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Efficient Channel Equalization and Symbol
Detection for MIMO OTFS Systems

Huiyang Qu, Guanghui Liu, Senior Member, IEEE, Muhammad Ali Imran, Senior Member, IEEE,
Shan Wen, Student Member, IEEE, and Lei Zhang, Senior Member, IEEE

Abstract—The application of multiple-input multiple-output
(MIMO) over orthogonal time frequency space (OTFS) modula-
tion is envisioned to provide high-data-rate wireless transmission
in high-mobility environments. However, in these communica-
tion scenarios, the multiple-dimensional interference, which can
generate from space, delay and Doppler domains, challenges
the channel equalization and symbol detection at the MIMO-
OTFS receiver. To tackle this issue, we propose a time-space
domain channel equalizer, relying on the mathematical least
squares minimum residual algorithm, to remove the channel
distortion on data symbols. The proposed channel equalizer
adopts a recursion method to achieve symbol estimates, which
can realize fast convergence by leveraging the sparsity of
MIMO-OTFS channel matrix. Instead of directly remapping
the equalized OTFS symbols into data bits, we develop an
enhanced data detection (EDD) scheme to iteratively demodulate
the superposed multi-antenna signal. The EDD can not only
realize the linear-complexity interference cancellation, but also
efficiently reap the spatial and multi-path diversities of MIMO-
OTFS channel. The simulations show the proposed channel
equalization and EDD algorithms enable the MIMO-OTFS re-
ceiver to robustly demodulate multi-stream 256-ary quadrature
amplitude modulation symbols, under a maximum velocity of
550 km/h at 5.9 GHz carrier frequency.

Index Terms—Multiple-input multiple-output (MIMO) or-
thogonal time frequency space (OTFS), channel equalization,
enhanced data detection (EDD), interference cancellation, high
mobility

I. INTRODUCTION

Time- and frequency-domain selectivity is an inherent
characteristic of wireless communication channels [1]]. To
address the frequency-domain selectivity induced by channel
multi-path propagation, complex transceiver schemes are de-
signed. For instance, by using multi-carrier modulation, such
as cyclic prefix orthogonal frequency division multiplexing
(CP-OFDM) [2], low complexity per-subcarrier equalization
algorithms can be adopted. However, on the other hand,
the channel time-domain selectivity caused by the mobility
in high-speed vehicular communication networks [3], chal-
lenges the traditional multi-carrier modulation. Specifically,
the Doppler effect involved by mobility is represented as the
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inter-carrier interference (ICI) in OFDM or its varieties [4]—
[8]l, which poses a bottleneck to overall system performance.

In order to tackle the doubly-selective channels, a novel
two-dimensional (2-D) modulation technique, namely orthog-
onal time frequency space (OTFS), was proposed in [9].
Since 2018, P. Raviteja and Yi Hong have shown its robust
performance in high-mobility environments [[10]—[[12f]. The
core principle of OTFS is that it maps the modulated data
symbols in a delay-Doppler (DD) plane, and employs the
inverse symplectic finite Fourier transform (ISFFT) to spread
them over the whole time-frequency (TF) grids. Then, the
TF-domain data is modulated by a multi-carrier scheme, e.g.,
OFDM [13]], [14]. Through this procedure, the transmitted da-
ta symbols can be equally impacted by the doubly-dispersive
channel, thus mitigating the performance loss [[15].

Similar to OFDM, multiple-input multiple-output (MIMO)
can be combined with OTFS as well for further increasing
the transmission throughput [[16]—[22]. To achieve the robust
data transmission in MIMO-OTFS system, efficient channel
equalization and data detection algorithms are required at the
receiver side. In some high-mobility scenarios, such as high-
speed train running in a clear and open signal-transmission
space [23], the channel scattering components are limited
and the channel responses may appear as a few impulses in
the Doppler frequency [24]]. The existing channel equaliza-
tion schemes, including linear schemes [20]], [25]-[27]] and
non-linear schemes [19], [28]-[30]], have been developed to
efficiently recover the transmitted multi-stream OTFS sym-
bols. For instance, in [25]], [26], the authors suppose each
propagation path of channel has only one Doppler frequency
shift. Thus, the OTFS transmission matrix has a special
block circulant structure, which enables the linear schemes to
work at low computational cost by using matrix decomposing
techniques. Although the widely-used linear schemes are
easy to be implemented [20], [27]], they can not achieve
the satisfactory demodulation performance, in contrast to the
message passing (MP) based non-linear methods in [[10], [[19],
[28]-[30]. In addition, thanks to the 2-D sparsity of the DD
channel, the number of connection nodes in the factor graph
of the MP equalizer can be greatly reduced, which yields an
acceptable computational complexity.

However, in a general communication scenario, it may
involve a large number of scattering objects, like in vehicle
to everything (V2X) communications [31]. As analyzed in
[32], [33]], scattering-abundant channel can induce not only
the inter-symbol interference (ISI), but also the inter-Doppler
interference (IDI) with relatively wide band in the Doppler



domain. Moreover, when the OTFS signal undergoes a MIMO
channel, the additional interference will be involved in the s-
pace domain, generating inter-antenna interference (IAI) (i.e.,
interference by other streams in multi-user MIMO system). In
such a time-varying MIMO channel with significant surround-
ings, it would cause a burden for the number of connection
nodes in the factor graph of the MP equalizer, yielding an
unacceptable computational cost. Thus, how to efficiently and
robustly demodulate the received MIMO-OTFS signal with
the multi-dimensional interference, i.e., IAI, IDI and ISI, is
another challenge to be addressed.

To solve the above problem, in this paper, a time-space (TS)
domain channel equalizer, relying on the mathematical least
squares minimum residual (LSMR) algorithm, is developed
for MIMO-OTFS systems. It is capable of achieving the
comparable equalization performance to the linear minimum
mean square error (LMMSE), but preserving much lower
computational complexity. As a cascade of TS-domain chan-
nel equalizer, an enhanced data detector (EDD) is proposed
in the delay-Doppler-space (DDS) domain (i.e., the OTFS
symbols are demodulated in this domain). The EDD in-
volves a layer-by-layer interference cancellation and signal-
combined detection scheme, which can significantly improve
the data demodulation performance in MIMO-OTFS system.
Our contributions can be summarized as follows.

1) Different from the existing channel modeling assumed
for OTFS, we consider a more general communication
environment that each sub-channel has a continuous
spectrum in the Doppler frequency. The MIMO-OTFS
signal transmission over the continuous-Doppler-spread
channel is modeled in the TS, frequency-space (FS),
and DDS domains, respectively || Our analysis on the
structures of MIMO-OTES channel matrices in these
dimensions can provide useful insights for channel
equalization and symbol detection.

2) We formulate the MIMO-OTFS channel equalization as
a linear optimization problem, thereby proposing a TS-
domain LSMR-based channel equalizer. Specifically, in
this paper, one important conclusion can be achieved
that performing the linear equalization schemes, such
as zero forcing (ZF) or LMMSE, in the TS, FS, or
DDS domain are equivalent. Thus, by leveraging the
sparsity of TS-domain channel matrix, an LSMR-based
equalizer is proposed to retrieve the OTFS symbols
at each transmit stream. The developed equalizer can
achieve fast convergence under high Doppler spread,
which yields a much lower computational cost than the
LMMSE.

3) Instead of directly adopting a hard or soft decision on
symbol estimates after channel equalization, we design
an EDD in DDS domain to iteratively demodulate the
multi-antenna data symbols. Benefiting from the pre-
cise data symbol estimates from channel equalizer, the
interference (i.e., IAI and ISI) can be perfectly recon-

'Note that symbols modeled in different domains are the same but
only represented in different forms in order to compare the corresponding
equalization methods.

structed and eliminated in EDD. Also, the interference-
eliminated signal components are further accumulated
by using equal gain combining (EGC) and maximum
ratio combining (MRC [33]]) techniques, so as to ef-
ficiently reap the spatial and multi-path diversities of
MIMO-OTFS channel. The simulation results verify
the proposed receiver can robustly demodulate 256-ary
quadrature amplitude modulation (QAM) symbols, in
the case of the MIMO-OTFS signal transmission over
high-mobility environments.

The remainder of this paper is organized as follows. The
MIMO-OTES transmission framework and channel matrix are
analyzed in Sec. II. In Sec. III, the LSMR based TS-domain
channel equalization is proposed. In Sec. IV, an enhanced
iterative data detection is developed. The simulation results
are presented in Sec. V and conclusions are given in Sec. VI.

Notations: In this paper, vectors and matrices are denoted
by bold lowercase and uppercase letters, respectively. The el-
ement in the [-th row and v-th column of matrix Y is defined
as Y(I,v). We use ()", ()7 and ()" to represent inverse,
transpose and conjugate transpose of a matrix, respectively.
The operators ®, vec(+), invec(-) and E {-} denote Hadamard
product, the vectorizing of a matrix, invertorizing of a vector,
and expectation operation, respectively. C stands for the set
of complex numbers. The zeroth order Bessel function of the
first kind is denoted as Jy (-). Ip; and Fps denote the M x M
identity matrix and the fast Fourier transform (FFT) matrix
[34], respectively.

II. OTFS TRANSMISSION OVER TIME-VARYING MIMO
CHANNEL

In this section, we firstly model the OTFS-based MIMO
system, and study the characteristics of MIMO-OTFS channel
matrix, from TS, FS, and DDS dimensions, respectively. The
analysis helps us further investigate the linear equalization of
time-varying MIMO channels.

A. MIMO-OTFS System Model

Fig. demonstrates MIMO-OTFS transmission model,
where the receiver is equipped with /Ny antennas to simulta-
neously serve N OTFS data streams. Note that the setup can
be used for both multi-user single antenna transmitters and a
single transmitter with multi-antenna cases. In this section, we
only analyze the basic MIMO-OTFS transmission architecture
in Fig. |1} while the proposed demodulation scheme, including
channel equalization and EDD modules, will be introduced
in Sec. III and IV, respectively.

We use X;[m,n] to denote a QAM symbol that allo-
cated at the m-th delay and n-th Doppler bin of the DD
plane in transmit stream ¢, where m € [0,M —1],n €
[0,N —1],i € [1, Nt). The 2-D data block X; € CM*xN,
which contains M N QAM symbols, are transformed from
the DD domain to TF domain by using ISFFT, ie., D; =
FuX,FEL D; € CM*N a5 shown in Fig. [1} Subsequently,
D, is sent into a conventional TF modulator, OFDM, to
produce the time-domain signal block, according to S; =
FED,;,S; € CM*N_ By column-wise reading the entries in
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Fig. 1.

S;, the data samples within one OTFS transmission block are
expressed as s; = vec (S;),s; € CMNX1 To avoid the inter-
block interference, a CP with length M, is inserted at the
beginning of s;. In this paper, we consider only one CP for
the whole OTFS transmission block, to achieve an improved
spectrum efficiency.

We denote h; ; [k,!] as the time-varying channel response
between transmit antenna ¢ and receive antenna j, correspond-
ing to the sampling time index & and delay tap I, € [0, L—1].
At receive antenna j, after CP removal, the received time-
domain sample is denoted as r;[k]. Omitting the additive
noise effect EI, rj[k] can be written as

Np L—1
rj [k] = Z Z hji [k, si [(k =0yl (1
i=1 1=0
Defining r; = [r; [0],7;[1],--- ,7; [MN — 1]]"e CMN*1
as the received time-domain sequences in Fig. [} we have
Nt
rj = Cjisi, 2)
i=1

where C;; € CMNXMN  denotes the time-domain channel
matrix between arbitrary transmit antenna ¢ and receive anten-
na j, which follows C;; (k1,k2) = h;; [k1, (k1 — k2),, 5]
Then, r; is rearranged into a time-domain data block
R; € CM*N by R; = invec(r;). The TF-domain da-
ta block is obtained through FFT, which is expressed as
D'; = FyR;,D’; € CM*N Tn the end, the SFFT con-
verts D’; back into the DD domain according to Y; =
FIID/';Fy,Y; € CMXN,

To make the analysis and derivations clear, we propose the
following two propositions to write the signal in matrix forms
in frequency and DD domains.

Proposition 1: At receive antenna j,j € [1, Ng], after
OFDM modulation, the frequency-domain data vector d’; in
Fig. [T] can be expressed as

Nt
d; = Z H;,d;. (3)
=1

where d’; = vec(D/;)e CMN*! and d; =
vec (D;) € CMN*1 denote the received and transmitted

2In this section, we omit the effect of additive noise to focus on the
transmission channel. As the noise samples are not correlated with data
symbols, its effect will be investigated independently in Sec. V.

Proposed demodulation scheme

The basic transmission architecture of MIMO-OTFS system and the proposed demodulation scheme.

frequency data symbols, respectively. These symbols are
modulated at N OFDM symbols, each of which has A
sucarriers. Matrix H; ;€ CMN*MN g the frequency-domain
channel matrix between transmit antenna ¢ and receive
antenna j, i.e.,

=

Hj7i IN X F]y]) Cj,z' (IN X Fﬁ) . (4)

Proof: See Appendix A. |

The OTFS post-processing in Fig. [T} employs the SFFT to
transform d’; back into DD domain. Accordingly, we have
the following transmission relation.

Proposition 2: The DD-domain received data vector at
antenna j, i.e., y; in Fig. EI, can be derived as

Nt
y;i = Z G ixi, (&)
i=1
where  x; 2 vec (Xﬁ) € CMNXL  and y; 2

vec (Y1) e cMNx1 MN
received OTFS symbols, respectively. The DD-domain
transmission matrix between transmit antenna ¢ and receive
antenna j is represented as

contains transmitted and

G, =II(Fy ®Iy)C;; (F§ @ Iy) II", (6)

where IT is a permutation matrix in (32). Note that in-
troducing a permutation matrix in (6) enables the OTFS
transmission matrix G;; to have a straightforward shape,
which helps us better analyze the interference components.
More details can be found in Appendix A.

Proof: See Appendix A. |

B. Channel Model

In the existing MIMO-OTFS works, the channel responses
are supposed to be sparse in the Doppler domain, i.e., the
number of Doppler shifts is very limited due to the few
channel scatters. However, this assumption may not be valid
in a more general communication environment, e.g., V2X
communications [31], where a large number of scattering
objects can be involved. Hence, this paper exactly aims to
handle such a scattering-abundant MIMO channel. To do this,
we make the following assumptions.

Assumption 1: In the case of single user transmission
but with multi-antennas, we suppose the sub-channels are
independent to each other. The assumption is reasonable in



the case of multi-user MIMO with each user equipped with
single antenna at the transmitters.

Assumption 2: In this paper, we use the classical Jakes’
model [35] to represent the scattering-abundant channels,
which has been widely employed in the wireless communi-
cations. For each tap, h;; [k,[] follows Rayleigh distribution
in time, of which the auto-correlation function is

E {hji ke, 1| B ko, )} = 073 50Jo (27 fa [ky — k2| Ty),
(7
where 02 ;1 represents the channel power of the [-th tap
between transmlt antenna ¢ and receive antenna j, and fy
is the maximum Doppler frequency. Accordingly, we have a

“U-shaped” Doppler spectrum, i.e.,

1
230 € |—Jd,
;i1 (V) = { Wofj—uz vel fd' fd) -

, otherwise

C. Analysis of Channel Matrix

In this subsection, we analyze the structures of sub-channel
matrlces from time, frequency and DD dimensions, i.e., C; ;,

H;,; and G;; in (2), () and (5), respectively. The analysis
helps us propose efficient channel equalizer and data detector
in Sec. III and IV, respectively.

HY g

! i
HM
T

(a) The structure of (b) The structure of (c) The structure of
Cj,i~ Hj’i. Gjyi.

(d) An instance of (¢) An instance of (f) An instance of
Cjii- Hji. G

Fig. 2. The illustrations of sub-channel matrices C; ;, H; ; and G; ;, in
the time, frequency, and DD domains, respectively. Parameters are set as
M =8, N =8 and L = 4. The CIRs of each sub-channel are obtained by
the classical Jakes’ channel simulator [36|]. The maximum channel Doppler
frequency f; normalized to the OFDM subcarrier spacing Af is 20%,
corresponding to a velocity of 550 km/h at 5.9 GHz carrier frequency.

Firstly, let us recall the time-domain sub-channel matrix
C;,i in (). It has a Toeplitz structure, but is not circulant due
to the time-varying channel responses. Since the CP is only
inserted at the beginning of the whole time-domain OTFS
transmission block, instead of each OFDM symbol, C; ; is
not block diagonal, shown in Figs. 2 (a) and (d). Note that
when considering a CP or zero-padding OTFS system [33]],
C,,; has a block diagonal structure. In this case, the low-
complexity time-domain channel equalization scheme [37],
can be used to recover the OTFS symbols.

In the frequency domain, the sub-channel matrix H; ;
is obtained from (@), which can be further decomposed
into a set of sub-matrices by using (3) and (@). Specifi-
cally, for the frequency-domain data symbols of the n-th
OFDM symbol at receive antenna j, denoted as d’; (n) =
[D';]0,n),D';[1,n],---,D';[M —1,n]]" € CM*1 it fol-
lows

d’; (n)

where H0 e CM*XM and H1 e CM*M are named as the
ICI and ISI matries, respectlvely They are achieved by

0,n 1,n
=H;;'d; (n) + H'd; (n — 1), 9)

H)" =FyC)'Fi; HT =FyCyrFY,  (10)

where C;)Z" € CM*M and len € CM*M are lower and
upper triangular matrices, respectively, composed by the CIR
samples within the n-th OFDM duration, i.e,

Cj(l),”tn (ml, mg) = hj,i [(TL — 1)M —+ mi,myp — mg]

Cji' (mi,m2) = hyi[(n — 1)M +my, (m1 —ma),,].
(11

Due to the large channel Doppler spread, the CIR

values change quickly in Fig. 2(d), which yields the
significant ICI in the frequency domain. Accordingly,
the submatrices in the main diagonal of H;,;, i.e.,
H2107H311, X H0 I HO N1 contains the channel
frequency responses and ICI shown in Figs. 2(b) and (e).
In this paper, since only one CP is inserted at the beginning
of whole OTFS transmission frame, the ISI will be involved
between the adjacent OFDM symbols. The ISI reveals as
Hj1 P HJ1 L H1 I H]1 N=1 Note that if considering
a CP or zero- paddmg OTFS transmission structure [33], there
will be no ISI, indicating H1 T =0.

Proposition 3: The DD- domam sub-channel matrix G ;
in is block-banded, of which the sub-matrix Glm €

CNN1=0,---,L—-1;m=0,- M—lfollows
Im __ T o H
G/ = (Fy®ay (1) Cyi (Fy ®an (m),  (12)

where aps (m) refers to the m-th column of I;.

Proof: See Appendix B. ]

According to proposition 3 and the analysis in [33]], we can
investigate the ISI and IDI generated in the delay and Doppler
dimensions, respectively. Speciﬁcally from Fig. 2(c), the ISI
is contributed by the submatrices G,;""" € CN*N [ £ 0,m =
0,---,M — 1. Meanwhile, the IDI 1s contrlbuted by the off-
d1ag0nal elements of Gojm € CN*N m =0,---,M—1.Fig.
2(f) presents an instance of matrix GJ i» Where the number
of non-zero submatrices in each row or column direction is
L — 1, corresponding to the maximum channel delay spread
(32].

Specially, facing a low or moderate-speed case, the channel
is time-invariant during one OFDM symbol duration. As a
result, matrix G;; has a circulant structure, which enables
to design a low-complexity channel equalizer to recover the
OTFS data symbols. In this paper, we focus on the high-
mobility scenarios, where the channel varies even within



one OFDM symbol interval. Thus, the large Doppler spread
induced IDI challenges the channel equalization [ﬂ

III. EQUALIZATION OF MIMO-OTFS CHANNEL

In this section, we firstly derive a unified expression that
can represent the TS, FS and DDS-domain transmission
features of MIMO-OTFS. Note that symbols modeled in
different domains are the same but at the different stages in
the receiver as shown in Fig. E], ie.,r;, d’j and y; are TS, FS
and DDS-domain symbols, respectively. Then, we formulate
a generic linear equalization of MIMO-OTFS channel, and
conclude that performing the LMMSE scheme in the TS, FS,
or DDS domain achieves the same performance. To avoid the
shortages of the existing low-complexity LMMSE methods,
i.e., limited application scenarios and inferior performance,
we propose an efficient TS-domain MIMO-OTES channel
equalization scheme. It can simultaneously realize low com-
putational cost and accurate symbol estimates.

A. The Linear Equalization

According to @), and propositions 1-3, we can write a
generic transmission model for MIMO-OTFES, i.e.,

pvivo = PurmvoXMiMo + MIMO s (13)

T T NtMNx1
where xmivo = [X1"" 7XNT] e Cr %, pMmivo =

(ni, - ,;L%R] € CNeMNX1 and nyvo denote the trans-
mitted data symbols at Nt antennas, received data symbols at
Ng antennas, and noise samples, respectively. Matrix ®yivo
represents a general MIMO channel matrix, of which the
structure is

P, - PN,
Privo = : : ) (14)

‘I)NR,l (I)NR,NT

where ®; ; denotes the sub-channel matrix between arbitrary
transmit antenna ¢ and receive antenna j.

Remark 1: Equ. is a unified expression that can
represent the TS, FS, or DDS-domain transmission features
and the resulting interference, shown in ), (3) and (), by
given the different meanings of ®; ;, x; and ;. Specifically,
the transmitted symbols in these three domain s;, d; and
x; are related to the received symbols rj, d j and y; in
Fig. [} respectively. For example, let x; = x;, p; = y; and
®,; = G, ;, we can achieve the DDS-domain MIMO-OTFS
transmission in Fig. [T} By leveraging (13), a generic linear
equalization scheme can be formulated in the following part.

By using the unified equation (I3), channel equalization
can be modeled as solving the following least square (LS)
problem

min PO XMIMO — UMIMO || - (15)
Xmimo ECNTMN X1 ” X 7 ||2

3An effective approach to suppress the IDI can be found in [38]. It
designs a transmitter window and enables the channel responses in the
Doppler domain to become much sparser, which helps to reduce the channel
equalization complexity.

A straightforward approach could be applied to by using
a linear equalizer A € CNTMNXNrMN “Eor instance, the
choice

—1
A = (®{no®vivo + Av,vn)  Rhinios (16)

gives an LMMSE equalizer if X is the noise power, and the
ZF equalizer if A = 0. Thus, the MSE of the equalized data
symbols at all transmit antennas is

MSE = E { [|[xmmvo — XMIMOH2} an
= E{[[Apnvivo — XMIMO||2} .

Corollary 1: Applying the LMMSE-based equalizer in the
TS, FS, or DDS domain produces the same mean squared
error (MSE) value.

Proof: See Appendix C. ]
According to corollary 1, the linear equalization schemes
can be implemented in any one of the three domains without
equalization performance loss. In practice, directly using the
equalizer like (T6) would be prohibitive in term of calcula-
tional complexity, since it scales as O (N3 M3N?) due to the
matrix inversion.

The DDS-domain scheme: To tackle the calculational
issue, the low-complexity DDS-domain equalizers were pro-
posed in the existing MIMO-OTFS works [20]], [27], by
investigating the block circulant structure of the DDS-domain
channel matrix. However, these low-complexity schemes are
based on the assumption that the sub-channel appears as a
few impulse responses in the DD domain. It does not fulfill
the premise of channel model in this paper, as denoted in
Sec. II-B. In other words, the above low-complexity LMMSE
algorithms can not work in the continuous-Doppler-spread
channels.

The FS-domain scheme: There can be another idea that
adopting the low-complexity MIMO-OFDM equalizers in the
FS domain of Fig.|l} such as “block banded equalizer”, which
has been widely used in the literature [34f], [39], [40]. The
“block banded equalizer” is achieved by approximating the
“full band LMMSE” equalizer in (I4) as

AB—FS = (Hg_MIMoHB—MIMO + )\INTMN)_ng_MIMO

(18)
In (IEI) Hp_vmvo is an approximation of Hymvio, and
it can be obtained by selecting the main diagonal, the
Q@ superdiagonals and ) subdiagonals of each submatrices
H) Hn =0, ,N—1in . Although the “block
banded equalizer” with relatively small value of () can realize
computational complexity reduction, it performs at the cost
of losing the symbol estimation accuracy. This is because
the operation of “()-banded channel matrix” is essentially
equivalent to approximate the time-varying channel by using
a “@-order” complex-exponential basis expansion model [41]].
The ad-hoc approximation of the channel would cause a
non-negligible modeling error, and further deteriorate the
equalization performance.

B. The Proposed TS-domain Channel Equalization

Based on the analysis above, FS and DDS-domain channel
equalizers are not suitable to be adopted for MIMO-OTFS.



In the following, we will propose to equalize the received
data symbols in the TS domain, i.e., r; in Fig. (I} According
to the derivations and analysis in Sec. III-A, it is clear that
the challenge of linear equalization is how to efficiently solve
(T5), especially when the number of antennas and length of
transmission block are large. In mathematics, the LSMR is
a conjugate gradient based iterative algorithm to solve large
and sparse equation as (I5). It is similar to the well-known
least-squares QR decomposition (LSQR) approach [42], but
has faster convergence speed and better numerical stability.
Focusing on the MIMO-OTFS transmission in the TS domain,
the CIR is indeed sparse, as described in Sec. II. Thus, a
sparse TS-domain channel matrix Cyvo can be achieved,
shown in Fig. [2] Taking advantage of the sparsity of TS-
domain matrix, the iteration process in the LSMR converges
quickly, yielding a much lower computational overhead than
the conventional LMMSE method.

In this paper, we construct an LSMR based TS-domain
channel equalizer in Fig.[I] to remove the channel distortions
on the transmitted OTFS symbols symvo. Specifically, ac-
cording to and , the TS-domain transmission can be
formulated as

rymvo = CviMoSMiMo + PMIMO s (19)

where syimvo = [S{, tee 7871\}T]T S (CNTMNXI, MmO =
[r],-- ,rﬁR}T € CVRMNX1 " and nygmo denote the TS-
domain transmitted data symbols at Nt antennas, received
data symbols at Vg antennas, and noise samples, respectively.
The TS-domain channel matrix Cyivo can be found in ({70).

According to (I6), the TS-domain equalization matrix follows

-1
Arg = (CﬁIMOCMIMO + /\INTMN) CﬁIMO' (20)

The LSMR algorithm aims to iteratively solve (20), of
which the solving process is summarized in Algorithm I
It begins with the Golub-Kahan process (Bidiagonalization)
[43]. In the ¢-th iteration, after the Bidiagonalization op-
eration, the Krylov subspace V§k> = [vi,va, e, Vg is
constructed to obtain s} by solving the linear equation
st o = Vix;. The estimated data vector si ;o is further
updated in the Krylov subspace. It will be seen in Sec. V
that, after a few number of iterations, the LSMR can achieve
a same MSE value to the LMMSE.

In the LSMR, the complexity order in each iteration is
O (N2MNL) [44]. For I iterations, the overall complexity
order is O (N%M NLI ) In practice, the numbers of channel
taps L and iteration times I are much smaller than the
transmission block size, i.e., LI < M N. Thus, the overall
complexity of the LSMR is significantly smaller than the
complexity O (NZM3N?3) of the LMMSE.

Remark 2: When the TS-domain channel equalization
scheme is implemented, shown in Fig. [I] the estimated TS
data symbols Symvio can be directly transformed to DDS do-
main, generating the equalized OTFS symbols Xyvo. Then,
XMiMo can be remapped into data bits, thus accomplishing
the demodulation process. Hence, it could be feasible to
discard the OFDM and OTFS demodulation procedures in
the basic transmission architecture of Fig. [I] for simplicity.

Algorithm 1: The LSMR based TS-domain channel
equalization

Input: Cyivos rMivo
Output: Syivio
1: Initialization:
1) Calculating parameters:
prur = rymvo, a1vi = Cpyoryivo, hy = vy,

hy =0, -
X0=0,01 =01, G =a1f1,p0o=1,po=1,¢ =1,
s=1

2:2fori=1:1do
3:  Bidiagonalization:
Bit1ir1 = Cumvio Vi — @iy, Biv1 = [[uip |,
ir1 = [|[Vig1ls @iv1vier = ChipoWit: — Bit1Vi
4:  Solving the LS equations in Krylov subspace:

pi = \/5112 +ﬂi2+1, ¢i = a;i/pi» si = Biv1/pis

Oit1 = Si0iy1, Qg1 = Ci0yy1, 05 = 5,14,
Pi =1/ (@‘—1/%‘)2 + 91»27_%1,751' = Ei—lpj/ﬁi:
Si = 9i+1{/pi’ G = CiGs» Gig1 = —5;C;
50 Update syo: B
SMIMO = shvo + (Ci/(pipi)) hi,
h; =h; — (aipi/(pi—lﬁi—l)) h;_q,
hi+1 =Vit1 — (01'4—1/,01') h;,
e; = rymvo — CyvmvmoSymio
6: end for

However, we still retain the procedures since they are indis-
pensable parts for the proposed EDD in the next section.

IV. ITERATIVELY ENHANCED DATA DEMODULATION

A conventional demodulation strategy is to remap the
equalized OTFS symbols into data bits by using hard or soft
decision. However, in MIMO-OTFS system, such a “direct
decision”, comes with inferior demodulation performance. On
the one hand, in the DDS domain (i.e., the OTFS symbols
are exactly demodulated in this domain), the interference
generates from multiple dimensions, i.e., space-domain A,
delay-domain ISI, and Doppler-domain IDI. As shown in
Fig.[3 the spatial-domain IAI can be regarded as the transmit-
ted 4-th signal stream undergoes channel j,i, where i # 7,
and received by antenna j. For the delay-domain ISI, it is
induced by the sub-channel’s multi-path propagation in the
single-stream OTFS transmission. From Fig. the ISI is
contributed by the submatrices Géf’? € CN*N [ £ 0. Without
interference cancellation, the demodulated data bits may not
be reliable. In addition, there are significantly rich channel
diversity gains in the MIMO-OTFS system, e.g., spatial and
multi-path diversities. Nevertheless, the linear equalization
schemes may not be capable of reaping these channel di-
versities, also yielding a poor demodulation performance.

Instead of using the “direct decision” above, we propose
an enhanced data demodulation scheme in this section, to
improve the performance of the MIMO-OTFS receiver. Our
basic idea can be concluded as: 1) as shown in Fig. [T we
preserve both the equalized OTFS symbols Xymvo and re-



¥ =G x + G x,

/ . —
3 Spatial 1A1

ceived data samples ynvo, and feed them into the enhanced
iterative data detector; 2) by leveraging the equalized OTFS
symbols of each transmit stream, the interference (i.e., IAl
and ISI) can be reconstructed, and further removed from
observation vector ynminvo; 3) after interference cancellation,
the “pure” signal components are accumulated together to
resolve the transmitted OTFS symbols.

A. The Proposed Iterative Data Detector

The proposed EDD in the MIMO-OTFS receiver of Fig. [T}
is detailed in Fig.[d] where the inputs come from the equalized
OTFS symbols x{@}MO, received data samples ynmvo and
DDS-domain channel matrix Gynvo. As illustrated in Fig. Ell
the EDD mainly consists of two-layer operations. The first
layer is realized in the space dimension. In the k-th iteration,
the IAI corresponding to transmit signal stream ¢ at receive
antenna antenna j is reconstructed by the estimated QAM
symbols and channel matrix, according to Zgil 2 Gj%ir.
Then, the observation vector at receive antenna j, i.e.,
y;,» will be updated through subtracting the resulting IAI:
Vi =¥ — S0k, i Gj Xy, where §;; can be treated as
the “pure” signal of transmit stream i spreading at receive
antenna j. After IAI elimination, the EGC is invoked to
combine these “pure” signal components, which generates the
accumulated signal vector ¥s; and channel matrix Gx ;. As
a cascade of the IAI cancellation and EGC, the second layer is
performed in the delay domain, involving the ISI cancellation
and MRC. Similar to the first layer, the MRC scheme is
adopted to combine the ISI-eliminated signal components, so
as to collect the channel multi-path diversity.

G

Mivo > ¥ vivo

The I‘wayer: Spatial-domain operation | __ The 2™ layer: Delay-domain operation
{ IAIL Spatial-domain yz,, 1SI Delay-domain
k20 Cancellation EGC G, Cancellation MRC
X, —
Mo QAM Soft or hard Estimating
Mapping declslon Symbol vector
Bm output

Fig. 4. The architecture of the iteratively enhanced data detector (EDD).

Specifically, the iteration process is summarized in Algo-
rithm 2. In the initial step, the observation vector, initial
data estimates from channel equalizer and channel matrix are
denoted as ynmvo, i{\}ﬁMO, and Gymo, respectively. The
iteration process is described in following part.

Algorithm 2: Iteration procedure of the proposed data
detector
Input: Channel matrix: Gyvo; Observations: yavivo;
Initial data estimates from channel equalizer: X1i\;0
Output: Estimated data bits
1: for Iteration times = 1 : K do

T
2. IAI cancellation: y;, =y, — > G, %y.
i'=1,%i
3:  Spatial-domain EGC:
- A -
Vs = Zjvfl Vi Gui = ZNR Gji

4:  ISI cancellation: use ¥y ; and Gz’l/ to perform ISI
cancellation according to (37).

5. Delay-domain MRC by #I).

6:  Estimating data symbols by (#2).

7: Soft or hard decision on symbol estimates.

8:  QAM mapping.

9: end for

TIAI cancellation: The OTFS symbol estimates, which
come from the channel equalizer in Fig. [I] (in the initial iter-
ation) or the QAM mapper in Fig. ] (after the previous 1ter-
ation), are denoted as Xyvo = [xlT, s ij, e X%T] €
CMNNtx1 At each receive antenna, we calculate the “pure”

signal component from transmit antenna 7 as

Nt
Vii=yi— > Gk, (30)
i=1,%i
which also denotes the IAI cancellation. In (30), y; is the
observation vector at receive antenna j, X;» denotes the
estimated symbol vector of transmit stream ', G, is the

sub-channel matrix between transmit stream i’ and receive
antenna j, and y,; refers to the spatial-impaired signal
component of X; in receive antenna j after removing the
spatial interference generated by other streams X;/,4" # 1.
Based on (3), the received DD-domain data vector at
antenna j follows
Nt
Y; = Z GjJ/Xi/ + l’ll/j7 (31)
i'=1,
where n”; denotes the noise vector. Combing and (31)),
we have
Yii=¢e;+ Gj7iii + ny, (32)

where e; denotes the accumulated error vector at receive
antenna j, i.e.,

Z G (xir — Rir). (33)
=1
At a relatively high signal-to-noise ratio (SNR) regime, such
as SNR > 20 dB, the entries in e; gradually approach to zero
as the number of iterations increases [}, which will be shown
in Sec. V.

4However, there would be a particular phenomenon that e; is always with
large values no matter how many iterations are performed. It is known as
error propagation, caused by the initial data estimation error from the channel
equalizer. We will elaborate the issue in Sec. V.



Spatial-domain EGC: After IAI cancellation, we can
obtain the “pure” signal components of transmit stream ¢
spreading at receive antenna j, i.e., ¥;;. These “pure” signal
components enable us to using EGC technique to equally
combine the multi-antenna signal, so as to reap the channel
spatial diversity. Relying on (32), for all receive antennas
j = 1,--- Nr, we have following equations corresponding
to X;, i.e.,

V1 = G1,;X; + e +ny,
: (34)
YNk = Gag,iXi +eng + Dy

The spatial-domain EGC is performed by equally combing
these Ng equations in (34), i.e.,

Vs, = Gx,X; + ex + ny, (35)

where ¥ ; denotes the accumulated signal at whole receive

_ A _ . .
antennas yx; = Zjvjl ¥j.i» Gz, is the spatial-gathered

channel matrix, i.e., Gy 2 Z;V:RI G,;. In , ey and
ny, take the same form of ¥y ;, which are denoted as
the accumulated error, and noise at all receive antennas,
respectively. From to (33), the whole received “pure”
signal components corresponding to the i-th transmit stream
are aggregated. Accordingly, the channel spatial diversity is

efficiently extracted.
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Fig. 5. The structure of Gy ;, for the particular case L = 4.

So far, the spatial-domain operations of EDD, i.e., IAI
cancellation and EGC in Fig. have been performed in
the first layer. Based on (35), an LS method can be used
to acquire (or named as update) X;. Nevertheless, we do not
propose to do that. This is because: 1) it will introduce a
highly computational cost due to the matrix inversion of an
MN x MN matrix Gy ;; 2) for each stream, the delay-
domain ISI still exists. In contrast, the structure of matrix
Gy, illustrated in Fig. [5} enlightens us to decompose (35)
as a set of sub-equations. These sub-equations can exactly
represent the delay-and-Doppler domain transmission of each
OTFS stream. Thus, by using these sub-equations, we can fur-
ther design an ISI cancellation scheme, as well as the delay-
domain MRC, to collect the channel multi-path diversity.

ISI cancellation: As shown in Fig. 4] the second layer is
implemented in the delay domain, which contains the ISI can-
cellation and MRC operation. Similar to layer one, we firstly
reconstruct the ISI, which corresponds to the transmitted

symbols at a certain delay bin, by using the sub-matrices of
Gy ; and sub-vectors of X;. After subtracting the resulting ISI
from observation vector ¥y ;, the MRC technique is further
employed to combine the ISI-eliminated signal. The MRC
scheme can equivalently improve the detection SNR of the
OTFS signal. As a result, it extracts the channel multi-path
diversity. Specifically, we decompose the accumulated signal
vector yx ; in @ into M subvectors as

T T s
S’E,i = (y%,z) Ty (ygz) Ty (}_’gﬁﬂ) :|
The m-th subvector y3', € CN*1 contains all Doppler-
direction data symbols corresponding to the m-th delay bin,
which follows

L-1
’ m—1
I, = el + 0¥ + GYTR + > Gg;;”xf I a6)
V=1
where X7 collects all estimated Doppler-direction data sym-

bols corresponding to the m-th delay bin, ie., X" =

T /

(LXi[m,O], o, Xilmynl, -, Xg[m, N —1]| , and Glzzn

enotes the sub-channel matrix in Gy ;, which can be found
in Fig. [5] Parameters e} and ng refer to error and noise
sub-vectors, respectively, which take the same form of y37 .
In the right-hand side of @, the fourth term denotes the ISI
components which corresponds to the m-th sub-block X}.
Accordingly, the ISI cancellation is performed by

QYT el +ng =y, - Yo Gk @)

K3

which can be rewritten as

O (38)

7 ,0°

~ A _ Um ~(m=1
ST TR clmsl™ v _em _nm (39)

which can be treated as the m-th sub-block of the accumu-
lated “pure” signal, after removing the ISI.

Delay-domain MRC: After ISI cancellation, shown in
Fig. [I] we can obtain the “pure” observation signal com-
ponents of the m-th sub-block, i.e., ygﬂ. in . As the
maximum channel delay spread is L, these ISI-eliminated
signal can be gathered from whole L propagation paths.
Specifically, from (38) and (39), we can derive following L
equations corresponding to X;*:

Smo 0,msm
ye =Gy X",
~(m+1)M _ 1,mgm
Yz, = GZ,i Xi
(40)
~(m+L-1),, ~L-1masm
Ys.i = GE,i X -

By leveraging the MRC technique, we combine these L
equations in (40), to detect the OTFS symbol vector Xj".
Specifically, we have

y'si = GE & 41



where

L—1
H /
mo A U'm ~(m+l)M
Y= <§ (GE,i ) Yz, )
I'=0
L-1
H
m A U'm Um
Ni = E Gy, ) Gy |-
I'=0

The right-hand side of {@I) combines the whole signal
branches of X" that spreads in the delay dimension, or rather,
collects the submatrices in the column direction of Gy ;.
By doing so, the accumulated signal components enable to
extract the multi-path diversity, meanwhile improve the signal
power equivalently. According to (4I), X7 is resolved by

(]

R = (GE) YR (42)

Remark 3: The proposed EDD is a layer-by-layer scheme.
The serial-cascaded modules in Fig. E], i.e., IAI-cancellation,
EGC, ISI-cancellation, and MRC, are capable of realizing
multi-dimensional interference elimination and channel diver-
sity extraction. Also, the EDD in the MIMO-OTEFS system,
can independently cooperate with arbitrary channel equalizer,
as the EDD only requires the initial equalized OTFS symbols
to start.

Remark 4: In practice, the initial symbol estimates, ob-
tained by the channel equalizer, are crucial to perform the
iterative EDD. On the one hand, the interference in the
MIMO-OTFS system is significant. With imprecise initial
estimates, the residual error in (33) would be considerably
large, which yields the error propagation and possibly results
in a block error rate (BLER) platform. The FS-domain
“block banded equalizer” [40] can work efficiently as long
as the channel’s time variations are not significant across the
duration of one OFDM symbol period. However, since the
OTFS signal always undergoes the highly doubly-dispersive
channels, the “block banded equalizer” could not be effective
due to the strong ICL In contrast, our TS-domain LSMR
channel equalizer can not only avoid the above drawbacks,
but also help to reduce the number of iterations in the EDD,
which will be shown in Sec. V.

B. Practical Implementation and Computational Complexity

For the practical implementation, it is not necessary to
calculate each step in the EDD. For the spatial-domain
operations, i.e., IAI cancellation and EGC in Fig. [4] the key
outputs are ¥x, ; and Gy ;. 1) Calculating Gy, ;: matrix Gy ;
is the accumulated channel matrix at all receive antennas
corresponding to transmit antenna 7. It requires N°M LNy
complex additions (CAs) for each transmit stream. For the
whole N transmit streams, the total complexity in terms of
CAs is N2N2M L. 2) Calculating ¥y ;: From and ,
a much simpler method can be used to acquire ¥y ;, i.e., by

defining an error vector enmvo = [€] -+ , €k, | as
emiMo = YmiMo — GammoXmimo- 43)
In this way, (32) can be rewritten as y;; = €; + G;;X;.
Further, follows
Vs, =es + Gy X, (44)

where

Ngr
ex2) e (45)

j=1
In the right-hand side of [@4), e is obtained from (@3) and
(@5), which needs 2M NNy CAs and N2NZML complex
multiplications (CMs). For the second term, i.e., Gy ;X;, the
computational complexity has been counted in calculating
@3).

To realize the delay-domain MRC based detection, it only
requires following operations. 3) Obtaining y§7,;: from ,
calculating y3', requires (L +2)N CAs and N2L CMs. 4)
Updating X} there is no need to directly use matrix inversion
technique in to achieve X", since Ggi in is a
circulant matrix. Thus, the FFT can be used in the practical
implementation. Specifically, C‘.g{i can be decomposed as

Gy, =FyAL FR, (46)

where F y demotes N x N FFT matrix, and A} ; is a diagonal
matrix. The diagonal elements can be achieved by applying
the FFT to the first row of (_}TE"”Z.. As a result, can be
rewritten as:

R = Fy(AZ,) Py, (47)

Based on the above derivations, updating X" can be simpli-
fied as follows:

Step 1: Applying IFFT to y’ gi, which requires the com-
plexity order of O (N log (N)).

Step 2: Calculation the diagonal elements in A ;, which
requires the complexity order of O (N log (N)).

Step 3: Element-wise division in the operation
-1 . . .

(A%,) FRy'ss;, which requires N times complex

divisions.

Step 4: Using FFT to the results in step 3, which requires
the complexity order of O (N log (N)).

Overall, updating X" requires the complexity order of
O (Nlog(N)). According to the above analysis and the
derivations, implementing the proposed EDD requires the
complexity order of O (N2N%MLK).

V. SIMULATIONS AND DISCUSSIONS

In this section, the demodulation performance is evaluated
for the MIMO-OTES system, of which the parameters are set
according to Table I. We assume each channel tap follows a
Rayleigh distribution with an exponentially decaying power
delay profile [34]], and no spatial correlation between anten-
nas. In all simulations, we consider UE’s velocity of 550 km/h
at 5.9 GHz carrier frequency, corresponding to a maximum
channel Doppler frequency f; of 3000 Hz. To avoid the
detection performance loss introduced by channel estimation
errors, the channel responses are assumed as perfectly known
at the receiver side.

A. Channel Equalization Performance

We firstly investigate the channel equalization performance
by evaluating the MSE of the equalized OTFS symbols, i.e.,

KMIMO — XMIMO ||2} . (48)

MSE = E{|



TABLE I
SYSTEM SIMULATION PARAMETERS
Parameter Value

Num. of subcarriers (M) 32

Num. of symbols (V) 32
Num. of channel taps (L) 5

Transmission mode 2 x 2 MIMO, 3 x 4 MIMO

Carrier frequency (f¢) 5.9 GHz
Subcarrier spacing (A f) 15 KHz
Maximum user’s velocity 550 km/h

Modulation scheme QPSK, 16-QAM, 64-QAM, 256-QAM

Channel encoder [1,5/7]g convolutional code

Channel coding rate 172

Channel Doppler spectrum “U-shaped” spectrum [31]]

Num. of simulated OTFS blocks 1 x10°

The proposed TS-domain equalizer is compared with the
widely-used frequency-domain “block banded equalizer”
[34], which provides a good trade off between equalization
performance and calculational complexity by selecting the
main diagonal, the () superdiagonals and () subdiagonals of
each frequency-domain channel matrix.

1
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Fig. 6. The CDF of the MSE in 2 x 2 MIMO-OTFS case, where SNR =
20 dB.
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Fig. 7. The CDF of the MSE in 3 x 4 MIMO case, where SNR = 20 dB.

The maximum UE’s velocity is 550 km/h.

Figs. 6 and 7 demonstrate the cumulative density function
(CDF) of the MSE in 2 x 2 MIMO and 3 x 4 MIMO trans-
mission cases, respectively, where SNR = 20 dB, and label
S(dB) in X-axis denotes the threshold value. The CDF curve
“full band LMMSE”, which is achieved by using the full-
banded LMMSE method in (]E[), is plotted as a benchmark.
As we can see, it requires 25 and 20 iterations for the LSMR,
respectively in 2 X 2 and 3 x 4 MIMO transmission, to
achieve the comparable equalization performance to the full-

——LSMR. Doppler = 300
——LSMR. Doppler = 750
——LSMR. Doppler = 1500
LSMR. Doppler = 3000
- Full band LMMSE, Doppler = 300 Hz (Benchmark)|

Doppler from 300 Hz to 3000 Hz
4

10'2 L u)
0 10 20 30 40 50
Number of iterations: i

Fig. 8. The comparison of the equalization error e(?) with the number of
iterations ¢, where SNR = 20 dB.

banded LMMSE. Also, our scheme significantly outperforms
the frequency-domain “block banded equalizer” [34].

To evaluate the convergence speed of LSMR, we have
compared e?) versus number of iterations i in Fig. |8l Note

that
e =F {‘

denotes the estimation error after the ¢-th iteration, where
é&)IMo represents the estimated symbol vector after the i-
th iteration. In Fig. [8] the black dash line denotes the
estimation error corresponding to the full band LMMSE
algorithm, which is regarded as a threshold to evaluate the
convergence of the LSMR. As we can see, after 25 iterations,
the value of (! gradually approaches to a stationary level
for all considered Doppler spread cases. Also, the smaller
channel Doppler spread is, the quicker convergence rate can
be obtained. Finally, even if the channel matrix may be ill-
conditioned when the Doppler is 3000 Hz [45], the LSMR
is still capable of acquiring the relatively accurate and robust
numerical solutions.
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B. Demodulation Performance
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Fig. 9. The BLER comparison of SNR with different iterations in the EDD.

Fig. 0] compares the BLER versus SNR with different
iteration times in the proposed EDD, where f; is 3000 Hz.
The receiver’s architecture is constructed by the LSMR-based
channel equalizer and the EDIfL and the transmission mode

5The number of iterations in LSMR is chosen as 20, to achieve a tradeoff
between the computational complexity and equalization performance.



QPSK 16-QAM 64-QAM 256-QAM

BLER

—LMSR + EDD, Iters. = 6 (Propose
10 BandedMMSE [34] + EDD, Q = 10, lters. = 12
—MP [19]

5 10 15 20 25 30
SNR (dB)

Fig. 10. The BLER versus SNR in 2 x 2 MIMO transmission case.

is 2 x 2 MIMO. When Iters. = 0, the EDD is not invoked. The
receiver only adopting the LSMR-based channel equalizer can
not demodulate the high-order QAM signaling. By leveraging
the EDD scheme, the BLER platform decreases quickly with
few iterations. For all QAM constellations, a solid BLER
performance can be achieved after six iterations.

Fig. [I0] demonstrate the BLER comparison of SNR with
different demodulation schemes in 2 x 2 MIMO transmission
case. We plot the BLER curve “Ideal EDD”, which is
obtained by feeding the perfect initial symbol estimates into
the EDD, to verify the demodulation gap involved by the
channel equalization error. It can be seen from Fig. [I0] that,
the SNR loss caused by our scheme is negligible in contrast
to scheme “Ideal EDD”. Additionally, the other state-of-the-
art detection methods, i.e., the MP based symbol detection
[19] and the frequency-domain “block banded equalizer”
with EDD, denoted as “BandedMMSE [34] + EDD”, are
compared. For the MP, the maximum iterations are 10, 30,
50 and 100, respectively for QPSK, 16-QAM, 64-QAM,
and 256-QAM signaling. For low-order QAM signaling,
the receivers adopting these two detectors can realize the
comparable demodulation performance to ours. For high-
order QAM signaling, the proposed receiver achieves 1 dB
SNR gain over the MP-based detector at the BLER level of
10~2. In contrast, the receiver “BandedMMSE [34] + EDD,
@ = 10, Iters. = 12” fails to retrieve the high-order QAM
symbols due to the intolerable channel equalization error.

Fig. 11(a) demonstrates the BLER comparison of SNR with
different spatial correlation (SC) coefficients, where « denotes
the SC coefficient for transmitter and receiver antennas. As
we can see, the proposed detector is robust to the small or
moderate SC degree, e.g., « = 0.3/0.5. Even with moderate
SC degree, e.g., o = 0.5, the SNR gap between cases “No
SC, Perfect SCI” and “Ideal CE, SC: o = 0.5” is about 1 dB,
at BLER = 10~2. Additionally, when the antenna’s correlation

is relatively strong, i.e., o = 0.7, there is a relatively large
SNR loss compared with ideal case.

Fig. 11(b) illustrates the influence of imperfect channel
stae information to the demodulation performance. Here, we
introduce error n, in the channel estimation (CE) using the
model

h;l [k,1] = hji [k, 1] + ne.

The MSE of CE, i.e., the variance of n. is considered as —
25, =20 or —15 dB. When MSE < -20 dB, the demodulation
SNR loss introduced by CE error is less than 1.5 dB, at the
BLER level of 10~2. When the CE error is significant, e.g.,
MSE = — 15 dB, more transmitting power will be consumed
to achieve a satisfied demodulation performance.
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(a) The BLER versus SNR (b) The BLER versus SNR
with different spatial cor- with different channel esti-
relation coefficients. mation error.

Fig. 11. The demodulation performance with non-ideal issues.

C. Computational Complexity

We conclude the computational load of different methods
in Table II. According to [10]], [19], implementing the MP
requires the complexity order of O (N2NZMLAIyp). In
the proposed receiver architecture (LSMR + EDD), the com-
plexity orders for LSMR and EDD are O (N%M NLI ) and
O (N?NZMLK) , respectively. Thus, the overall complexity
order is O (N 2N%M LK ) In the same way, the overall com-
plexity orders for “Full-band MMSE + EDD” and “Banded-
MMSE + EDD” are O (M*N3N3) and O (MN?N3Q?),
respectively. From Table 1, as the size of modulation al-
phabet A increases, the implementation complexity of MP
increases significantly. In our proposal, i.e., LSMR + EDD,
the implementation complexity is independent of the size of
modulation alphabet, thus achieving a constant computational

TABLE I
THE COMPARISON OF COMPUTATIONAL COMPLEXITY FOR DIFFERENT DETECTION METHODS

2 x 2 MIMO OTFS

Equalization Detection Overall Complexity QPSK [ T6QAM | G6A-QAM | 256.QAM
Full-band MMSE O (M3N3N3) O (8 x10%)
Banded MMSE [34] EDD O (MN?NZQ?) O (2 x 10%)
LSMR O (N>NZMLK) O (4 x10°

MP [19] O (N?NZMLAIyp) | O(2x107) [ O(3x10%) [ O (2x107) [ O (10'9)




load for all considered QAM signaling. Also, as the number
of iterations in EDD is quite smaller than that in the MP, i.e.,
K < Iy p, the overall computational load of the proposed
architecture is much lower than the MP.

VI. CONCLUSIONS

In this paper, we studied the orthogonal time frequency
space (OTFS) for multiple-input multiple-output (MIMO)
system with the focus on channel equalization and symbol
detection. Specifically, through analyzing the MIMO-OTFS
transmission architecture, we found that the time-space (TS)
domain channel matrix has a sparse structure. By leveraging
the sparsity of channel matrix, a least squares minimum
residual (LSMR) based TS-domain channel equalizer was
proposed to remove the channel distortions on OTFS symbols.
Based on the channel equalization, we developed an enhanced
data detection (EDD) scheme to improve the demodula-
tion performance of MIMO-OTFS receiver. The simulations
demonstrated that the receiver adopting the proposed LSMR
and EDD, can robustly demodulate the superposed high-order
quadrature amplitude modulation (QAM) symbols, e.g., 256-
QAM, in the case of multiple-stream OTFS signal transmis-
sion over high-mobility scenarios.

APPENDIX A
PROOF OF PROPOSITIONS 1 AND 2

At receive antenna j, the frequency-domain data vector d’;
is

Nt
d/j :Z(IN®FM) C],z (IN®F5\—I/[>CI“ 49)

i=1
where d; = vec (D;) € CMN*! contains the frequency data
symbols modulated at N OFDM symbols, each of which has
M sucarriers. Defining the frequency-domain channel matrix

. . . . A
between transmit antenna ¢ and receive antenna j as H;; =
(In @ Far) Cyi (In @ ), follows

Nt
d; = ZH,;,jdi. (50)
=1

The DD-domain data vector at receive antenna j is expressed
as

Nt
v :Z(FN®IM) Cj7i (F%@)IM))_Q, (51

i=1

where %; = vec (X;) € CMNX1 collects all QAM symbols
modulated at the DD plane of the ¢-th stream. The format
of (5I) is not preferable in demonstrating the DD-domain
transmissions. Thus, to better understand the OTFS transmis-
sion in this paper, we rewrite (51)) into (5), by introducing a
permutation matrix IT € CMNXMN i e |

= | (Iy®al (0)" !

(v oaf, (i -1)" | .

(52)
where ay; (m) refers to the m-th column of Iy, as well
as defining x; 2 vec (XiT) = IIvec(X;) and y; E

N
vec (YiT) = ITvec (Y;). It follows y; = > G, ;x;, where
i=1
Gj; € CMNXMN denotes the DD-domain transmission
matrix between transmit antenna j and receive antenna ¢, i.e.,
G =I(Fy®Iy)C,, (FN®@Iy)I7. (53
[ |

APPENDIX B
PROOF OF PROPOSITION 3
The time-domain channel matrix C;; in , can be
expressed as
L—1
Cji =) Blyydiag (hj;), (54)
1=0
where B,y € CMNXMN s 3 forward cyclic shift matrix
[46]. For simplicity, we denote the CIR vector of the I-
th path between transmit antenna ¢ and receive antenna j
as hé,z = {th [Mcp,l] g ,hjﬂ‘ [Mcp + MN —1, l]} In-
serting into (53), we have (57). Define the (m’,m)-th
submatrix in as G e CVNom!/ m e [0, M — 1],
which follows

G/, = (Fy ®ay, (m') Cj,i (FY @an (m)). (57)
Inserting into , the submatrix GZ”]’" is rewritten as

4 m L71 .
Gy, = = (Fy @ al; (m')) By, ydiag (b} ;) (F¥ @ ay (m))

L—1
- l;) (Fy ®a], (m' —1),,)) diag (b ;) (FI @ ap (m)).
- (58)
Supposing the maximum channel delay spread L < M, we
have the following conclusions [47]:
1) if and only if (m' —1),, = m, G}';"™ # 0;
2) When (m/ —1),, = m, G;"Z/ "™ is a circulant matrix with
its first row in (39). ]

(Fy ®af; (0) Cji (F @ ay (0))

(Fy ®alk; (M —1)) C;; (FZ @ an (0))

1

G;nz 0,:) = —=Fn {hji [Mep + m/, (m' —m),,],- -

VN

(Fy ®@aj, (0)) Cji (FII @ap (M 1))
(Fyv®aj, (1)) Cji (FY @ anm (M — 1))

(57)

(Fx ®al, (M~ 1)) C; (F¥ @ apy (M — 1))

hii [Mep+ (N =1)M+m', (m' —m),,]}. (59)



APPENDIX C
PROOF OF COROLLARY 1

Time-space domain: We begin with the TS-domain
MIMO-OTES transmission. According to () and (I3), the
MIMO transmission is formulated as

rymvo = CvmvosMivo + MIMO (69)

where ryivo = [rf, - ,I‘%R]T € CNrMNX1 i the TS-
domain received data symbols at all antennas, symvio =
[sf, e ,SET]T € CNTMNX1 represent the transmitted TS-
domain signal at all antennas, nymvo denotes the additive
noise vector and TS-domain channel matrix follows

Cii - Cin
Cmivo = : : . (70)

Chng1 C g, Ny

According to (I6), the TS-domain equalization matrix is
derived as

—1
Ars = (CHinioCummvo + Avymn)  Chio- (7D

Thus, the MSE can be written in (72).

Frequency-spaTce domain: We denote d'yivo =

T

E‘d/f,--- ] and dumo = [a7,---,d%]" as
the FS-domain received and transmitted data symbol-
s for all antennas, respectively. By leveraging ([@9), we
have d'ymvo = (Ing @ (Inv @ Fn)) rvivo; dumio =
(Iny @ In ® Fn))symimo- Thus, the FS-domain transmis-
sion is expressed as

d'vinvio = Humaodmmao + 7/ vivo, (73)

where Hymvo denotes the FS-domain channel matrix, i.e.,

Hynio = (Ing © (Iy @ Fx)) Cunvio(Iny @ (Iy @ Fy))™,

(74)
and the noise vector n'ymvio  follows n/yivmo =
(Ing, ® In ® Fn)) nyvivo. From , the FS-domain e-
qualization matrix is

—1
Apg = (HﬁIMOHMIMO + /\INTMN) HI\I—/IIIMO’ (75)

and the MSE refers to . For simplicity, we define K; =
INR®(IN®FN) and Ko = INT®(IN®FN)~ Note that

we have

Tr {(AFSd/MIMO - dMIMO) (AFSd/MIMO - dMIMO)H}

=Tr {Kz ((CﬁIMoCMIMo + MNTMN)ACAH/HMOFMIMO - SMIMO)
((cﬁlMoCMIMO + MNTMN)_lCﬁIMOFMIMO - SMIMO>HK§I}

= Tr{((cﬁIMOCMIMO + MNTMN) _ICﬁIMOPMIMo - SMIMO)
((CﬁIMOCMIMO + AINTMN)_lcﬁIMOFMIMO - SMIMO>H}

=Tr {(Arsraimo — smimo) (Arsrvimo — smimo) 7}

According to (79), we can achieve MSErg = MSEgs.

Delay-Doppler-space domain: For simplicity, we directly
formulate the DDS-domain MIMO-OTEFS transmission as

(76)

”
ymimo = Gumvoxmmo + 177 Mivo, (81)

where ymmio = (Ing ® (II(FN ® In))) rvivo - and
XMIMO = (INT & (H (FN X IM))) syivo denote th;: re-
ceived and transmitted DDS-domain data vector, respectively.
Vector n”'vvo = (Ing ®@ (IT(Fn ® Ing))) nunyio s the
noise vector. The DDS-domain channel matrix Gymnvo =
(IN (H (FN X IM))) CMIMO(IN ’ (H (FN X I]yj))) . The
MSE of the DDS-domain symbol estimates is denoted as (32),
where Apps = (GiinvoGuvo + A, vny)  Grinvo-
In similar, we define Py = (In, ® (II (Fn ®InM))) and
Py = (In, ® (II(Fn ® Ing))). According to the above, we
have
T {(Appsymimo — xmimo) (Appsymivo — xumo) 7
= {P2 ((CI‘F/IHMOCMIMO + MNTIWN)_lcﬁIMOTMIMO - Sl\’[HvIO)
((CI\}/IHMOCMIMO + )\INTMN)_lcﬁIMo“MIMO - SMIMO)pr}
=Tr {((CﬁlMoCMIMo + AN MN)_lcﬁIMorMIMo - sMIMO)
((CI\I}IHMOCMIMO + AINTMN)_lcﬁlMorMIMO - SMIMO)H}

H
=Tr {(ArsrMivo — smMimo) (Arsrmivo — smimo) 7 }-

Based on (83), we have MSEpps = MSETs.

82)
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