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Abstract

With the explosive growth in mobile data traffic, ultra-dense network (UDN) where a large number

of small cells are densely deployed on top of macro cells has received a great deal of attention in recent

years. While UDN offers a number of benefits, an upsurge of energy consumption in UDN due to the

intensive deployment of small cells has now become a major bottleneck in achieving the primary goals

viz., 100-fold increase in the throughput in 5G+ and 6G. In recent years, an approach to reduce the

energy consumption of base stations (BSs) by selectively turning off the lightly-loaded BSs, referred

to as the sleep mode technique, has been suggested. However, determining the appropriate active/sleep

modes of BSs is a difficult task due to the huge computational overhead and inefficiency caused by

the frequent BS mode conversion. An aim of this paper is to propose a deep reinforcement learning

(DRL)-based approach to achieve a reduction of energy consumption in UDN. Key ingredient of the

proposed scheme is to use decision selection network to reduce the size of action space. Numerical

results show that the proposed scheme can significantly reduce the energy consumption of UDN while

ensuring the rate requirement of network.
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(2020R1A2C2102198) and Samsung Research Funding & Incubation Center for Future Technology of Samsung Electronics under

Project Number (SRFC-IT1901-17).
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I. INTRODUCTION

Densification of wireless network is a promising future direction to satisfy the explosive mobile

data traffic demand. In response to an increasing demand for data traffic along with the use of

mmWave and terahertz bands, ultra-dense network (UDN) where a large number of small cells

are densely deployed on top of macro cells has received special attention in recent years. Since

there are many small cells close to the mobile user, UDN reduces the path loss and also improves

the quality of line-of-sight (LOS) transmission [2]. Furthermore, UDN expedites the reuse of

spectrum per unit area dramatically, resulting in a significant improvement in the throughput

of the wireless network [3]. However, energy consumption of UDN, caused by the exponential

growth of a mobile data traffic, is a serious concern for the network operation [4]. In fact, an

upsurge of energy consumption is a heavy burden in the operational expense (OPEX) for the

network operators, not to mention the increased carbon emission and the acceleration of global

warming [5]. Pursuing the balanced efficiency in energy consumption and throughput of UDN

is, therefore, an important direction to ensure the sustainability of the next generation wireless

communications [6].

Among several factors contributing to the energy consumption of UDN, by far the dominant

source is the base station (a.k.a eNB in 4G LTE and gNB in 5G NR). Indeed, it has been

reported that more than half of the network energy is consumed at base station (BS). Over

the years, to reduce the energy consumption at the BS, a technique that deliberately turns off

lightly loaded BSs, called the sleep mode energy saving technique, has been proposed. In [7], a

technique that randomly turns off the BSs has been proposed [8]–[10]. In [10], an approach that

iteratively turns off the BSs with the lowest transmission power while guaranteeing the required

mobile rate has been proposed. However, in the UDN environment, energy saving might not be

as dramatic as expected due to the exponential increase in computational complexity with the

number of BSs. In fact, active/sleep mode decision problem is a binary integer program (and

hence NP-hard) [11] so that it is very difficult to find out the optimal active/sleep mode decision

minimizing the energy consumption of UDN. For this reason, to develop a technique that can

effectively control the active/sleep mode of BSs in UDN while ensuring the rate requirement of

mobile users is of great importance for the success of energy-efficient UDN.

An aim of this paper is to propose a deep learning (DL)-based approach to save the energy of

UDN. While the conventional schemes aim to minimize the instantaneous energy consumption
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Fig. 1: Illustration of UDN; The network consists of digital unit (DU) and various radio units

(RU) including macro, micro and small BSs

using the heuristic approach (e.g., proximity-based active/sleep mode control) and thus incur a

significant waste of energy due to the frequent mode conversion, the proposed scheme, as referred

to the deep reinforcement learning-based energy-efficient mode decision network (DREEM-NET),

achieves a reduction of the energy consumption over a long-term operational period. In our study,

we exploit the deep reinforcement learning (DRL) [12], an efficient tool to solve the sequential

decision-making problem, as a main engine. In DRL, an agent, a component that makes a decision

of what action to take, learns the optimal policy through the interactions with the environment.

While the conventional RL cannot handle the large-scale control problems easily, DRL overcomes

this limitation by replacing Q-table with the deep neural network (DNN). In recent years, we

have witnessed great success of DRL in various applications such as Go game [13], natural

language processing [14], and resource management in computer systems and networks [15].

DRL has also been applied to various wireless systems such as spectrum access [16], traffic
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scheduling [17], and user association [18]1.

Potential drawback of the DRL-based wireless systems is that an action (e.g., active/sleep

mode decision) space size of the large-scale network is too large to handle the desired tasks. In

particular, when deciding the active/sleep mode of BSs in UDN, the number of possible choices

increases exponentially with the number of BSs2. Due to the immense action space, during the

training phase, a DRL agent is likely to explore undesirable actions (e.g., decision that cannot

satisfy the mobile’s rate requirement or decision that turns on too many BSs), resulting in a

degradation in the energy efficiency and the slowdown of the convergence speed in training.

In this work, to effectively reduce the size of action space, we introduce the notion of action

elimination [19]. Key idea of the action elimination is to identify undesirable actions (set of

active/sleep modes violating the rate requirement or consuming large power) using DNN and

then exclude them from the action space to avoid an exploration of such decisions. In doing so,

we can improve the chance of experiencing the optimal or near optimal BS active/sleep decision

minimizing the energy consumption of UDN.

From the experimental results in the UDN environment, we observe that DREEM-NET re-

duces the energy consumption of UDN while guaranteeing the rate requirement of mobiles.

Specifically, DREEN-NET saves up to 20% and 10% of energy consumption against the full

association scenario and the vanilla deep Q-network (DQN)-based method, respectively. Even

when compared to the conventional optimization-based energy saving technique, the energy

consumption of DREEM-NET is about 18% lower because it takes in account the transition

power of BSs.

notations: Lower and upper case symbols are used to denote vectors and matrices, respectively.

The superscript (·)T and (·)H denote transpose and Hermitian transpose, respectively. ⊗ and ◦

denote the Kronecker product and the Hadamard product, respectively. Also, ||x|| denotes the

Euclidean norm of a vector x and em = [0, · · · , 1, · · · , 0] is an M×1 vector whose m-th element

is one and otherwise zero.

1The active/sleep mode decision problem can be well modeled as a Markov decision process (MDP).
2For example, the number of possible decisions is 220 ≈ 106 when we consider 20 cells in UDN.
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TABLE I: Summary of symbols

Notations Values Notations Values

Rk,min Rate requirement of mobile k αm Mode decision of BS m

ηm Amplifier efficiency of BS m βm,k Large-scale fading coefficient

pm,k Power weight from the BS m to the mobile k hm,k Downlink channel gain

ρtrans Power consumed by mode transition Pm,max Maximum transmission power of the BS m

vFT Degree of infeasibility γ Discount factor

NR Replay memory size A Total action space

AF Feasible action space AD Desirable action space

II. ULTRA-DENSE NETWORK SYSTEM

A. System Model of UDN

In this subsection, we discuss the system model of UDN. We consider the downlink transmis-

sion where M BSs equipped with a single antenna serve K mobiles. In contrast to the cellular

networks where a single BS serves the entire mobiles in one cell, a group of BSs cooperatively

serves mobiles in UDN. Also, the mobiles move freely at a constant speed (v ∈ Unif[vmin, vmax])

where vmax and vmin are the max/min speed of mobile. A mobile changes its velocity when it

reaches an edge of the service area. The BSs (a.k.a radio unit or remote radio head (RRH)) are

connected to a DU to share the channel state information (CSI) between the BSs and mobiles. In

order to indicate the active/sleep mode of BSs, we introduce the binary vector α = [α1, · · · , αM ]T

given by

αm =

1 if the BS m is in active mode

0 otherwise
. (1)

In our work, we consider the fading channel model where the downlink channel vector hm,k

from the BS m to the mobile k is expressed as hm,k =
√
βm,kgm,k where βm,k is the large-scale

fading coefficient and gm,k ∼ CN (0, 1) is the small-scale fading coefficient. Note that the BS

acquires the large-fading coefficients by averaging the channel magnitude extracted from the

uplink pilot signals (e.g., SRS in 4G LTE). The transmit signal xm of the BS m is

xm =
K∑
k=1

√
pm,ksk, (2)
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where sk is the data symbol and pm,k ∈ R+ ∪ {0} is the power weight from the BS m to the

mobile k. Then, the received signal yk of the mobile k is given by

yk =
M∑
m=1

h∗m,kxm + nk (3)

=
M∑
m=1

√
pm,kh

∗
m,ksk +

K∑
j 6=k

M∑
m=1

√
pm,jh

∗
m,ksj + nk, (4)

where nk ∼ CN (0, σ2
k) is the additive Gaussian noise. The corresponding rate of mobile k is

given by

Rk = log2

(
1 +

∑M
m=1 E

[
|√pm,kh∗m,k|2

]∑K
j 6=k
∑M

m=1 E
[
|√pm,jh∗m,k|2

]
+ σ2

k

)
(5)

= log2

(
1 +

∑M
m=1 pm,kE

[
|h∗m,k|2

]∑K
j 6=k
∑M

m=1 pm,jE
[
|h∗m,k|2

]
+ σ2

k

)
(6)

= log2

(
1 +

∑M
m=1 pm,kβm,k∑K

j 6=k
∑M

m=1 pm,jβm,k + σ2
k

)
. (7)

Note that the proposed scheme can be easily extended to the multiple-input multiple-output

(MIMO) scenarios by replacing the power weight pm,k with the beamforming vector [20].

B. Power Consumption Model and Problem Formulation in UDN

The power consumption at the BS is divided into three parts: 1) transmission power P tx
m

consumed by the power amplifier and RF circuitry. 2) active/sleep mode power Pmode
m consumed

by the signal processing, power supply, and air conditioning, and 3) transition power P trans
m

consumed due to the mode transition (active to sleep mode or sleep to active mode). Combining

these, the total power consumption of the BS m at the time slot t is P (t)
m = P

tx,(t)
m + P

mode,(t)
m +

P
trans,(t)
m .

First, the transmission power of the BS m, consumed by power amplifier and RF circuitry, is

expressed as

P tx
m =

1

ηm
E
[
|xm|2

]
=

1

ηm

K∑
k=1

pm,k, (8)

where ηm ∈ [0, 1] is the power amplifier efficiency of the BS m. Depending on the type of

BS, 40 ∼ 50% of the transmission power is used for transmission and the rest is wasted by



8

heat [21]. Second, the active/sleep mode power of the BS m, consumed by power supply and

air conditioning, is given by

Pmode
m = αmP

on
m + (1− αm)P off

m . (9)

where P on
m and P off

m are the power consumption of the BS m in active mode and sleep mode,

respectively. Roughly speaking, about 35% of total power is consumed for this [21]. Lastly, the

mode transition power of the BS m, consumed by switching on and off mode of BS, is expressed

as

P trans
m = |αm − αprev

m |ρtrans
m , (10)

where αprev
m is the active/sleep mode of BS m in previous time slot and ρtrans

m is the power

consumed by the mode transition of the BS m. It has been shown that roughly 15% of total

power is consumed for the mode transition [21].

In summary, the total power consumption of the network Ptot is given by

Ptot =
M∑
m=1

(
P tx
m + Pmode

m + P trans
m

)
(11)

=
M∑
m=1

(
1

ηm

K∑
k=1

pm,k + αmP
on
m + (1− αm)P off

m + |αm − αprev
m |ρtrans

m

)
. (12)

Since many of the conventional BS sleep mode techniques focus on the reduction of the instan-

taneous power consumption (transmission power P tx and maintenance power Pmode), an energy

consumption caused by the frequent mode transition is unavoidable.

In order to jointly minimize the mode transition power and the instantaneous power, we pursue

a reduction of the total power consumption of the entire BS during T time slots:

Etotal =
T∑
t=1

M∑
m=1

P (t)
m . (13)

The corresponding energy minimization problem is formulated as

P1 : min
{α(t)
m },{p

(t)
m,k}

Etotal (14a)

s.t. R
(t)
k ≥ R

(t)
k,min, ∀k = 1, · · · , K , ∀t = 1, · · · , T (14b)

P tx,(t)
m ≤ Pm,max, ∀m = 1, · · · ,M ,∀t = 1, · · · , T (14c)

P
(t)
m,k ≥ 0, ∀m = 1, · · · ,M ,∀k = 1, · · · , K, ∀t = 1, · · · , T (14d)
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where R(t)
k,min is the rate requirement of the mobile k at time slot t and Pm,max is the maximum

transmission power of the BS m. Since the active/sleep mode decisions {α(t)
m } are binary integers,

P1 is a mixed-integer programming that can be classified as a non-convex NP-hard problem.

Therefore, to solve the problem using combinatoric approach is computationally prohibitive. For

example, if the number of coordinated BSs and time slots are 20 and 10, respectively, then one

should search over humongous decision space (size is 220·10 ≈ 1060) to find out the optimal

active/sleep mode decision. Further, the analytic approach has a causality issue since the future-

oriented active/sleep mode decisions require the channel information of future time slots.

III. ENERGY-EFFICIENT ULTRA-DENSE NETWORK USING DEEP REINFORCEMENT

LEARNING

The primary goal of this work is to find out the BS active/sleep modes minimizing the

cumulative energy consumption. To achieve this goal, the proposed DREEM-NET exploits DRL

framework in the BS active/sleep mode decision. DRL is a DL technique that learns the optimal

policy for the sequential decision making problem through the interaction with the environment.

Specifically, based on the input information (e.g., CSI, the required mobile rate), DNN in the

DRL agent (i.e., DQN) learns the complicated input-output relationship between the current BS

active/sleep decision and the cumulative energy consumption. A major hurdle in the DRL-based

BS active/sleep mode decision framework is the action space that increases exponentially with

the number of BSs. Since the DRL agent learns the policy by the trial and error, performance of

DRL policy depends heavily on the exploration process of action space. In our case, due to the

immense action space (e.g., 210 ≈ 1000 active/sleep mode decisions when we consider 10 cells),

DRL agent needs to explore too many undesirable actions (e.g., active/sleep mode decision that

cannot satisfy the mobile’s rate requirement or decision that turns on unnecessary BSs). Clearly,

lack of useful training data lowers the sample efficiency3, causing a slowdown of the training

convergence and sub-optimal active/sleep mode control policy.

To overcome this problem, we propose a decision selection network (DSN) that identifies the

undesirable active/sleep mode decisions and then eliminates them from the action space. Two key

3Sample efficiency indicates the amount of experience that an agent or algorithm needs to generate during training phase in

order to achieve a certain level of performance.
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Fig. 2: Basic structure of DRL-based energy-efficient UDN

ingredients of the proposed DSN are 1) feasibility test to check whether the chosen active/sleep

mode decision can satisfy the mobile’s rate requirement and 2) energy consumption test to check

whether the amount of energy consumed by the selected active/sleep mode decision exceeds the

properly chosen threshold. Only the active/sleep modes that pass both tests are explored by

the DRL agent. In doing so, we can dramatically reduce the action space and also improve

the convergence speed. Since the DRL agent only explores the active/sleep mode decisions

in desirable action space, the sample efficiency can be enhanced significantly, resulting in an

improvement of the energy saving performance.

Overall processes of the proposed DREEM-NET are summarized as follows: 1) the agent

collects the CSI and the rate requirement through the backhaul link, 2) DSN filters out the

undesirable active/sleep mode decisions and then the agent determines the active/sleep mode of

BSs {α(t)
m } from the input data, and 3) the agent allocates the transmit power {p(t)m,k} for the

BSs in active mode using the convex optimization. 4) Finally, the agent computes the reward

based on the total power consumption of the network and then adjusts the active/sleep policy to

maximize the cumulative reward (see Fig. 2).
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A. Basics of Reinforcement Learning

In this subsection, we briefly explain basics of DRL. Reinforcement learning (RL) is a goal-

oriented algorithm that learns how to achieve a goal using trials and errors. Basic components of

RL are agent, environment, state, action, and reward [22]. An agent learns the optimal policy for

the sequential decision through the interaction with the environment. In the learning process of

RL, an agent observes the current state st, takes an action at, and then the environment returns

the next state st+1 and the immediate reward rt to the agent as a feedback. A policy π is a

strategy that an agent uses to determine the action based on the current state. The goal of the

agent is to find out the optimal policy π∗ maximizing the expected cumulative reward [22]:

π∗ = argmax
π

E

[
∞∑
t=0

γtrt|π

]
, (15)

where γ is a discount factor (0 < γ < 1) to provide less weight to the future reward.

To find out the optimal policy π∗, the Q-value function Qπ(s, a) that represents the expected

cumulative reward obtained by following the policy π, is used:

Qπ(s, a) = E

[
∞∑
t=0

γtrt|s0 = s, a0 = a

]
. (16)

Since the Q-value function indicates the expected cumulative reward for taking action a in state

s, the optimal policy can be readily obtained by choosing the action maximizing Qπ(s, a). To

do so, the Q-value function should be available for all state-action pairs. To find out the optimal

Q-function Q∗(s, a), Bellman equation for Q∗(s, a) is used [22]:

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

P a
ss′ max

a′∈A
Q∗(s′, a′), (17)

where r(s, a) is the reward corresponding to the state-action pair (s, a) and P a
ss′ is the transition

probability defined as P a
ss′ = P (s′|s, a).

Finding out the optimal policy by directly solving the Bellman equation requires accurate

knowledge of environment dynamics (i.e., reward function r(s, a) and transition probability

P a
ss′). Unfortunately, in many practical scenarios, it is very difficult to acquire accurate r(s, a)

and P a
ss′ . Even though these quantities are acquired, considerable training overhead is required

to solve the Bellman equation since we need to compute the Q-value for every state and action.
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To overcome the problem, Q-learning, a heuristic approach based on the trials and errors, has

been proposed [22]. To be specific, Q∗(s, a) can be approximated by replacing (17) with the

recursive update rule:

Qt+1(s, a)← Qt(s, a) + κ[r(s, a) + γmax
a′∈A

Qt(s
′, a′)], (18)

where κ is the learning rate. Key idea behind this update rule is to minimize the difference

between the target Q-value (i.e., r(s, a) + γmaxa′∈AQt(s
′, a′)) and the current Q-value (i.e.,

Qt(s, a)).

As mentioned, when the state space is large, it is very difficult to compute Q-values of all

possible state-action pairs (s, a). As a solution to the problem, DQN has been suggested [12].

Main idea of DQN is to estimate Q-function using the DNN-based function approximator (i.e.,

Q∗(s, a) ≈ Q(s, a, w)). The weight w of DQN is updated to minimize the loss function L(w)

given by L(w) = (Y dqn
t −Q(s, a, w))2 where Y dqn

t = r(s, a) + γmaxa′∈AQ(s
′, a′, w).

B. Energy-Efficient UDN Model

In this subsection, we discuss the state space, action space, and reward function of the energy-

efficient UDN. In the proposed DREEM-NET, UDN consisting of M BSs and K mobiles is

considered as an environment and DU is used as a DRL agent (see Fig. 2).

1) State Space: state contains essential information in the environment used for the policy

learning. In the proposed DRL-framework, the state of the environment observed by the agent

consists of several parts: the rate constraints of mobile R(t) = [R
(t)
1,min, · · · , R

(t)
K,min]

T at the time

slot t, BS active/sleep mode decision at the previous time slot α(t−1) = [α
(t−1)
1 , · · · , α(t−1)

m ]T ,

and the large-scale fading coefficient matrix H(t) reflecting on the path loss and the shadowing

effect between BSs and mobiles at the time slot t. In particular, H(t) is expressed as M ×K

matrix as

H(t) =


β
(t)
1,1 . . . β

(t)
1,K

... . . . ...

β
(t)
M,1 . . . β

(t)
M,K

 . (19)

In summary, the state can be expressed as

st = [H(t) H(t−1) R(t) α(t−1)]T . (20)
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Note that both H(t) and H(t−1) are included in st so that the DNN in DRL agent can extract

the temporally correlated features in the channel such as angle of departure (AoD), delay spread,

and path gain. By exploiting the extracted features between H(t), R(t), and α(t−1), the DRL

agent learns the policy minimizing the instantaneous power and the mode transition power.

2) Action Space: an action at is defined as

at = α
(t) = [α

(t)
1 . . . α

(t)
M ],

where α(t)
m = 1 (or α(t)

m = 0) indicates that m-th BS is in active mode (or sleep mode). If we

denote the set of possible actions as A, then the size of A (i.e., the number of possible actions)

is 2M . For example, if we control active/sleep modes of 20 BSs in UDN, then the size of A is

220 ≈ 106, which is clearly prohibitive. To deal with this so called curse of dimensionality, we

reduce the action space by excluding undesirable active/sleep mode decisions (we will say more

in the next subsection).

3) Reward: when the action of a time slot is decided, DU measures the power consumption

of the network. Since the excessive power consumption should be penalized, we set the reward

as

rt = Pmax − Ptot

= Pmax −
M∑
m=1

(P tx
m + Pmode

m + P trans
m ),

where Pmax is the total power consumption when all BSs are turned on.4 Since all three com-

ponents of Ptot are the function of active/sleep mode of BSs, the reward maximization problem

is equivalent to the problem to find out the active/sleep mode minimizing Ptot.

C. Importance of Efficient Exploration in DRL

It is worth mentioning that when using DQN, the number of episodes required to find out

accurate Q-values of all possible state-action pairs (s, a) scales linearly with the size of action

space. In our case, due to the immense action space that increases exponentially with the number

of BSs, it is very difficult to carry out sufficient number of episodes for the Q-value estimation.

In the Atari game, for example, the number of possible actions is at most 18 so that the sample

4However, if the active BSs cannot serve the mobiles, we impose a strong penalty (e.g., rt = −1000) to the corresponding

action.
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Fig. 3: Deep Q-Network equipped with Decision Selection Network for Energy-Efficient UDN

efficiency is much higher than our UDN control problem [12]. In our case, even though the DRL

agent carries out numerous episodes, the chance of finding out the energy-efficient active/sleep

mode decision policy is really tiny. The moral of the story is that an intelligent mechanism to

properly control the action space is crucial for the success of our approach.

IV. ACTION SPACE REDUCTION VIA DECISION SELECTION NETWORK

A. DSN architecture

The main purpose of proposed DSN is to reduce the action space by removing undesirable

actions that cannot satisfy the rate requirement of mobile or turns on too many unnecessary

BSs. In order to identify these, we perform two tests: 1) feasibility test to remove the infeasible

active/sleep mode decision that cannot satisfy the rate requirement of mobile and 2) energy

consumption test to remove the redundant active/sleep mode decision that turns on too many

unnecessary BSs. The detailed operations of DSN are as follows (see Fig. 3).

1) Feasibility Test: In this step, we check whether the rate requirement of a mobile can be

satisfied for each active/sleep mode decision α and then exclude the infeasible decisions violating
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the mobile’s rate constraints. Let A = {α1, · · · ,α2M} be the set of all possible active/sleep mode

decisions. To determine whether α is infeasible, we measure the degree of infeasibility vFT, an

achievable lower bound of maximum rate constraint violation:

vFT(s,α) = min
{pm,k}

max
k=1,··· ,K

(
Rk,min −Rk

)
, ∀α ∈ A, (21)

where s is the DRL state. One can see that the rate constraint is satisfied (i.e., Rk,min −Rk ≤ 0

for every k) if and only if vFT(s,α) ≤ 0. So, when vFT(s,α) > 0, we remove the infeasible

decision α .

In order to acquire vFT(s,α), we need to solve the combinatoric optimization problem (21).

This, basically, requires the large active/sleep mode decision space (i.e., |A| = 2M ) so that

solving this problem for every α is computationally infeasible. As a remedy, we exploit DNN

that approximates vFT as a function of active sleep mode decision α and DRL state s. That is,

v̂FT(s,α) = f(s,α ;θF ), (22)

where f is the input-output relationship and θFT is the set of weights and biases. When the

estimate of vFT exceeds a pre-defined threshold τ , we eliminate the corresponding active/sleep

mode decision from the action space A. The obtained feasible action space AF is

AF = {α ∈ A | v̂FT(s,α) ≤ τ}, (23)

where τ is a small positive value5 (e.g., τ = 0.01).

2) Energy Consumption Test: In this step, we measure the total power consumption of network

for each active/sleep mode decision α and then exclude the decisions that consume excessively

large power from AF . Recall that the total power consumption of network Ptot is expressed as

Ptot(s,α) = P tx(s,α) + Pmode(s,α) + P trans(s,α). (24)

While Pmode and P trans can be directly obtained from (9) and (10), we need to find P tx by solving

the following transmission power allocation problem:

Ptx : P
tx(s,α) = min

{pm,k}

M∑
m∈Bon(α)

P tx
m (25a)

s.t. Rk ≥ Rk,min, ∀k = 1, · · · , K (25b)

P tx
m ≤ Pm,max, ∀m = 1, · · · ,M, (25c)

5Note that due to the estimation error between vFT and v̂FT, we set τ as a positive value. In doing so, we can prevent the

feasible actions (vFT ≤ 0) from being removed.
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where Bon(α) = {m | αm = 1, m = 1, · · · ,M} is the set of active BS of α. As mentioned, it

is very difficult to solve Ptx for all α ∈ AF in every time slot. Thus, similar to the feasibility

test we discussed in the previous subsection, we exploit DNN to approximate the total power

consumption as a function of α and DRL state s. That is,

P̂tot(s,α) = g(s,α ;θE), (26)

where g is the input-output relationship and θE is the set of weights and biases. Once we obtain

P̂tot(s,α) for each α ∈ AF , we eliminate the redundant active/sleep mode decision consuming

excessive power and thus obtain the desirable action space AD:

AD =
{
α ∈ AF | P̂tot(s,α) ≤ P threshold

}
. (27)

where P threshold is the power threshold for the energy consumption test (in our simulations, we

set P threshold = 64).

B. Training of DREEM-NET

An integral part of the proposed DREEM-NET is the training process optimizing the network

parameters θF ,θE, and w. In the training phase, the network parameters are updated to minimize

the loss functions of DSN (L(θF ) and L(θE)) and DQN loss function L(w). Since DNN in both

tests of DSN are trained to minimize the error between predictions (i.e., v̂FT and P̂tot) and actual

values (i.e., vFT and Ptot), the loss function can be expressed as

L(θF ) = (vFT(st, at)− v̂FT(st, at,θF ))
2 (28)

L(θE) = (Ptot(st, at)− P̂tot(st, at,θE))
2. (29)

When the loss functions are differentiable, which is true in our case, we employ the stochastic

gradient descent (SGD) method to update the parameters. The update operations of SGD for

feasibility test, energy consumption test, and DQN can be expressed as

θt+1
F = θtF − κF∇θFL(θF ) (30)

θt+1
E = θtE − κE∇θEL(θE) (31)

wt+1
Q = wt

Q − κQ∇wQL(wQ) (32)
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Fig. 4: Training process of DREEM-NET : Red-dotted line indicates the training process

where κF , κE , and κQ are the learning rates of feasibility test, energy consumption test in DSN,

and DQN, respectively.

In order to compute the loss function in (28) and (29), we should have the actual value of

vFT and Ptot, which can be obtained by solving the following convex optimization problems.

1) Training Data Acquisition of Feasibility Test: In order to obtain the degree of infeasibility,

we need to solve the feasibility test problem PFT for a given α, which is formulated as

PFT : v∗FT = min
{pm,k}

max
k

(
Rk,min −Rk

)
(33a)

s.t. P tx
m ≤ αmPm,max, ∀m = 1, · · · ,M , (33b)

pm,k ≥ 0, ∀m = 1, · · · ,M, ∀k = 1, · · · , K. (33c)
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By concatenating the variables into a vector form (i.e., pk = [p1,k, · · · , pM,k]
T, p = [pT

1 , · · · ,pT
K ]

T),

the rate constraint can be transformed to

Rk ≥ Rk,min ⇐⇒ log2

(
1 +

∑M
m=1 pm,kβm,k∑K

j 6=k
∑M

m=1 pm,jβm,k + σ2
n

)
≥ Rk,min (34)

⇐⇒ βT
k

(
pk −

(
2Rk,min − 1

) K∑
j 6=k

pj

)
≥ σ2

n

(
2Rk,min − 1

)
(35)

⇐⇒ βT
k(d

T
k ⊗ IM)p ≥ σ2

n

(
2Rk,min − 1

)
, (36)

where βk = [β1,k, · · · , βM,k]
T and dk is a K × 1 vector whose k-th element is one and others

are −(2Rk,min − 1). Thus, PFT is reformulated as

PFT : v∗FT = min
p

max
k

(
σ2
n

(
2Rk,min − 1

)
− βT

k(d
T
k ⊗ IM)p

)
(37a)

s.t. (1T
K ⊗ eT

m)p ≤ α̂mηmPm,max, m ∈ B (37b)

p � 0MK , (37c)

where (37b) is a vector form expression of the power constraint. Let vFT = max
k

(
σ2
n

(
2Rk,min −

1
)
− βT

k(d
T
k ⊗ IM)p

)
, then we have

PFT : v∗FT = min
p,vFT

vFT (38a)

s.t. σ2
n

(
2Rk,min − 1

)
− βT

k(d
T
k ⊗ IM)p ≤ vFT, ∀k = 1, · · · , K (38b)

(1T
K ⊗ eT

m)p ≤ αmηmPm,max, ∀m = 1, · · · ,M (38c)

p � 0MK . (38d)

Since the objective function and constraints are all linear functions of p, PFT is a linear pro-

gramming (LP) problem that can be solved by the convex optimization tool (e.g., CVX).

2) Training Data Acquisition of Energy Consumption Test: In order to obtain the total power

consumption Ptot for given α, we solve the transmission power allocation problem, which is

formulated as

Ptx : min
{pm,k}

∑
m∈Bon

P tx
m (39a)

s.t. Rk ≥ Rk,min, ∀k = 1, · · · , K (39b)

P tx
m ≤ Pm,max, ∀m = 1, · · · ,M. (39c)
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Using the rate expression in (7) and the power consumption model in (8), Ptx can be re-expressed

as

Ptx : min
{pm,k}

∑
m∈Bon

1

ηm

K∑
k=1

pm,k (40a)

s.t.
∑
m∈Bon

βm,kpm,k−
(
2Rk,min−1

) K∑
j 6=k

∑
m∈Bon

βm,kpm,j

≥ σ2
n

(
2Rk,min − 1

)
, ∀k = 1, · · · , K (40b)

αm

K∑
k=1

pm,k ≤ Pm,max, ∀m = 1, · · · ,M. (40c)

Similar to the optimization problem in the feasibility test, the modified problem Ptx is an LP

and thus can be solved by the convex optimization tool. Using the obtained {pm,k} and α, we

can calculate Ptot = P tx + Pmode + P trans (see (11)).

After obtaining the degree of infeasibility vFT,t in (38a) and the total power consumption Ptot,t

in (40a), the agent receives the immediate reward rt computed by the environment and the next

state st+1 from the UDN environment. In each time slot, the transition tuple (st, at, rt, vFT,t, Ptot,t, st+1)

observed by the agent is stored to the replay memory. As shown in Algorithm 1, in each iteration

of the training phase, a mini-batch data is randomly sampled from the replay memory and then

the weights of DQN and DSN are updated in a direction to minimize the loss value in L(w),

L(θF ) and L(θE).

C. Computational Complexity of DREEM-NET

In this subsection, we analyze the computational complexities of DREEM-NET and conve-

tional schemes including sequential on/off method [10] and mixed-integer linear programming

(MILP)-based on/off method. Since the convex optimization tool for the transmission power

allocation among active BSs is used to all techniques (CTX = M3K3 log(1
ε
) where ε is the

CVX solver tolerance) [23], we focus on the complexity analysis of each technique during the

active/sleep mode decision process.

We first analyze the complexity of DRL framework in DREEM-NET. Initially, in the fully-

connected layer for the feasibility test, the input state vector st ∈ R(2MK+M+K)×1 is multiplied
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by the weight θwF ∈ Rω×(2MK+K+M) and then the bias θbF ∈ Rω×1 is added where ω is the width

of hidden layer. The complexity of the input layer for the feasibility test CF is

CF,in = (2 (2MK +M +K)− 1)ω + ω = (4MK + 2M + 2K)ω (41)

Next, the complexity of the hidden layer (4 layers) and the output layer for the feasibility test

CF,hidden and CF,out, respectively, are

CF,hidden = 4((2ω − 1)ω + ω) = 8ω2 (42)

CF,out = (2ω − 1)|A|+ |A| = 2ω|A| (43)

Thus, considering the threshold filter (|A| flops), the complexity of the feasibility test is

CF = (4MK + 2M + 2K + 8ω + 2|A|)ω + |A|. (44)

In the similar way, the complexity of energy consumption test and DQN can be expressed as

CE = (4MK + 2M + 2K + 8ω + 2|AF |)ω + |AF | (45)

CDQN = (4MK + 2M + 2K + 8ω + 2|AD|)ω + |AD| (46)

Thus, the complexity of DREEM-NET is summarized as

CDREEM-NET = CF + CE + CDQN + CTX

= (4MK + 2M + 2K + 8ω + 2)3ω + (|A|+ |AF |+ |AD|)(2ω + 1) + (M3K3 log(
1

ε
))

We next analyze the complexities of sequential on/off method and MILP-based method. From

the literature [10], sequential on/off method turns on all BSs initially and then removes the BS

having the minimum impact (i.e., minimum transmission power in our work) on the energy

consumption one after another until it reaches to the point where the mobile’s rate requirement

is violated. Then, the complexity of sequential on/off method is

Csequential =

(Noff∑
i=0

(M − i)

)
+ (Noff + 2)× CTX

=

(
M − Noff

2

)
Noff + (Noff + 2)(M3K3 log(

1

ε
)),

where Noff is the number of sleep BSs.

MILP-based method uses CVX gurobi solver based on branch-and-bound algorithm [24]. The

complexity of MILP-based method is as follows,

CMILP = 2M ·K(M3K3 log(
1

ε
)).
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Algorithm 1 Training process of DREEM-NET

Input: CSI {H(t)}, required mobile rate {R(t)
min}, active/sleep mode at previous time slot α(t−1),

DNN-based DSN f and g (weight θF and θE), DRL-based active/sleep mode decision

network h (weight w), learning rate κD, κw, number of time slots T

Initialization: t = 0, θt = θini

Iteration:

1: while θt does not converge do

2: for t = 1, · · · , T do

3: State st = [H(t), H(t−1), R
(t)
min, α

(t−1)]

4: Exclude infeasible mode decision through the feasibility test using f

5: Exclude redundant mode decision through the energy consumption test using g

6: Obtain α(t) by DQN based on reduced action space AD

7: Allocate the transmission power for the set of active BS Bon
8: Solve PFT for α(t) to obtain the degree of infeasibility vFT,t

9: Solve P ′tx to obtain total power consumption Ptot,t

10: Compute reward rt and observe the next state st+1

11: Store the transition (st, at, rt, vFT,t, Ptot,t, st+1) into replay memory R

12: end for

13: Randomly sample a mini-batch of the transition (si, ai, ri, vFT,i, Ptot,i, si+1) with a size

of NR
14: Compute ∇θFL(θF ) = ∇θF

∑
i(vFT,i(si, ai)− v̂FT,i(si, ai,θF ))

2

15: Compute ∇θEL(θE) = ∇θE
∑

i(Ptot,i(si, ai)− P̂tot,i(si, ai,θE))
2

16: Compute ∇wL(w) = ∇w
∑

i(r(si, ai)+ γmaxai+1
Q(si+1, ai+1,w)−Q(si+1, ai+1,w))2

17: θt+1 = θt − κD∇θL(θ)

18: wt+1 = wt − κw∇wL(w)

19: t = t+ 1

20: end while
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V. SIMULATION RESULTS

A. Simulation Setup

In this section, we describe numerical results to evaluate the performance of DREEM-NET.

In our simulations, we consider the UDN scenario where M small BSs simultaneously serve K

mobiles. The small cells are uniformly distributed in a square service area of D × D km2 for

UDN configuration [25] and the mobiles move freely at a constant speed (v ∈ Unif[vmin, vmax]

where vmax and vmin are the max/min speed of mobile. Also, we use a full-buffer traffic model

which is suitable for the situation where the number of mobiles in the coverage of macro BS

is constant [26]. For the fading channel model, we use the small-scale fading coefficient gm,k

generated from the complex Gaussian distribution (i.e., gm,k ∼ CN (0, 1)) and the large-scale

fading coefficient βm,k generated based on Hata-COST231 model [27], which is expressed as

βm,k = PLm,k · 10
zm,kσsh

10

where PLm,k is the path loss and 10
zm,kσsh

10 is the shadow fading (zm,k ∼ N (0, 1)). Specifically,

PLm,k is given by

PLm,k =


−L− 35 log10(dm,k) if dm,k > d1

−L− 15 log10(d1)− 20 log10(dm,k) if d0 < dm,k ≤ d1

−L− 15 log10(d1)− 20 log10(d0) if dm,k ≤ d0

(47)

where dm,k is the distance between the BS m and the mobile k and

L = 46.3− 33.9 log10 f − 13.82 log10 hb − (1.1 log10 f − 0.7)hu − (1.56 log10 f − 0.8)

where f is the carrier frequency, hB and hU are the heights of BS and mobile, respectively.

Considering the transition latency (deactivation + reactivation latency) of BS [28], we set the

time interval of power measurement and the active/sleep mode decision as the coherence time

of large-scale fading coefficient (Tβ = 1.53s). Note that the instantaneous power consumption

is the power consumption consumed by the network during a single time slot whereas the total

power consumption is the energy consumed by the network during L consecutive time slots. In

our simulations, we set L to 50 so the time duration is about 75s. As discussed, DREEM-NET

consists of DSN and DQN, each of which consists of 6 fully connected layers (width of a hidden

layer is set to 512). In the network parameter training, we use Adam optimizer, a well-known
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TABLE II: Simulation parameters

Parameters Values Parameters Values

Carrier frequency (f ) 2GHz Number of time slots (T ) 50

BS height (hB) 15m Maximum speed of mobile (vmax) 6m/s

Mobile height (hU ) 1.65m Amplifier efficiency (η) 0.25

Service area radius (D) 200m Active mode BS power (P on) 6.8W

Path loss variable (d0) 10m Sleep mode BS power (P off) 4.3W

Path loss variable (d1) 50m Maximum transmission power (Pmax) 1W

Shadow fading deviation (σsh) 3 dB Mode transition power (ρtrans) 3W

Number of small cells (M ) 10 Gamma (γ) 0.9

Number of mobiles (K) 4 Mini-batch size 256

Noise power (σ2
n) −174 dBm/Hz Replay memory size (NR) 20000

optimization tool to guarantee the robustness of learning process. The simulation parameters are

summarized in Table II.

We compare the proposed DREEM-NET with four baseline cell power control techniques:

1) full association method where all BSs are in active mode, 2) sequential on/off method

that turns on all BSs initially and then removes the BS having the minimum impact on the

energy consumption one after another until it reaches to the point where the mobile’s rate

requirement is violated [10], 3) MILP-based on/off method where the BS active/sleep mode

and the corresponding transmission power are optimized simultaneously in each time slot, and

4) vanilla DQN-based method where the active/sleep mode of BSs is determined by using

the original DQN [29]. For the transmission power allocation among active BSs, the convex

optimization technique is used for all techniques under investigation.

B. Simulation Result

In Fig. 5, we plot the average power consumption and the loss function value of DREEM-NET

as functions of the number of training episodes. In this test, we set Rmin = 0.2 bps/Hz and SNR

= 10 dB. We observe that both the average power consumption and the loss function decrease

with the number of episodes, which demonstrates that the training process of DREEM-NET is

carried out properly in a way of reducing the energy consumption in UDN.

In Fig. 6, we plot the ratio of feasible solution in the action space as a function of mobile’s

rate requirement. We observe that when compared to the vanilla DQN scheme (basic DQN
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Fig. 6: percentage of feasible solution in the

action space (M = 10, K = 4, and SNR =

10 dB)

without special treatment), DSN in proposed DREEM-NET effectively reduces the action space.

In particular, DREEM-NET achieves 58% reduction of the action space when Rmin = 0.5 bps/Hz,

resulting in an improvement of cumulative reward and energy saving performance.

In Fig. 7, we plot the cumulative reward as a function of the number of training episodes in

the training phase. Since DREEM-NET receives fewer penalties by eliminating the infeasible

decisions (see Sec.IV), the cumulative reward of DREEM-NET is much higher than that of the

vanilla DQN-based method. Also, due to the elimination of the redundant decisions incurring

excessive power consumption, DREEM-NET consumes less power than the vanilla DQN-based

method.

In Fig. 8, we plot the average power consumption of the cell power control techniques as

a function of mobile’s rate requirement. We observe that the proposed DREEM-NET achieves

considerable power saving over conventional methods. For example, when Rmin = 0.1 bps/Hz,

DREEM-NET saves more than 20% energy over the full association method and 12% over

the MILP-based on/off algorithm. This is because the MILP-based on/off scheme pursues a

minimization of the instantaneous power (i.e., active/sleep mode power Pmode
m and transmission

power P tx
m) while the proposed DREEM-NET controls the instantaneous power as well as the

mode transition power P trans
m . Since the infeasible and redundant mode decisions are removed,
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Fig. 7: Average cumulative reward compared

to vanilla DQN-based method in the training

phase
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Fig. 8: Average power consumption as a func-

tion of rate requirement Rmin (M = 10,

K = 4, and SNR = 10 dB)

DREEM-NET has better sample efficiency over the vanilla DQN-based method, resulting in an

improvement in the energy saving (5% ∼ 10%).

In Fig. 9, we evaluate the average power consumption as a function of signal-to-noise ratio

(SNR). We observe that the energy saving of the DREEM-NET scheme increases with SNR.

For example, when SNR = 6 dB, DREEM-NET saves about 6% power over the full association

method but it goes up to 20% when SNR = 14 dB. This is because in high SNR, only a small

number of active BSs is needed to serve the mobiles and thus substantial energy can be saved

by turning off the lightly-loaded BSs. We also observe that the energy saving of DREEM-NET

over the conventional methods increases with SNR since the conventional methods typically

choose active BSs near the mobile so that the active BS set is changed when the mobiles are

moving. As a result, the energy saving of DREEM-NET over the MILP-based on/off method

increases from 5% to 10% when SNR increases from 6 dB to 14 dB. Even when compared to

the vanilla DQN-based method, DREEM-NET saves around 6% energy on average. Thus, the

mode transitions of BSs occur frequently, causing a substantial increase in the mode transition

power.

In Fig. 10, we plot the number of active BSs as a function of rate requirement when SNR =

10 dB. We observe that DREEM-NET turns on more BSs than the conventional on/off method
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Fig. 10: The number of active BSs as a

function of rate requirement Rmin (M = 10,

K = 4, and SNR = 10 dB)

does. For example, when Rmin = 0.3 bps/Hz, DREEM-NET turns on 35% of BSs whereas the

sequential on/off method turns on only 20% of BSs. Nevertheless, DREEM-NET consumes 12%

less energy than the MILP-based on/off method (see Fig. 9) because the saving of mode transition

power outweighs the increase of maintenance power caused by turning on more BSs.

An important practical issue to be considered is the scalability of the system parameters such

as the number of BSs or the number of mobiles. If we need to re-train DREEM-NET whenever

the system parameters are changing or the path loss model varies, computational complexity and

training time in the training process will be unduly large, not to mention the large operating

cost and effort. Since the reconfiguration of BSs in UDN should be made in a few milliseconds

(order of 1 ms subframe) [30], frequent re-training is by no means suitable in the practical UDN

scenario.

To investigate the scalability issue of DREEM-NET, we change the number of BSs and mobiles

and then plot the average power consumption when SNR = 10 dB and Rmin = 0.2 bps/Hz. In

this test, we train DREEM-NET for the ultra-dense scenario (i.e., M = 15) and then test the

scenarios with less number of BSs and mobiles. This is done by setting the input corresponding

to the inactivated BSs and mobiles to zero and considering the inactivated BSs to be in sleep

mode during the Q-value estimation process in DQN. We observe that the proposed training
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2

and Rmin = 0.2 bps/Hz)
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strategy works reasonably well with the marginal loss over the strategy that trains the DREEM-

NET instances separately in each scenario. In particular, when M = 10, the average power

consumption of the proposed strategy is 57.6W/slot which is similar to the average power

consumption of optimized DREEM-NET in Fig. 8 (57.1W/slot). We also observe that DREEM-

NET shows a considerable energy saving over the conventional on/off methods even in the ultra-

dense scenario. Specifically, when M = 14, DREEM-NET saves 10% and 18% of energy over

the MILP-based on/off method and the full association method, respectively.

To test the robustness of DREEM-NET over the channel model change, we evaluate the

performance of DREEM-NET under various path loss models (i.e., urban area, rural area, and

indoor area) in 3GPP Release 14 [31]. Interestingly, we observe that DREEM-NET works

well even when the tested scenario is different from the training scenario. Main reason for

this is because the dynamic active/sleep mode decision of DREEM-NET relies heavily on the

communication distance and the user’s mobility rather than the specific channel model.

In Fig. 13, we compare the performance of proposed scheme with the DDPG/AC-based

active/sleep strategy. In general, since the DRL agent learns the decision-making policy by trial

and error, the performance of DRL technique depends heavily on the exploration of action space

(i.e., sample efficiency). The reason that the conventional DRL-based schemes (e.g., DDPG and
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Fig. 14: Average power consumption under the

time-varying traffic model (M = 10, K = 12)

vanilla DQN) do not perform well is because the DRL agent is likely to explore undesirable

actions violating the mobile’s rate requirement or turning on too many BSs due to the humongous

discrete action space. In contrast, in the proposed DREEM-NET, by eliminating the undesirable

actions via feasibility test and energy consumption test, the chance of exploring desirable actions

increases considerably. Also, we would like to point out that the DDPG/AC technique can

effectively handle the continuous action space by exploiting the property that Q-values of adjacent

continuous actions are fairly similar. However, in the discrete action space, Q-values of adjacent

actions may differ greatly and thus, the property of the continuous action space is not that useful.

In Fig. 14, we plot the average power consumption under the time-varying traffic model (i.e.,

FTP model 3). We observe that DREEM-NET outperforms the conventional methods under the

time-varying traffic scenario.

VI. CONCLUSION

In this paper, we proposed the DRL-based BS sleep mode decision framework, referred to

as DREEM-NET, to improve the energy efficiency in UDN. In the proposed DREEM-NET,

the infeasible or redundant active/sleep mode decisions are eliminated by specially designed

decision selection network. In doing so, we could reduce the active/sleep mode decision space
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significantly, thereby achieving an improvement of the sample efficiency and energy saving.

Further, the proposed DREEM-NET saves not only the instantaneous power but also the mode

transition power so that we could reduce the cumulative energy consumption. From the numerical

evaluation, we demonstrated that DREEN-NET saves up to 20% of energy consumption against

the full association scenario and the vanilla DQN-based method. In this paper, we restricted our

attention to the energy efficiency improvement of UDN but we expect that the proposed scheme

can be extended to various tasks such as cognitive radio access, user scheduling, and resource

allocation.
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