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Abstract—As a widely used localization and sensing technique,
radars will play an important role in future wireless networks.
However, the wireless channels between the radar and the targets
are passively adopted by traditional radars, which limits the
performance of target detection. To address this issue, we propose
to use the reconfigurable intelligent surface (RIS) to improve
the detection accuracy of radar systems due to its capability to
customize channel conditions by adjusting its phase shifts, which
is referred to as MetaRadar. In such a system, it is challenging
to jointly optimize both radar waveforms and RIS phase shifts
in order to improve the multi-target detection performance. To
tackle this challenge, we design a waveform and phase shift
optimization (WPSO) algorithm to effectively solve the multi-
target detection problem, and also analyze the performance of
the proposed MetaRadar scheme theoretically. Simulation results
show that the detection performance of the MetaRadar scheme
is significantly better than that of the traditional radar schemes.

Index Terms—Multi-target detection, reconfigurable intelligent
surface, radar systems, waveform design.

NOMENCLATURE

(·)∗ Conjugate operator
(·)H Conjugate transpose operator
(·)T Transpose operator
(θrm,n, ϕ

r
m,n) Direction from the m-th element to the n-th

antenna
(θk, ϕk) Direction towards the k-th target
α Solution accuracy of the interior-point algo-

rithm
βc+1
j,j′ Weighting factor for predicted distance

dc+1
j,j′ (Pc+1)

0M×N Matrix with all the elements being 0 and size
M ×N

γ Vector of responses of all the targets
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Ξ Gain of the direct path from the antenna array
to the targets

ak Steering vector of the RIS for the k-th target
B(s) Gain of the reflection path from the antenna

array to the directions of targets under phase
shift vector s

bk(s) Gain of the reflection path from the antenna
array to the direction of the k-th target under
phase shift vector s

IM×N Identity matrix with size M ×N
Jk Shift matrix of the k-th target which shifts

signals from yt,ck to yd,ck
pA Position of the antenna array’s center
pR Position of the RIS’s center
s Phase shift vector that contains the phase shifts

of all the RIS elements
sr,c RIS phase shift vector in the reception step in

the c-th cycle
st,c RIS phase shift vector in the transmission step

in the c-th cycle
V c Residual term in the c-th cycle
vc Vectorization of the residual term V c

W c Radar waveform matrix in the c-th cycle
wc Vectorization of the radar waveform W c

Y c Signal received by the antenna array in the c-th
cycle

yc Vectorization of the matrix Y c

y(c) Received signals from the 1-st to the c-th cycle
yd,ck Delayed signal from the k-th target in the c-th

cycle
Y t,c Transmitted signal towards the directions of the

targets in the c-th cycle
yt,ck Transmitted signal towards the direction of the

k-th target in the c-th cycle
γk Response of the k-th target characterizing the

reflection and channel propagation effects re-
lated to the k-th target

γ̂(c),j Estimated responses given hypothesis Uj in the
c-th cycle

λ Wavelength of the carrier signal
CM×N Set of all complex M ×N matrices
E(·) Stochastic expectation
HM×N Set of all Hermitian M ×N matrices
Pc+1 Set of variables to be optimized in the (c+1)-th

cycle
ω Threshold of the target response amplitude
⊗ Kronecker product
σ2 Variance of the residual term
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{l̂k}(c),j Estimated delays given hypothesis Uj in the
c-th cycle

ds Separation between adjacent antennas
du An upper bound of (22a)
dc+1
j,j′ (Pc+1) Predicted distance between hypotheses Uj and

Uj′ in the (c+ 1)-th cycle given Pc+1

dk Range of the k-th target
GA Gain of an antenna
GAP (θ, ϕ) Normalized radiation pattern of an antenna

towards direction (θ, ϕ)
GR Gain of an RIS element
GRP (θ, ϕ) Normalized radiation pattern of an RIS element

towards direction (θ, ϕ)
hm,n Path gain between the n-th antenna and the m-

th RIS element
I Number of angular grids
JK Number of hypotheses when the number of

targets is K
K Number of targets
L Number of snapshots of the radar waveform
lk Delay of the echo signals received by the

antenna array from the k-th target compared
with the transmitted signals

LR Number of snapshots of the received signal
lm,n Distance between the n-th antenna and the m-

th RIS element
M Number of elements in the RIS
N Number of antennas in the MIMO array
Ns Number of phase shifts of an RIS element
pc(Uj) Prior probability of hypothesis Uj in the c-th

cycle
PM Maximum transmission power
r(sm) Reflection coefficient of the m-th RIS element

with phase shift sm
Se Area of an RIS element
sm Phase shift of the m-th RIS element
U A hypothesis representing that there are N(U)

targets and the k-th target is in the ik(U)-th
grid

vl Speed of light
Re(·) Real part of a complex variable
tr(·) Trace operator
vec(·) Vector operator

I. INTRODUCTION

Driven by the demand to support applications such as
virtual reality (VR) and autonomous driving, localization
and sensing become crucial functions for future wireless
systems [1], [2]. To put this vision into practice, various
sensing techniques which enable the perception of the sur-
rounding environment are developed. Among various sensing
techniques, radar technique which uses radio frequency (RF)
signals to detect and locate targets through reflected signals
has attracted much attention due to many advantages such
as environmental robustness, direct measurement of velocity,
and low cost [3]. Specifically, radars can directly measure the
velocity of the target by leveraging the Doppler effect, which is

especially useful for autonomous driving [4]. In addition, with
the development of RF CMOS and multiple-input-multiple-
output (MIMO) technology, radars are becoming more cost-
efficient, which will lead to greater economic interests [5].

In the literature, various works which optimize the wave-
forms of radar signals for detection performance enhance-
ment have been proposed [6], [7]. Based on the optimization
criterions, these works can be broadly classified into three
types: detection probability, signal-to-interference-plus-noise
ratio (SINR), and relative entropy based schemes [8]. The
detection probability based schemes optimize the radar wave-
forms to directly maximize the detection probability given
the constraint of false alarm probability, while the optimiza-
tion problem is difficult to tackle due to the complicated
relationship between the detection probability and the radar
waveforms [9]. In the SINR based schemes, the SINRs of
the echo signals from the targets are maximized because a
large SINR usually leads to a high detection accuracy [10].
The relative entropy is another widely used criterion, which
has been shown to be effective to evaluate the detection
performance [11], [12]. In [13], the authors considered the
detection of a single target in colored noise, and derived the
optimal radar waveforms that maximized the relative entropy.
The multi-target detection scenario was investigated in [14].
However, the propagation channels between the radar system
and the targets are passively adopted in the aforementioned
schemes, which limits the performance of the radar. Specif-
ically, if the channel conditions are unfavorable, the radar
signals will suffer heavy attenuation when propagating through
the channels, resulting in a smaller SINR/relative entropy and
a lower target detection accuracy.

To address this issue and improve the detection performance
of the radar system, the RIS is a promising solution. The RIS
is a type of planar metamaterial that can be used to effectively
control the propagation channels [15], [16]. It is composed of
a large number of elements with electrically tunable phase
shifts, and thus the characteristics of reflection channels via
the RIS elements can be changed by adjusting the phase shifts
of these elements [17], [18]. By properly designing the phase
shifts of RIS elements, the channel conditions between the
radar antennas and the targets can be optimized to promote
the detection performance of the radar systems1.

Several RIS-aided radar schemes have been discussed in
the literature. In [19], the authors considered a scenario where
there was no line-of-sight (N-LOS) link between the radar
antennas and the target, and an RIS was deployed to enable
the radar to detect the target in the NLOS areas. The authors
in [20] utilized an RIS to promote the received signal-to-noise
ratio (SNR) for enhanced detection capabilities of a single-
antenna radar. The MIMO radar case was considered in [21]
and [22], where the phase shifts of the RIS were optimized to
improve the radar performance. However, the aforementioned
schemes all consider a single target scenario, which cannot be
directly applied to the multi-target scenario. Besides, the radar

1The RIS-aided radar scheme can be utilized in the scenario where radar
signals suffers heavy attenuation when propagating through the wireless
channels. For example, the proposed scheme is especially suitable to extend
the detection range of millimeter wave radars.
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Fig. 1. A MetaRadar system: (a) Transmission mode; (b) Reception mode.

waveforms are not optimized in these schemes, which results
in limited improvement of radar performances. Different from
these schemes, in this paper, we investigate the multi-target
detection using an RIS-assisted radar, and jointly optimize the
radar waveforms and RIS phase shifts in our proposed scheme.

Two challenges needs to be addressed in the proposed
scheme. First, to fully realize the benefits of the RIS in
the multi-target detection scenario, the operations of the RIS
need to be coordinated with the transceiver antennas, which
complicates the system design. Second, since radar waveforms
and RIS phase shifts are jointly optimized for multi-target
detection, the optimization problem is challenging because the
two variables are coupled with each other. To handle these
challenges, we propose the multi-target detection protocol
for the MetaRadar, and formulate the multi-target detection
problem which optimizes the radar waveform and RIS phase
shifts based on the relative entropy criterion. The waveform
and phase shift optimization (WPSO) algorithm is design
to efficiently tackle the formulated problem. In general, our
contributions can be summarized as follows:
• We propose a multi-target detection protocol which coor-

dinates the operations of the RIS and the radar antennas.
The protocol runs in a cognitive manner, where the de-
tection performance of the MetaRadar can be adaptively
improved cycle by cycle.

• The multi-target detection problem is formulated using
the criterion of relative entropy, where the radar wave-
forms and the RIS phase shifts are jointly optimized. The
WPSO algorithm is designed to tackle the formulated
multi-target detection problem, which can be used to
efficiently derive the optimized radar waveforms and the
RIS phase shifts.

• The convergence and complexity of the proposed WPSO
algorithm are analyzed, and the relationship between the
RIS phase shifts, radar configuration, and the detection
performance is also discussed. We also verify the ef-
fectiveness of the proposed MetaRadar scheme through
simulation.

The rest of this paper is organized as follows. In Section II,
we describe the target detection scenario and introduce the
model of the MetaRadar. The multi-target detection protocol
is proposed in Section III. In Section IV, we formulate the
waveform and RIS phase shift optimization problem. The

WPSO algorithm is designed in Section V to solve the
formulated problem. In Section VI, we provide the analysis of
the proposed scheme. The simulation results are presented in
Section VII. Finally, we draw the conclusions in Section VIII.

II. SYSTEM MODEL

In this section, we first introduce the considered scenario
in Subsection II-A, and then model the RIS, path gains,
and the radar receiver in Subsections II-B, VI-B, and II-D,
respectively.

A. Scenario Description

We consider a multi-target detection scenario using the
MetaRadar. As shown in Fig. 1, the MetaRadar is composed
of a transmitter (Tx), a receiver (Rx), a MIMO antenna array
with N antennas connected with the Tx and Rx, and an RIS
with M elements. By deploying an RIS in the radar system,
we can create reflection paths between the MIMO antenna
array and the targets, and thus the overall channel conditions
between the array and targets can be improved by optimizing
the phase shifts of the RIS.

The MetaRadar functions in two modes, i.e., the transmis-
sion and reception modes. In the transmission mode, the Tx
first generates signals according to designed waveforms, and
then radiates the signals through the MIMO antenna array
towards the targets via both direct and reflection paths, as
illustrated in Fig. 1 (a). Then, the MetaRadar converts to the
reception mode, where the antenna array receives the echo
signals reflected by the targets. The received signals will be
delivered to the Rx in order to detect and locate targets.

B. Reconfigurable Intelligent Surface

The RIS is a type of planar material made up of many
homogenous RIS elements. A programmable RIS element is
illustrated in Fig. 2. In an element, several metal patches are
connected by the pin diodes and printed on the dielectric
substrates. Each pin diode can be tuned to two states, i.e.,
ON and OFF states, leading to different states and reflection
coefficients of the RIS element [23].

Suppose each RIS element has Ns different reflection co-
efficients with same amplitude gain η and Ns different phase
shifts which are uniformly distributed in the range [0, 2π) with
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Fig. 2. Reflection characteristics of an RIS element.

interval ∆s =
2π

Ns
[23]. Therefore, the reflection coefficient

of the m-th RIS element with phase shift sm can be expressed
as

r(sm) = ηe−js, s ∈ {i∆s|i = 1, · · · , Ns} . (1)

C. Path Gains

The reflection paths between the antenna array and the
targets consists of two parts: the antenna-RIS path and the
RIS-target path. More specifically, the path gain between the
n-th antenna and the m-th RIS element is given by [24], [25]

hm,n =
1√
4π
×

√
GAGAP (θrm,n, ϕ

r
m,n)GRP (θrm,n, ϕ

r
m,n)Se

lm,n

× e−j2πlm,n/λ, (2)

where GA is the gain of an antenna. (θrm,n, ϕ
r
m,n) is the

direction from the m-th element to the n-th antenna, as
illustrated in Fig. II-C. GAP (θrm,n, ϕ

r
m,n) is the normalized radi-

ation pattern towards direction (θrm,n, ϕ
r
m,n). GRP (θrm,n, ϕ

r
m,n)

is normalized radiation pattern of an RIS element towards
direction (θrm,n, ϕ

r
m,n). Se is the area of an RIS element.

lm,n is the distance between the n-th antenna and the m-
th RIS element. λ is the wavelength of the carrier signal.
Based on [26], the normalized radiation pattern GRP (θ, ϕ) can
be modeled as

GRP (θ, ϕ) =

{
cos3(θ), θ ∈ [0, π/2], ϕ ∈ [0, 2π],

0, θ ∈ (π/2, π], ϕ ∈ [0, 2π].
(3)

Since targets are in the farfield of RIS2, signals reflected
by the RIS can be viewed as a plane wave at the location of
each target [27]. Therefore, the amplitude gain and the relative
phase delay of the m-th RIS element comparing with the first
element towards the k-th target is given by

ak,m =
√
GRGRP (θk, ϕk)ejekp

e
m , (4)

where GR is the gain of an RIS element, (θk, ϕk) is the
direction of the k-th target, ek is the wave vector with
wavelength λ and direction towards the k-th target, and pem is

2The distance between the targets and the MetaRadar is greater than
2D2/λ, where D is the size of the RIS.

RIS

k-th target

n-th

antenna

m-th element

k

k

y

x

z

r

m, n

 
r
m, n

hm, n

ak, m

k, n

y

x

z

Fig. 3. Illustration of the main channel parameters.

the relative position of the m-th RIS element compared with
the first element. The vector ak = (ak,1, · · · , ak,M ) is referred
to as the steering vector of the RIS for the k-th target [28].

Therefore, the gain of the reflection path from the antenna
array to the directions of targets can be expressed as

B(s) = AR(s)H, (5)

where B(s) = (b1(s), · · · , bK(s))T ∈ CK×N , with K being
the number of targets. A = (a1, · · · ,aK)T ∈ CK×M is the
steering vector of the RIS. H = [hm,n] ∈ CM×N is the
matrix of channel gain between the antenna array and the
RIS. R(s) = diag(r(s)) ∈ CM×M is the reflection coefficient
matrix of the RIS under phase shift vector s = (s1, · · · , sM ),
and r(s) = (r(s1), · · · , r(sM )) is the reflection coefficient
vector of the RIS.

Similarly, the gain of the reflection path from the targets to
the antenna array under phase shift vector s can be expressed
as

BT(s) = HTRT(s)AT. (6)

In addition, we assume the antenna array and the RIS are
closely spaced, and the targets are in the farfield of both
the antenna array and the RIS. In other words, the distance
between the antenna array and the RIS is much smaller than
that between the antenna array (or RIS) and the targets. Thus,
the direction of a target is the same for both the RIS element
and the MIMO element3, and the gain of the direct path from
the n-th antenna to the k-th target can be given by

ξk,n =
√
GAGAP (θk, ϕk)ejekp

a
n , (7)

where GAP (θk, φk) is the normalized radiation pattern of the
antenna in the MIMO array towards direction (θk, φk), pan

3In practice, the farfield constraint dn,k > 2D2
m,n/λ is easy to be satisfied.

For example, suppose the working frequency of the radar is 3GHz, the size
of the RIS is 1m×1m (20 × 20 elements), the size of the MIMO array is
0.2m ×0.2m (4× 4 elements), and the distance between the RIS center and
the MIMO array center is 1m (10λ). Thus, the maximum distance between a
MIMO antenna and an RIS element is about 2m, which indicates that when
dn,k > 80m, the direction of a target is the same for all the RIS elements
and the MIMO antennas. Since the radars working at 3GHz are typically used
for surveillance with a few hundreds of meter detection range [30], [31], this
constraint is satisfied in practice, indicating that it is reasonable to assume
the direction of a target is the same for both the RIS element and the MIMO
element.
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is the relative position of the n-th antenna compared with
the first antenna. Consequently, the steering vector of the
antenna array towards the direction of the k-th target is
ξk = (ξk,1, · · · , ξk,N ), and the steering vector of the antenna
array towards the directions of targets is Ξ = (ξ1, · · · , ξK)T.

D. Receiver Model

The functionality of the Rx is to detect targets using
the received echo signals, and the multi-target detection is
performed using the multiple hypotheses testing techniques.
Specifically, we first form multiple hypothesis to represent
different detection results. During the detection process, we
update the probability of each hypothesis using the received
signals. When the detection process ends, the hypothesis with
the highest probability will be selected as the detection result.

Before defining the hypotheses, we first introduce some as-
sumptions on the number and locations of targets. Specifically,
we consider a practical scenario, where the directions and
the number K of targets are unknown, and the number K
is in the range [0,KM ], where KM is a positive constant.
Besides, the location of the k-th target is represented by the
direction (θk, ϕk) and range dk. We discretize the space of
interest into I angular grids denoted by I ∈ {1, · · · , I}, and a
target is located in one of the grids. Given the number of
targets and the direction of each target, the range of each
target can be estimated based on the received signals, which
will be discussed in Section III. This means that a hypothesis
only needs to contain the information of the number and
directions of targets. Consequently, we introduce indicative
vector i(U) = (i1(U), · · · , iN(U)(U)) to represent hypothesis
U , which means that there are N(U) targets, and the k-th
target is in the ik(U)-th grid.

The prior probabilities of hypotheses have to be initialed
before the detection process. Let p1(U) denote the prior
probability of hypothesis U . Since K is unknown and K
is the range [0,KM ], without loss of generality, we assume
that K follows uniform distribution in range [0, 1, · · · ,KM ],
which is a commonly used assumption when there is no prior
knowledge of the number of targets [14]. Thus, the prior
probability of hypothesis U can be given by

p1(U) =
1

KM + 1
× 1

J(U)
, (8)

where J(U) denotes the number of hypotheses with N(U)
targets.

Based on Bayes’ theorem, the prior probabilities of hy-
potheses can be updated by exploiting the information in the
received signals, and the decisions of target detection can be
made using these prior probabilities. Details of the probability
updating process will be introduced in Section III.

III. MULTI-TARGET DETECTION PROTOCOL

In this section, we propose a multi-target detection protocol
to coordinate the operations of Tx, Rx, antenna array, and RIS
in the detection process. We divide the timeline in the detection
process into cycles with duration δC , and the probabilities of
all the hypotheses will be updated cycle by cycle. After C

cycles, the detection process will terminate, and the hypothesis
with the highest probability will be chosen as the correct
hypothesis [32].

As illustrated in Fig. 4, each cycle contains four steps, i.e.,
the optimization, transmission, reception, and the detection
steps.

1) Optimization: In this step, radar waveforms and the RIS
phase shifts are optimized by the Tx based on the signals
received in previous cycles. Let W c ∈ CN×L denote the
generated waveform matrix in the c-th cycle, with L being
the number of snapshots. Besides, the optimized vectors of
RIS phase shifts in the transmission and reception steps in
the c-th cycle are denoted by st,c = (st,c1 , · · · , st,cM ) and
sr,c = (sr,c1 , · · · , sr,cM ), respectively4. Details of the optimiza-
tion problem will be introduced in Section IV. As for the first
cycle, the waveform matrix W 1 and RIS phase shift vectors
st,1 and sr,1 are randomly generated.

2) Transmission: The generated radar waveforms W c are
emitted by the antenna array towards the RIS in this step. The
RIS phase shifts are set as st,c during the whole step5. Based
on (5) and (7), the transmitted signals towards the directions
of the targets can be expressed as

Y t,c = (B(st,c) + Ξ)W c, (9)

where Y t,c = (yt,c1 , · · · ,yt,cK )T ∈ CK×L, with yt,ck being the
transmitted signal towards the direction of the k-th target.

3) Reception: After the waveforms W c are transmitted,
the phase shifts of the RIS are set as sr,c, and the antenna
array listens for the echo signals from the targets. Since the
distances between the targets and the radar can be different, the
echo signals from different targets may have different delays.
Suppose that the echo signals received by the antenna array
from the the k-th target delays lk snapshots compared with the
transmitted signals. The delayed signal from the k-th target is
given by

yd,ck = yt,ck Jk, (10)

where Jk is a shift matrix with size L× LR, with LR being
the number of snapshots of the received signal. The (l× l′)-th
element of Jk satisfies

Jk(l, l′) =

{
1, l′ − l − lk + Lm = 0,

0, otherwise,
(11)

where Lm is the minimum delay. Besides, we assume that
Lm > L so that the received signals will not overlap with the

4The RIS phase shifts st,c and sr,c are sent to the RIS controller in the
optimization step in order to avoid the signaling cost in the transmission and
reception steps.

5The duration of the adjustment of RIS phases is much smaller than that
of the transmission step δT [33], [34]. For example, when the target is 150m
away from the radar, the duration δT is 1µs. In contrast, the phases of the
RIS can be changed within 12.5ns [33], which is much smaller than δT . The
price to adjust the phases is also acceptable because the control circuit of the
RIS is very simple, and the main cost of the circuit is the low-cost FPGA
module.
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Fig. 4. Multi-target detection protocol.

transmitted signals. Consequently, the signals received by the
antenna array can be expressed as6

Y c =

K∑
k=1

γk
(
bT
k(sr,c) + ξT

k

) (
bk(st,c) + ξk

)
W cJk + V c,

(12)

where γk is the response of the k-th target characterizing the
reflection and channel propagation effects related to the k-th
target [10], and V c ∈ CL×LR denotes the residual term which
includes noise and interferences from the environment [35],
[36]. For simplicity, we assume that the rows of V c follow
independent and identically distributed circularly symmetric
complex Gaussian distribution with mean zero and covariance
matrix σ2ILR×LR [14]. Let yc = vec(Y c) denote the received
signal vector, which is given by

yc = F cγ + vc, (13)

where the response vector γ = (γ1, · · · , γK)T ∈ CK×1,
the residual vector vc = vec(V c) ∈ CNLR×1, and F c =
(Qc

1(st,c, sr,c)wc, · · · ,Qc
K(st,c, sr,c)wc) ∈ CNLR×K with

Qc
k(st,c, sr,c) = JT

k ⊗ ((bT
k(sr,c) + ξT

k)(bk(st,c) + ξk)) ∈
CNLR×NL and wc = vec(W c) ∈ CNL×1.

4) Detection: The received signal yc will then be processed
by the Rx to update the probabilities of hypotheses for multi-

6The gain of the double cascaded channel bT
k(s

r,c)bk(s
t,c) can be

comparable with that of the LOS channel ξT
kξk from the antenna array to

the antenna array via the targets. According to [26], the gain of the double
cascaded channel can be roughly expressed as A/(d21d

2
2), where A is a

parameter related to the gain of the RIS, d1 denotes the distance between the
antenna and the RIS, and d2 denotes the distance between the RIS and the
targets. Besides, the gain of the LOS channel can be approximated by B/d23,
where B is a parameter related to the gain of the antenna, and d3 denote
the distance between the antenna and the targets. Since we assume that the
distance between the antenna and the RIS is much smaller than the distance
between the RIS/antenna array and the target, we have d1 � d2 ≈ d3. In
addition, as we assume that the antenna array are close to the RIS, by carefully
designing the phase shifts of the RIS, the gain of the RIS can be promoted to
satisfy A/d21 ≥ B. Thus, we can assure that the gain of the double cascaded
channel is the same or even larger than that of the LOS channel.

target detection. Suppose the number of targets is K, we can
form JK hypotheses, and we have

jK,I =

(
I +K − 1

K

)
. (14)

Since 0 ≤ K ≤ KM , there are J = J0 + J1 + · · · + JKM

hypotheses, denoted by {U0, U1, · · · , UJ−1}. Given signal
y(c) = (y1, · · · ,yc)T received in previous c cycles, the prior
probability of hypothesis Uj in the (c + 1)-th cycle can be
expressed as [37]

pc+1(Uj) =
p1(Uj)p

(c)(y(c)|Uj)∑J
j=0 p

1(Uj)p(c)(y(c)|Uj)
. (15)

where p(c)(y(c)|Uj) denote the probability to receive y(c)

given hypothesis Uj , which can be given by

p(c)(y(c)|Uj)

=

c∏
i=1

pi(yi|Uj)

=

c∏
i=1

1

(πσ2)NLR
exp

(
−||y

i−yi(Uj ,{l̂k}(c),j ,γ̂(c),j)||2

σ2

)
,

(16)

where {l̂k}(c),j and γ̂(c),j denote the estimated de-
lays and responses given hypothesis Uj , respectively.
yi(Uj , {l̂k}(c),j , γ̂(c),j) denotes the mean signals received by
the antenna array under hypothesis Uj , delays {l̂k}(c),j , and
responses γ̂(c),j in the i-th cycle. Note that U0 denotes the
hypothesis when K = 0, and thus yi(Uj , {l̂k}(c),j , γ̂(c),j) =
0,∀i. When j 6= 0, delays {l̂k}(c),j and responses γ̂(c),j can
be estimated jointly using the maximum likelihood estimation
method. Specifically, given delays {lk}, the maximum likeli-
hood estimation of responses γ̃(c),j({lk}) can be expressed as

γ̃(c),j({lk}) =
(

(F (c))HF (c)
)−1

(F (c))Hy(c), (17)
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where F (c) = (F 1, · · · ,F c)T is calculated using delays {lk}.
Next, based on (17), the maximum likelihood estimation of the
delays can be given by

{l̂k}(c),j

= arg max
{lk}

p(c)
(
y(c)|Uj , {lk}

)
=

c∏
i=1

1

(πσ2)NLR
exp

(
−||y

i − yi(Uj , {lk}, γ̂(c),j)||2

σ2

)
,

(18)

where p(c)
(
y(c)|Uj , {lk}

)
denotes the probability to re-

ceive y(c) given hypothesis Uj , delays {lk}, and responses
γ̃(c),j({lk}). Finally, using the estimated delays {l̂k}(c),j ,
the estimated responses can be expressed as γ̂(c),j =
γ̃(c),j({l̂k}(c),j). Note that if multiple targets are in the same
direction, their delays need to be different. Using the relation

d̂k =
vl l̂k

2
, (19)

where vl denotes the speed of light, the range of the k-th target
can be determined if the delay of echo signal l̂k is decided.

To reduce the mis-detection probability caused by the noise
and interference, a threshold detection will be conducted for
each target defined in hypothesis Uj using the estimated target
response γ̂(c),j [28]. To be specific, if |γ(c),j

k | is greater than a
pre-determined positive threshold ω, the k-th target is viewed
to be present. Otherwise, the response γ(c),j

k is viewed to be
caused by the noise and interference, and thus hypothesis Uj
will be rejected.

IV. JOINT OPTIMIZATION PROBLEM OF WAVEFORM AND
PHASE SHIFTS

In this section, we formulate the waveform and RIS phase
shift optimization problem in each cycle in Subsection IV-A.
Since the waveform and RIS phase shifts are coupled which
are difficult to be simultaneously optimized, we decouple
the formulated problem into three subproblems to solve it
efficiently in Subsection IV-B.

A. Waveform and RIS Phase Shift Optimization Problem For-
mulation

The aim to optimize the radar waveforms w and RIS
phase shift vectors st and sr in each cycle is to improve
the detection performance. In this paper, we use the relative
entropy as the evaluation criterion, which is shown to be an
effective tool to study the performance of multiple hypotheses
testing and is widely used for radar detection applications [38].
The relative entropy indicates the “distance” between the
probability functions of two different hypotheses. When the
“distance” is maximized, the hypotheses are more likely to
be distinguished, and thus we can obtain a higher detection
accuracy.

According to [14], we define the predicted distance between
hypotheses Uj and Uj′ in the (c+ 1)-th cycle as

dc+1
j,j′ (P

c+1) = D(pc+1(y|Uj ,Pc+1), pc+1(y|Uj′ ,Pc+1))

+D(pc+1(y|Uj′ ,Pc+1), pc+1(y|Uj ,Pc+1)),
(20)

where Pc+1 = {wc+1, st,c+1, sr,c+1} is the set of variables
to be optimized in the (c + 1)-th cycle. pc+1(y|Uj ,Pc+1)
denotes the probability function given hypothesis Uj , variables
Pc+1, estimated target responses γ̂c+1, and delays {l̂k}c+1.
Besides, D(pc+1(y|Uj ,Pc+1), pc+1(y|Uj′ ,Pc+1)) is the rel-
ative entropy between probability functions pc+1(y|Uj ,Pc+1)
and pc+1(y|Uj′ ,Pc+1), where

D(pc+1(y|Uj ,Pc+1), pc+1(y|Uj′ ,Pc+1))

=

∫
pc+1(y|Uj ,Pc+1) log

pc+1(y|Uj ,Pc+1)

pc+1(y|Uj′ ,Pc+1)
dy. (21)

The objective of the optimization problem is to maximize
the weighted sum of predicted distances between every two
hypotheses. Therefore, the optimization problem in the (c+1)-
th cycle can be formulated as

P1: max
wc+1,st,c+1,sr,c+1

J−1∑
j=0

J−1∑
j′=j+1

βc+1
j,j′ d

c+1
j,j′ (w

c+1, st,c+1, sr,c+1),

(22a)

s.t. ||wc+1||2 = PM , (22b)

st,c+1
m ∈ {i∆s|i = 1, · · · , Ns} ,∀m, (22c)

sr,c+1
m ∈ {i∆s|i = 1, · · · , Ns} ,∀m, (22d)

where βc+1
j,j′ is the weighting factor for the predicted distance.

Constraint (22b) is the power constraint for antennas [39],
with constant PM being the maximum transmission power.
Constraints (22c) and (22d) confine the available states of
RIS elements [10]. The weighting factor is set as the prior
probability product of two hypotheses, which is given by

βc+1
j,j′ = pc+1(Uj)p

c+1(Uj′). (23)

The intuition of (23) is that if the probabilities of two hypothe-
ses are higher, the predicted distance of these two probabilities
needs to have larger weight for better discrimination.

B. Problem Decomposition

It is difficult to tackle problem (P1) because variables wc+1,
st,c+1, and sr,c+1 are coupled in the objective function (22a).
To solve problem (P1) efficiently, we decouple it into three
subproblems, i.e., waveform optimization subproblem, RIS
phase shift optimization subproblems for transmission and
reception steps.

1) Optimization Subproblem of Waveform: Given the fixed
RIS phase shift vectors st, and sr, this subproblem is given
by

Pw: max
wc+1

J−1∑
j=0

J−1∑
j′=j+1

βc+1
j,j′ d

c+1
j,j′ (w

c+1, st, sr), (24a)

s.t. (22b).
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2) Optimization Subproblem of RIS Phase Shift Vector in
the Transmission Step: In this subproblem, the RIS phase
shift vector st,c+1 is optimized given w and sr, which can be
written as

Pt: max
st,c+1

J−1∑
j=0

J−1∑
j′=j+1

βc+1
j,j′ d

c+1
j,j′ (w, s

t,c+1, sr), (25a)

s.t. (22c).

3) Optimization Subproblem of RIS Phase Shift Vector in
the Reception Step: Similarly, the optimization subproblem
of the RIS phase shift vector in the reception step can be
formulated as

Pr: max
sr,c+1

J−1∑
j=0

J−1∑
j′=j+1

βc+1
j,j′ d

c+1
j,j′ (w, s

t, sr,c+1), (26a)

s.t. (22d).

V. ALGORITHM DESIGN

In this section, we propose a waveform and phase shift op-
timization (WPSO) algorithm, which solves problem (P1) by
iteratively solving the aforementioned three subproblems. The
techniques to solve these three subproblems are introduced
first in Subsections V-A and V-B, and then the description of
the overall WPSO algorithm is presented in Subsection V-C.
The superscript c+ 1 for cycles are omitted for brevity in the
following part of this paper.

A. Optimization of Waveform

It is challenging to solve subproblem (Pw) due to the
complicated complicated expression of the predicted distance
d(Uj , Uj′ |P) in the objective function (22a). In Proposition 1,
a simplified expression of d(Uj , Uj′ |P) is provided as follows:

Proposition 1: The predicted distance d(Uj , Uj′ |P) be-
tween hypotheses Uj and Uj′ given P can be expressed as

d(Uj , Uj′ |P) =
1

σ2
Re
(
tr(wHZ ′(Uj , Uj′ , s

t, sr)w)
)
, (27)

where

Z′(Uj , Uj′ , s
t, sr) =Z′′(Uj , Uj , s

t, sr) +Z′′(Uj′ , Uj′ , s
t, sr)

− 2Z′′(Uj , Uj′ , s
t, sr), (28)

Z′′(Uj , Uj′ , s
t, sr) =

N(Uj)∑
i=1

N(Uj′ )∑
i′=1

γ̂H
i (Uj)γ̂i′(Uj′)Q

H
i (Uj , s

t, sr)

×Qi′(Uj′ , s
t, sr). (29)

Proof: See Appendix A.
Therefore, problem (Pw) can be reformulated as

P′w: max
w

Re
(
tr(wHZ(st, sr)w)

)
, (30a)

s.t. tr(wHw) = PM , (30b)

where Z(st, sr) =
∑J−1
j=0

∑J−1
j′=j+1

βj,j′

σ2
Z ′(Uj , Uj′ , s

t, sr),
and constraint (30b) corresponds to constraint (22b). Since
problem (P′w) is a quadratically constrained quadratic program

(QCQP), we can use the semidefinite relaxation (SDR) tech-
nique [40] to efficiently solve it. Specifically, problem (P′w) is
equivalent to the following problem:

PXw
: max

Xw

Re
(
tr(XwZ(st, sr))

)
, (31a)

s.t. tr(Xw) = PM , (31b)
Xw < 0, (31c)

Xw ∈ HNL×NL, (31d)
rank(Xw) = 1, (31e)

where Xw = wwH, and Xw < 0 indicates that Xw is a
positive semidefinite matrix. To solve problem (PXw

), the rank
constraint in (31e) is first dropped to derive a relaxed version
of problem (PXw

), denoted by (P′Xw
), which can be efficiently

solved using existing optimization techniques [41]. Then, the
randomization method in [40] can be adopted to convert the
solution of problem (P′Xw

) to a feasible solution of problem
(PXw

), which is also the solution of problem (Pw).

B. Optimization of RIS Phase Shift Vector in the Transmission
and Reception Steps

Due to the similar structures of problems (Pt) and (Pr),
these two problems can be solved by the same optimization
methods. For brevity, in this subsection we only show how to
solve problem (Pt).

To tackle problem (Pt) where phase shift st is optimized,
in Proposition 2, we provide another simplified expression
of distance d(Uj , Uj′ |P) which separates variable r(st) from
other parameters as follows:

Proposition 2: The predicted distance d(Uj , Uj′ |P) be-
tween hypotheses Uj and Uj′ given P can be expressed as

d(Uj , Uj′ |P) =
1

σ2
Re
(
rH(st)Z′(Uj , Uj′ ,w, s

r)r(st)

+ rH(st)z′1(Uj , Uj′ ,w, s
r)

+ z′2(Uj , Uj′ ,w, s
r)r(st) + z′3(Uj , Uj′)

)
, (32)

where parameter Z ′(Uj , Uj′ ,w, s
r), z′1(Uj , Uj′ ,w, s

r),
z′2(Uj , Uj′ ,w, s

r), and z′3(Uj , Uj′) are defined in Appendix B.
Proof: See Appendix B.

Consequently, we can reformulated problem (Pt) as

P′t: max
r

Re
(
rHZ(w, sr)r+rHz1(w, sr)+z2(w, sr)r+z3

)
,

(33a)

s.t. rm ∈
{
ηeji∆s|i = 1, · · · , Ns

}
,∀m, (33b)

where

Z(w, sr) =

J−1∑
j=0

J−1∑
j′=j+1

βj,j′

σ2
Z ′(Uj , Uj′ ,w, s

r), (34)

z1(w, sr) =

J−1∑
j=0

J−1∑
j′=j+1

βj,j′

σ2
z′1(Uj , Uj′ ,w, s

r), (35)

z2(w, sr) =

J−1∑
j=0

J−1∑
j′=j+1

βj,j′

σ2
z′2(Uj , Uj′ ,w, s

r), (36)

z3 =

J−1∑
j=0

J−1∑
j′=j+1

βj,j′

σ2
z′3(Uj , Uj′), (37)
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Fig. 5. Flow chart of the waveform and phase shift optimization algorithm.

And constraint (33b) corresponds to constraint (22c). To
efficiently solve problem (P′t), we first relax the discrete phase
shifts to continuous ones, and obtain the following problem:

P′′t : max
r

Re
(
rHZ(w, sr)r + rHz1(w, sr) + z2(w, sr)r + z3

)
,

(38a)

s.t. |rm|2 = η2,m = 1, · · · ,M. (38b)

Since problem (P′′t ) is also a QCQP, the SDR technique
can also be applied to solve problem (P′′t ). Let r′′ denote
the solution of problem (P′′t ). Next, all the elements in
vector r′′ are quantized to the nearest values in the set{
ηeji∆s|i = 1, · · · , Ns

}
to obtain r′. Vector r′ is a feasible

solution of problem (P′t) because it satisfies constraint (33b).
Finally, the solution of problem (Pt) can be derived from r′

using the relation in (1).

C. Joint Optimization Algorithm

As shown in Fig. 5, the index of iteration x is set as 0 at
the beginning of the WPSO algorithm. Besides, we randomly
initial variables wx, stx, and srx within the feasible region of
problem (P1). Then, the value of the objective function (22a)
dx given wx, stx, and srx is calculated. Following that, we op-
timize the radar waveform and RIS phase shifts in an iterative
manner by solving the three subproblems. Specifically, in the
x-th iteration, the WPSO algorithm first solves subproblem
(Pw) to obtain wx+1 given stx and srx. Then, subproblem (Pt)
is solved to derive stx+1 given wx+1 and srx. The variable
srx+1 is finally derived by solving subproblem (Pr) givenwx+1

and stx+1. The algorithm will terminate if the value difference
of the objective function (22a) in two adjacent iterations is
smaller than a predefined threshold ε.

VI. PERFORMANCE ANALYSIS

In this section, we we first analyse the convergence and
the complexity of the proposed WPSO algorithm in Subsec-
tion VI-A, and then discuss the detection performance of the
proposed scheme in Subsection VI-B.

A. Convergence and Complexity

1) Convergence: In each iteration of the WPSO algorithm,
the subproblems (Pw), (Pt), and (Pr) are solved sequentially
using the interior-point algorithm, which is guaranteed to
converge [41]. Hence, the WPSO algorithm will converge if
the number of iterations of the WPSO algorithm is limited.
Since the objective function is increased by at least ε in each
iteration and the objective function has an upper bound du

which is provided in Proposition 3, the number of iterations
is bounded and the convergence of the WPSO algorithm is
guaranteed.

Proposition 3: An upper bound of the objective func-
tion (22a) is given by

du =
J(J − 1)PM

2
. (39)

Proof: See Appendix C.
2) Complexity: In each iteration of the WPSO algorithm,

the SDR technique is utilized for 3 times to solve the
three subproblems. According to [40], the complexity of
the SDR techniques for the subproblems (Pw), (Pt), and
(Pr) are O((NL)4.5 log(1/α)), O((M + 1)4.5 log(1/α)), and
O((M + 1)4.5 log(1/α)), respectively, where α is the solution
accuracy of the interior-point algorithm. Thus, the complexity
of each iteration of the WPSO algorithm is O(((NL)4.5 +
(M + 1)4.5) log(1/α)).

Based on (50), the objective function (22a) is nonneg-
ative. According to the discussion in Section VI-A1, the
maximum number of iterations of the WPSO algorithm is
ddu/εe. Therefore, the complexity of the WPSO algorithm is
O(((NL)4.5 + (M + 1)4.5) log(1/α)ddu/εe).

B. Detection Performance Analysis

In this subsection, we compare the detection performance
of MetaRadar with traditional MIMO radar. For simplicity,
we consider the case where K = 1 and I = 1. There
are 2 hypotheses in this case denoted by U0 and U1. Based
on (50), the predicted distance between hypotheses U0 and U1

of MetaRadar in this case is given by

d(U1, U0|P) =
1

σ2
||y(U1,P)− y(U0,P)||2

=
1

σ2
||γ(bT

1(sr) + ξT
1)(b1(st) + ξ1)W ||2

=
|γ|2

σ2
||b1(sr) + ξ1||2||b1(st) + ξ1||2||W ||2

=
|γ|2PM
σ2

||b1(sr) + ξ1||2||b1(st) + ξ1||2.
(40)
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As for the MIMO radar, its received signals can be ex-
pressed as [14]

YMIMO =

K∑
k=1

γkξ
T
kξkWJk + V , (41)

Similar to the proof in Appendix A, the predicted distance of
traditional MIMO radar between hypotheses U0 and U1 when
K = 1 is given by

dMIMO(U1, U0|W ) =
1

σ2
||γξT

1ξ1WJ1||2

=
|γ|2PM
σ2

||ξ1||4

=
(N |γ|GAGAP (θ1, ϕ1))2PM

σ2
. (42)

It can be observed from (40) and (42) that the predicted
distances of both MetaRadar and MIMO radar are positively
related to |γ|2 and the power of waveform PM , and are
negatively related to the variance of the residual term σ2.
Besides, we can conclude that if ||b1(sr) + ξ1||2||b1(st) +
ξ1||2 > (NGAGAP (θ1, ϕ1))2, the predicted distance of the
MetaRadar is larger than that of the traditional MIMO radar.
In this circumstance, hypotheses U0 and U1 can be better
distinguished by the MetaRadar, indicating that MetaRadar has
a higher detection accuracy.

Since b1(st) + ξ1 and b1(sr) + ξ1 denote the channel gain
from the antenna array to the direction of the target and vice
versa, respectively, ||b1(sr) + ξ1||2||b1(st) + ξ1||2 can be
viewed as the power gain of the MetaRadar. As the power
gain of the MetaRadar is determined by the phase shift vectors
and the configuration of the MetaRadar, in the following, we
first analyse the optimal phase shift vectors which maximize
the power gain of the MetaRadar given the RIS configuration,
and then discuss the the relationship between the configuration
of the MetaRadar and the power gain when RIS phase shift
vectors are optimized.

1) Optimal RIS Phase Shift Vectors: The maximum power
gain given the configuration of the MetaRadar when N = 1
is provided in Proposition 4 as follows:

Proposition 4: Assume that all the RIS elements have
continuous phase shifts, the maximum power gain given the
configuration of the MetaRadar when N = 1 is

B=||b1(sr,∗)+ξ1||2||b1(st,∗)+ξ1||2

=
(
GA
)2( M∑

m=1

ρ
√
GAP (θr1,m, ϕ

r
1,m)GRP (θr1,m, ϕ

r
1,m)

l1,m

+
√
GAP (θ1, ϕ1)

)4

, (43)

where

st,∗m = sr,∗m = mod(−e1p
e
m − e1p

a
1 −

2πl1,m
λ

, 2π),∀m, (44)

and

ρ =
η
√
GRSeGRP (θ1, ϕ1)
√

4π
. (45)

Antenna at (la
x, la 

z) 

RIS

x

z

m-th element at (lm
x, 0)

(m-1)-th element

at (lm-1, 0)

 l1, m

x

1, m

r

1, m

r

Fig. 6. Top view of the MetaRadar.

Proof: The term ||b1(s) + ξ1||2 can be expressed as

||b1(s) + ξ1||2

=||a1R(s)H + ξ1||2

=

∣∣∣∣∣
M∑
m=1

a1,mrm(sm)hm,1 + ξ1,1

∣∣∣∣∣
2

=GA

∣∣∣∣∣
M∑
m=1

ρ
√
GAP (θr1,m, ϕ

r
1,m)GRP (θr1,m, ϕ

r
1,m)

l1,m
e−j(e1p

e
m+sm+2πl1,m/λ)

+
√
GAP (θ1, ϕ1)eje1p

a
1

∣∣∣∣∣
2

≤GA
 M∑
m=1

ρ
√
GAP (θr1,m, ϕ

r
1,m)GRP (θr1,m, ϕ

r
1,m)

l1,m
+
√
GAP (θ1, ϕ1)

2

,

(46)

where

ρ =
η
√
GRSeGRP (θ1, ϕ1)
√

4π
, (47)

and ||b1(s) + ξ1||2 is maximized when

sm = mod(−e1p
e
m − e1p

a
1 −

2πl1,m
λ

, 2π). (48)

Consequently, the maximum power gain of the MetaRadar
when N = 1 is (43), and the optimal RIS phase shift vectors
satisfy (44).

2) Configuration of the MetaRadar: The configuration of
the MetaRadar when N = 1 is shown in Fig. 6. For simplicity,
we consider a two-dimensional (2D) configuration, and the
extension to 3D configuration is feasible. The RIS is parallel to
the x-axis and its center is at the origin (0, 0). In the following,
we discuss how the number of RIS elements and the antenna
position affect the power gain B.

Number of RIS elements: The power gain is positively re-
lated to the number of RIS elements. This is because if we add
an element at the edge of the RIS and keep the positions of ex-
isting M elements fixed, according to (43), the power gain will
increase because the term

√
GAP (θr1,m)GRP (θr1,m)/l1,M+1 > 0.

This indicates that an RIS with a larger size can provide a
higher detection accuracy.

Antenna position: In the following proposition, we show
that the antenna should be placed near the y-axis to promote
the detection performance.
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TABLE I
SIMULATION PARAMETERS

Parameters Values
Position of the RIS’s center pR (0, 0, 0)
Number of RIS elements M 64
Area of an RIS element Se (λ/2)2

Position of the antenna array’s center pA (0, 3λ, 0)
Number of antennas N 4
Separation between adjacent antennas ds λ/2

Gain of an antenna GA 1

Normalized radiation pattern of an antenna GAP (θ, ϕ) 1
Maximum transmission power of the antenna array PM 12W
Variance of the residual term σ2 −50dBw
Number of snapshots of the radar waveform L 10
Number of snapshots of the received signal LR 15
Number of angular grids I 4
Number of targets K 2
Amplitude of target response |γk| −40dB

Proposition 5: Suppose the antenna is isotropic (GA = 1
and GAP (θ, ϕ) = 1,∀θ, ϕ). The power gain of the MetaRadar
where the antenna is close to the z-axis is higher than that
of the MetaRadar where the antenna is far away from the
z-axis given the number of the RIS elements M and the z-
coordinate of the antenna lza. Specifically, if lxa /∈ [−le/2, le/2],
there exists a l′ ∈ [−le/2, le/2] with higher power gain than
that of lxa , where le is the distance between two adjacent RIS
elements.

Proof: See Appendix D.
When lza � le/2, the power gain when lxa is optimized is

given by Proposition 6:
Proposition 6: When lza � le/2, the power gain when lxa

is optimized can be expressed as

B(l∗, lza) =

(
M∑
m=1

ρ(lza)1.5

((lza)2 + ((M + 1)le/2−mle)2)1.25
+ 1

)4

.

(49)

Proof: If lza � le/2, we have lza � |l′|, which indicates
that the term l′ in the denominator in (73) can be omitted.
Therefore, the maximum power gain can be expressed as (49)
based on (73).

As for the z-coordinate of the antenna lza, since both the
numerator (lza)1.5 and the denominator ((lza)2+((M+1)le/2−
mle)2)1.25 in (49) increase with lza, its relationship with
the power gain is much more complicated which makes it
difficult to provide a closed-form expression of the optimal
z-coordinate of the antenna.

VII. SIMULATION RESULTS

In this section, the performance of the MetaRadar is pro-
vided. The configuration of the MetaRadar is shown in Fig. 1,
and the simulation parameters are listed in Table I. The RIS
is located at the plane z = 0, and the position of its center
is (0, 0, 0). The RIS contains 64 elements. Each element
has 8 different phase shifts, and the area of an element is
(λ/2)2 [42]. The antennas are arranged as a 2×2 array, and the
separation between adjacent antennas is λ/2 [43]. The center
of the antenna array is at (0, 3λ, 0). Each antenna is assumed
to be isotropic. That is, GA = 1 and GA(θ, ϕ) = 1,∀θ, ϕ.
The maximum transmission power of the antenna array is set

as 12W. The variance of the residual term σ2 is −50dBw, and
threshold ω = σ/60. The number of snapshots of the radar
waveform is 10, and the number of snapshots of the received
signal is 15. The angular range of interest is θ = π/6, ϕ ∈
[0, 2π), and the range [0, 2π) is uniformly divided into 4 grids.
We assume that the number of targets is 2. The two targets
are located at (10∆d, π/6, π/4) and (15∆d, π/6, 3π/4). Here,
∆d denotes the length of a range cell, which is normalized as
1. The correct hypothesis is denoted by Uj∗ . The amplitude
of target response |γk| is −40dB, and the phase of the target
response is randomly selected in [0, 2π) in each Monte Carlo
run.

A. Performance Comparison

In this subsection, we compare the performance of the
proposed scheme with those of the random scheme and
traditional MIMO radar scheme based on the relative entropy
criterion [14]. In the random scheme, the radar waveforms
have fixed envelope and random phases. The phase shift
vectors of the RIS in the transmission and reception steps are
also randomly generated.

Fig. 7 (a) and (b) show the detection probability p(Uj∗ |Uj∗)
and the mis-detection probability

∑
j 6=j∗ p(Uj∗ |Uj)p1(Uj)

versus the number of cycles C in the detection process,
respectively. It can be observed that the detection probability
obtained by the proposed scheme is higher than those obtained
by the random and MIMO schemes, and the mis-detection
probability obtained by the proposed scheme is smaller than
those obtained by the other two schemes, which verify the
effectiveness of the proposed scheme. Besides, we can also
observe that the performances of the random and proposed
schemes are much higher than that of the MIMO scheme.
Specifically, the detection probability obtained by the MIMO
scheme increase slowly with the number of cycles and is lower
than 0.2 when C = 20, while the probabilities of detection
obtained by the proposed and random schemes with RIS can
approach 1 after sufficient number of cycles. As for mis-
detection, the probability obtained by the MIMO scheme when
C = 20 is also much higher than those obtained by the random
and proposed schemes. This is because by incorporating the
RIS, the power gain of the radar can be significantly promoted
even the phase shifts of the RIS are not optimized, leading to a
rapid increase/decrease of detection/mis-detection probabilities
of the random and proposed scheme.

Fig. 7 (c) presents the detection probability p(Uj∗ |Uj∗)
versus the maximum transmission power PM when C = 3. It
can be seen that for both the proposed and the MIMO schemes,
the detection probability first increases and then remains close
to 1 when the maximum transmission power PM increases.
Besides, the detection probability p also increases with the
number of antennas N . However, to reach the same detection
probability, the maximum transmission power PM and the
number of antennas N required by the proposed scheme are
much smaller than that of the MIMO scheme, which indicates
a tradeoff between the cost of deploying an RIS and the cost
of increasing the size and the power of MIMO antenna array.
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Fig. 7. (a) The detection probability p(Uj∗ |Uj∗ ) versus the number of cycles C in the detection process; (b) The mis-detection probability∑
j 6=j∗ p(Uj∗ |Uj)p1(Uj) versus the number of cycles C in the detection process; (c) The detection probability p(Uj∗ |Uj∗ ) versus the maximum transmission

power PM with different numbers of antennas N .

B. Radar Configuration

Fig. 8 (a) shows the detection probability p(Uj∗ |Uj∗) versus
the number of elements M with different number of phase
shifts Ns when C = 6. We can observe that the detection
probability increases with the number of elements, which is in
accordance with the conclusion in Section VI-B2. Besides, the
detection probability also increases with the number of phase
shifts Ns, since the reflection coefficients of the RIS with
more number of phase shifts can be adjusted more precisely
to obtain a larger relative entropy and higher accuracy. This
also indicates a trade-off between the number of elements and
the number of phase shifts given the detection performance.

Fig. 8 (b) depicts the detection probability p(Uj∗ |Uj∗)
versus the distance between the RIS and the antenna array
lza with different x and y coordinates of the antenna array
center when C = 6. It can be observe that the detection
probability when the center of the antenna array is close
to the z axis (lxa = lya = 0) is higher than those when
the center of the antenna array is far away from the the
z axis (lxa = lya = 2λ, 4λ), which is in accordance with
Proposition 5. Besides, we can observe that the detection
probability first increases and then decreases when the distance
between the RIS and the antenna array lza increases, and there
exists an optimal distance between the RIS and the antenna
array with the best detection performance.

C. Complexity

Fig. 9 (a) shows the running time tr of the WPSO algorithm
in each cycle versus the number of RIS elements M , where
the running time is obtained using a computer with Intel Core
i5-8250U CPU (1.6GHz), 8 GB RAM, and Matlab 2019b. We
can observe that the running time increases with the number
of RIS elements M and the number of antennas N , which
matches the results in Section VI-A2.

The running time tr in each cycle versus the number of
elements N with different schemes is shown in Fig. 9 (b).
We can observe that the running time increases with the
number of antennas for both schemes, and the running time
of the proposed scheme is significantly longer than that of the
traditional MIMO radar scheme. This is because the traditional
MIMO radar scheme only optimizes the radar waveforms,
while the proposed scheme iteratively optimizes the radar

waveforms and the RIS phase shifts, which leads to a higher
detection accuracy compared with the traditional MIMO radar
scheme.

VIII. CONCLUSION

In this paper, we have investigated the multi-target detection
using the RIS-assisted radar systems. A multi-target detection
protocol has been designed to adaptively promote the detection
performance by coordinating the operations of the antenna
arrays and the RIS. We have also formulated the optimization
problem for target detection based on the relative entropy
criterion. To tackle the formulated problem, we have proposed
the WPSO algorithm which jointly optimizes the radar wave-
forms and the RIS phase shifts. The detection performance
of the proposed scheme has been analyzed theoretically, and
the superiority of the proposed scheme has been verified
through simulation. We can conclude from the results of
analysis and the simulation that: 1) by incorporating an RIS in
the radar systems which creates reflection paths between the
antennas and the targets, the power gain of the radar can be
enhanced, leading to a significant performance improvement
of the MetaRadar compared with traditional radar schemes; 2)
to meet the same detection performance, we can increase the
number of RIS elements to reduce the demand for the number
of phase shifts, and vice versa; 3) to maximize the detection
accuracy, it is preferred to put the RIS and the antenna array
coaxially, and the distance between the RIS and the antenna
array needs to be carefully chosen.

APPENDIX A
PROOF OF PROPOSITION 1

Based on (16) and (21), the predicted distance between
hypotheses Uj and Uj′ can be expressed as

d(Uj , Uj′ |P)

=

∫
p(y|Uj ,P) log

p(y|Uj ,P)

p(y|Uj′ ,P)
dy +

∫
p(y|Uj′ ,P) log

p(y|Uj′ ,P)

p(y|Uj ,P)
dy

=
1

2σ2

∫
p(y|Uj ,P)

(
||y − y(Uj′ ,P)||2 − ||y − y(Uj ,P)||2

)
dy

+
1

2σ2

∫
p(y|Uj′ ,P)

(
||y − y(Uj ,P)||2 − ||y − y(Uj′ ,P)||2

)
dy

=
1

σ2
||y(Uj ,P)− y(Uj′ ,P)||2. (50)
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Fig. 8. (a) The detection probability p(Uj∗ |Uj∗ ) versus the number of elements M with different number of phase shifts Ns; (b) The detection probability
p(Uj∗ |Uj∗ ) versus the distance between the RIS and the antenna array lza with different x and y coordinates of the antenna array center.
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Fig. 9. (a) The running time tr versus the number of RIS elements M with different numbers of antennas N ; (b) The running time tr versus the number
of elements N with different schemes.

According to (13), y(Uj ,P) = F (Uj ,P)γ̂(Uj), and thus
we have

d(Uj , Uj′ |P) =
1

σ2
||F (Uj ,P)γ̂(Uj)− F (Uj′ ,P)γ̂(Uj′)||2

=
1

σ2
Re
(
γ̂H(Uj)F

H(Uj ,P)F (Uj ,P)γ̂(Uj)

+ γ̂H(Uj′)F
H(Uj′ ,P)F (Uj′ ,P)γ̂(Uj′)

− 2γ̂H(Uj)F
H(Uj ,P)F (Uj′ ,P)γ̂(Uj′)

)
(51)

The term γ̂H(Uj)F
H(Uj ,P)F (Uj′ ,P)γ̂(Uj′) in (51) can

be expressed as

γ̂H(Uj)F
H(Uj ,P)F (Uj′ ,P)γ̂(Uj′)

=tr

(
wwH

N(Uj)∑
i=1

N(Uj′ )∑
i′=1

γ̂H
i (Uj)γ̂i′(Uj′)Q

H
i (Uj , s

t, sr)

×Qi′(Uj′ , s
t, sr)

)
=tr
(
XwZ

′′(Uj , Uj′ , s
t, sr)

)
, (52)

where Xw = wwH and Z ′′(Uj , Uj′ , s
t, sr) =∑N(Uj)

i=1

∑N(Uj′ )

i′=1 γ̂H
i (Uj)γ̂i′(Uj′)Q

H
i (Uj , s

t, sr)Qi′(Uj′ , s
t, sr).

Therefore, the predicted distance between hypotheses Uj
and Uj′ is given by

d(Uj , Uj′ |P) =
1

σ2
Re
(

tr
(
XwZ

′′(Uj , Uj , s
t, sr)

+XwZ
′′(Uj′ , Uj′ , s

t, sr)

− 2XwZ
′′(Uj , Uj′ , s

t, sr)
))

=
1

σ2
Re
(

tr(XwZ
′(Uj , Uj′ , s

t, sr))
)

=
1

σ2
Re
(

tr(wHZ ′(Uj , Uj′ , s
t, sr)w)

)
, (53)

where Z ′(Uj , Uj′ , s
t, sr) = Z ′′(Uj , Uj , s

t, sr) +
Z ′′(Uj′ , Uj′ , s

t, sr)− 2Z ′′(Uj , Uj′ , s
t, sr).

APPENDIX B
PROOF OF PROPOSITION 2

Based on (5), (12), and (13), the parameter F can be
expressed as

F (Uj ,P) =(Q′1(Uj ,w, s
r)r′(st) + ζ1(Uj), · · · ,

Q′K(Uj ,w, s
r)r′(st) + ζK(Uj)) ∈ CNLR×K ,

(54)

where Q′k(Uj ,w, s
r) = (JT

kW
THT)⊗ ((bT

k(sr) + ξT
k)ak) ∈

CNLR×M2

, r′(st) = vec(R(st)) ∈ CM2×1, ζk(Uj) =
vec((bT

k(sr) + ξT
k)ξkW

cJk), and K = N(Uj). Since R(st)
is a diagonal matrix with diagonal elements being r(st) =
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(r(s1), · · · , r(sM )), the i-th element of vector r′(st) is given
by

r′(st)i =

{
rm(sm), i = (m− 1)(M + 1) + 1

0, otherwise.
(55)

Thus, we have

Q′k(Uj ,w, s
r)r′(st) = Qk(Uj ,w, s

r)r(st), (56)

where Qk(Uj ,w, s
r) is given by

Qk(Uj ,w, s
r) =(Q′k,1(Uj ,w, s

r),Q′k,M+2(Uj ,w, s
r), · · · ,

Q′k,M2(Uj ,w, s
r)), (57)

where Q′k,i(Uj ,w, s
r) denote the i-th column of

Q′k(Uj ,w, s
r). Consequently, parameter F can be expressed

as

F (Uj ,P) =(Q1(Uj ,w, s
r)r(st) + ζ1(Uj), · · · ,

QK(Uj ,w, s
r)r(st) + ζK(Uj)). (58)

Similar to the proof in Appendix A, (51), the predicted
distance between hypotheses Uj and Uj′ can be expressed as

d(Uj , Uj′ |P) =
1

σ2
Re
(
γ̂H(Uj)F

H(Uj ,P)F (Uj ,P)γ̂(Uj)

+ γ̂H(Uj′)F
H(Uj′ ,P)F (Uj′ ,P)γ̂(Uj′)

− 2γ̂H(Uj)F
H(Uj ,P)F (Uj′ ,P)γ̂(Uj′)

)
,

(59)

where γ̂H(Uj)F
H(Uj ,P)F (Uj′ ,P)γ̂(Uj′) can be expressed

as

γ̂H(Uj)F
H(Uj ,P)F (Uj′ ,P)γ̂(Uj′)

=

N(Uj)∑
i=1

N(U ′j)∑
i′=1

γ̂H
i (Uj)γ̂i′(Uj′)

(
rH(st)QH

i (Uj ,w, s
r)

+ ζH
i (Uj)

) (
Qi′(Uj′ ,w, s

r)r(st) + ζi′(Uj′)
)

= rHZ ′′(Uj , Uj′ ,w, s
r)r(st) + rHz′′1 (Uj , Uj′ ,w, s

r)

+ z′′2 (Uj , Uj′ ,w, s
r)r(st) + z′′3 (Uj , Uj′),

where

Z ′′(Uj , Uj′ ,w, s
r) =

N(Uj)∑
i=1

N(Uj′ )∑
i′=1

γ̂H
i (Uj)γ̂i′(Uj′)

QH
i (Uj ,w, s

r)Qi′(Uj′ ,w, s
r), (60)

z′′1 (Uj , Uj′ ,w, s
r) =

N(Uj)∑
i=1

N(Uj′ )∑
i′=1

γ̂H
i (Uj)γ̂i′(Uj′)

QH
i (Uj ,w, s

r)ζi′(U
′
j), (61)

z′′2 (Uj , Uj′ ,w, s
r) =

N(Uj)∑
i=1

N(Uj′ )∑
i′=1

γ̂H
i (Uj)γ̂i′(Uj′)ζ

H
i (Uj)

Qi′(Uj′ ,w, s
r), (62)

z′′3 (Uj , Uj′) =

N(Uj)∑
i=1

N(Uj′ )∑
i′=1

γ̂H
i (Uj)γ̂i′(Uj′)

ζH
i (Uj)ζi′(Uj′). (63)

Therefore, the predicted distance between hypotheses Uj
and Uj′ is given by

d(Uj , Uj′ |P) =
1

σ2
Re
(
γ̂H(Uj)F

H(Uj ,P)F (Uj ,P)γ̂(Uj)

+ γ̂H(Uj′)F
H(Uj′ ,P)F (Uj′ ,P)γ̂(Uj′)

− 2γ̂H(Uj)F
H(Uj ,P)F (Uj′ ,P)γ̂(Uj′)

)
=

1

σ2
Re
(
rH(st)Z ′(Uj , Uj′ ,w, s

r)r(st)

+ rH(st)z′1(Uj , Uj′ ,w, s
r)

+ z′2(Uj , Uj′ ,w, s
r)r(st) + z′3(Uj , Uj′)

)
,

(64)

where

Z ′(Uj , Uj′ ,w, s
r) =Z ′′(Uj , Uj ,w, s

r) +Z ′′(Uj′ , Uj′ ,w, s
r)

− 2Z ′′(Uj , Uj′ ,w, s
r), (65)

z′1(Uj , Uj′ ,w, s
r) =z′′1 (Uj , Uj ,w, s

r) + z′′1 (Uj′ , Uj′ ,w, s
r)

− 2z′′1 (Uj , Uj′ ,w, s
r), (66)

z′2(Uj , Uj′ ,w, s
r) =z′′2 (Uj , Uj ,w, s

r) + z′′2 (Uj′ , Uj′ ,w, s
r)

− 2z′′2 (Uj , Uj′ ,w, s
r), (67)

z′3(Uj , Uj′) =z′′3 (Uj , Uj) + z′′3 (Uj′ , Uj′)− 2z′′3 (Uj , Uj′).
(68)

APPENDIX C
PROOF OF PROPOSITION 3

Based on (23) and (50), the objective function (22a) can be
expressed as

J−1∑
j=0

J−1∑
j′=j+1

βj,j′d(Uj , Uj′ |P)

=

J−1∑
j=0

J−1∑
j′=j+1

βj,j′

σ2
||y(Uj ,P)− y(Uj′ ,P)||2

≤
J−1∑
j=0

J−1∑
j′=j+1

βj,j′

σ2

(
||y(Uj ,P)||2 + ||y(Uj′ ,P)||2

)
,

≤
J−1∑
j=0

J−1∑
j′=j+1

1

σ2

(
||y(Uj ,P)||2 + ||y(Uj′ ,P)||2

)
. (69)

Therefore, the objective function (22a) has an upper bound
if the energy of the received signals ||y(Uj ,P)||2 is limited.
Since the energy of signals will decrease due to the path loss
and the reflection by the RIS and the targets, the energy of
the received signals cannot be greater than the that of the
transmitted signals PM . Therefore, we have

J−1∑
j=0

J−1∑
j′=j+1

βj,j′d(Uj , Uj′ |P) ≤
J−1∑
j=0

J−1∑
j′=j+1

2PM
σ2

=
J(J − 1)PM

2
.

(70)



15

APPENDIX D
PROOF OF PROPOSITION 5

The power gain of the MetaRadar when the isotropic
antenna is at the location (lxa , l

z
a) is given by

B(lxa , l
z
a)

=

(
M∑
m=1

ρGRP (θr1,m)

l1,m
+ 1

)4

=

(
M∑
m=1

ρcos1.5(θr1,m)

l1,m
+ 1

)4

=

(
M∑
m=1

ρ(lza)1.5

((lza)2 + (lxa − lxm)2)1.25
+ 1

)4

=

(
M∑
m=1

(ρlza)1.5

((lza)2 + (lxa + (M + 1)le/2−mle)2)1.25
+ 1

)4

(71)

Suppose lxa = nle + l′, where n is an non-zero integer and
l′ ∈ [−le/2, le/2]. It can be proved that B(l′, lza) > B(lxa , l

z
a)

always holds. Specifically, the power gain when the antenna
is at (lxa , l

z
a) can be expressed as

B(lxa , l
z
a)

=

(
M∑
m=1

ρ(lza)1.5

((lza)2 + (l′ + (M + 1)le/2− (m− n)le)2)1.25
+ 1

)4

,

(72)

and the power gain when the antenna is at (l′, lza) can be
expressed as

B(l′, lza) =

(
M∑
m=1

ρ(lza)1.5

((lza)2 + (l′ + (M + 1)le/2−mle)2)1.25
+ 1

)4

.

(73)

To prove B(lxa , l
z
a) > B(lxa , l

z
a), it is equivalent to prove the

following relationship hold.

M∑
m=1

(lza)1.5

((lza)2+(l′+(M+1)le/2−mle)2)1.25

>

M∑
m=1

(lza)1.5

((lza)2+(l′+(M+1)le/2−(m−n)le)2)1.25
. (74)

When M = 1, it is obvious that (74) holds. When n ≥ bM/2c
and M > 1, it is also easy to prove (74). When 0 < n <

bM/2c and M > 1, we have

M∑
m=1

(lza)1.5

((lza)2 + (l′ + (M + 1)le/2−mle)2)1.25

−
M∑
m=1

(lza)1.5

((lza)2 + (l′ + (M + 1)le/2− (m− n)le)2)1.25

=

M−n∑
m=1

(lza)1.5

((lza)2 + (l′ + (M + 1)le/2−mle)2)1.25

−
M∑

m=n+1

(lza)1.5

((lza)2 + (l′ + (M + 1)le/2− (m− n)le)2)1.25

+

M∑
m=M−n+1

(lza)1.5

((lza)2 + (l′ + (M + 1)le/2−mle)2)1.25

−
n∑

m=1

(lza)1.5

((lza)2 + (l′ + (M + 1)le/2− (m− n)le)2)1.25

=

n∑
m=1

(lza)1.5

((lza)2 + (l′ + (M + 1)le/2− (m− n+M)le)2)1.25

− (lza)1.5

((lza)2 + (l′ + (M + 1)le/2− (m− n)le)2)1.25
. (75)

Since 0 < n < bM/2c, we have

|(lza)2 + (l′ + (M + 1)le/2− (m− n+M)le)2|
<|(lza)2 + (l′ + (M + 1)le/2 + (n−m)le)2|, (76)

and thus (75) is greater than 0. Similar process can be
applied to prove the case when n < 0, which is omitted
here for brevity. Since B(lxa , l

z
a) > B(lxa , l

z
a) holds, the

l′ ∈ [−le/2, le/2] with higher power gain than that of lxa has
been found.
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