∑L

ℓ=1 e
jφℓR̂ℓ)

H and Ŵ is composed of

the first r̂ right singular vectors of (ĤUB +
∑L

ℓ=1 e
jφℓR̂ℓ)

H

corresponding to the r̂ dominant singular values. In Fig. 4,

the spectral efficiencies per channel use are depicted for

two cases: one with a small number of antennas and IRS

elements and the other with a large number of antennas and

IRS elements. The Co-OBO estimation shows the highest

spectral efficiency, but this is due to the ideal analog feedback,

which is difficult to achieve in practice. With high training

overhead, the OBO estimation and the LSKRF in [12] also

provide high spectral efficiencies. The MMSE-DFT in [13] is

another technique that requires high training overhead, but its

spectral efficiency is lower than those of the OBO estimation

and the LSKRF. This is because the MMSE-DFT is based

on the assumption of Rayleigh fading, which deteriorate the

estimation accuracy for the Rician fading with the LoS path.

With low training overhead, SPAC and SEROM give moderate
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Fig. 5: Comparison of training sequence lengths τtot = τd+τc.

spectral efficiencies similar to the MMSE-DFT. The spectral

efficiency of three-phase channel estimation in [14] is lower

than other channel estimation techniques. The three-phase

estimation requires arbitrary M columns of HIB to be linearly

independent, but this condition is rarely satisfied without rich

scattering environments. With ineffective IRS phase shifts, the

all-zero phase setting provides the lowest spectral efficiency

per channel use.

2) Training sequence length: For the two cases in Fig. 4,

the training sequence lengths of channel estimation techniques

are compared in Fig. 5. The training sequence length is

computed as τtot = τd + τc where τd is to estimate the direct

channel HUB and τc is to estimate the L rank-one matrices

Rℓ. The trend of training sequence lengths matches with that

of spectral efficiencies per channel use in general. The OBO

estimation and the LSKRF provide high spectral efficiencies

per channel use, and their training overhead is higher than

that of other techniques. The three-phase estimation and the

all-zero phase setting have short training sequence lengths

and provide lower spectral efficiencies per channel use than

other techniques. The performance of SPAC and SEROM is

in middle, but their spectral efficiencies per channel use are

close to those of the OBO estimation and the LSKRF, and their

training sequence lengths are close to those of the three-phase

estimation and the all-zero phase setting.

In Fig. 5, it is shown that the overhead of training grows

with the number of antennas and IRS elements. However,

the coherence time block length of typical communication

system is hard to be longer than 1,200 or 2,400 [27], [28],

and the training sequence length longer than 2,400 would not

be acceptable. For the second case with the large numbers of

antennas and IRS elements, the training sequence lengths of

OBO estimation, LSKRF, and MMSE-DFT are already over

2,000, which means the three estimation techniques have only
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Fig. 6: Comparison of effective spectral efficiencies.

a little time for data transmissions after channel estimation.

3) Effective spectral efficiency: Now, we jointly assess the

estimated channel and the training overhead by measuring the

effective spectral efficiency as [29]

Γ− τtot
Γ

log2

(
det

(
Ir̂ +

PDL

r̂N0
ŴH (HUB +HIBΦHUI)

× (HUB +HIBΦHUI)
H
Ŵ

))

=
Γ− τtot

Γ
log2

(
det

(
Ir̂ +

PDL

r̂N0
ŴH

(
HUB +

L∑

ℓ=1

ejφℓRℓ

)

×
(
HUB +

L∑

ℓ=1

ejφℓRℓ

)H

Ŵ

))
, (61)

where Γ is the coherence time block length. In Fig. 6a, with

its short training sequence length and high spectral efficiency

per channel use, the Co-OBO estimation shows the highest

spectral efficiency, which results from the ideal feedback.

SPAC and SEROM also provide high spectral efficiencies with
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Fig. 7: Effective spectral efficiency vs. Γ at PDL = 30 dBm

with Nv×Nh = 4× 8, Mv×Mh = 4× 4, Lv×Lh = 8× 16,

and B = 4.

low training overhead. With the small number of IRS elements

and low bits for quantization B = 2, the IRS training matrix Ω

for SEROM in (39) is hard to satisfy the pseudo-orthogonality

condition |aℓ| ≫ |bℓ,k|, and this can degrade the estimation

accuracy of SEROM. On the contrary, SPAC is not influenced

by the phase quantization at all in channel estimation, and it

gives a little higher spectral efficiency than SEROM. Since the

OBO estimation, the LSKRF, and the MMSE-DFT consume

high training overhead, their effective spectral efficiencies

become lower than those of SPAC and SEROM. The all-

zero phase setting and the three-phase estimation operate with

short training sequence lengths, but this advantage barely

compensates for their ineffective IRS phase shifts.

In Fig. 6b, the spectral efficiencies with large numbers

of antennas and IRS elements are depicted. The Co-OBO

estimation, SPAC, and SEROM still provide high spectral

efficiencies as in Fig. 6a. With a large enough number of IRS

elements and quantization bits, the IRS training matrix Ω for

SEROM can easily meet the pseudo-orthogonality condition

|aℓ| ≫ |bℓ,k|, and SEROM outperforms SPAC in this case.

With little time for data transmissions, the spectral efficiencies

of OBO estimation, LSKRF, and MMSE-DFT are significantly

reduced. By the same token, the spectral efficiency of three-

phase estimation is relatively improved with its short training

sequence length, compensating for poor channel estimation

performance. The spectral efficiency of MMSE-DFT falls

below all the other techniques as transmit power increases.

This is because the large channel dimension deepens the gap

between the Rician channel structure and the supposed channel

structure of MMSE-DFT. At high transmit power, even the all-

zero phase setting provides higher spectral efficiency than the

techniques requiring high training overhead.

In Fig. 7, the effective spectral efficiencies of channel

estimation techniques are compared over coherence time block

length Γ. With very small Γ, the three-phase estimation and

the all-zero phase setting, which have short training sequence

lengths, provide high spectral efficiencies. As Γ grows, spec-

tral efficiencies of SPAC and SEROM increase with long

time for data transmissions. The spectral efficiencies of OBO

estimation, LSKRF, and MMSE-DFT are zero due to their

long training sequence lengths until Γ = 2, 000. Except the

Co-OBO that is impractical due to the ideal feedback, SPAC

and SEROM provide the highest effective spectral efficiencies

for most practical range of Γ. This is by virtue of a fine balance

between the training sequence length and spectral efficiency

per channel use that each of SPAC and SEROM provides.

A better balance also can be found by adjusting the training

sequence length of SEROM.

VI. CONCLUSION

We proposed two novel practical channel estimation tech-

niques and an IRS phase shift design. The proposed SPAC

and SEROM are designed to estimate channel information in

SU-MIMO systems while consuming short training sequence

lengths. The proposed IRS phase shift design is developed

to maximize spectral efficiency while requiring only linear

operations. Numerical results showed that the proposed phase

shift design provides a spectral efficiency close to that of

exhaustive search. When the proposed IRS phase shift design

was utilized, the effective spectral efficiencies of SPAC and

SEROM were higher than those of other estimation techniques.

The results verified that the high spectral efficiency can be

achieved by considering both the training overhead and the

spectral efficiency per channel use. A possible future work is

to develop a joint framework of channel estimation and IRS

element design to have low training overhead while extracting

only a necessary information to design IRS elements, still

achieving a high spectral efficiency.

REFERENCES

[1] Q. Wu and R. Zhang, “Towards Smart and Reconfigurable Environment:
Intelligent Reflecting Surface Aided Wireless Network,” IEEE Commun.
Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.

[2] M. D. Renzo et al., “Smart Radio Environments Empowered by Recon-
figurable AI Meta-Surfaces: An Idea Whose Time Has Come,” EURASIP

J. Wireless Commun. Netw., no. 129, pp. 1–20, May 2019.
[3] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis,

and I. Akyildiz, “A New Wireless Communication Paradigm through
Software-Controlled Metasurfaces,” IEEE Commun. Mag., vol. 56, no. 9,
pp. 162–169, Sep. 2018.

[4] S. Zhang and R. Zhang, “Capacity Characterization for Intelligent
Reflecting Surface Aided MIMO Communication,” IEEE J. Sel. Areas

Commun., vol. 38, no. 8, pp. 1823–1838, Aug. 2020.
[5] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and

R. Zhang, “Wireless Communications Through Reconfigurable Intelli-
gent Surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, Aug. 2019.

[6] Z. He and X. Yuan, “Cascaded Channel Estimation for Large Intelligent
Metasurface Assisted Massive MIMO,” IEEE Wireless Commun. Lett.,
vol. 9, no. 2, pp. 210–214, Feb. 2020.

[7] B. Zheng, C. You, and R. Zhang, “Intelligent Reflecting Surface Assisted
Multi-User OFDMA: Channel Estimation and Training Design,” IEEE

Trans. Wireless Commun., vol. 19, no. 12, pp. 8315–8329, Dec. 2020.
[8] T. L. Jensen et al., “An Optimal Channel Estimation Scheme for

Intelligent Reflecting Surfaces Based on a Minimum Variance Unbiased
Estimator,” in Proc. IEEE Int. Conf, Acoust., Speech Signal Process.,
May 2020, pp. 5000–5004.

[9] D. Mishra et al., “Channel Estimation and Low-complexity Beamform-
ing Design for Passive Intelligent Surface Assisted MISO Wireless
Energy Transfer,” in Proc. IEEE Int. Conf, Acoust., Speech Signal

Process., May 2019, pp. 4659–4663.
[10] C. You, B. Zheng, and R. Zhang, “Channel Estimation and Passive

Beamforming for Intelligent Reflecting Surface: Discrete Phase Shift
and Progressive Refinement,” IEEE J. Sel. Areas Commun., vol. 38,
no. 11, pp. 2604–2620, Nov. 2020.



14

[11] Z. He and X. Yuan, “Cascaded Channel Estimation for Large Intelligent
Metasurface Assisted Massive MIMO,” IEEE Wireless Commun. Lett.,
vol. 9, no. 2, pp. 210–214, Feb. 2020.
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